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Abstract

We consider the problem of finding a sparse multiple of a polynomial.
Given f ∈ F[x] of degree d over a field F, and a desired sparsity t, our
goal is to determine if there exists a multiple h ∈ F[x] of f such that h
has at most t non-zero terms, and if so, to find such an h. When F = Q
and t is constant, we give a polynomial-time algorithm in d and the size
of coefficients in h. When F is a finite field, we show that the problem is
at least as hard as determining the multiplicative order of elements in an
extension field of F (a problem thought to have complexity similar to that
of factoring integers), and this lower bound is tight when t = 2.

1 Introduction

Let F be a field, which will later be specified either to be the rational numbers
(Q) or a finite field with q elements (Fq). We say a polynomial h ∈ F[x] is t-
sparse (or has sparsity t) if it has at most t nonzero coefficients in the standard
power basis; that is, h can be written in the form

h = h1x
d1 + h2x

d2 + . . .+ htx
dt for h1, . . . , ht ∈ F and d1, . . . , dt ∈ N. (1.1)

Sparse polynomials have a compact representation as a sequence of coefficient-
degree pairs (h1, d1), . . . , (ht, dt), which allow representation and manipulation
of very high degree polynomials. Let f ∈ F[x] have degree d. We examine
the computation of a t-sparse multiple of f . That is, we wish to determine if
there exist g, h ∈ F[x] such that fg = h and h has prescribed sparsity t, and
if so, to find such an h. We do not attempt to find g, as it may have a super-
polynomial number of terms, even though h has a compact representation (see
Theorem 3.7).

Sparse multiples over finite fields have cryptographic applications. Their
computation is used in correlation attacks on LFSR-based stream ciphers
(El Aimani and von zur Gathen, 2007; Didier and Laigle-Chapuy, 2007). The
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security of the TCHo cryptosystem is also based on the conjectured computa-
tional hardness of sparsest multiple computation over F2[x] (Aumasson et al.,
2007); our results provide further evidence that this is in fact a computationally
difficult problem.

Sparse multiples can facilitate efficient arithmetic in extension fields (Brent
and Zimmermann, 2003) and in designing interleavers for error-correcting codes
(Sadjadpour et al., 2001). The linear algebra formulation in Section 2 relates to
finding the minimum distance of a binary linear code (Berlekamp et al., 1978;
Vardy, 1997) as well as finding “sparsifications” of linear systems (Egner and
Minkwitz, 1998).

One of our original motivations was to understand the complexity of sparse
polynomial implicitization over Q or R: Given a curve represented explicitly as
a set of parametric rational functions, find a sparse polynomial whose zero set
contains all points on the curve (see, e.g., Emiris and Kotsireas (2005)). This
is a useful operation in computer aided geometric design for facilitating various
operations on the curve, and work here can be thought of as a univariate version
of this problem.

We often consider the related problem of finding a sparse annihilator for a
set of points — that is, a sparse polynomial with given roots. This is exactly
equivalent to our problem when the input polynomial f is squarefree, and in
the binomial case corresponds to asking whether a given root can be written as
a surd. This is also the problem we are really interested in regarding impliciti-
zation, and allows us to build on significant literature from the number theory
community on the roots of sparse polynomials.

In general, we assume that the desired sparsity t is a constant. This seems
reasonable given that over a finite field, even for t = 2, the problem is probably
computationally hard (Theorem 5.1). In fact, we have reason to conjecture that
the problem is intractable over Q or Fq when t is a parameter. Our algorithms
are exponential in t but polynomial in the other input parameters when t is
constant.

Over Q[x], the analysis must consider coefficient size, and we will count
machine word operations in our algorithms to account for coefficient growth. We
follow the conventions of Lenstra (1999) and define the height of a polynomial
as follows. Let f ∈ Q[x] and r ∈ Q the least positive rational number such that
rf ∈ Z[x]. If rf =

∑
i aix

ei with each ai ∈ Z, then the height of f , written
H(f), is maxi |ai|.

We examine variants of the sparse multiple problem over Fq and Q. Since
every polynomial in Fq has a 2-sparse multiple of high degree, given f ∈ Fq[x]
and n ∈ N we consider the problem of finding a t-sparse multiple of f with
degree at most n. For input f ∈ Q[x] of degree d, we consider algorithms which
seek t-sparse multiples of height bounded above by an additional input value
c ∈ N. We present algorithms requiring time polynomial in d and log c.

The remainder of the paper is structured as follows.
In Section 2, we consider the straightforward linear algebra formulation of

the sparse multiple problem. This is useful over Q[x] once a bound on the output
degree is derived, and also allows us to bound the output size. In addition, it
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connects our problems with related NP-complete coding theory problems.
In Section 3 we consider the problem of finding the least-degree binomial

multiple of a rational polynomial. A polynomial-time algorithm in the size of
the input is given which completely resolves the question in this case. This
works despite the fact that we show polynomials with binomial multiples whose
degrees and heights are both exponential in the input size!

In Section 4 we consider the more general problem of finding a t-sparse
multiple of an input f ∈ Q[x]. Given a height bound c ∈ N we present an
algorithm which requires polynomial time in deg f and log c, except in the very
special case that f has both non-cyclotomic and repeated cyclotomic factors.

Section 5 shows that, even for t = 2, finding a t-sparse multiple of a polyno-
mial f ∈ Fq[x] is at least as hard as finding multiplicative orders in an extension
of Fq (a problem thought to be computationally difficult). This lower bound
is shown to be tight for t = 2 due to an algorithm for computing binomial
multiples that uses order finding.

Open questions and avenues for future research are discussed in Section 6.
An extended abstract of some of this work appears in Giesbrecht, Roche,

and Tilak (2010). Some of this work and further explorations, also appears in
the Masters thesis of Tilak (2010).

2 Linear algebra formulation

The sparsest multiple problem can be formulated using linear algebra. This
requires specifying bounds on degree, height and sparsity; later some of these
parameters will be otherwise determined. This approach also highlights the
connection to some problems from coding theory. We exhibit a randomized
algorithm for finding a t-sparse multiple h of a degree-d polynomial f ∈ Q[x],
given bounds c and n on the height and degree of the multiple respectively.
When t is a constant, the algorithm runs in time polynomial in n and logH(f)
and returns the desired output with high probability. We also conjecture the
intractability of some of these problems, based on similar problems in coding
theory. Finally, we show that the construction of Vardy (1997) can be used
to show the problem of finding the sparsest vector in an integer lattice is NP-
complete, which was conjectured by Egner and Minkwitz (1998).

Let R be a principal ideal domain, with f ∈ R[x] of degree d and n ∈ N given.

Suppose g, h ∈ R[x] have degrees n − d and n respectively, with f =
∑d

0 fix
i,

g =
∑n−d

0 gix
i and h =

∑n
0 hix

i. The coefficients in the equation fg = h satisfy
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the following linear system:

f0

f1 f0

... f1
. . .

fd
...

. . . f0

fd
. . . f1

. . .
...
fd


︸ ︷︷ ︸

Af,n



g0

g1

...

gn−d


︸ ︷︷ ︸

vg

=



h0

h1

...

hn


︸ ︷︷ ︸

vh

. (2.1)

Thus, a multiple of f of degree at most n and sparsity at most t corresponds
to a vector with at most t nonzero entries (i.e., a t-sparse vector) in the linear
span of Af,n.

If f ∈ R[x] is squarefree and has roots {α1, . . . , αd}, possibly over a finite
extension of R, then the following also holds:


1 α1 · · · αn1
1 α2 · · · αn2
...

...
...

...
1 αd · · · αnd


︸ ︷︷ ︸

An(α1,...,αd)



h0

h1

...

hn


= 0. (2.2)

Thus t-sparse multiples of a squarefree f correspond to t-sparse R-vectors in the
nullspace of An(α1, . . . , αd).

2.1 Finding short l∞ vectors in lattices

This technical section presents a randomized, polynomial-time algorithm to find
the shortest l∞ vector in a constant-dimensional lattice. Our algorithm is a
modification of Ajtai et al. (2001), based on the presentation by Regev (2004),
adapted to the case of infinity norm. Since this the techniques are essentially
drawn from the literature, and while necessary, are not the central thrust of this
current paper, full details are left to Appendix A.

Algorithm 2.1 below starts by computing a rough approximation of the short-
est l2 vector using LLL (Lenstra, Lenstra, and Lovász, 1982), and then scales the
lattice accordingly. The main while loop then consists of two phases: sampling
and sieving. First, a large number of random vectors {x1, . . . , xm} are sampled
in an appropriately-sized ball around the origin. We take these modulo the basis
B to obtain vectors {y1, . . . , ym} with the property that each xi − yi is in the
lattice of B. Next, we use a series of sieving steps in the while loop in Step 13
to find a small subset of the yi vectors that are close to every other vector and
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use these as “pivots”. The pivots are discarded from the set, but all remaining
lattice vectors xi − yi are made smaller. After this, the set Wγ contains most
lattice vectors whose l2 length is close to γ.

Algorithm 2.1: Shortest l∞ vector in a lattice

Input: Basis U ∈ Zn×d for an integer lattice L of dimension n and size
d ≤ n

Output: Shortest l∞ vector in L
1 λ← approximate l2-shortest vector in L from Lenstra et al. (1982)
2 B ← (1/ ‖λ‖2) · U , stored as a list of vectors [b1, . . . , bd]
3 for k ∈ {1, 2, . . . , 2n} do
4 B ← 1.5 ·B
5 r0 ← nmaxi ‖bi‖2
6 γ ← 3/2
7 while γ ≤ 3

√
n+ 1 do

8 m←
⌈
2(7+dlog γe)n log r0

⌉
9 Sample points {x1, . . . , xm} uniformly and independently from

Bn(0, γ), the n-dimensional ball of radius γ centered around 0
10 S ← {1, 2, . . . ,m}
11 yi ← xi mod P(B) for every i ∈ S, P(B) being the parallelogram

of B defined in the proof of Lemma A.2
12 r ← r0

13 while r > 2γ + 1 do
14 J ← ∅
15 for i ∈ S do
16 if ∃j ∈ J such that ‖yj − yi‖ ≤ r/2 then ηi ← j
17 else J ← J ∪ {i}
18 S ← S \ J
19 yi ← yi + xηi − yηi for i ∈ S
20 r ← r/2 + γ

21 Yγ ← {(xi − yi) | i ∈ S}
22 Wγ ← {v − w | v, w ∈ Yγ and v 6= w}
23 γ ← 3γ/2

24 vk ← shortest l∞ vector in any Wγ

25 return shortest l∞ vector in {(‖λ‖2 /1.5k) · vk | k = 1, 2, . . . , n}

If we are fortunate enough that the shortest l2 vector in the lattice with basis
B set on Step 4 has length between 2 and 3, then we know that the shortest l∞
vector in this lattice must have l2 length between 2 and 3

√
n. By iterating γ

in the appropriate range, we will encounter this shortest l∞ vector and set it to
vk on Step 24 with high probability. We prove, given our approximate starting
point from LLL, we will be in this “fortunate” situation in at least one iteration
through the outer for loop.
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The correctness and efficiency of the algorithm is given by the following
theorem, whose proof we defer to Appendix A.

Theorem 2.1. Given a lattice basis U ∈ Zn×d, Algorithm 2.1 returns the
shortest l∞ vector in the lattice of U , with probability at least 1−1/2O(n), using

2O(n logn) · ‖U ‖O(1)
bit operations.

2.2 Finding a sparse multiple of bounded height and degree

We now present an algorithm to find the sparsest bounded-degree, bounded-
height multiple h ∈ Q[x] of an input f ∈ Q[x]. Since H is invariant under
scaling, we may assume that f, g, h ∈ Z[x] .

The basic idea is the following. Having fixed the positions at which the
multiple h has nonzero coefficients, finding a low-height multiple is reduced to
finding the nonzero vector with smallest l∞ norm in the image of a small lattice.

Let I = {i1, . . . , it} be a t-subset of {0, . . . , n}, and AIf,n ∈ Z(n−t+1)×(n−d+1)

the matrix Af,n with rows i1, . . . , it removed. Denote by BIf,n ∈ Zt×(n−d+1) the
matrix consisting of the removed rows i1, . . . , it of the matrix Af,n. Existence
of a t-sparse multiple h = hi1x

i1 +hi2x
i2 + · · ·+hitx

it of input f is equivalent to
the existence of a vector vg such that AIf,n ·vg = 0 and BIf,n ·vg = [hi1 , . . . , hit ]

T .

Now let CIf,n be a matrix whose columns span the nullspace of the matrix

AIf,n. Since Af,n has full column rank, the nullspace of AIf,n has dimension s ≤ t
and CIf,n ∈ Z(n−d+1)×s. Thus, a t-sparse multiple h = hi1x

i1 + · · ·+ hitx
it of f

exists if and only if there exists a v ∈ Zs such that

BIf,n · CIf,n · v = [hi1 , . . . , hit ]
T . (2.3)

Note that BIf,n ·CIf,n ∈ Zt×s. Our approach, outlined in Algorithm 2.2, is to gen-
erate this lattice and search for a small, t-sparse vector in it. For completeness,
we first define the subset ordering used in the search.

Definition 2.2. Let a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk) be two k-tuples.
a precedes b in reverse lexicographical order if and only if there exists an index
i with 1 ≤ i ≤ k such that ai < bi, and for all j with i < j ≤ k, aj = bj .

The following lemma shows how to compute Step 5 efficiently using the
Smith normal form.

Lemma 2.3. Given T ∈ Zk×` with k ≥ ` and nullspace of dimension s, we can
compute a V ∈ Z`×s such that the image of V equals the nullspace of T . The
algorithm requires O (̃k`2s log ‖T ‖) bit operations (ignoring logarithmic factors).

Proof. First compute the Smith normal form of the matrix: T = PSQ for
diagonal matrix S = diag(δ1, . . . , δ`−s, 0, . . . , 0) ∈ Zk×` and unimodular matri-
ces P ∈ Zk×k and Q ∈ Z`×`. Storjohann (2000) gives efficient algorithms to
compute such a P, S,Q with O (̃k`2s log ‖T ‖) bit operations.

Then since any vector v in the nullspace of T satisfies PSQv = 0, SQv = 0
also and v is in the nullspace of SQ. Next compute the inverse of Q; this can
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Algorithm 2.2: Bounded-Degree Bounded-Height Sparsest Multiple

Input: f ∈ Z[x] and t, n, c ∈ N
Output: A t-sparse multiple h ∈ Z[x] of f with deg(h) ≤ n and

H(h) ≤ c, or “NONE”
1 for s = 2, 3, . . . , t do
2 foreach s-subset I = (0, i2, . . . , is) of {0, 1, . . . , n},

sorted in reverse lexicographic order, do
3 Compute matrices AIf,n and BIf,n as defined above

4 if AIf,n does not have full column rank then

5 Compute matrix CIf,n, a kernel basis for AIf,n
6 h← shortest l∞ vector in the lattice of BIf,n · CIf,n from

Algorithm 2.1
7 if ‖h‖∞ ≤ c then return h1 + h2x

i2 + · · ·+ htx
it

8 return “NONE”

be accomplished with the same number of bit operations since ` ≤ k. Define V
to be the last s columns of Q−1. Due to the diagonal structure of S, V must
be a nullspace basis for SQ, and furthermore V has integer entries since Q is
unimodular.

The correctness and efficiency of Algorithm 2.2 can then be summarized as
follows.

Theorem 2.4. Algorithm 2.2 correctly computes a t-sparse multiple h of f
of degree n and height c, if it exists, with (logH(f))O(1) · nO(t) · 2O(t log t) bit
operations. The sparsity s of h is minimal over all multiples with degree less
than n and height less than c, and the degree of h is minimal over all such
s-sparse multiples.

Proof. The total number of iterations of the for loops is
∑t
s=2

(
n−1
s−1

)
< nt.

Computing the rank of AIf,n, and computing the matrices BIf,n and CIf,n can

each be done in polynomial time by Lemma 2.3. The size of the entries of CIf,n
is bounded by some polynomial (logH(h) + n)O(1). The computation of the
shortest l∞ vector can be done using 2O(t log t) operations on numbers of length
(logH(h) + n)O(1), by Theorem 2.1.

The minimality of sparsity and degree comes from the ordering of the for
loops. Specifically, the selection of subsets in Step 2 is performed in reverse
lexicographic order, so that column subsets I corresponding to lower degrees are
always searched first.

2.3 Relationship to NP-hard problems

Note that the above algorithms require time exponential in t, and are only
polynomial-time for constant t. It is natural to ask whether there are efficient
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algorithms which require time polynomial in t. We conjecture this problem
is probably NP-complete, and point out two results of Vardy (1997) and Gu-
ruswami and Vardy (2005) on related problems that are known to be hard.

The formulation (2.2) seeks the sparsest vector in the nullspace of a (struc-
tured) matrix. For an unstructured matrix over finite fields, this is the problem
of finding the minimum distance of a linear code, shown by Vardy (1997) to be
NP-complete. The same problem over integers translates into finding the spars-
est vector in an integer lattice. It was posed as an open problem in Egner and
Minkwitz (1998). Techniques similar to Vardy (1997) prove that this problem
is also NP-complete over the integers, a fact proved in Theorem 2.5.

Of course, the problem may be easier for structured matrices as in (2.2)
However, Guruswami and Vardy (2005) show that maximum likelihood decoding
of cyclic codes, which seeks sparse solutions to systems of equations of similar
structure to (2.2), is also NP complete. They do require the freedom to choose
a right-hand-side vector, whereas we insist on a sparse vector in the nullspace.
While these two results certainly do not prove that the bounded-degree sparsest
multiple problem is NP-complete, they support our conjecture that it is.

Theorem 2.5. The problem SparseLatticeVector of computing the vector with
the least Hamming weight in an integer lattice specified by its basis is NP-
complete.

Proof. To see that the problem is in NP, a nondeterministic machine can just
guess the positions at which the lattice vector is nonzero. The rest is a standard
linear algebra problem.

We now show NP-hardness by giving a Cook-reduction from the problem
Subset Sum, a well-known NP-complete problem.

We note first the standard formulation of Subset Sum: Given distinct integers
{z1, . . . , zn}, a target integer t and a positive integer w ≤ n, is there a non-empty
subset S ⊆ {1, . . . , n} of size exactly w such that such that

∑
i∈S zi = t?

If w = n, the problem can be solved by comparing the sum
∑
i zi with t.

Therefore, we can assume that w < n. Given an instance {z1, . . . , zn} of subset
sum, to check if there is a subset of size w < n summing to t, the reduction first
creates the following matrix:

Mw =


1 1 · · · 1 0
z1 z2 · · · zn 0
...

...
...

...
...

zw−1
1 zw−1

2 · · · zw−1
n 1

zw1 zw2 · · · zwn t

 ∈ Z(w+1)×(n+1). (2.4)

Lemma 2.6 (stated and proved below) shows that Mw has a null vector
of sparsity at most w + 1 if and only if zi1 + zi2 + · · · + ziw = t for some
i1 < i2 < . . . < iw.

To create an instance of SparseLatticeVector, the reduction creates a matrix
N such that the columns of N span the kernel of M via Z-linear combinations
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(see Lemma 2.3). The instance (L, w), where L is the column lattice L of N , is
fed to an algorithm claiming to solve the Sparse Vector Problem.

Lemma 2.6. The matrix Mw from equation (2.4) has a null vector of Hamming
weight w+ 1 if and only if zi1 + zi2 + · · ·+ ziw = t for some i1 < i2 < . . . < iw.

Proof. We will first prove that the sparsest null vector has weight at least (w+1).
To see this, consider the submatrix formed by any set of w columns. (We
can assume that the last column is included in this set since otherwise the
submatrix has a Vandermonde minor of size w×w, and hence the columns are
independent.) Since the principal minor of such a submatrix is a (w−1)×(w−1)-
sized Vandermonde matrix, the rows are independent. On adding either of the
last two rows, the row-rank only increases since the other rows do not contain
a nonzero entry in the last coordinate. Hence the row-rank (and hence the
column-rank) of this submatrix is at least w, and hence the sparsest null vector
of Mw has weight at least (w + 1).

Consider a (w+ 1)-sized subset of columns. If the last column is not in this
set, the chosen columns form a Vandermonde matrix with nonzero determinant
(since zi are distinct). Therefore assume that the last column is among those
chosen, the determinant of the resulting matrix can be expanded as:∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 0
zi1 · · · ziw 0
...

...
...

zw−1
i1

· · · zw−1
iw

1
zwi1 · · · zwiw t

∣∣∣∣∣∣∣∣∣∣∣
= t

∣∣∣∣∣∣∣∣∣
1 · · · 1
zi1 · · · ziw
...

...
...

zw−1
i1

· · · zw−1
iw

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
zi1 · · · ziw
...

...
...

zw−2
i1

· · · zw−2
iw

zwi1 · · · zwiw

∣∣∣∣∣∣∣∣∣∣∣
.

The first of the matrices on the right-hand side is a Vandermonde matrix,
whose determinant is well-known to be

∏
ij<ik

(zik − zij ). The second ma-

trix is a first-order alternant whose determinant is known to be (zi1 + zi2 +
· · · + ziw)

∏
ij<ik

(zik − zij ). Hence the determinant of the entire matrix is

(t − zi1 − zi2 − · · · − ziw)
∏
ij<ik

(zik − zij ). Since all the zi are distinct, the
determinant vanishes if and only if the first term vanishes which holds when
there exists a subset of {z1, z2, . . . , zn} of size w summing to t.

3 Binomial multiples over Q
In this section we completely solve the problem of determining if there exists
a binomial multiple of a rational input polynomial (i.e., a multiple of sparsity
t = 2). That is, given input f ∈ Q[x] of degree d, we determine if there exists
a binomial multiple h = xm − a ∈ Q[x] of f , and if so, find such an h with
minimal degree. The constant coefficient a will be given as a pair (r, e) ∈ Q×N
representing re ∈ Q. The algorithm requires a number of bit operations which
is polynomial in d and logH(f). No a priori bounds on the degree or height
of h are required. We show that m may be exponential in d, and log a may be
exponential in logH(f), and give a family of polynomials with these properties.
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Algorithm 3.1: Lowest degree Binomial Multiple of a Rational Polyno-
mial

Input: f ∈ Q[x]
Output: The lowest degree binomial multiple h ∈ Q[x] of f , or “NONE”

1 Factor f into irreducible factors: f = xbf1f2 · · · fu
2 if f is not squarefree then return “NONE”
3 for i = 1, 2, 3, . . . , u do
4 di ← deg fi
5 mi ← least k ∈ {di, di + 1, . . . , di · (d3di ln ln die+ 7)} such that

xk rem fi ∈ Q
6 if no such mi is found then return “NONE”
7 else ri ← xmi rem fi

8 m← lcm(m1, . . . ,mu)
9 foreach 2-subset {i, j} ⊆ {1, . . . , u} do

10 if |ri |mj 6= |rj |mi then return “NONE”

11 else if sign(r
m/mi

i ) 6= sign(r
m/mj

j ) then m← 2 · lcm(m1, . . . ,mu)

12 return xb(xm − rm/m1

1 ), with r1 and m/m1 given separately

Algorithm 3.1 begins by factoring the given polynomial f ∈ Q[x] into irre-
ducible factors (using, e.g., the algorithm of Lenstra et al. (1982)). We then
show how to find a binomial multiple of each irreducible factor, and finally
provide a combining strategy for the different multiples.

The following theorem of Risman (1976) characterizes binomial multiples of
irreducible polynomials. Let φ(n) be Euler’s totient function, the number of
positive integers less than or equal to n which are coprime to n.

Fact 3.1 (Risman (1976), Proposition 4, Corollary 2.2). Let f ∈ Q[x] be ir-
reducible of degree d. Suppose the least-degree binomial multiple of f (if one
exists) is of degree m. Then there exist n, t ∈ N with n | d and φ(t) | d such that
m = n · t.

The following, easily derived from explicit bounds in Rosser and Schoenfeld
(1962), gives a polynomial bound on m.

Lemma 3.2. For all integers n ≥ 2, φ(d3n ln lnne+ 7) > n.

Proof. Rosser and Schoenfeld (1962), Theorem 15, implies that for all n ≥ 3

φ(n) >
0.56146 · n

ln lnn+ 1.40722
.

It is then easily derived by basic calculus that

φ(3n log log n) >
0.56146 · (3n log log n)

ln ln(3n log log n) + 1.40722
> n

for n ≥ 24348. The inequality in the lemma statement is verified mechanically
(say using Maple) for 2 ≤ n ≤ 24348.
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Combining Fact 3.1 with Lemma 3.2, we obtain the following explicit up-
per bound on the maximum degree of a binomial multiple of an irreducible
polynomial.

Theorem 3.3. Let f ∈ Q[x] be irreducible of degree d. If a binomial multiple
of f exists, and has minimal degree m, then m ≤ d · (d3d ln ln de+ 7).

Proof. By Fact 3.1, m = n · t such that n | d and φ(t) | d. Define ξ(n) =
d3n ln lnne+7, and define ξ−1(n) to be the smallest integer such that ξ(ξ−1(n)) ≥
n. From Lemma 3.2, we have that φ(ξ(n)) > n for n ≥ 2. Hence, d ≥ φ(t) ≥
ξ−1(t). Since ξ is a non-decreasing function, d ≥ ξ−1(t) implies that ξ(d) ≥ t.
Thus m = n · t ≤ d · ξ(d) ≤ d · (d3d ln ln de+ 7).

The above theorem ensures that for an irreducible fi, Step 5 of Algorithm 3.1
computes the least-degree binomial multiple xmi − ri if it exists, and otherwise
correctly reports failure. It clearly runs in polynomial time.

If f has any repeated factor, then it cannot have a binomial multiple (see
Lemma 4.1 below). So assume the factorization of f is as computed in Step 1,
and moreover f is squarefree. If any factor does not have a binomial multiple,
neither can the product. If every irreducible factor does have a binomial mul-
tiple, Step 5 computes the one with the least degree. The following relates the
degree of the minimal binomial multiple of the input polynomial to those of its
irreducible factors.

Lemma 3.4. Let f ∈ Q[x] be such that f = f1 · · · fu ∈ Q[x] for distinct,
irreducible f1, . . . , fu ∈ Q[x]. Let fi | (xmi − ri) for minimal mi ∈ N and ri ∈ Q,
and let f | (xm − r) for r ∈ Q. Then lcm(m1, . . . ,mu) |m.

Proof. It suffices to prove that if f | (xm − r) and fi | (xmi − ri) for minimal mi

then mi |m since any multiple of f is also a multiple of fi.
Assume for the sake of contradiction that m = cmi+` for 0 < ` < mi. Then

for any root αi ∈ C of fi, we have that r = αm = αcmi · α` = rci · α`. Since r
and ri are both rational, so is α`. Also α` = β` for any two roots α, β ∈ C of
fi. Hence fi |x` − α` and ` < mi, contradicting the minimality of mi.

Thus mi |m, and therefore lcm(m1, . . . ,mu) |m.

Lemma 3.5. For a polynomial f ∈ Q[x] factored into distinct irreducible factors
f = f1f2 . . . fu, with fi | (xmi − ri) for ri ∈ Q and minimal such mi, a binomial
multiple of f exists if and only if |ri |mj = |rj |mi for every pair 1 ≤ i, j ≤ u. If

a binomial multiple exists, the least-degree binomial multiple of f is xm− rm/mi

i

such that m either equals the least common multiple of the mi or twice that
number. It can be efficiently checked which of these cases holds.

Proof. Let αi ∈ C be a root of fi. For any candidate binomial multiple xm − r
of f , we have (from Lemma 3.4) that mi |m.

First, suppose that such a binomial multiple exists: f | (xm− r) with r ∈ Q.

It is easily seen from αmi = r and αmi
i = ri that r

m/mi

i = r. Since this holds
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for any fi, we see that r
m/mi

i = r = r
m/mj

j for any 1 ≤ i, j ≤ u. Thus

|ri |mj = |rj |mi must hold.
Conversely, suppose that |ri |mj = |rj |mi holds for every pair 1 ≤ i, j ≤ u.

We get that |αi |`mimj = |αj |`mjmi , and hence
∣∣α`i ∣∣ =

∣∣α`j ∣∣ for

` = lcm(m1, . . . ,mu). But α`i are all rational since mi | `. Thus α2`
i = α2`

j

for every pair i, j . Thus, there exists a binomial multiple of the original poly-
nomial of degree 2`.

To check whether α`i = α`j holds (or in other words if the degree of the
binomial multiple is actually the lcm), it suffices to check whether the sign of
each α`i is the same. This is equivalent to checking whether the sign of each

r
`/mi

i is the same. Since we can explicitly compute ` and all the ri, the sign of

each r
`/mi

i can be easily computed from the sign of ri and the parity of `/mi.

The following comes directly from the previous lemma and the fact that
Algorithm 3.1 performs polynomially many arithmetic operations.

Theorem 3.6. Given a polynomial f ∈ Q[x], Algorithm 3.1 outputs the least-

degree binomial multiple xm − rm/mi

i (with ri and m/mi output separately) if
one exists or correctly reports the lack of a binomial multiple otherwise. Fur-
thermore, it runs in deterministic time (d+H(f))O(1).

The constant coefficient of the binomial multiple cannot be output in stan-
dard form, but must remain an unevaluated power; the next theorem exhibits
an infinite family of polynomials whose minimal binomial multiples have expo-
nentially sized degrees and heights.

Theorem 3.7. For any d ≥ 841 there exists a polynomial f ∈ Z[x] of degree at
most d log d and height H(f) ≤ exp(2d log d) whose minimal binomial multiple

xm − a is such that m > exp(
√
d) and H(a) > 2exp(

√
d).

Proof. We construct the family from a product of cyclotomic polynomials. Let
pi ∈ N be the ith largest prime, and let Φpi = (xpi − 1)/(x − 1) ∈ Z[x] be the
pi

th cyclotomic polynomials (whose roots are the primitive pi
th roots of unity).

This is well known to be irreducible in Q[x].
Let ` =

√
2d and g =

∏
1≤i≤` Φpi . Then, using the fact easily derived from

Rosser and Schoenfeld (1962), Theorem 3, that i log i < pi < 1.25i log i for all
i ≥ 25 and verifying that (pi − 1) ≤ 1.5i log i mechanically for smaller values of
i,

deg g =
∑

1≤i≤`

(pi − 1) ≥
∑

1≤i≤`

i =
l(l + 1)

2
≥ d,

and

deg g =
∑

1≤i≤`

(pi − 1) ≤
∑

1≤i≤`

1.5i log i ≤ 1.5

(
`2 + `

2
log `

)
≤ d log d.

12



The degree m of the minimal binomial multiple is the lcm of the order of the
roots, and hence equal to the product of primes less than or equal to p`. This
is exp(ϑ(p`)) (where ϑ is the Chebyshev theta function), and for ` ≥ 41

m ≥ exp(ϑ(p`)) ≥ exp(ϑ(`)) ≥ exp

(
`

(
1− 1

log `

))
≥ exp

(√
d
)
,

for d ≥ 841, where the bounds on ϑ are derived from Rosser and Schoenfeld
(1962) Theorem 4.

Now let f = g(2x), so the minimal binomial multiple of f is xm− 1/2m. We
have that

H(g) ≤
∏

1≤i≤`

(1 + pi) ≤ 2`
∏

1≤i≤`

pi ≤ exp(2` log `)

and

H(f) ≤ 2deg(g)H(g) ≤ 2d log d exp(d log d+ 2
√

2d log
√

2d) ≤ exp(2d log d)

for all ≥ 841.

4 Computing t-sparse multiples over Q
We examine the problem of computing t-sparse multiples of rational polynomi-
als, for any fixed positive integer t. As with other types of polynomial com-
putations, it seems that cyclotomic polynomials behave quite differently from
cyclotomic-free ones. Accordingly, we first examine the case that our input
polynomial f consists only of cyclotomic or cyclotomic-free factors. Then we
see how to combine them, in the case that none of the cyclotomic factors are
repeated.

Specifically, we will show that, given any rational polynomial f which does
not have repeated cyclotomic factors, and a height bound c ∈ N, we can compute
a sparsest multiple of f with height at most c, or conclude that none exists, in
time polynomial in the size of f and log c (but exponential in t).

First, notice that multiplying a polynomial by a power of x does not affect
the sparsity, and so without loss of generality we may assume all polynomials
are relatively prime to x; we call such polynomials non-original since they do
not pass through the origin.

4.1 The cyclotomic case

Suppose the input polynomial f is a product of cyclotomic factors, and write
the complete factorization of f as

f = Φeii1 · Φ
e2
i2
· · ·Φekik , (4.1)

where Φj indicates the jth cyclotomic polynomial, the ij ’s are all distinct, and
the ei’s are positive integers.

13



Now let m = lcm(i1, . . . , ik). Then m is the least integer such that Φi1 · · ·Φik
divides xm − 1. Let ` = maxi ei, the maximum multiplicity of any factor of f .
This means that (xm− 1)` is an (`+ 1)-sparse multiple of f . To prove that this
is in fact a sparsest multiple of f , we first require the following simple lemma.
Here and for the remainder, for a univariate polynomial f ∈ F[x], we denote by
f ′ the first derivative with respect to x, that is, d

dxf .

Lemma 4.1. Let h ∈ Q[x] be a t-sparse and non-original polynomial, and write
h = a1 + a2x

d2 + · · ·+ atx
dt . Assume the complete factorization of h over Q[x]

is h = ath
e1
1 · · ·h

ek
k , with each hi monic and irreducible. Then maxi ei ≤ t− 1.

Proof. Without loss of generality, assume h is exactly t-sparse, and each ai 6= 0.
The proof is by induction on t. If t = 1 then h = a1 is a constant, so

maxi ei = 0 and the statement holds. Otherwise, assume the statement holds
for (t− 1)-sparse polynomials.

Write the so-called “sparse derivative” h̃ of h as

h̃ =
h′

xd2−1
= a2d2 + a3d3x

d3−d2 + · · ·+ at−1dt−1x
dt−1−d2 .

For any i with ei > 0, we know that hei−1
i divides d

dxh, and hi is relatively

prime to xd2−1 since the constant coefficient of h is nonzero. Therefore hei−1
i

divides h̃. By the inductive hypothesis, since h̃ is (t−1)-sparse and non-original,
ei−1 ≤ t−2, and therefore ei ≤ t−1. Since i was chosen arbitrarily, maxi ei ≤
t− 1.

An immediate consequence is the following:

Corollary 4.2. Let f ∈ Q[x] be a product of cyclotomic polynomials, written
as in (4.1). Then

h = (xlcm(i1,...,ik) − 1)maxi ei

is a sparsest multiple of f .

Proof. Clearly h is a multiple of f with exactly maxi ei + 1 nonzero terms. By
way of contradiction, suppose a (maxi ei)-sparse multiple of f exists; call it h̄.
Without loss of generality, we can assume that h̄ is non-original. Then from
Lemma 4.1, the maximum multiplicity of any factor of h̄ is maxi ei − 1. But
this contradicts the fact that each Φeii must divide h̄. Therefore the original
statement is false, and every multiple of f has at least maxi ei + 1 nonzero
terms.

4.2 The cyclotomic-free case

We say a polynomial f ∈ Q[x] is cyclotomic-free if it contains no cyclotomic
factors. Here we will show that a sparsest multiple of a cyclotomic-free poly-
nomial must have degree bounded by a polynomial in the size of the input and
output.

First we need the following elementary lemma.
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Lemma 4.3. Suppose f, h ∈ Q[x] with f irreducible, and k is a positive integer.
Then fk|h if and only if f |h and fk−1|h′.

Proof. The ⇒ direction is straightforward.
For the ⇐ direction, suppose f |h and fk−1|h′. Let ` be the maximum

multiplicity of f in h, and write h = f `g with g ∈ Q[x] relatively prime to f .
We can write h′ = f `−1 (fg′ + `f ′g). Now, by way of contradiction, assume

that k > `. Then f divides fg′ + `f ′g, and therefore f divides `f ′g. But this is
impossible from the assumption that f is irreducible and relatively prime to g.
Therefore k ≤ `, and fk|f `|h.

The following technical lemma provides the basis for our degree bound on
the sparsest multiple of a non-cyclotomic polynomial.

Lemma 4.4. Let f, h1, h2, . . . , h` ∈ Q[x] be non-original polynomials, where f
is irreducible and non-cyclotomic with degree d, and each hi satisfies deg hi ≤ u
and H(hi) ≤ c. Also let k,m1,m2, . . . ,m` be positive integers such that

fk|(h1x
m1 + h2x

m2 + · · ·+ h`x
m`).

Then fk divides each hi whenever every “gap length”, for 1 ≤ i < `, satisfies

mi+1 −mi − deg hi ≥
1

2
d · ln3(3d) · ln

(
uk−1c (t− 1)

)
. (4.2)

Proof. The proof is by induction on k. For the base case, let k = 1. Then we
have a separate, inner induction on `. The inner base case, when k = ` = 1, is
clear since f is non-original. Now assume the lemma holds whenever k = 1 and
1 ≤ ` − 1 < r for some r ≥ 2. Let g1 = h1x

m1 and g2 = h2 + · · · + h`x
mr−m2 ,

so that f | (g1 + g2x
m2). Since

m2 − deg g1 ≥
1

2
d · ln3(3d) · ln(c(t− 1)),

we can apply (Lenstra, 1999, Proposition 2.3) to conclude that f | g1 and f | g2.
This means f |h1 and, by the inner induction hypothesis, f |hi for 2 ≤ i ≤ ` as
well. Therefore the lemma holds whenever k = 1.

Now assume the lemma holds whenever ` ≥ 1 and 1 ≤ k < s, for some s ≥ 2.
Next let ` be arbitrary and k = s. So we write fs|(h1x

m1 + · · ·+ h`x
m`).

The derivative of the right hand side is

h′1x
m1 +m1h1x

m1−1 + · · ·+ h′`x
m` +m`h`x

m`−1,

which must be divisible by fs−1. But by the induction hypothesis, fs−1 also
divides each hi, so we can remove all terms with hi from the previous formula
and conclude that fs−1| (h′1xm1 + · · ·+ h′`x

m`).
Since each H(hi) ≤ c and deg hi ≤ u, the height of the derivative satisfies

H(h′i) ≤ uc. A second application of the induction hypothesis therefore shows
that each h′i is divisible by fs−1. Since s− 1 ≥ 1, we already know that each hi
is divisible by f , and then applying Lemma 4.3 completes the proof.
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Our main tool in proving that Algorithm 2.2 is useful for computing the
sparsest multiple of a rational polynomial, given only a bound c on the height,
in polynomial time in the size of f and log c, is the following degree bound on
the sparsest height-bounded multiple of a rational polynomial.

Theorem 4.5. Let f ∈ Q[x] with deg f = d be cyclotomic-free, and let t, c ∈ N
such that f has a nonzero t-sparse multiple with height at most c. Denote by n
the smallest degree of any such multiple of f . Then n satisfies

n ≤ 2(t− 1)B lnB, (4.3)

where B is the formula polynomially bounded by d, log c, and log t defined as

B =
1

2
d2 · ln3(3d) · ln

(
ĉ (t− 1)

d
)
, (4.4)

and ĉ = max(c, 35).

Proof. Let h be a t-sparse multiple of f with degree n and height H(h) ≤ c.
Without loss of generality, assume d ≥ 1, t ≥ 2, and both f and h are non-
original.

By way of contradiction, assume n > 2(t − 1)B lnB. For any univariate
polynomial define the gap lengths to be the differences of consecutive exponents
of nonzero terms. Split h at every gap greater than 2B lnB by writing

h = h1x
m1 + h2x

m2 + · · ·+ h`x
m` ,

where each hi ∈ Q[x] has nonzero constant term and each gap length satisfies
mi+1 −mi − deg hi > 2B lnB. Since we split h at every sufficiently large gap,
and h has at most t nonzero terms, each hi has degree at most u = 2(t−1)B lnB.

We want to show that the gap length 2B lnB is sufficiently large to apply
Lemma 4.4. For this, first notice that 2B lnB = B ln(B2). Since B is positive,
B2 > 2B lnB, so the gap length is greater than B ln(2B lnB).

Since ĉ ≥ 35, B ≥ 2.357, and then

(d− 1) ln(2B lnB) · ln(ĉ(t− 1)d) > ln
(

(2B lnB)
d−1 · ĉ(t− 1)d

)
= ln

(
ud−1ĉ (t− 1)

)
.

Then from the definition of B in (4.4), the gap length satisfies

2B lnB > B ln(2B lnB) >
1

2
d · ln3(3d) · ln

(
ud−1ĉ (t− 1)

)
.

Finally, notice that the maximum multiplicity of any factor of f is at most
deg f = d. Thus, using the notation of Lemma 4.4, d ≥ k. Therefore Lemma 4.4
applies to each factor of f (to full multiplicity) and we conclude that f divides
each hi.

But then, since there is at least one gap and ` > 1, h1 is a multiple of f with
fewer terms and lower degree than h. This is a contradiction, which completes
the proof.
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In order to compute the sparsest multiple of a rational polynomial with no
cyclotomic or repeated factors, we therefore can simply call Algorithm 2.2 with
the given height bound c and degree bound as specified in (4.3).

4.3 Handling cyclotomic factors

Suppose f is any non-original rational polynomial with no repeated cyclotomic
factors. Factor f as f = fC ·fD, where fC is a squarefree product of cyclotomics
and fD is cyclotomic-free. Write the factorization of fC as fC = Φi1 · · ·Φik ,
where Φn is the nth cyclotomic polynomial. Since every ith root of unity is also a
(mi)th root of unity for any m ∈ N, fC must divide the binomial xlcm{i1,...,ik}−1,
which is in fact a sparsest multiple of fC (Corollary 4.2) and clearly has minimal
height.

Then we will show that a sparsest height-bounded multiple of f is either of
small degree, or can be constructed as a sparsest height-bounded multiple of fD
times the binomial multiple of fC specified above. Algorithm 4.1 uses this fact
to compute a sparsest multiple of any such f .

Algorithm 4.1: Rational Sparsest Multiple

Input: Bounds t, c ∈ N and f ∈ Q[x] a non-original polynomial of degree
d with no repeated cyclotomic factors

Output: t-sparse multiple h of f with H(h) ≤ c, or “NONE”
1 Factor f as f = Φi1 · Φi2 · · ·Φik · fD, where fD is cyclotomic-free
2 n← degree bound from (4.3)

3 ĥ← bt/2c-sparse multiple of fD with H(ĥ) ≤ c and deg ĥ ≤ n, using
Algorithm 2.2

4 h̃← t-sparse multiple of f with H(h) ≤ c and deg h ≤ n, using
Algorithm 2.2

5 if ĥ =“NONE”and h̃ =“NONE” then return “NONE”

6 else if ĥ =“NONE”or sparsity(h̃) ≤ 2 · sparsity(ĥ) then return h̃
7 m← lcm{i1, i2, . . . , ik}
8 return ĥ · (xm − 1)

Theorem 4.6. Let f ∈ Q[x] be a degree-d non-original polynomial with no re-
peated cyclotomic factors. Given f and integers c and t, Algorithm 4.1 correctly
computes a t-sparse multiple h of f satisfying H(h) ≤ c, if one exists. The spar-
sity of h will be minimal over all multiples with height at most c. The algorithm
requires (d log c)O(t) · 2O(t log t) · (logH(f))O(1) bit operations.

Proof. Step 1 can be accomplished in the stated complexity bound using Lenstra
et al. (1982). The cost of the remaining steps follows from basic arithmetic and
Theorem 2.4. Define h to be sparsest multiple of f of least degree that satisfies
H(h) ≤ c. We have two cases:
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Case 1: deg h ≤ n. Then the computed h̃ must equal h. Furthermore, since
this is the sparsest multiple, either ĥ does not exist or the sparsity of ĥ is
greater than or equal to the sparsity of h̃. So h = h̃ is correctly returned
by the algorithm in this case.

Case 2: deg h > n. Then, using Lemma 4.4, since fD | h, h can be written
h = h1 + xih2, for some i > deg h1, and fD divides both h1 and h2.
By Theorem 2.4, sparsity(ĥ) must then be less than or equal to each
of sparsity(h1) and sparsity(h2). But since sparsity(h) = sparsity(h1) +

sparsity(h2), this means that the sparsity of ĥ · (xm − 1) is less than or
equal to the sparsity of h, and hence this is a sparsest multiple.

4.4 An example

Say we want to find a sparsest multiple, with coefficients at most 1000 in absolute
value, of the following polynomial over Z[x].

f = x10 − 5x9 + 10x8 − 8x7 + 7x6 − 4x5 + 4x4 + x3 + x2 − 2x+ 4

Note that finding the sparsest multiple would correspond to setting t = 10 in
the algorithm (since the least-degree 11-sparse multiple is f itself). To accom-
plish this, we first factor f using (Lenstra et al., 1982) and identify cyclotomic
factors:

f = (x2 − x+ 1)︸ ︷︷ ︸
Φ6

· (x4 − x3 + x2 − x+ 1)︸ ︷︷ ︸
Φ10

· (x4 − 3x3 + x2 + 6x+ 4)︸ ︷︷ ︸
fD

.

Next, we calculate a degree bound from Theorem 4.5. Unfortunately, this
bound is not very tight (despite being polynomial in the output size); using
t = 10, c = 1000, and f given above, the bound is n ≤ 11 195 728. So for this
example, we will use the smaller (but artificial) bound of n ≤ 20.

The next step is to calculate the sparsest 5-sparse multiple of fD and 10-
sparse multiple of f with degrees at most 20 and heights at most 1000. Using
Algorithm 2.2, these are respectively

ĥ = x12 + 259x6 + 64

h̃ = x11 − 3x10 + 12x8 − 9x7 + 10x6 − 4x5 + 9x4 + 3x3 + 8.

Since the sparsity of ĥ is less than half that of h̃, a sparsest multiple is

h = (x12 + 259x6 + 64) · (xlcm(6,10) − 1)

= x42 + 259x36 + 64x30 − x12 − 259x6 − 64.
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5 Sparse multiples over Fq
We prove that for any constant t, finding the minimal degree t-sparse multiple
of an f ∈ Fq[x] is harder than finding orders of elements in Fqe . Order finding
is reducible to integer factorization and to discrete logarithm, but reductions
in the other direction are not known for finite fields (Adleman and McCurley,
1994). However, at least for prime fields and assuming the Extended Riemann
Hypothesis, a fast algorithm for order finding in finite fields would give an
efficient procedure for computing primitive elements (Wang, 1959; Shoup, 1992).
The latter problem is regarded as “one of the most important unsolved and
notoriously hard problems in the computational theory of finite fields” (von zur
Gathen and Shparlinski, 1999).

Formal problem definitions are as follows:

SpMul
(t)
Fq

(f, n): Given a polynomial f ∈ Fq[x] and an integer n ∈ N, determine

if there exists a (nonzero) 2-sparse multiple h ∈ Fq[x] of f with deg h ≤ n.

OrderFqe
(a, n): Given an element a ∈ F∗qe and an integer n < qe, determine if

there exists a positive integer m ≤ n such that am = 1.

The problem OrderFqe
(a, n) is well-studied (see for instance Meijer (1996)), and

has been used as a primitive in several cryptographic schemes. Note that an
algorithm to solve OrderFqe

(a, n) will allow us to determine the multiplicative
order of any a ∈ F∗qe (the smallest nonzero m such that am = 1) with essentially
the same cost (up to a factor of O(e log q)) by using binary search.

The reduction from OrderFqe
(a, n) to SpMul

(t)
Fq

(f, n) works as follows: Given

an instance of OrderFqe
(a, n), we first check if the order oa of a is less than t

by brute-force. Otherwise, we construct the minimal polynomial gai (over Fq)
for each a0, a1, a2, . . . , at−1. We only keep distinct gai , and call the product of

these distinct polynomials fa,t. We then run the SpMul
(t)
Fq

(f, n) subroutine to
search for the existence of a degree n, t-sparse multiple of the polynomial fa,t.

Theorem 5.1. Let a ∈ Fq be an element of order at least t. Then the least
degree t-sparse multiple of fa,t is xoa − 1 where oa is the order of a.

Proof. It is easy to see that xoa − 1 is a multiple of the given polynomial. We
need to prove that it is actually the least-degree t-sparse multiple.

By equation (2.2) in Section 2, a degree n multiple h of fa,t corresponds to
the following set of linear equations:

1 1 1 · · · 1
1 a a2 · · · an−1

1 a2 a4 · · · a2n−2

...
...

...
...

...
1 at a2t · · · atn−t


︸ ︷︷ ︸

A(fa,t,n)


h0

h1

...
hn−1

 = 0.
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To prove that no t-sparse multiple h of degree less than oa exists, it suffices
to show that any t columns of A(fa,t, oa−1) are linearly independent. Consider
the (t× t)-matrix corresponding to some choice of t columns:

B =


1 1 · · · 1
ai1 ai2 · · · ait

...
...

...
...

ati1 ati2 · · · atit

 .
This Vandermonde matrix B has determinant

∏
1≤j<k≤t(a

ik − aij ) which is

nonzero since ij < ik < oa and hence aij 6= aik . Thus the least-degree t-sparse
multiple of the given polynomial is xoa − 1.

Of cryptographic interest is the fact that the order-finding polynomials in the
reduction above are sufficiently dense in Fq[x] that the reduction also holds in the
average case. That is, an algorithm for sparsest multiples that is polynomial-
time on average would imply an average case polynomial-time algorithm for
order finding in Fqd .

Next we give a probabilistic algorithm for finding the least degree binomial
multiple for polynomials f ∈ Fq. This algorithm makes repeated calls to an
OrderFqe

(a, n) (defined in the previous section) subroutine. Combined with
the hardness result of the previous section (with t=2), this characterizes the
complexity of finding least-degree binomial multiples in terms of the complexity
of OrderFqe

(a, n), upto randomization.
Algorithm 5.1 solves the binomial multiple problem in Fq by making calls to

an OrderFqe
(a, n) procedure that computes the order of elements in extension

fields of Fq. Thus SpMul
(2)
Fq

(f) reduces to OrderFqe
(a, n) in probabilistic poly-

nomial time. Construction of an irreducible polynomial (required for finite field
arithmetic) as well as the factoring step in the algorithm make it probabilistic.

Theorem 5.2. Given f ∈ Fq[x] of degree d, Algorithm 5.1 correctly computes a
binomial multiple h of f with least degree. It uses at most d2 calls to a routine
for order finding in Fqe , for various e ≤ d, and dO(1) other operations in Fq. It
is probabilistic of the Las Vegas type.

Proof. As a first step, the algorithm factors the given polynomial into irreducible
factors. Efficient probabilistic algorithms for factoring polynomials over finite
fields are well-known (von zur Gathen and Gerhard (2003)).

First, suppose the input polynomial f is irreducible, i.e. ` = e1 = 1 in

Step 1. Then it has the form f = (x − a)(x − aq) · · · (x − aq
d−1

) for some
a ∈ Fqd , where d = deg f . If f = (x − a), the least-degree binomial multiple is
f itself. Therefore, assume that d > 1. Let the least-degree binomial multiple
(in Fq[x]) be xn − β

Since both a and aq are roots of (xn − β), we have that an = anq and
an(q−1) = 1. Thus, the order oa of a divides n(q− 1). The minimal n for which
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Algorithm 5.1: Least degree binomial multiple of f over Fq
Input: f ∈ Fq[x]
Output: The least degree binomial multiple h of f

1 Factor f = xbfe11 · f
e2
2 · f

e`
` for irreducible f1, . . . , f` ∈ Fq[x], and set

di ← deg fi
2 for i = 1, 2, . . . , ` do
3 ai ← x ∈ Fq[x]/(fi), a root of fi in the extension Fqdi
4 Calculate oi, the order of ai in Fq[x]/(fi).

5 n1 ← lcm({oi/ gcd(oi, q − 1)}) for all i such that di > 1
6 n2 ← lcm({order(ai/aj)}) over all 1 ≤ i, j ≤ u
7 n← lcm(n1, n2)

8 h̃← (xn − an1 )
9 e← dlogp max eie, the smallest e such that pe ≥ ei for all i

10 return h = xb(xn − an1 )p
e

oa | n(q − 1) is n = oa
gcd(oa,q−1) . Since this n ensures that an = anq, it also

simultaneously ensures that each aq
i

is also a root.
Notice that this n equals n1 computed on Step 5, and n2 computed on Step 6

will equal 1, so the algorithm is correct in this case.
Now suppose the input polynomial f is reducible. The factorization step

factors f into irreducible factors f = fe11 fe22 · · · f
e`
` . Let f̌ = f1f2 · · · f` denote

the squarefree part of f .

Being irreducible, each fi has the form fi(x) = (x−ai)(x−aqi ) · · · (x−a
qdi−1

i )
for some ai ∈ Fqd , and di = deg fi. We make two observations:

• If f̌(x) | xn − a for some a ∈ Fq, we have that ani = anj for all 1 ≤ i, j ≤ `,
and hence that ( aiaj )n = 1. Thus order( aiaj ) | n. The least integer satisfying

these constraints is n2 computed on Step 6.

• As before for the case when the input polynomial is irreducible and of
degree more than one: di > 1 implies that oi

gcd(oi,q−1) | n for oi the order

of ai. The least integer satisfying these constraints is n1 computed on
Step 5.

The minimal n is the least common multiple of all the divisors obtained
from the above two types of constraints, which is exactly the value computed
on Step 7. The minimal degree binomial multiple of f̌ is xn − an1 .

It is easily seen that for the smallest e such that pe ≥ ei, (xn − an)p
e

is a
binomial multiple of f . We now show that it is actually the minimal degree
binomial multiple. Specifically, let e be the smallest non-negative integer such
that pe ≥ max ei; we show that the minimal degree binomial multiple of f is
(xn − ani )p

e

for n obtained as above.
Let the minimal degree binomial multiple of f be xn̂−b. Factor n̂ as n̂ = ňpc

for maximal c, and write (xn̂ − b) as (xň − b1/p
c

)p
c

. The squarefree part of
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f , f̌ divides (xň − b1/pc), and hence (by constraints on and minimality of n)
(xn − an1 ) | (xň − b1/pc). Thus ň ≥ n.

Since c is chosen maximally, p does not divide ň, and hence xň − b1/pc is
squarefree. Using this and the fact that f divides (xň − b1/pc)p

c

, it is seen that
pc ≥ ei holds for all ei, and hence pc ≥ pe. This, along with ň ≥ n, completes
the proof that (xn − ani )p

e

is the minimal degree binomial multiple of f , which
completes the proof of the theorem.

6 Conclusion and Open Problems

To summarize, we have presented an efficient algorithm to compute the least-
degree binomial multiple of any rational polynomial. We can also compute
t-sparse multiples of rational polynomials that do not have repeated cyclotomic
factors, for any fixed t, and given a bound on the height of the multiple.

We have also shown that, even for fixed t, finding a t-sparse multiple of
a degree-d polynomial over Fq[x] is at least as hard as finding the orders of
elements in Fqd . In the t = 2 case, there is also a probabilistic reduction in the
other direction, so that computing binomial multiples of degree-d polynomials
over Fq[x] probabilisticly reduces to order finding in Fqd .

Several important questions remain unanswered. Although we have an un-
conditional algorithm to compute binomial multiples of rational polynomials,
computing t-sparse multiples for fixed t ≥ 3 requires an a priori height bound
on the output as well as the requirement that the input contains no repeated
cyclotomic factors. Removing these restrictions is desirable (though not neces-
sarily possible).

Regarding lower bounds, we know that computing t-sparse multiples over
finite fields is at least as hard as order finding, a result which is tight (up to
randomization) for t = 2, but for larger t we believe the problem is even harder.
Specifically, we suspect that computing t-sparse multiples is NP-complete over
both Q and Fq, when t is a parameter in the input.
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A Finding short l∞ vectors in lattices

In Section 2.1, we presented Algorithm 2.1 to find the shortest l∞ vector in the
image of an integer matrix. This appendix is devoted to proving the correctness
of this algorithm, culminating in the proof of Theorem 2.1. Again, the results
here are due to the presentation of Ajtai et al. (2001) by Regev (2004), with
modifications to accommodate the infinity norm.

For any lattice L, define s(L) = minv∈L ‖v‖2 to be the least l2 norm of any
vector in L. If L satisfies 2 ≤ s(L) < 3, and B is a basis for L, then we will
show that the main for loop in Steps 3–24 of Algorithm 2.1 finds a vector in
L with minimal l∞ norm, with high probability. The for loop on line 3 adapts
this to work for any lattice by scaling. More precisely, given a lattice L, we first
run the algorithm of Lenstra et al. (1982) to get an approximation λ for the
shortest l2 vector in L satisfying s(L) ≤ ‖λ‖2 ≤ 2ns(L). For each k from 1 to
2n, we then run the for loop with basis Bk for the lattice (1.5k/ ‖λ‖2) · L. For

24

http://www.cs.tau.ac.il/~odedr/teaching/lattices_fall_2004/
http://www.cs.tau.ac.il/~odedr/teaching/lattices_fall_2004/


some k in this range, 2 ≤ s(Bk) < 3 must hold, and we will show that for this
k, the vector vk set on Step 24 is the l∞ shortest vector in the image of Bk with
high probability. For every k, vk is a vector in the image of Bk, and hence it
suffices to output the shortest l∞ vector among {(‖λ‖2 /1.5k)vk} on Step 25.

We will now prove that the vector vk set on Step 24 is with high probability
the shortest l∞ vector in the image of B, when B is a basis for a lattice L such
that 2 ≤ s(L) < 3.

To find the shortest l∞ vector in a lattice, it suffices to consider all lattice
vectors of l2 norm at most

√
n times the norm of the shortest l2 vector. Al-

gorithm 2.1 achieves this by running the main body of the loop with different
values of γ. In a particular iteration of the outermost loop, with high prob-
ability, the algorithm encounters all lattice vectors v with l2 norm satisfying
(2/3) · ‖v‖2 ≤ γ < ‖v‖2. Call all such v interesting. By iterating over a suitable
range of γ, it returns the shortest l∞ vector among all the interesting vectors,
which with high probability is the shortest l∞ vector in the lattice.

For a particular iteration of the loop (with a fixed γ), the algorithm uniformly
samples a large number of vectors from an appropriately sized ball. In fact, the
algorithm works even if an almost-uniform sampling over rational vectors with
bit lengths bounded by (log ‖B‖ + n)O(1) is performed. This is because the
size of sufficiently small lattice vectors is only a polynomial in the size of the
basis vectors. For the rest of this subsection, “arithmetic operations” means
operations with rational numbers of this size.

After sampling, the algorithm performs a series of sieving steps to ensure that
at the end of these steps the algorithm is left with lattice vectors of sufficiently
small l2 norm. Using a probabilistic argument, it is argued that all interesting
vectors are obtained.

The following lemma proves the correctness of the sieving steps. These
correspond to Steps 13 to 17 of the algorithm. At the end of this sieving, the
algorithm produces a set J of size at most 5n.

Lemma A.1. Given S ⊆ {1, . . . ,m} such that for all i ∈ S, yi ∈ Rn and
‖yi‖2 ≤ r, Steps 13–17 efficiently compute the following: a subset J ⊆ S of size
at most 5n and a mapping η : S \ J → J such that ‖yi − yηi ‖2 ≤ r/2.

Proof. Initially the set J is empty. The algorithm iterates over the points yi
with i ∈ S, adding i to J only if minj∈J(‖yj − yi‖2) > r/2. For i /∈ J , it sets
ηi to a j ∈ J such that ‖yj − yi‖2 ≤ r/2.

It is clear that this procedure runs in polynomial time. To see that the size
of J is at most 5n, note that all the balls of radius R/4 and centered at yj
for j ∈ J are disjoint by construction of J . Also, these balls are contained in
a ball of radius R + R/4 since ‖yi‖2 ≤ R. Thus the total number of disjoint
balls, and hence the size of J , can be bounded above by comparing the volumes:
|J | ≤ ((5R/4)/(R/4))n = 5n.

The algorithm views every sampled vector xi as a perturbation of a lattice
vector xi− yi for some yi. The idea is the following: initially yi is calculated so
that xi is a perturbation of some large lattice vector. Iteratively, the algorithm
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either obtains shorter and shorter lattice vectors corresponding to xi, or discards
xi in some sieving step. At all stages of the algorithm, xi−yi is a lattice vector.
The following two lemmas concretize these observations.

Lemma A.2. {yi} can be found efficiently in Step 11; and {xi − yi} ⊆ L.

Proof. For a fixed xi, yi is set to (xi mod P(B)) where P(B) denotes all vectors
contained in the parallelogram

{∑n
i=1 αibi | 0 ≤ αi < 1

}
, with bi being the

given basis vectors. Thus yi is the unique element in P(B) such that yi = xi−v
for v ∈ L. From this definition of yi, we get that xi − yi ∈ L for every i.

To calculate yi efficiently, simply represent xi as a rational linear combination
of the basis vectors {bi} and then truncate each coefficient modulo 1.

Lemma A.3. Yγ ⊆ L ∩Bn(0, 3γ + 1).

Proof. By Lemma A.2, (xi−yi) ∈ L for all i ∈ S before the start of the loop. It
needs to be proved that the same holds after the loop, and furthermore, all the
resulting lattice vectors lie in Bn(0, 3γ + 1). Whenever the algorithm modifies
any yi, it sets it to yi + xη(i) − yη(i); and thus a lattice vector (xi − yi) changes
into (xi − yi)− (xη(i) − yη(i)). Since both of the terms are lattice vectors, so is
their difference. Thus Yγ ⊆ L.

We will now show that the invariant ‖yi‖2 ≤ r is maintained at the end
of every iteration. This suffices to prove that xi − yi ∈ Bn(0, 3γ + 1) because
xi ∈ Bn(0, γ) and ‖yi‖2 ≤ 2γ + 1 by the loop termination condition.

Initially, yi =
∑n
j=1 αjbj for some coefficients αj satisfying 0 ≤ αj < 1.

Thus ‖y‖2 ≤
∑
j ‖bj‖2 ≤ nmaxj ‖bj‖2, the initial value of r. Consider now

the result of the change yi → yi + xηi − yηi . We have that ‖yi + xηi − yηi ‖2 ≤
‖yi − yηi ‖2 + ‖xηi ‖2. The first of these terms is bounded by r/2 because of
choice of ηi in Lemma A.1. From ‖xi‖2 ≤ γ, we get that ‖yi‖2 ≤ r/2+γ. Since
the value of r gets updated appropriately, the invariant ‖yi‖2 ≤ r is maintained
at the end of the loop.

The following crucial lemma says that Yγ can be used to compute all inter-
esting vectors:

Lemma A.4. Let v ∈ L be a lattice vector such that (2/3) · ‖v‖2 ≤ γ < ‖v‖2.
Then, with probability at least 1 − 1/2O(n), ∃w ∈ L such that Yγ contains both
w and w ± v.

Using this lemma, we can prove our main theorem, which we restate from
Section 2.1:

Theorem. (Theorem 2.1)
Given a lattice basis U ∈ Zn×d, Algorithm 2.1 returns the shortest l∞ vector in

the lattice of U , with probability at least 1− 1/2O(n), using 2O(n logn) · ‖U ‖O(1)

bit operations.
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Proof. Define Bk to be the basis B set on Step 4 at iteration k through the for
loop on line 3. For correctness, consider the iteration k such that the lattice
L of Bk satisfies 2 ≤ s(L) < 3, which we know must exist from the discussion
above.

Denote by v∞ the shortest nonzero vector in L under the l∞ norm. We have
that l2(v∞) ≤

√
n · l∞(v∞) ≤

√
n · l∞(v) ≤

√
n · l2(v), for any nonzero vector

v ∈ L. Hence, the l2 norm of the shortest l∞ vector is at most
√
n times the l2

norm of the shortest l2 vector.
Since the length s(L) of the shortest l2 vector is assumed to satisfy 2 ≤

s(L) < 3, we have that the l2 norm of v∞ satisfies ‖v∞‖2 < 3
√
n. Therefore at

least one iteration of the while loop on line 7 has (2/3) · ‖v∞‖2 ≤ γ < ‖v∞‖2,
and by Lemma A.4, with high probability some Yγ contains w and w ± v∞ for
some w ∈ L. Since the algorithm computes the differences of the vectors in Yγ ,
it sets vk to v∞ on Step 24 with high probability.

For the cost analysis, consider a single iteration of the while loop on line 7.
The value of r0 is bounded by (n · ‖U ‖)O(1). The value of m is bounded by

2O(n log γ) log r0, which is in turn bounded by 2O(n logn) · ‖U ‖O(1)
because γ ∈

O(
√
n). Since the number of sieving steps is O(log r0) ∈ O(m), the total cost of

a single iteration of the while loop is mO(1). The total number of iterations of
the while loop is O(log n) ∈ O(m), and there are exactly 2n ∈ O(m) iterations
of the outer for loop. Each arithmetic operation costs (n · ‖U ‖)O(1) ∈ O(m), so
the total cost is mO(1), which gives the stated bound.

To prove Lemma A.4, a probabilistic argument will be employed. The proof
can be broken into three steps. First, we identify a set of good points from
the sampled points, and argue that this set is large. Next, we argue that there
must exist a lattice point which corresponds to numerous good points. Finally,
we argue that an imaginary probabilistic step does not essentially change the
behaviour of the algorithm. Combined with the existence of a lattice point
corresponding to many good points, this imaginary step allows us to argue that
the algorithm encounters both w and w ± v for an appropriate interesting v.

Let v be an interesting lattice vector. That is, (2/3) · d ≤ γ < d for d =
‖v‖2. For the iteration where the algorithm uses a value of γ in this range, we
will denote by C1 the points in the set Bn(v, γ) ∩ Bn(0, γ). Similarly, C2 =
Bn(−v, γ) ∩Bn(0, γ). By choice of γ, C1 and C2 are disjoint. We will call the
points in C1∪C2 good. The following lemma shows that probability of sampling
a good point is large.

Lemma A.5. Pr[xi ∈ C1] ≥ 2−2n.

Proof. The radius of both Bn(0, γ) and Bn(v, γ) is γ. The distance between the
centers is d = ‖v‖2. Thus the intersection contains a sphere of radius γ − d/2
whose volume gives a lower bound on the volume of C1. Comparing with the
volume of Bn(0, γ) and using the fact that γ ≥ (2/3) · d, we get that

Pr[xi ∈ C1] ≥ Vol(Bn(0, γ − d/2))

Vol(Bn(0, γ))
≥
(
γ/4

γ

)n
= 2−2n.
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Informally, the following lemma says that if S is large at the end of the inner
loop, the set {xi − yi} has many repetitions and hence is never very large.

Lemma A.6. |Yγ | ≤ (3γ + 2)n.

Proof. The points in L are separated by a distance of at least 2 since we assumed
s(L) ≥ 2. Hence balls of radius 1 around each lattice point are pairwise disjoint.
If we consider only the balls corresponding to points in Yγ , all of them are
contained in a ball of radius 3γ+2 since Yγ ⊆ Bn(0, 3γ+1) by Lemma A.2. Thus
the total number of points in Yγ is at most Vol(Bn(0, 3γ + 2))/Vol(Bn(0, 1)) =
(3γ + 2)n.

The following lemma argues that there must be a lattice point corresponding
to many good points.

Lemma A.7. With high probability, there exists w ∈ Yγ and I ⊆ S such that
|I| ≥ 23n, and for all i ∈ I, xi ∈ C1 ∪ C2 and w = xi − yi.

Proof. Since Pr[xi ∈ C1 ∪ C2] is at least 2−2n by Lemma A.5, and the number
of points sampled is

⌈
2(7+dlog(γ)e)n log r0

⌉
, the expected number of good points

sampled at the start is at least 2(5+dlog(γ)e)n log r0. The loop performs log r0

iterations removing (by Lemma A.1) at most 5n points per iteration. The total
number of good points remaining in S after the sieving steps is (2(5+dlog(γ)e)n−
5n) log r0 ≥ 2(2+dlog(γ)e)n log r0 since 5n ≤ 23n.

By Lemma A.6, |Yγ | ≤ (3γ + 2)n. Since 3γ + 2 ≤ 4γ for γ ≥ (3/2)2,
|Yγ | ≤ 2(2+log(γ))n. Hence, there exists a w ∈ Yγ corresponding to at least
2(4+dlog(γ)e)n log r0/2

(2+log(γ))n ≥ 23n good points.

The final step in the analysis is to argue that for such a w ∈ Yγ , we must
also have that w ± v ∈ Yγ with high probability for an interesting v ∈ L.
Proof of Lemma A.4

Consider the iteration where γ satisfies (2/3) · ‖v‖ ≤ γ < ‖v‖ for an inter-
esting lattice vector v.

It can be easily seen that x ∈ C1 if and only if x − v ∈ C2. Consider an
imaginary process performed just after sampling all the xi. For each xi ∈ C1,
with probability 1/2, we replace it with x− v ∈ C2. Similarly, for each x ∈ C2,
we replace it with x + v ∈ C1. (This process cannot be performed realistically
without knowing v, and is just an analysis tool.) The definition of yi is invariant
under addition of lattice vectors v ∈ L to xi, and hence the yi remain the same
after this process.

Since the sampling was done from the uniform distribution and since (x ∈
C1) ↔ (x − v ∈ C2) is a bijection, this process does not change the sampling
distribution.

We may postpone the probabilistic transformation xi ↔ (xi−v) to the time
when it actually makes a difference. That is, just before the first time when xi
is used by the algorithm. The algorithm uses xi in two places. For i ∈ J during

28



the sieving step, we perfom this transformation immediately after computation
of J . Another place where xi is used is the computation of Yγ . We perform this
transformation just before this computation.

In the original algorithm (without the imaginary process), by Lemma A.7,
there exists a point w ∈ Yγ corresponding to at least 23n good points. Let {xi}
be this large set of good points. With high probability, there will be many xi
which remain unchanged, and also many xi which get transformed into xi ± v.
Thus, Yγ contains both w and w ± v with high probability.
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