
ar
X

iv
:0

90
2.

10
43

v2
 [

cs
.D

M
]

 1
 M

ar
 2

01
1

Polynomial-time approximation schemes for

subset-connectivity problems in bounded-genus

graphs

Glencora Borradaile Erik D. Demaine Siamak Tazari

October 24, 2018

Abstract

We present the first polynomial-time approximation schemes (PTASes)
for the following subset-connectivity problems in edge-weighted graphs of
bounded genus: Steiner tree, low-connectivity survivable-network design,
and subset TSP. The schemes run in O(n log n) time for graphs embedded
on both orientable and nonorientable surfaces. This work generalizes the
PTAS frameworks of Borradaile, Klein, and Mathieu (2007) from planar
graphs to bounded-genus graphs: any future problems shown to admit
the required structure theorem for planar graphs will similarly extend to
bounded-genus graphs.

1 Introduction

In many practical scenarios of network design, input graphs have a natural
drawing on the sphere or equivalently the plane. In most cases, these embed-
dings have few crossings, either to avoid digging multiple levels of tunnels for
fiber or cable or to avoid building overpasses in road networks. But a few cross-
ings are common, and can easily come in bunches where one tunnel or overpass
might carry several links or roads. Thus we naturally arrive at graphs of small
(bounded) genus, which is the topic of this work.

We develop a PTAS framework for subset-connectivity problems on edge-
weighted graphs of bounded genus. In general, we are given a subset of the
nodes, called terminals, and the goal is to connect the terminals together with
some substructure of the graph by using cost within 1 + ε of the minimum
possible cost. Our framework applies to three well-studied problems in this
framework. In Steiner Tree, the substructure must be connected, and thus
forms a tree. In Subset Tsp, the substructure must be a cycle; to guarantee
existence, the cycle may traverse vertices and edges multiple times, but pays
for each traversal. In {0, 1, 2}-edge-connectivity Survivable Network, the
substructure must have min{cx, cy} edge-disjoint paths connecting vertices x
and y, where each cx ∈ {0, 1, 2}; we allow the substructure to include multiple

1

http://arxiv.org/abs/0902.1043v2

copies of an edge in the graph, but pay for each copy. In particular, if cx = 1
for all terminals x and y, then we obtain the Steiner tree problem; if cx = 2
for all terminals x and y, then we obtain the minimum-cost 2-edge-connected
multi-subgraph problem.

Our framework yields the first PTAS for all of these problems in bounded-
genus graphs. These PTASes are efficient, running inO(f(ε, g)n+h(g)n logn) =
Oε,g(n logn) time for graphs embedded on orientable surfaces and nonorientable
surfaces. (We usually omit the mention of f(ε, g) and h(g) by assuming ε and
g are constant, but we later bound f(ε, g) as singly exponential in a polynomial
in 1/ε and g and h(g) as singly exponential in g.) In contrast, the problems
we consider are APX-complete (and constant-factor-approximable) for general
graphs.

We build upon the recent PTAS framework of Borradaile, Klein, and Math-
ieu [5] for subset-connectivity problems on planar graphs. In fact, our result is
strictly more general: any problem to which the previous planar-graph frame-
work applies automatically works in our framework as well, resulting in a PTAS

for bounded-genus graphs. For example, Borradaile and Klein [4] have recently
given a PTAS for the {0, 1, 2}-edge-connectivity Survivable Network prob-
lem using the planar framework. This will imply a similar result in bounded
genus graphs. In contrast to the planar-graph framework, our PTASes have the
attractive feature that they run correctly on all graphs with the performance
degrading with the genus.

Our techniques for attacking bounded-genus graphs include two recent re-
sults: decompositions into bounded-treewidth graphs via contractions [8] and
fast algorithms for finding the shortest noncontractible cycle [6]. We also use
a simplified version of an algorithm for finding a short sequence of loops on a
topological surface [11], and sophisticated dynamic programming. Our aim is
to prove the following theorem:

Theorem 1. There exists a PTAS for the Steiner Tree, Subset Tsp, and
{0, 1, 2}-edge-connected Survivable Network problems in edge-weighted graphs

of genus g with running time O(2poly(ε
−1,g)n+ 2poly(g)n logn).

2 Preliminaries

All graphs G = (V,E) have n vertices, m edges and are undirected with edge
lengths (weights). The length of an edge e, subgraph H , and set of subgraphs
H are denoted ℓ(e), ℓ(H) and ℓ(H), respectively. The shortest distance between
vertices x and y in a graph G is denoted distG(x, y). The boundary of a graph
G embedded in the plane is denoted by ∂G. For an edge e = uv, we define the
operation of contracting e as identifying u and v and removing all loops and
duplicate edges.

We use the basic terminology for embeddings as outlined in [20]. In this
paper, an embedding refers to a 2-cell embedding, i.e. a drawing of the vertices
and faces of the graph as points and arcs on a surface such that every face is

2

homeomorphic to an open disc. Such an embedding can be described purely
combinatorially by specifying a rotation system, for the cyclic ordering of edges
around vertices of the graph, and a signature for each edge of the graph; we
use this notion of a combinatorial embedding. A combinatorial embedding of
a graph G naturally induces such a 2-cell embedding on each subgraph of G.
We only consider compact surfaces without boundary. When we refer to a
planar embedding, we actually mean an embedding in the 2-sphere. If a surface
contains a subset homeomorphic to a Möbius strip, it is nonorientable; otherwise
it is orientable. For a 2-cell embedded graph G with f facial walks, the number
g = 2 + m − n − f is called the Euler genus of the surface. The Euler genus
is equal to twice the usual genus for orientable surfaces and equals the usual
genus for nonorientable surfaces. The dual of an embedded graph G is defined
as having the set of faces of G as its vertex set and having an edge between two
vertices if the corresponding faces of G are adjacent. We denote the dual graph
by G⋆ and identify each edge of G with its corresponding edge in G⋆. A cycle
of an embedded graph is contractible if it can be continuously deformed to a
point; otherwise it is noncontractible. The operation of cutting along a 2-sided
cycle C is essentially: partition the edges adjacent to C into left and right edges
and replace C with two copies Cℓ and Cr, adjacent to the left or right edges,
accordingly. The inside of these new cycles is “patched” with two new faces.
If the resulting graph is disconnected, the cycle is called separating, otherwise
nonseparating. Cutting along a 1-sided cycle C on nonorientable surfaces is
defined similarly, only that C is replaced by one bigger cycle C′ that contains
every edge of C exactly twice. See [20, pages 105–106] for further technical
details.

Next we define the notions related to treewidth as introduced by Robertson
and Seymour [22]. A tree decomposition of a graph G is a pair (T, χ), where
T = (I, F) is a tree and χ = {χi|i ∈ I} is a family of subsets of V (G), called
bags, such that

1. every vertex of G appears in some bag of χ;

2. for every edge e = uv of G, there exists a bag that contains both u and v;

3. for every vertex v of G, the set of bags that contain v form a connected
subtree Tv of T .

The width of a tree decomposition is the maximum size of a bag in χ minus 1.
The treewidth of a graph G, denoted by tw(G), is the minimum width over all
possible tree decompositions of G.

The input graph is G0 = (V0, E0) and has genus g0; the terminal set is Q.
We assume G0 is equipped with a combinatorial embedding; such an embedding
can be found in linear time, if the genus is known to be fixed, see [19]. Let P
be the considered subset-connectivity problem. In Section 3.2, we show how to
find a subgraph G = (V,E) of G0, so that for 0 ≤ ε ≤ 1 any (1+ε)-approximate
solution of P in G0 also exists in G. Hence, we may use G instead of G0 in the
rest of the paper. Note that as a subgraph of G0, G is automatically equipped
with a combinatorial embedding.

3

Let OPT denote the length of a optimal Steiner tree spanning terminals Q.
We define OPTP to be the length of an optimal solution to problem P . For the
problems that we solve, we require that OPTP = Θ(OPT) and in particular that
OPT ≤ OPTP ≤ µOPT. The constant µ will be used in Section 3.1 and is equal
to 2 for both the subset TSP and {0, 1, 2}-edge-connectivity problems. This
requirement is also needed for the planar case; see [4]. Because OPTP ≥ OPT,
upper bounds in terms of OPT hold for all the problems herein. As a result, we
can safely drop the P subscript throughout the paper.

We show how to obtain a (1 + cε)OPTP solution for a fixed constant c. To
obtain a (1 + ε)OPTP solution, we can simply use ε′ = ε/c as input to the
algorithm.

3 Mortar Graph and Structure Theorem

In [5], Borradaile, Klein and Mathieu developed a PTAS for the Steiner tree
problem in planar graphs. The method involves finding a grid-like subgraph
called the mortar graph that spans the input terminals and has length O(OPT).
The set of feasible Steiner trees is restricted to those that cross between adjacent
faces of the mortar graph only at a small number (per face of the mortar graph)
of pre-designated vertices called portals. A Structure Theorem guarantees the
existence of a nearly optimal solution (one that has length at most (1+ε)OPT)
in this set. We review the details that are relevant to this work and generalize
to genus-g graphs.

Here we define the mortar graph in such a way that generalizes to higher
genus graphs. A path P in a graph G is ε-short in G if for every pair of vertices
x and y on P , the distance from x to y along P is at most (1 + ε) times the
distance from x to y in G: distP (x, y) ≤ (1 + ε) distG(x, y). Given a graph G
embedded on a surface and a set of terminals Q, a mortar graph is a subgraph
of G with the following properties:

Definition 2 (Mortar Graph and Bricks). Given a graph G embedded on a
surface of genus g, a set of terminals Q, and a number 0 < ε ≤ 1, consider
a subgraph MG := MG(G,Q, ε) of G spanning Q such that each facial walk of
MG encloses an area homeomorphic to an open disk. For each face F of MG,
we construct a brick B of G by cutting G along the facial walk ∂F ; B is the
subgraph of G embedded inside the face, including ∂F . We denote this facial
walk as the mortar boundary ∂B of B. We define the interior of B as B without
the edges of ∂B. We call MG a mortar graph if for some constants α(ε, g) and
κ(ε, g) (to be defined later), we have ℓ(MG) ≤ αOPT and every brick B satisfies
the following properties:

1. B is planar.

2. The boundary of B is the union of four paths in the clockwise order W ,
N , E, S.

3. Every terminal of Q that is in B is on N or on S.

4

(a) (b) (c)

(d) (e)

Figure 1: (a) An input graph G with mortar graph MG given by bold edges
in (b). (c) The set of bricks corresponding to MG (d) A portal-connected
graph, B+(MG, θ). The portal edges are grey. (e) B+(MG, θ) with the bricks
contracted, resulting in B÷(MG, θ). The dark vertices are brick vertices.

4. N is 0-short in B, and every proper subpath of S is ε-short in B.

5. There exists a number k ≤ κ and vertices s0, s1, s2, . . . , sk ordered from
left to right along S such that, for any vertex x of S[si, si+1), the distance
from x to si along S is less than ε times the distance from x to N in B:
distS(x, si) < ε · distB(x,N).

The mortar graph and the set of bricks are illustrated in Figures 1 (a), (b)
and (c). Constructing the mortar graph for planar graphs first involves finding
a 2-approximate Steiner tree T [18] and cutting open the graph along T creating
a new face H and then:

1. Finding shortest paths between certain vertices of H . These paths result
in the N and S boundaries of the bricks.

2. Finding shortest paths between vertices of the paths found in Step 1.
These paths are called columns, do not cross each other, and have a natural
order.

3. Taking every κth path found in Step 2. These paths are called super-
columns and form the E and W boundaries of the bricks. We sometimes
refer to κ as the spacing of the supercolumns.

The mortar graph is composed of the edges of T (equivalently, H) and the
edges found in Steps 1 and 3. In [5], it is shown that the total length of the
mortar graph edges is at most 9ε−1 OPT. For the purposes of this paper, we

5

bound the length of the mortar graph in terms of ℓ(H). The following theorem
can be easily deduced from [15] and [5]:

Theorem 3 ([15, 5]). Let 0 < ε ≤ 1 and G be a planar graph with outer face
H containing the terminals Q and such that ℓ(H) ≤ α0 OPT, for some constant
α0. For α = (2α0 + 1)ε−1, there is a mortar graph MG(G,Q, ε) containing H
whose length is at most αOPT and whose supercolumns have length at most
εOPT with spacing κ = α0ε

−2(1 + ε−1). The mortar graph can be found in
O(n logn) time.

3.1 A mortar graph for bounded-genus graphs: Overview

We use Theorem 3 to prove the existence of a mortar graph for genus-g embed-
ded graphs. This section is devoted to proving the following theorem:

Theorem 4. Let an embedded edge-weighted graph G of Euler genus g, a subset
of its vertices Q, an 0 < ε ≤ 1, and µ ≥ 1 be given. For α = (32µg+9)ε−1, there
is a mortar graph MG(G,Q, ε) of G such that the length of MG is ≤ αOPT
and the supercolumns of MG have length ≤ εOPT with spacing κ = (16µg +
4)ε−2(1 + ε−1). The mortar graph can be found in O(n logn) time.

Let G0 = (V0, E0) be the input graph of genus g0 and Q be the terminal set.
In a first preprocessing step, we delete a number of unnecessary vertices and
edges of G0 to obtain a graph G = (V,E) of genus g ≤ g0 that still contains
every (1 + ε)-approximate solution for terminal set Q for all 0 ≤ ε ≤ 1 while
fulfilling certain bounds on the length of shortest paths. In the next step, we find
a cut graph CG of G that contains all terminals and whose length is bounded by
a constant times OPT. We cut the graph open along CG, so that it becomes a
planar graph with a simple cycle σ as boundary, where the length of σ is twice
that of CG. See Figure 2 for an illustration. Afterwards, the remaining steps
of building the mortar graph can be the same as in the planar case, by way of
Theorem 3.

For an edge e = vw in G0, we let

distG0
(r, e) = min{distG0

(r, v), distG0
(r, w)} + ℓ(e)

and say that e is at distance distG0
(r, e) from r. If the root vertex represents a

contracted graph H , we use the same terminology with respect to H .

3.2 Preprocessing the input graph

Our first step is to apply the following preprocessing procedure:

6

(a) (b)

Figure 2: (a) a cut graph of a tree drawn on a torus; (b) the result of cutting
the surface open along the cut graph: the shaded area is homeomorphic to a
disc and the white area is the additional face of the planarized surface.

Algorithm Preprocess(G0, Q, µ).
Input. an arbitrary graph G0, terminals Q ⊆ V (G0), a constant µ
Output. a preprocessed subgraph of G0

1. Find a 2-approximate Steiner tree T0 for Q and contract it to a vertex r.

2. Find a shortest-path tree rooted at r.

3. Delete all vertices v and edges e of G0 with
distG0

(r, v), distG0
(r, e) > 2µℓ(T0).

Any deleted vertex or edge is at distance> 2µℓ(T0) > 2µOPT from any terminal
and hence can not be part of a (1 + ε)-approximation for any 0 ≤ ε ≤ 1. We
call the resulting graph G = (V,E) and henceforth use G instead of G0 in our
algorithm. The preprocessing step can be accomplished in linear time: step 1
using Müller-Hannemann and Tazari’s algorithm [23] and step 2 using Henzinger
et al.’s algorithm [14]. Trivially, we have

Proposition 5. All vertices and edges of G are at distance at most 4µOPT
from T0.

3.3 Constructing a cut graph

A central fact that we use in this section and also in other parts of our work is
the following observation [10]:

Observation 6. Let G be a planar graph and T a spanning tree of G. Then
the set of edges E(G) − E(T) induces a spanning tree T ⋆ in the dual G⋆. If T
is a minimum spanning tree of G, then T ⋆ is a maximum spanning tree of G⋆.

A similar lemma also holds for bounded-genus graphs: if T is a (minimum)
spanning tree of G and T ⋆ a (maximum) spanning tree of G⋆ − E(T), then T ⋆

is a (maximum) spanning tree of G⋆ and the size of the set of remaining edges
X := E(G) − E(T) − E(T ⋆) is g, the Euler genus of G, by Euler’s formula.

7

Eppstein [9] defines such a triple (T, T ⋆, X) as a tree-cotree decomposition of G
and shows that such a decomposition can be found in linear time for graphs on
both orientable and nonorientable surfaces.

In order to construct a cut graph, we start again with a 2-approximation
T0 and contract it to a vertex r. Next, we look for a system of loops rooted
at r: iteratively find short nonseparating cycles through r and cut the graph
open along each cycle. Erickson and Whittlesey [11] showed that, for orientable
surfaces, taking the shortest applicable cycle at each step results in the shortest
system of loops through r. They suggest a linear-time algorithm using the
tree-cotree decomposition (T, T ⋆, X) of Eppstein [9]. Eppstein showed:

Lemma 7 (Lemma 2, [9]). Given a tree-cotree decomposition (T, T ⋆, X), the
set of elementary cycles {loop(T, e) : e ∈ X} is a cut graph of G where loop(T, e)
is the closed walk formed by the paths in T from r to the endpoints of e plus the
edge e.

Eppstein’s decomposition also works for nonorientable embeddings. As we
only need to bound the length (as opposed to minimizing the length) of our cut
graph, we present a simpler algorithm below:

Algorithm Planarize(G0, Q, µ).
Input. a graph G0 of genus g, terminals Q ⊆ V (G0), a constant µ
Output. a preprocessed subgraph G ⊆ G0 and a cutgraph CG of G

1. Apply Preprocess(G0, Q, µ) and let G be the obtained subgraph.

2. Find a 2-approximate Steiner tree T0 for Q and contract it to a vertex r.

3. Find a shortest paths tree SPT rooted at r.

4. Uncontract r and set T1 = T0 ∪ SPT. (T1 is a spanning tree of G)

5. Find a spanning tree T ⋆
1 in G⋆ − E(T1). (T

⋆
1 is a spanning tree of G⋆)

6. Let X := E(G)− E(T)− E(T ⋆).

7. Return CG := T0 ∪ {loop(T1, e) : e ∈ X} together with G.

Lemma 8. The algorithm Planarize returns a cut graph CG such that cutting
G open along CG results in a planar graph Gp with a face fσ whose facial walk
σ

(i) is a simple cycle;

(ii) contains all terminals (some terminals might appear more than once as
multiple copies might be created during the cutting process); and

(iii) has length ℓ(σ) ≤ 2(8µg + 2)OPT.

The algorithm can be implemented in linear time.

8

Proof. Clearly, (T1, T
⋆
1 , X) is tree-cotree decomposition ofG and so, by Lemma 7,

CG is a cut graph. By Euler’s formula, we get that |X | = g, the Euler genus of
G.

Each edge e = vw ∈ X completes a (nonseparating, not necessarily simple)
closed walk as follows: a shortest path P1 from T0 to v, the edge e, a shortest
path P2 from w to T0 and possibly a path P3 in T0. By Proposition 5, we know
that e is at distance at most 4µOPT from T0 and so, both P1 and P2, and at
least one of {P1 ∪ {e}, P2 ∪ {e}} have length at most 4µOPT. Hence, we have
that ℓ(P1 ∪ {e} ∪ P2) ≤ 8µOPT. Because there are (exactly) g such cycles in
CG, we get that

ℓ(CG) ≤ g · 8µOPT+ℓ(T0) ≤ (8µg + 2)OPT .

Since CG is a connected cut graph and T ⋆∩CG = ∅, cutting G open along CG
results in a connected planar graph with boundary σ. Each edge of CG appears
twice in σ and each edge of σ is derived from CG, so ℓ(σ) = 2ℓ(CG) (see Fig. 2).

As mentioned in the previous section, T0 and SPT can be computed in linear
time on bounded-genus graphs [14, 23]. T ⋆

1 can be obtained, for example, by a
simple breadth-first-search in the dual. The remaining steps can also easily be
implemented in linear time.

3.4 Proof of Theorem 4

We complete the construction of a mortar graph for genus-g embedded graphs.
Let Gp be the result of planarizing G as guaranteed by Lemma 8. Gp is a

planar graph with boundary σ such that σ spans Q and has length ≤ 2(8µg +
2)OPT. Let MG be the mortar graph guaranteed by Theorem 3 as applied to
G with σ as its outer face. Every edge of MG corresponds to an edge of G. Let
MG′ be the subgraph of G composed of edges corresponding to MG. Every face
f of MG (other than σ) corresponds to a face f ′ of MG′ and the interior of f ′

is homeomorphic to a disk on the surface in which G is embedded. It is easy to
verify that MG′ is indeed a mortar graph of G; and the length bounds specified
in the statement of the theorem follow directly from Theorem 3 and the bound
on the length of σ.

3.5 Structure Theorem

Along with the mortar graph, Borradaile et al. [5] define an operation B+ called
brick-copy that allows a succinct statement of the Structure Theorem. For each
brick B, a subset of θ vertices are selected as portals such that the distance
along ∂B between any vertex and the closest portal is at most ℓ(∂B)/θ. For
every brick B, embed B in the corresponding face of MG and connect every
portal of B to the corresponding vertex of MG with a zero-length portal edge:
this defines B+(MG, θ). B+(MG, θ) is illustrated in Figure 1 (d). We denote
the set of all portal edges by Eportal. The following simple observation, proved
in [5] holds also for bounded-genus graphs:

9

Observation 9 ([5]). If A is a connected subgraph of B+(MG, θ), then A −
Eportal is a connected subgraph of G spanning the same vertices of G.

The following Structure Theorem is the heart of the correctness of the
PTASes.

Theorem 10 (Structure Theorem). Let P be one of the subset-connectivity
problems Steiner Tree, {0, 1, 2}-edge-connectivity Survivable Network, or
Subset Tsp. Let G be an edge-weighted graph embedded on a surface, Q ⊆
V (G) a given set of terminals, and 0 < ε ≤ 1. Let MG(G,Q, ε) be a corre-
sponding mortar graph of weight at most αOPT and supercolumns of weight at
most εOPT with spacing κ. There exist constants β(ε, κ) and θ(α, β) depending
polynomially on α and β such that

OPTP(B
+(MG, θ), Q) ≤ (1 + cε)OPTP(G,Q) ,

where c is an absolute constant. Here β = o(ε−2.5κ) for Steiner Tree and
{0, 1, 2}-edge connectivity Survivable Network and β = O(κ) for Subset Tsp.
(Recall that α and κ depend polynomially on ε−1 and g by Theorem 4.)

It is due to our special way of defining and constructing a mortar graph for
bounded-genus graphs that this theorem follows immediately as for the planar
cases: the crucial point here is that our bricks are always planar – even when
the given graph is embedded in a surface of higher genus. The Structure The-
orem for Steiner Tree is proved in [5], the case of {0, 1, 2}-edge-connectivity
Survivable Network is studied in [4], and we show that the theorem holds
for Subset Tsp in Section 5. Note that for Subset Tsp, it is possible to ob-
tain a singly exponential algorithm by following the spanner construction of
Klein [15] after performing the planarizing step (Lemma 8). Our presentation
here is chosen to unify the methods for all problems studied.

The Structure Theorem essentially says that there is a constant θ depending
polynomially on ε−1 such that in finding a near-optimal solution to G, we can
restrict our attention to B+(MG, θ). Whenever we wish to apply our framework
to a new problem, it is essential to prove a similar structure theorem for the
considered problem.

4 Obtaining PTASes for bounded-genus graphs

We present two methods of obtaining polynomial-time approximation schemes.
The first is a generalization of the framework of Klein [15] for planar graphs
that is based on finding a spanner for a problem, a subgraph containing a
nearly optimal solution having length O(OPT). In Section 4.1 we show how
to find such a spanner and in Section 4.2 we generalize Klein’s framework to
higher genus graphs using the techniques of Demaine et al. [8]. In the second
method, dynamic programming is done over the bricks of the mortar graph.
This generalizes the framework of Borradaile et al. [5] for planar graphs to
higher genus graphs. While both methods result in O(n logn) algorithms, the

10

first method is doubly exponential in a polynomial in g and ε−1 and the second
is singly exponential.

4.1 Spanner for Subset-Connectivity Problems

A spanner is a subgraph of length Oε,g(OPT) that contains a (1+ε)-approximate
solution. Here we show how to find a spanner for bounded-genus graphs and the
subset-connectivity problems considered in this paper. After a mortar graph is
computed, the construction is, in fact, exactly the same as in the planar cases,
namely:

For each brick B defined by MG and for each subset X of the portals
of B, find the optimal Steiner tree of X in B (using the method of
Erickson et al. [12]). The spanner Gspan is the union of all these
trees over all bricks plus the edges of the mortar graph.

To prove the correctness of our spanner theorem for the case of {0, 1, 2}-edge-
connectivity Survivable Network, we need to appeal to the following result
of Borradaile and Klein, which we have simplified the statement of here:

Theorem 11 ([4, Theorem 5]). Consider an instance of the {0, 1, 2}-edge con-
nectivity problem. There is a feasible solution S to this instance that is a sub-
graph of B+(MG) such that

• ℓ(S) ≤ (1 + cε)OPT where c is an absolute constant, and

• the intersection of S with any brick B is a set of O(1) trees the set of
leaves of which are portals.

Theorem 12 (Spanner Theorem). Let G be an edge-weighted graph embedded
on a surface of Euler genus g and Q ⊆ V (G) a given set of terminals. There
exists a spanner Gspan ⊆ G such that

Gspan is spanning: Gspan contains a (1+cε)-approximate solution to Steiner Tree,
{0, 1, 2}-edge-connected Survivable Network, and Subset Tsp; and

Gspan is short: ℓ(Gspan) ≤ f(ε, g)OPT;

where the function f(ε, g) is singly exponential in a polynomial in ε−1 and g,
and c is an absolute constant. The spanner can be found in O(n logn) time.

Proof. Given a mortar graph MG(G,Q, ε) as guaranteed by Theorem 4, a span-
ner is constructed as specified above. As in [5], the time to find Gspan is
O(n logn). It was proved in [5] that ℓ(Gspan) ≤ (1 + 2θ+1)ℓ(MG). There-
fore, ℓ(Gspan) ≤ (1 + 2θ+1)αOPT and f(ε, g) = (1 + 2θ+1)α (recall that α and
θ depend polynomially on ε−1 and g).

Now we show that Gspan contains a near-optimal solution to each problem.
For Steiner Tree, the proof follows directly from the Structure Theorem: the
intersection of a minimal solution in B+(MG, θ) with a brick B is a forest whose
leaves are portals.

11

For {0, 1, 2}-edge-connected Survivable Network, we appeal to Theo-
rem 11: By the Structure Theorem, there is a solution H in B+(MG) that has
length at most (1 + cε)OPT. For each brick B, let HB be the intersection of
H with B. HB is the union of trees. Replace each tree with the Steiner tree
spanning the same subset as found in the spanner construction. Let H ′ be the
graph resulting from all such replacements: ℓ(H ′) ≤ ℓ(H) ≤ (1 + cε)OPT. By
Observation 9, the edges of H ′ − Eportal induce a solution to the problem of
length at most (1 + cε)OPT.

For Subset Tsp, the proof is similar. By the Structure Theorem, there is
a tour T of the terminals Q in B+(MG) that has length at most (1 + cε)OPT.
For each brick B, let K be a connected component of the intersection of T
with B. Because the terminals are in MG and not in B, K is a path between
portals of B: replace K with the Steiner tree (i.e. a shortest path) connecting
these two portals found in the construction of the spanner1. Let T ′ be the tour
resulting from all these replacements: ℓ(T ′) ≤ ℓ(T) ≤ (1 + cε)OPT. Appealing
to Observation 9, the edges of T ′ − Eportal induce a solution of length at most
(1 + cε)OPT.

4.2 PTAS via Spanner

In order to apply the PTAS framework of Klein [16] to bounded-genus graphs,
we need the following Contraction Decomposition Theorem due to Demaine et
al.:

Theorem 13 ([8, Theorem 1.1]). For a fixed genus g, and any integer η ≥ 2 and
for every graph G of Euler genus at most g, the edges of G can be partitioned into
η sets such that contracting any one of the sets results in a graph of treewidth at
most O(g2 · η). Furthermore, such a partition can be found in O(g5/2n3/2 logn)
time.

Recent techniques [6] for finding shortest noncontractible cycles of embedded
graphs have improved the above running time to O(n logn).2

We review the four steps of the framework in our setting:

1. Spanner Step: Find a spanner Gspan of G according to Theorem 12.

2. Thinning Step: For η = f(ε, g)/ε (where f(ε, g) is the function given in
Theorem 12), let S1, . . . , Sη be the partition of the edges of Gspan as guar-
anteed by Theorem 13. Let S∗ be the set in the partition with minimum
weight: ℓ(S∗) ≤ εOPT. Let Gthin be the graph obtained from Gspan by
contracting the edges of S∗. By Theorem 13, Gthin has treewidth at most
O(g2ε−1f(ε, g)).

1Note that to construct a spanner for Subset Tsp, we need only shortest paths between
pairs of portals.

2We would like to thank Jeff Erickson for pointing out in private communication that the
algorithm given in [6] works for both orientable and nonorientable surfaces.

12

3. Dynamic Programming Step: Use dynamic programming (see, e.g. [17])
to find the optimal solution to the problem in Gthin.

4. Lifting Step: Convert this solution to a solution in G by incorporating
some of the edges of S∗. For Steiner Tree, at most one copy of each edge
of S∗ is introduced to maintain connectivity [5]. In the case of {0, 1, 2}-
edge connected Survivable Network, at most two copies of each edge
of S∗ are required [4]. For Subset Tsp, the method was explained in [15].

Analysis of the running time. By Theorem 12, the spanner step takes
Oε,g(n logn) time (with singly exponential dependence on polynomials in g
and ε−1). By Theorem 13, thinning takes time O(n logn) using [6]. Dynamic

programming takes time 2O(g2ε−1f(ε,g))n: because f(ε, g) is singly exponential
in polynomials in g and ε−1, this step is doubly exponential in polynomials
in g and ε−1. Lifting takes linear time. Hence, the overall running time is
O(2O(g2ε−1f(ε,g))n+ n logn).

4.3 PTAS via Dynamic Programming over the Bricks

In [5], Borradaile et al. present a PTAS that is singly exponential in a polyno-
mial in ε−1 for Steiner Tree in planar graphs. The idea is to incorporate the
spanner step into the dynamic programming step and to use a somewhat mod-
ified thinning step. To this end, the operator brick-contraction B÷ is defined
to be the application of the operation B+ followed by contracting each brick
to become a single vertex of degree at most θ (see Figure 1(e)). The thinning
algorithm decomposes the mortar graph MG into parts of bounded dual radius
(implying bounded treewidth). Applying B÷ to each part maintains bounded
dual radius. The algorithm computes optimal Steiner trees inside the bricks
using the method of [12] only at the leaves of the dynamic programming tree,
thus eliminating the need of an a-priori constructed spanner. The interaction
between subproblems of the dynamic programming is restricted to the portals,
of which there are few.

For embedded graphs with genus > 0, the concept of bounded dual radius
does not apply in the same way. We deal with treewidth directly and obtain the
following algorithm: we apply the Contraction Decomposition Theorem 13 [8]
to B÷(MG) and contract a set of edges S⋆ in B÷(MG). However, we apply
a special weight to portal edges so as to prevent them from being included in
S⋆. Also, in B÷(MG), we slightly modify the definition of contraction: after
contracting an edge, we do not delete parallel portal edges. Because portal
edges connect the mortar graph to the bricks, they are not parallel in the graph
in which we find a solution via dynamic programming. The details are given
below.

13

Algorithm Thinning(G,MG).
Input. a graph G of fixed genus g, a mortar graph MG of G
Output. a set S⋆ ⊆ E(B÷(MG)),

a tree decomposition (T, χ) of B÷(MG)/S⋆

1. Assign weight ℓ(∂F) to each portal edge in a face F of B÷(MG).

2. Apply the Contraction Decomposition Theorem 13 to B÷(MG) with
η := 3θαε−1 to obtain edge sets S1, . . . , Sη; let S

⋆ be the set of mini-
mum weight.

3. If S⋆ includes a portal edge e of a brick B enclosed in a face F of MG,
add ∂F to S⋆ and mark B as ignored.

4. Let MGthin := B÷(MG)/S⋆ (but do not delete parallel portal edges).

5. Let (T, χ) be a tree decomposition of width O(g2 · η) of MGthin.

6. For each vertex b of MGthin that represents an unignored contracted
brick with portals {p1, . . . , pθ}:

6.1. Replace every occurrence of b in χ with {p1, . . . , pθ};

6.2. Add a bag {b, p1, . . . , pθ} to χ
and connect it to a bag containing {p1, . . . , pθ}.

7. Reset the weight of the portal edges back to zero.

8. Return (T, χ) and S⋆.

Lemma 14. The algorithm Thinning(G,MG) returns a set of edges S⋆ and a
tree decomposition (T, χ) of B÷(MG)/S⋆, so that

(i) the treewidth of (T, χ) is at most ξ where ξ(ε, g) = O(g2ηθ) = O(g3ε−2θ2);
in particular, ξ is polynomial in ε−1 and g;

(ii) every brick is either

– marked as ignored, or

– none of its portal edges are in S⋆; and

(iii) ℓ(S⋆) ≤ εOPT.

Proof. We first verify that (T, χ) is indeed a tree decomposition. For a ver-
tex v and a tree decomposition (T ′, χ′), let T ′

v denote the subtree of T ′ that
contains v in all of its bags. Let us denote the tree decomposition of step (5)
by (T 0, χ0). For each brick vertex b and each of its portals pi, we know that
T 0
b is connected and T 0

pi
is connected and that these two subtrees intersect; it

follows that after the replacement in step (6.2), we have that Tpi
= T 0

b ∪ T 0
pi

is a connected subtree of T and hence, (T, χ) is a correct tree decomposition.
Note that Theorem 13 guarantees a tree decomposition of width O(g2η) if any

14

of S1, . . . , Sη are contracted; and in step (3), we only add to the set of edges to
be contracted. Hence, the treewidth of (T 0, χ0) is indeed O(g2η) and with the
construction in step (6.1), the size of each bag will be multiplied by a factor of
at most θ. This shows the correctness of claim (i). The correctness of claim (ii)
is immediate from the construction in step (3). It remains to verify claim (iii).

Let L denote the weight of B÷(MG) after setting the weights of the portal
edges according to step (1) of the algorithm. We have that

L ≤ ℓ(MG) +
∑

F

ℓ(∂F)θ ≤ αOPT+θ
∑

F

ℓ(∂F)

≤ αOPT+θ · 2αOPT ≤ 3θαOPT .

Hence, the weight of S⋆, as selected in step (2), is at most L/η ≤ 3θαOPT
3θαε−1 ≤

εOPT. The operation in step (3) does not add to the weight of S⋆: if ∂F
is added to S⋆, the additional weight is subtracted when the corresponding
portal-edge weights are set to zero in step (7).

If a brick is “ignored” by Thinning, the boundary of its enclosing mortar
graph face is completely added to S⋆. Because S⋆ can be added to the final
solution, every potential connection through that brick can be rerouted through
S⋆ around the boundary of the brick. The interior of the brick is not needed.

An almost standard dynamic programming algorithm for bounded-treewidth
graphs (cf. [1, 17]) can be applied to Gthin and (T, χ). However, for the leaves of
the tree decomposition that are added in step (6.2) of the Thinning procedure,
the cost of a subset of portal edges is calculated as, e.g., the cost of the minimum
Steiner tree interconnecting these portals in the corresponding brick. Because
the bricks are planar, this cost can be calculated by the algorithm of [12] for
Steiner tree or [4] for 2-edge connectivity. Because all the portal edges of this
brick are present in this bag (recall that we do not delete parallel portal edges
after contractions), all possible solutions restricted to the corresponding brick
will be considered. Because the contracted brick vertices only appear in leaves of
the dynamic programming tree, the rest of the dynamic programming algorithm
can be carried out as in the standard case.

Analysis of the running time. As was shown for the planar Steiner tree
PTAS [5], the total time spent in the leaves of the dynamic programming is
O(4θn). The rest of the dynamic programming takes time O(2O(ξ)n). The
running time of the thinning algorithm is dominated by the Contraction De-
composition Theorem 13 which is Og(n logn) [6]. Hence, the total time is
O(2O(ξ)n+ 2poly(g)n logn) for the general case; in particular, this is singly ex-
ponential in ε−1 and g, as desired. This proves Theorem 1.

5 A Structure Theorem for Subset TSP

Here we prove the Structure Theorem for Subset Tsp. While this theorem can
be used to obtain a PTAS for the subset tour problem in planar graphs, a PTAS

15

for this problem [15] predates the mortar graph framework.
Like Steiner Tree and Survivable Network, the Structure Theorem

(Section 3.5) must be proved (Section 5.1) for the Subset Tsp problem. To
this end, in this section, we state and prove a local structure theorem (Theo-
rem 16, Figure 3). This local structure theorem describes how to replace the
intersection of a tour with a brick to reduce the number of times the tour crosses
the boundary of the brick: each crossing contributes to the size of the dynamic-
programming table. While the intersection of a tour with a brick is quite simple
(a set of brick boundary-to-boundary paths), in modifying the tour we must be
careful to maintain that our solution is still a tour.

We will use the following lemma due to Arora:

Lemma 15 (Patching Lemma [2]). Let S be any line segment of length s and π
be a closed path that crosses S at least thrice. Then we can break the path in all
but two of these places and add to it line segments lying on S of total length at
most 3s such that π changes into a closed path π′ that crosses S at most twice.

This lemma applies to embedded graphs as well. Note: the patching process
connects paths in the tour that end on a common side of S by a subpath of S.

Theorem 16 (TSP Property of Bricks). Let B be a brick of graph G with
boundary N ∪E∪S∪W (where E and W are supercolumns). Let T be a tour in
G such that T crosses E and W at most 2 times each. Let H be the intersection
of T with B. Then there is another subgraph of B, H ′, such that:

(T1) H ′ has at most β(ε) joining vertices with ∂B.

(T2) ℓ(H ′) ≤ (1 + 5ε)ℓ(H).

(T3) There is a tour in the edge set T \H∪H ′ that spans the vertices in ∂B∩T .

In the above, β(ε) = O(κ).

Proof. LetH be the subgraph of T that is strictly enclosed by B (i.e., H contains
no edges of ∂B). We can write H as the union of 3 sets of minimal ∂B-to-∂B
paths PS∨N ∪ PE∨W ∪ PS∧N where paths in: PS∨N either start and end on S
or start and end on N ; PE∨W start on E or W and end on ∂B; PS∧N start on
S and end on N . For the constructions below, refer to Figure 3.

Since T crosses E and W at most 4 times, |PE∨W | ≤ 4. Therefore, this set
of paths result in at most 8 joining vertices with ∂B.

For each path P ∈ PS∨N , let P̂ be the minimal subpath of ∂B that spans
P ’s endpoints. Let P̂S∨N be the resulting set of paths. As N is 0-short and S
is ε-short, we have

ℓ(P̂S∨N) ≤ (1 + ε)ℓ(PS∨N). (1)

Since P̂S∨N are subpaths of ∂B, they have no joining vertices with ∂B. Since
paths in P̂S∨N correspond one-to-one with paths in PS∨N , T \PS∨N ∪ P̂S∨N is
a tour. See Figure 3(a).

16

It remains to deal with the paths in PS∧N . Let s0, s1, s2, . . . , sk (where
k ≤ κ) be the vertices of S guaranteed by the properties of the bricks (see
Definition 2). Let Xi be the subset of paths of PS∧N that start on S[si, si+1),
i.e. the vertices between si and si+1 including si but not si+1.

If |Xi| > 2, we do the following: Let Pi be the path in Xi whose endpoint
x on S is closest to si+1. Let Qi be the subpath of S from si to x. By the
properties of the bricks, ℓ(Qi) ≤ εℓ(Pi). Apply the Patching Lemma to the tour
T and path Qi; the new tour, T ′, crosses Qi at most twice. However T ′ may
still have many joining vertices with Qi. Let Qi be the subpaths of Qi that are
added to the tour.

Let Li be a maximal set of N -to-N paths in Xi ∪Qi. Li accounts for all but
two (corresponding to the two crossings of T ′ with Qi) of the joining vertices

of T ′ with Qi. For each path L ∈ Li, let L̂ be the minimal subpath of N that
spans L’s endpoints and let L̂i be the resulting set of paths. Replacing Li with
L̂i is still a tour, since the paths have a one-to-one correspondence. However,
the resulting tour may no longer span all terminals on Qi. Adding in two copies
of Qi fixes this. Since N is 0-short, ℓ(L̂i) ≤ ℓ(Li).

Let X̂i = Xi ∪Qi \ Li ∪ L̂i ∪Qi ∪Qi. Replacing Xi with X̂i is still a tour, as
argued above. Since the additional length added is at most 5 copies of Qi, we
have:

ℓ(X̂i) ≤ ℓ(Xi) + 5ℓ(Qi) ≤ ℓ(Xi) + 5εℓ(Pi) ≤ (1 + 5ε)ℓ(Xi) (2)

Since Li accounted for all but 2 of the joining vertices of T ′ with Qi - so all but
4 of the joining vertices of Xi with ∂B, and L̂i has no joining vertices with ∂B,
X̂i has at most 4 joining vertices with ∂B.

Let P̂S∧N =
⋃

i X̂i. P̂S∧N has at most 6κ joining vertices with ∂B and, by
Equation (2),

ℓ(P̂S∧N) ≤ (1 + 5ε)ℓ(PS∧N). (3)

Let Ĥ be the union of the paths in PE∨W , P̂S∨N and P̂S∧N . Combining
Equations (1) and (3), we find that ℓ(Ĥ) ≤ (1 + 5ε)ℓ(H). By construction, the

edges in T \H∪Ĥ contain a tour. Ĥ has 6κ+8 joining vertices with ∂B.

5.1 Proof of the Structure Theorem for Subset Tsp

Using the TSP Property of Bricks, we prove the Structure Theorem (Section 3.5)
for Subset Tsp.

Let T be the optimal tour spanning terminals Q in G. From T we build a
tour T̂ spanning Q in B+(MG) such that ℓ(T̂) ≤ (1 + cε)ℓ(T).

Let C be a supercolumn. By the Patching Lemma, if T crosses C at least
thrice, we can add to T at most three copies of C and create a new tour that
crosses C at most twice. Let T1 be the tour that results from applying the
Patching Lemma to each supercolumn. Because the sum of the weights of the
supercolumns is at most εOPT,

ℓ(T1) ≤ (1 + 3ε)ℓ(T). (4)

17

Let B be a brick of G. Let H be the intersection of T1 with B. By the
construction above, T1 satisfies the requirements of Theorem 16: let H ′ be the
guaranteed subgraph of B. We replace H with H ′ in T1. Let T2 be the tour
resulting from such replacements over all the bricks. Theorem 16 guarantees
that

ℓ(T2) ≤ (1 + 5ε)ℓ(T1). (5)

Now we map the edges of T2 to a subgraph of B+(MG). Every edge of G
has at least one corresponding edge in B+(MG). For every edge e of T2, we
select one corresponding edge in B+(MG) as follows: if e is an edge of MG
select the corresponding mortar edge of B+(MB), otherwise select the unique
edge corresponding to e in B+(MG). (An edge of B+(MG) is a mortar edge if
it is in MG.) This process constructs a subgraph T3 of B+(MG) such that

ℓ(T3) = ℓ(T2). (6)

Because T3 is not connected, we connect it via portal and mortar edges. Let
VB be the set of joining vertices of T3 with ∂B for a brick B of B+(MG). For
any vertex v on the interior boundary ∂B of a brick, let pv be the portal on ∂B
that is closest to v, let Pv be the shortest v-to-pv path along ∂B and let P ′

v be
the corresponding path of mortar edges. Let e be the portal edge corresponding
to pv. Add Pv, P

′
v, and e to T3. Repeat this process for every v ∈ VB and for

every brick B, building a graph T̂ . This completes the definition of T̂ . From
the construction, T̂ is a tour spanning the terminals Q in B+(MG).

Now we analyze the increase in length:

ℓ(T̂) ≤ ℓ(T3) +
∑

B∈B

∑

v∈VB

(ℓ(Pv) + ℓ(e) + ℓ(P ′
v)), (7)

and we have:
∑

B∈B

∑

v∈VB

ℓ(Pv) + ℓ(e) + ℓ(P ′
v) = 2

∑

B∈B

∑

v∈VB

ℓ(Pv), because ℓ(portal edges) = 0

≤ 2
∑

B∈B

∑

v∈VB

ℓ(∂B)/θ, by the choice of portals

≤ 2
∑

B∈B

β

θ
ℓ(∂B), by Theorem 16

≤ 2
β

θ
2α(ε−1, g)OPT , by Theorem 4

≤ ε OPT , for θ = 4ε−1βα, as required.

Combining Equations (4), (5), (6) and (7), we obtain ℓ(T̂) ≤ (1 + 3ε)(1 +
5ε)ℓ(T) + εOPT ≤ (1 + cε)OPT. The Structure Theorem is proved for the
Subset Tsp problem.

18

6 Conclusion and Outlook

We presented a framework to obtain PTASes on bounded-genus graphs for
subset-connectivity problems, where we are given a graph and a set of ter-
minals and require a certain connectivity among the terminals. Specifically, we
obtained the first PTAS for Steiner Tree on bounded-genus graphs running in
O(n logn)-time with a constant that is singly exponential in ε−1 and the genus
of the graph. Our method is based on the framework of Borradaile et al. [5]
for planar graphs; in fact, we generalize their work in the sense that basically
any problem that is shown to admit a PTAS on planar graphs using their frame-
work easily generalizes to bounded-genus graphs using the methods presented in
this work. In particular, this gives rise to PTASes in bounded-genus graphs for
Subset Tsp (Section 5), {0, 1, 2}-edge-connected Survivable Network [4],
and also Steiner Forest [3].

A natural question is to ask what other classes of graphs admit a PTAS for the
problems discussed in this work. An important generalization of bounded-genus
graphs are proper classes of graphs that are closed under taking minors. Such
H-minor-free graphs have earned much attention in recent years. Many hard
optimization problems have been shown to admit PTASes and fixed-parameter
algorithms on these classes of graphs; see, e.g., [7, 13]. But subset-connectivity
problems, specifically Subset Tsp and Steiner Tree, remain important open
problems [13, 8]. Both a spanner theorem and a contraction decomposition
theorem are still missing for the H-minor-free case. Very often, results on H-
minor-free graphs are first shown for planar graphs, then extended to bounded-
genus graphs, and finally obtained for H-minor-free graphs. This is due to the
powerful decomposition theorem of Robertson and Seymour [21] that essentially
says that every H-minor-free graph can be decomposed into a number of parts
that are “almost embeddable” in a bounded-genus surface. We conjecture that
our framework extends to H-minor-free graphs via this decomposition theorem.
The advantage of our methodology is that handling weighted graphs and subset-
type problems are naturally incorporated, and thus it might be possible to
combine all the steps for a potential PTAS into a single framework for H-minor-
free graphs based on what we presented in this work. Hence, whereas our work is
an important step towards this generalization, still a number of hard challenges
remain; see also [8] for a further discussion on this matter.

References

[1] Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard prob-
lems restricted to partial k-trees. Discrete Applied Mathematics 23(1),
11–24 (1989)

[2] Arora, S.: Approximation schemes for NP-hard geometric optimization
problems: a survey. Mathematical Programming 97(1–2), 43–69 (2003)

19

[3] Bateni, M., Hajiaghayi, M., Marx, D.: Approximation schemes for steiner
forest on planar graphs and graphs of bounded treewidth. In: STOC ’10:
Proceedings of the 42nd annual ACM Symposium on Theory of Computing,
p. to appear. ACM (2010)

[4] Borradaile, G., Klein, P.: The two-edge connectivity survivable network
problem in planar graphs. In: ICALP ’08: Proceedings of the 35th Inter-
national Colloquium on Automata, Languages and Programming, LNCS,
vol. 5125, pp. 485–501. Springer (2008)

[5] Borradaile, G., Klein, P.N., Mathieu, C.: An O(n logn) approximation
scheme for Steiner tree in planar graphs. ACM Transactions on Algorithms
5(3) (2009)

[6] Cabello, S., Chambers, E.W.: Multiple source shortest paths in a genus g
graph. In: SODA ’07: Proceedings of the 18th annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 89–97. SIAM (2007)

[7] Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections be-
tween FPT algorithms and PTASs. In: SODA ’05: Proceedings of the
16th annual ACM-SIAM Symposium on Discrete Algorithms, pp. 590–601
(2005)

[8] Demaine, E.D., Hajiaghayi, M., Mohar, B.: Approximation algorithms via
contraction decomposition. In: SODA ’07: Proceedings of the 18th annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 278–287. SIAM (2007)

[9] Eppstein, D.: Dynamic generators of topologically embedded graphs. In:
SODA ’03: Proceedings of the 14th annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 599–608. SIAM (2003)

[10] Eppstein, D., Italiano, G., Tamassia, R., Tarjan, R., Westbrook, J., Yung,
M.: Maintenance of a minimum spanning forest in a dynamic planar graph.
J. Algorithms 13(1), 33–54 (1992). Special issue for 1st SODA

[11] Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology gen-
erators. In: SODA ’05: Proceedings of the 16th annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1038–1046. SIAM (2005)

[12] Erickson, R.E., Monma, C.L., Arthur F. Veinott, J.: Send-and-split method
for minimum-concave-cost network flows. Math. Oper. Res. 12(4), 634–664
(1987)

[13] Grohe, M.: Local tree-width, excluded minors, and approximation algo-
rithms. Combinatorica 23(4), 613–632 (2003)

[14] Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-
path algorithms for planar graphs. Journal of Computer and System Sci-
ences 55(1), 3–23 (1997)

20

[15] Klein, P.N.: A subset spanner for planar graphs, with application to subset
TSP. In: STOC ’06: Proceedings of the 38th annual ACM Symposium on
Theory of Computing, pp. 749–756 (2006)

[16] Klein, P.N.: A linear-time approximation scheme for TSP in undirected pla-
nar graphs with edge-weights. SIAM J. Comput. 37(6), 1926–1952 (2008)

[17] Korach, E., Solel, N.: Linear time algorithm for minimum weight Steiner
tree in graphs with bounded treewidth. Manuscript (1990)

[18] Mehlhorn, K.: A faster approximation algorithm for the Steiner problem
in graphs. Information Processing Letters 27, 125–128 (1988)

[19] Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary
surface. SIAM Journal on Discrete Mathematics 12(1), 6–26 (1999)

[20] Mohar, B., Thomassen, C.: Graphs on Surfaces. The John Hopkins Uni-
versity Press (2001)

[21] Robertson, N., Seymour, P.: Graph minors. XVI. Excluding a non-planar
graph. J. Comb. Theory Ser. B 89(1), 43–76 (2003)

[22] Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of
tree-width. Journal of Algorithms 7(3), 309–322 (1986)

[23] Tazari, S., Müller-Hannemann, M.: Shortest paths in linear time on minor-
closed graph classes, with an application to Steiner tree approximation.
Discrete Applied Mathematics 157, 673–684 (2009)

21

(a)

(b)

(c)

Figure 3: (a) A brick with a tour crossing through it. The bold paths are in H .
The bold vertices are s0, s1, s2, . . . , sk. The dotted paths are in PS∧N , the first
four of which are in X1. (b) The patching process introduces the dotted paths
on the lower boundary S of the brick and reroutes the tour to cross S twice
between s1 and s2. The dotted subpath L of the top boundary N of the brick
is used to replace the portion of the tour between its endpoints. (c) The tour
after the entire construction given by Theorem 16.

22

	1 Introduction
	2 Preliminaries
	3 Mortar Graph and Structure Theorem
	3.1 A mortar graph for bounded-genus graphs: Overview
	3.2 Preprocessing the input graph
	3.3 Constructing a cut graph
	3.4 Proof of Theorem ??
	3.5 Structure Theorem

	4 Obtaining PTAS es for bounded-genus graphs
	4.1 Spanner for Subset-Connectivity Problems
	4.2 PTAS via Spanner
	4.3 PTAS via Dynamic Programming over the Bricks

	5 A Structure Theorem for Subset TSP
	5.1 Proof of the Structure Theorem for Subset Tsp

	6 Conclusion and Outlook

