
Universität Augsburg

Approximation Algorithms for

Intersection Graphs

F. Kammer, T. Tholey und H. Voepel

Report 2009-6 Mai 2009

Institut für Informatik
D-86135 Augsburg

Copyright c© F. Kammer, T. Tholey und H. Voepel
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Approximation Algorithms

for Intersection Graphs

Frank Kammer, Torsten Tholey, and Heiko Voepel

Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany
{kammer,tholey,voepel}@informatik.uni-augsburg.de

Abstract. We introduce three new complexity parameters that in some
sense measure how chordal-like a graph is. The similarity to chordal
graphs is used to construct simple polynomial-time approximation algo-
rithms with constant approximation ratio for many NP-hard problems,
when restricted to graphs for which at least one of our new complexity
parameters is bounded by a constant. As applications we present ap-
proximation algorithms with constant approximation ratio for maximum
weighted independent set, minimum (independent) dominating set, min-
imum vertex coloring, maximum weighted clique, and minimum clique
partition for large classes of intersection graphs.

1 Introduction

Complexity parameters can help to solve many NP-hard problems of theoret-
ical and practical importance on a subclass of instances for which the chosen
parameter is very small. Treewidth is one of the classical complexity parameters
studied in graph theory. Graphs of bounded treewidth have a treelike structure
that allows to generalize efficient algorithms for hard problems on trees to graphs
of bounded treewidth. In particular, all decision problems that can be expressed
in monadic second-order logic can be solved in polynomial time on graphs of
bounded treewidth [2, 7].

In this paper we introduce three new complexity parameters that all gen-
eralize in some kind another class of graphs, namely chordal graphs. See Sec-
tion 2 for a detailed definition of our new complexity parameters. Like trees,
chordal graphs have a simple structure that also allows to solve a large number
of NP-hard problems. For example, on chordal graphs there are linear time
algorithms for minimum vertex coloring (MVC), maximum clique (MC), mini-
mum clique partition (MCP) [13], and for maximum weighted independent set
(MWIS) [11]. Therefore, it seems natural to search for a generalization of chordal
graphs. In doing so, we obtain new approximation algorithms for the problems
above on large graph classes containing many intersection graph classes such
as t-interval-graphs, circular arc graphs, disk graphs, and intersection graphs
of regular polygons or of arbitrary polygons of so-called bounded fatness. In
general, intersection graphs are very useful subclasses of graphs with several
practical applications. See [14] or [15] for an overview of different applications of
intersection graphs.It is not surprising that, for small graph classes such as unit

1

disk graphs, one can achieve better results than by our new algorithms designed
for larger classes of graphs. Nevertheless, also on small graph classes such as disk
graphs we obtain new results for some of the problems mentioned above as well
as for minimum dominating set (MDS) and minimum independent dominating
set (MIDS).

Table 1 summarizes the best previously known and new approximation results
for the intersection graphs of disks, regular polygons, fat objects, t-intervals
and t-fat-objects. MIS denotes the unweighted version of MWIS and MWC the
weighted version of MC. By an r-regular polygon we mean a polygon with r
corners placed on a circle such that all pairs of consecutive corners of the polygon
have the same distance. We assume that r ∈ O(1). We also define a set C of
geometric objects in IRd—i.e., a set of points in IRd—to be a set of fat objects if
the following holds. First, let us call the radius of a smallest d-dimensional ball
containing the closure of a geometric object S in IRd the size of S. Moreover, let
R be the size of the largest object in C. Then, C is called fat if there is a constant
c such that, for every d-dimensional ball B of radius r with 0 < r ≤ R, there
exist c points (possibly also outside B) such that every B-intersecting object
S ∈ C of size at least r contains one or more of the c points. We also say that
C has fatness c. C is called a (c-)restricted set of fat objects if in the condition
above every B-intersecting object in C (with arbitrary size) contains at least one
of the c points. By a unit set of objects—in opposite to arbitrary—we mean that
each object must be a copy of each other object, i.e., of the same size and shape.
However, unit and arbitrary objects may be rotated and moved to any position.
By an intersection graph G of t-intervals we mean an intersection graph, where
each vertex represents a t-interval, i.e., the union of t intervals taken from a set S
of intervals. By the intersection graph G of t-fat-objects we mean an intersection
graph, where each vertex represents a t-fat-object, i.e., the union of t objects
taken from a fat set S of objects. In both cases S is called the universe of G.

As usual, disks and regular polygons should be defined in the plane IR2,
intervals in IR and fat objects in IRd, where we assume that d = O(1). Concerning
the results in table 1 including the hardness results, we assume that—beside an
intersection graph itself—a representation of the intersection graph is given.
More precisely, for the intersection graph of a set S of 1) disks, 2) r-regular
polygons, 3) t-intervals, 4) fat objects, or 5) t-fat-objects, we are given for each
element in S in case 1) its radius and the coordinates of its center, in case 2)
the coordinates of the center and at least one corner, in case 3) the start and
end point of each interval, and in case 4) a representation that, for each pair
x, y of objects, each point p ∈ IRd, and each d-dimensional ball B represented
by the coordinates of its center and its radius r ≤ R, supports the following
computations in polynomial time: Decide whether x and y intersect, whether x
and B intersect, and whether p is contained in x, determine the size s of x and
the center of ball B with a radius s containing the closure of x, and find c points
that are contained in every object of size ≥ r intersecting B. In case 5) each
t-fat-object has a representation of its objects as described in case 4). For many
applications, representations as described above are given explicitly.

2

disk r-reg. polygon fat objects t-interval t-fat-objects

MIS arbitrary: arbitrary: arbitrary: 2t-PA. [1] arbitrary:
PTAS [5, 8] PTAS [5, 8] PTAS [5, 8] O(t)-PA. [∗]

unit: unit: unit: t ≥ 3 :
PTAS [18] PTAS [18] APX -h.
NP-h. [10] NP-h. [10] NP-h. [10] [17, 25] NP-h. [10]

MWIS arbitrary: arbitrary: arbitrary: 2t-PA. [1] arbitrary:
PTAS [8] PTAS [8] PTAS [8] O(t)-PA. [∗]

MDS restricted: restricted: restricted: t2-PA. [3] restricted:
O(1)-PA. [∗] O(1)-PA. [∗] O(1)-PA. [∗] O(t)-PA. [∗]

unit: unit: unit: t ≥ 2 : t ≥ 2 :
PTAS [18] PTAS [18] APX -h. APX -h.
NP-h. [6] NP-h. [6] NP-h. [6] [17, 25] [17, 25]

MIDS restricted: restricted: restricted: restricted:
O(1)-PA. [∗] O(1)-PA. [∗] O(1)-PA. [∗] O(t)-PA. [∗]

unit: unit: unit: t ≥ 2 :
PTAS [19] PTAS [19]
NP-h. [6] NP-h. [6] NP-h. [6] NP-h. [6]

MVC arbitrary: arbitrary: arbitrary: 2t-PA. [1] restricted:
5-PA. O(1)-PA. [∗] O(1)-PA. [∗] O(t)-PA. [∗]
[?,22, 23]

unit: 3-PA. [23] unit: unit:
4/3-PA. is NP O(1)-PA. [23]
-h. [6, 12, 20] NP-h. [12, 20] NP-h. [12, 20]

MC arbitrary: arbitrary: arbitrary: t
2
−t+1

2
-PA. [3] arbitrary:

O(1)-PA. [∗] O(1)-PA. [∗] O(1)-PA. [∗] O(t)-PA. [∗] O(t)-PA. [∗]
unit: t ≥ 3 : t ≥ 3 :
∈ P [6] NP-h. [3] NP-h. [3]

MWC arbitrary: arbitrary: arbitrary: t
2
−t+1

2
-PA. [3] arbitrary:

O(1)-PA. [∗] O(1)-PA. [∗] O(1)-PA. [∗] O(t)-PA. [∗] O(t)-PA. [∗]
MCP arbitrary: arbitrary: arbitrary: O(log2 n/ arbitrary:

O(1) PA. [∗] O(1)-PA. [∗] O(1)-PA. [∗] log(1 + 1/t))- O(t)-PA. [∗]
unit: 3-PA. [4] PA. [∗]

Table 1. Approximation results. We use PA. and NP-h. as abbreviation for
polynomial-time approximation algorithm and NP-hard. By n we denote the num-
ber of vertices of the intersection graph. [∗] denotes new results shown in this paper.

Other generalized classes of graphs including the intersection graphs of unit
disks or r-regular polygons of unit size are graph classes of so-called polynomi-
ally bounded growth studied by Nieberg, Hurink and Kern [19, 24]. Nieberg et
al. presented a PTAS for MWIS, MDS and MIDS for these classes of graphs.
However, graphs of polynomally bounded growth do not include the intersection
graphs of arbitrary disks, arbitrary r-regular polygons, t-interval graphs, etc.

Note that our results include the first polynomial-time approximation algo-
rithms with constant approximation ratio for maximum clique and minimum
clique partition on disk graphs and on intersection graphs of r-regular polygons.

3

We also present a polynomial-time approximation algorithm with constant ap-
proximation ratio for dominating set on the intersection graphs of a restricted
set of r-regular polygons. Recently, Erlebach and van Leeuwen [9] presented an
approximation algorithm with constant approximation ratio for the same prob-
lem on an arbitrary set of r-regular polygons but, in contrast to this paper, they
do not allow to rotate the polygons. The results in this paper also imply an
approximation algorithm with constant approximation ratio for dominating set
on intersection graphs of an arbitrary set of non-rotated r-regular polygons. We
also improve the approximation ratio of maximum clique on t-interval graphs.
In general, our results also extend to intersection graphs of a restricted set of
t-fat objects and further classes of graphs not discussed in this paper.

2 New Complexity Parameters

In this section, we introduce three new complexity parameters. For each com-
plexity parameter, we present examples of classes of intersection graphs for which
the complexity parameter is bounded by a constant. For a set S of vertices in a
graph G, let G[S] be the subgraph of G induced by the vertices of S.

Definition 1 (k-perfectly groupable). A graph is k-perfectly groupable if
the neighbors of each vertex v can be partitioned into k sets S1, . . . , Sk such that
G[Si] is a possibly empty clique for each i ∈ {1, . . . , k}.

By definition, we can find, for each object S of a k-restricted set C of fat
objects, a set P (S) of k points such that every object in C intersecting S (and
hence also a smallest ball containing the closure of S) covers at least one point in
P (S). For each S-intersecting object S ′ ∈ C, choose one of the points in P (S) as
a representative. Then all S-intersecting objects having the same representative
in P (S) induce a clique in the intersection graph. Hence, the intersection graph
of a k-restricted set of fat objects is k-perfectly groupable. Note also that unit
disk graphs and unit square graphs are k-groupable for a suitable constant k.
Graphs of maximum degree k are also k-groupable.

Definition 2 (k-perfectly eliminable, k-perfect elimination order, suc-
cessor). A graph G is k-perfectly eliminable if there is an order v1, . . . , vn of
the vertices of G such that, for each vertex vi (1 ≤ i ≤ n), the subset of neigh-
bors of vi contained in {vj | j > i} can be partitioned into k sets S1, . . . , Sk such
that G[Sj] is a possibly empty clique for each j ∈ {1, . . . , k}. The vertices in
{vj | j > i, {vi, vj} ∈ E(G)} are called the successors of vi and the order above
of the vertices in G is called a k-perfect elimination order.

Let C be a set of fat objects S1, . . . , Sn ordered by non-decreasing size. Let
k be the fatness of C. Then, for each object Si, we can find k points such that
every Si-intersecting object in {Si+1, . . . , Sn} contains one of the k points. If, for
i ∈ {1, . . . , n}, we define vi to be the vertex representing Si in the intersection
graph G of C, then v1, . . . , vn defines a k-perfect elimination order. Therefore,

4

G is k-perfectly eliminable. Also note that disk graphs and square graphs are
k-perfectly eliminable for a suitable constant k. Moreover, chordal graphs are
exactly the 1-perfectly eliminable graphs.

Definition 3 (k-perfectly orientable). A graph G is called k-perfectly ori-
entable if each edge {u, v} of G can be assigned to exactly one of its endpoints u
and v such that, for each vertex w, the vertices connected to w by edges assigned
to w can be partitioned into k sets S1, . . . , Sk such that G[Si] is a possibly empty
clique for each i ∈ {1, . . . , k}. We write a({u, v}) = u if {u, v} is assigned to u.

We now show that the intersection graph G = (V, E) of a set of t-fat-objects C
with a universe of fatness c is (t·c)-perfectly orientable. Let V = {v1, . . . , vn} and,
for each i ∈ {1, . . . , n}, let Si be the union of t objects Si,1, . . . , Si,t represented
by vi. Choose, for each edge {vi, vj} with i < j, a pair {k, l} of indices such that
Si,k and Sj,l intersect. Assign {vi, vj} to vi if the size of Si,k is smaller than the
size of Sj,k and to vj otherwise. Then, for each vertex vi one can find t · c points
such that each Si-intersecting t-fat-object Sj with {vi, vj} being assigned to vi

must intersect Si in at least one of the t · c points. Therefore, the set of vertices
being endpoints of edges assigned to vi can be partitioned into ≤ t · c cliques.
This proves that G is (t · c)-perfectly orientable. Note also that the intersection
graphs of t-intervals are 2t-orientable. For these graphs, an edge {vi, vj} with
i < j is assigned to vi if the t-interval represented by vj intersects one of 2t
endpoints of the intervals whose union is represented by vi.

We next present explicit upper bounds for our complexity parameters on
some special intersection graphs. Before that let us define the inball and the
outball of a geometric object S to be a ball with largest radius contained in
the closure of S and the ball with smallest radius containing the closure of S,
respectively. The center of S is the center of its outball. Due to space limitations
the remaining proofs of this section are only part of the appendix.

Lemma 4. An intersection graph of t-squares, i.e., of unions of t (not neces-
sarily axis-parallel) squares, is

a) 10-perfectly groupable if t = 1 and if the squares are of unit size,
b) 10-perfectly eliminable if t = 1, and c) 10t-perfectly orientable.

Lemma 5. Let r be a fixed constant and G be an intersection graph, where each
vertex represents a union of t polygons taken from a universe of non-rotated
r-regular polygons. Then G is (t · r)-perfectly orientable.

Lemma 6. Let G be the intersection graph of some geometric objects. If the
objects are convex and if, additionally, there is a constant k such that, for each
object, the ratio between its size and the radius of its inball is bounded by k,
then G is (3

2

√
dπ(k + 1))d/Γ (d/2 + 1)-perfectly eliminable. If the ratio between

the largest size of the objects and the radius of a smallest inball of the objects is
bounded by a constant k′, G is (3

2

√
dπ(k′ + 1))d/Γ (d/2 + 1)-perfectly groupable

(even in the case of non-convex objects).

5

3 Relations between the New Complexity Parameters

In the following we study the relations of our new complexity parameters to each
other and to the so-called treewidth.

Observation 7 k-perfectly groupable graphs are k-perfectly eliminable since any
ordering of the vertices defines a k-perfect elimination order. Conversely, an n-
vertex star, i.e., an n-vertex tree with n − 1 leaves, is not k-perfectly groupable
for all k < n− 1, but it is 1-perfectly eliminable.

Lemma 8. A k-perfectly eliminable graph is also k-perfectly orientable, but for
every n ∈ IN with n ≥ 9, there exists a 2-perfectly orientable graph with n vertices
that is not f -perfectly eliminable for all f < b√n/3c.

Proof. Let G be a k-perfectly eliminable graph with a k-perfect elimination order
v1, . . . , vn. If all edges incident to a vertex v and one of its successors are assigned
to v, the endpoints 6= v of the edges assigned to v can be partitioned into k sets
S1, . . . , Sk such that G[Si] is a possibly empty clique for every i ∈ {1, . . . , k}. In
other words, G is k-perfectly orientable.

Let us choose an arbitrary n ∈ N with n ≥ 9 and let k = b√n/3c. We now
construct a 2-perfectly orientable graph G with n vertices that is not f -perfectly
eliminable for any f < k. The vertices of this graph are divided into 3 disjoint sets
S0, S1 and S2 of size k2 and, if n−3k2 > 0, a further set R = VG\(S1∪S2∪S3) of
isolated vertices. Each set Si (i ∈ {0, 1, 2}) is divided into k subsets Si,1, . . . , Si,k

of size k. For each i ∈ {0, 1, 2} and each j ∈ {1, . . . , k}, we introduce edges
between each pair of vertices contained in the same subset Si,j and assign each
of these edges arbitrarily to one of its endpoints. Let us define a numbering on
the vertices of Si,j such that we can refer to the l-th vertex of Si,j . For each
i ∈ {0, 1, 2} and each j, l ∈ {1, . . . , k}, we additionally introduce edges between
the l-th vertex u of Si,j and all vertices of S(i+1) mod 3,l. We assign them to
u. The constructed graph G is 2-perfectly orientable since the endpoints of an
edge assigned to a vertex u being the l-th vertex of a subset Si,j belong to one
of the two cliques induced by the vertices of Si,j and S(i+1) mod 3,l. However, u
is also adjacent to k vertices in S(i−1) mod 3. Since there is no edge between a
vertex in S(i−1) mod 3,j1 and a vertex in S(i−1) mod 3,j2 for j1 6= j2, G cannot be
f -perfectly eliminable for any f < k. �

Definition 9 (tree decomposition, bag, (tree)width). A tree decomposi-
tion for a graph G = (V, E) is a pair (T, B), where T = (VT , ET) is a tree and
B is a mapping that maps each node w of T to a subset of V —called the bag of
w—such that

1. ∪w∈VT
G[B(w)] = G, and

2. B(x)∩B(y)⊆B(w) for all w ∈ VT on the path from x ∈ VT to y ∈ VT in T .

The width of (T, B) is maxw∈VT
{|B(w)| − 1}. The treewidth of a graph is the

width of a tree decomposition for the graph having smallest width.

6

Lemma 10. All graphs of treewidth k are k-perfectly eliminable and therefore
also k-perfectly orientable.

Proof. Let G = (V, E) be a graph and (T, B) a tree decomposition of G of width
k. Note that w.l.o.g. we can find a leaf of T whose bag contains a vertex v that
is not contained in any other bag of (T, B). Otherwise, delete a leaf of T as
long as each vertex that is contained in a bag of a leave occurs in two or more
bags of (T, B). Consequently, v has at most k neighbors. We can choose v as the
first vertex of a k-perfect elimination order and recursively determine a k-perfect
elimination order on G[V \ {v}]. �

Observation 11 The n-vertex clique is an example for an 1-perfectly groupable
graph G that does not have treewidth n − 2. Conversely, the n-vertex star is a
graph of treewidth 1 that is not (n− 2)-perfectly groupable.

4 Recognition Problems

In this section we show that for a given graph it is NP-hard to decide, whether
one of our new complexity parameters is bounded by a constant. All results are
obtained by a reduction from the NP-hardness of minimum clique partition.

Lemma 12. Given a constant k and a graph G, it is NP-hard to decide whether
G is k-perfectly groupable.

Proof. Given a graph G as instance of the minimum clique partition problem,
we replace G = (V, E) by G′ = (V ∪ {v}, E ∪ {{v, w} |w ∈ V }) for a new vertex
v 6∈ V . If G′ is k-perfectly groupable, the neighbors of v can be partitioned into
k possibly empty cliques. This means G has a clique partition of size k. If G
has a clique partition of size k, the neighbors of v in G′ can be partitioned into
k possibly empty cliques. The same is true for each other vertex w of G′ if we
cover the neighbors of w by the k cliques covering G and add v to one of these
cliques. Hence, G is k-perfectly groupable. �

Lemma 13. Given a constant k and a graph G, it is NP-hard to decide whether
G is k-perfectly eliminable.

Proof. Given a graph G as instance of the minimum clique partition problem,
we construct a graph G′ on which we want to find a k-perfect elimination order.
G′ is obtained from G by adding k + 1 new vertices to G and connecting each
new vertex to each vertex of G. If G has a clique-partition of size k, construct
an ordering of the vertices of G′ beginning with the k + 1 new vertices. Then
all successors are vertices in G and hence can be covered by k possibly empty
cliques. Therefore G′ is k-perfectly eliminable.

In the reverse direction a k-perfect elimination order v1, . . . , vn cannot start
with a vertex of G since it is adjacent to all new vertices. Thus, the successors
of v1 contain all vertices of G and G must have a clique partition of size k. �

7

Lemma 14. Given a constant k and a graph G, it is NP-hard to decide whether
G is k-perfectly orientable.

Proof. Given an n-vertex graph G = (V, E) as instance of the minimum clique
partition problem, we add a set V ′ of nk +1 new vertices to G and connect each
new vertex to each vertex in V . Let G′ be the resulting graph. If G has a clique
partition of size at most k, assign all incident edges of a vertex v′ ∈ V ′ to v′ and
edges e ∈ E to an arbitrary endpoint of e. Then the endpoints of edges assigned
to a vertex v induce k possibly empty cliques, i.e., G′ is k-perfectly orientable.

Conversely, let us assume that G′ is k-perfectly orientable and let a be a
suitable assignment of the edges to their endpoints. For each vertex v ∈ V at
most k of the nk +1 new edges incident to v can be assigned to v since there are
no edges between two vertices of V ′. Thus, there is at least one v′ ∈ V ′ with all
its edges assigned to itself. Thus, G must have a clique partition of size ≤ k. �

5 Algorithms

We present polynomial time approximation algorithms for several NP-hard
problems on graph classes with one of our complexity parameters bounded by
a constant. We always implicitly assume that we are given an explicit represen-
tation of a graph as a k-perfectly groupable, eliminable, or orientable graph G.
By that we mean that we are given, for each vertex v, a partition of its neigh-
bors, of its successors, and of the vertices connected to v by edges assigned to
v, respectively, into k sets S1, . . . , Sk such that G[Si] is a possibly empty clique
for all i ∈ {1, . . . , k}; in the case of a k-perfectly eliminable graph, additionally,
a k-perfect elimination order, and in the case of a k-perfectly orientable graph,
additionally, for each vertex the edges assigned to it. These representations are
sufficient even for intersection graphs. We do not need the explicit represen-
tations as intersection graphs described in Section 1 but we can use them to
construct our new representations in polynomial time.

Lemma 15. On k-perfectly groupable graphs minimum dominating set and min-
imum independent dominating set can be k-approximated in polynomial time.

Proof. As a k-approximative solution on a k-perfectly groupable graph G we
output a maximal—not necessarily maximum—independent set S of G. To prove
correctness, let us consider a minimum (independent) dominating set Sopt of G.
For all v ∈ S \ Sopt, there must be a neighbor of v in Sopt. However, each such
neighbor cannot cover more than k vertices of S, since G is k-perfectly groupable.
Consequently, S is an independent dominating set of size at most k|Sopt|. �

Lemma 16. Maximum weighted independent set, maximum weighted clique,
minimum vertex coloring, and minimum clique partition are k-approximable on
k-perfectly eliminable and on k-perfectly groupable graphs in polynomial time.

Proof (Maximum Weighted Independent Set). A k-approximative solution on a
k-perfectly eliminable graph G = (V, E) with weight function w : V → IR can

8

be computed as follows: First remove all vertices with weights ≤ 0 since they
can be excluded from a solution. If the remaining graph G′ is the empty graph,
return the empty set. Otherwise, choose the vertex v that among the remaining
vertices appears first in the k-perfect elimination order of G. Decrease the weight
of v and its neighbors by w(v). Compute an independent set I for the graph G′

with the new weight function w′ recursively. If a neighbor of v is in I , return I
and, otherwise, return I∪{v}. In both cases, if we reincrease the weights of v and
its neighbors, the weight of our solution increases by w(v). Note that the weight
of any other independent set can increase by at most k ·w(v) since all neighbors
of v in G′ are successors of v in G and thus they can be partitioned into ≤ k
cliques. Thus, the difference between the weights of optimal solutions for G with
weight function w and for G′ with weight function w′ is bounded by k · w(v).
Since this is true for all recursive steps, the solution obtained has approximation
ratio k. The algorithm terminates since each recursion sets the weight of ≥ 1
vertices to 0. Also note that a representation of G′ as a k-perfectly eliminable
graph can be computed in polynomial time from such a representation of G. �

Proof (Maximum Weighted Clique). Given a k-perfectly eliminable graph, choose,
for each node v, a clique Cv of maximal weight among the cliques obtained from
one of the k possibly empty cliques induced by the successors of v by adding v
to these cliques. Return the clique with maximal weight among the cliques in
{Cv | v ∈ V }. This solution has approximation ratio k since a maximum weighted
clique Copt must also contain a vertex v with Copt consisting exclusively of v
and a subset of its successors. �

Proof (Minimum Vertex Coloring). Let v1, . . . , vn be a k-perfect elimination
order of the given graph. Let, for each vertex v, Succ(v) be the set of successors
of v. Iterate over the vertices in reverse k-perfect elimination order. Color a
vertex v with the lowest number in {1, . . . , n} different from the numbers already
assigned to its neighbors. Then we obtain a coloring with maxv{1 + |Succ(v)|}
numbers. Note that maxv{1 + |Succ(v)|/k} are necessary, since there is a clique
of this size induced by a vertex and a subset of its successors. �

Proof (Minimum Clique Partition). Given a graph G and a k-perfect elimination
order v1, . . . , vn for G, we first compute the graph G′ obtained by removing v1

and its neighbors from G. We then solve the problem recursively on G′. The
graph induced by the removed vertices can be partitioned into a set S of ≤ k
cliques. We output S together with the solution obtained for G′ as a solution for
G. Note that v1 is not incident to any vertex of G′, i.e., all vertices of v1-contain-
ing cliques are removed. This guarantees that the difference between the clique
partition numbers of G and G′ is ≥ 1. Therefore, we obtain a clique partition
that uses at most k times as many cliques as an optimal partition. �

Lemma 17. On k-perfectly orientable n-vertex graphs, there are polynomial-
time algorithms with approximation ratio

1. 2k for maximum weighted independent set, minimum vertex coloring and
maximum weighted clique.

9

2. O(log2 n/ log(1 + 1/k)) for minimum clique partition.

For the following proofs let G = (V, E) be a k-perfectly orientable n-vertex
graph and, for each u ∈ V , let Du,1 = (Vu,1, Eu,1), . . . , Du,k = (Vu,k, Eu,k) be k
possibly empty cliques with pairwise disjoint vertex sets and with Vu,1∪. . .∪Vu,k

being the set of vertices connected to u by edges assigned to u. Moreover, for i ∈
{1, . . . , k}, let Cu,i = (V ′

u,i, E
′

u,i) be the clique G[Vu,i ∪ {u}] and C = {Cu,i |u ∈
V, 1 ≤ i ≤ k}.

Proof (Maximum Weighted Independent Set). Our proof follows the ideas in
[1]. W.l.o.g. G has no vertex with weight ≤ 0. Otherwise remove such vertices
and their adjacent edges. Assume V = {1, . . . , n} and define w(i) (1 ≤ i ≤ n)
to be the weight of vertex i. Let w be the vector (w(1), . . . , w(n)) and x =
(x1, . . . , xn)T be an optimal solution of the following integer linear program (P).
Then S = {i |xi = 1} is a solution for the maximum weighted independent set
problem on G.

(P) : max wx

s.t.
∑

v∈C xv ≤ 1 ∀C ∈ C
xv ∈ {0, 1} ∀v ∈ V

We next want to consider the relaxation (P ′) of (P) obtained by replacing
the constraint xv ∈ {0, 1} by xv ≥ 0 for all v ∈ V . Let x be an optimal solution
of (P ′) and, for each vertex v ∈ V , define N [v] to be the set consisting of v and
its neighbors. We now show that there is a vertex v ∈ V with

∑

u∈N [v] xu ≤
2k. Recall that a({v, w}) = v means that {v, w} is assigned to v. By the first
constraint of (P ′) we have

∀v ∈ V : k xv +
∑

{v,u}∈E,

a({v,u})=v

xu ≤ k (∗) ⇒ nk ≥
∑

v∈V

∑

{v,u}∈E,

a({v,u})=v

xu =
∑

v∈V

∑

{v,u}∈E,

a({v,u})=u

xu

⇒ ∃v :
∑

{v,u}∈E,

a({v,u})=u

xu ≤ k
(∗)⇒ ∃v :

∑

u∈N [v]

xu ≤ 2k.

A 2k-approximative solution for the MWIS on G is computed as follows. Find a
solution x for the linear program (P ′) [26] and a vertex ṽ with

∑

u∈N [ṽ] xu ≤ 2k.

Then, decrease the weight of ṽ and its neighbors by w(ṽ) and find recursively an
independent set S′ of approximation ratio 2k for G with the decreased weight
function denoted by w′. Set S = S′∪{ṽ} if S′∩N [ṽ] = ∅ and S = S′, otherwise.
Return S. For analyzing the approximation ratio, let OPT and OPT ′ be opti-
mal solutions of (P ′) with respect to w and w′, respectively. Since w(OPT) ≤
w′(OPT) + 2kw(ṽ) ≤ w′(OPT ′) + 2kw(ṽ) and since w(S) ≥ w′(S′) + w(ṽ), we
can conclude that the vector x with xv = 1 for all v ∈ S and xv = 0 for all
v ∈ V \ S is a 2k-approximative solution of (P ′) and hence also for (P). �

Proof (Minimum Vertex Coloring). Construct an order v1, . . . , vn of the ver-
tices such that, for each vertex vi (i ∈ {1, . . . , n}), at least half of the edges in

10

G[{vi, . . . , vn}] being adjacent to vi are assigned to vi. We now want to color
the vertices vn, . . . , v1 in this order with numbers in {1, . . . , n}. We color each
vertex v ∈ V with the smallest number different from the colors of all already
colored neighbors of v. Define Cv as in the part of the proof of Lemma 16 for
maximum weighted clique. Then, a vertex v obtains a color smaller or equal
2k(|Cv | − 1) + 1, whereas an optimal coloring must color v and its neighbors
with at least |Cv | colors. Thus, the coloring obtained is a 2k-approximation.

Proof (Maximum Weighted Clique). As 2k-approximative solution, return the
clique C ∈ C of maximal weight. Let us compare the weight of C with the weight
of a maximal clique COPT of G. The subgraph of G induced by the vertices of
COPT contains at least one vertex u for which the sum of the weights of the
neighbors not being endpoints of edges assigned to u does not exceed the sum of
the weights of the neighbors being endpoints of edges assigned to u. Thus, the
weight of C is at most a factor 2k smaller than the weight of COPT. �

Proof (Minimum Clique Partition). As part of our computations, we want to
find in polynomial time a minimal number of cliques in C such that the union
of their vertex sets is V . Unfortunately, this is an instance of the NP-hard set
cover problem. However, we can find a subset of the cliques in C that covers V
and that is at most a factor O(log |V |) larger than the minimal number of cliques
necessary [21]. We return this subset as an approximative solution. We achieve
approximation ratio O(log2 |V |/ log 2k

2k−1) = O(log2 |V |/ log(1 + 1
k
)) since there

is a clique partition of V using only cliques in C that uses O(log |V |/ log 2k
2k−1)

as many cliques as a minimum clique partition COPT of q ≤ n arbitrary cliques
C1, . . . , Cq of G: Choose a vertex v of C1 such that in the subgraph of G induced
by the vertices of C1 at least half of the edges adjacent to v are assigned to v.
Remove v and the clique among Dv,1, . . . , Dv,k containing the largest number of
not already deleted vertices in C1. This reduces the number of vertices of C1 by a
factor of at least 1

2k
. Repeat this step recursively until, after O(log |V |/ log 2k

2k−1)
steps, C1 contains no vertex anymore. More precisely, when choosing a vertex v
for which at least half of the adjacent edges are assigned to v, only count the
edges not already being deleted. If we do the same for the remaining cliques, we
obtain a clique partition with O(q log |V |/ log 2k

2k−1) cliques. �

References

1. R. Bar-Yehuda, M. M. Halldórsson, J. Naor, H. Shachnai, and I. Shapira, Schedul-
ing split intervals SIAM J. Comput. 36 (2006), 1–15.

2. H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small
treewidth, SIAM J. Comput. 25 (1996), 1305–1317.

3. A.Butman, D. Hermelin, M. Lewenstein, and D. Rawitz, Optimization problems in
multiple-interval graphs, Proc. 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), 268–277.

4. M. R. Cerioli, L. Faria, T. O. Ferreira, and F. Protti, On minimum clique partition
and maximum independent set on unit disk graphs and penny graphs: complexity
and approximation, Electronic Notes in Discrete Mathematics 18 (2004), 73–79.

11

5. T. M. Chan, Polynomial-time approximation schemes for packing and piercing fat
objects, J. Algorithms 46 (2003), 178–189.

6. B. N. Clark, C. J. Colbourn, and D. S. Johnson, Unit disk graphs, Discrete Math.

86 (1990), 165–177.
7. B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of

finite graphs, Inform. and Comput. 85 (1990), 12–75.
8. T. Erlebach, K. Jansen, and E. Seidel, Polynomial-time approximation schemes

for geometric intersection graphs, Proc. 12th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2001), 671–679.

9. T. Erlebach and E. J. van Leeuwen, Domination in geometric intersection graphs,
LATIN 2008, Lecture Notes in Computer Science, Vol. 4957, Springer, Berlin, 2008,
747–758.

10. R. J. Fowler, M. S. Paterson, and S. L. Tanimoto, Optimal packing and covering in
the plane are NP-complete, Inform. Process. Lett. 12 (1981), 133–137.

11. A. Frank, Some polynomial algorithms for certain graphs and hypergraphs, Proc.
5th British Combinatorial Conference (Aberdeen 1975), Congr. Numer. XV (1976),
211-226.

12. M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete
graph problems, Theoret. Comput. Sci. 1 (1976), 237–267.

13. F. Gavril, Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph, SIAM J. Comput.

1 (1972), 180–187.
14. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,

New York, 1980.
15. M. C. Golumbic, Algorithmic aspects of intersection graphs and representation

hypergraphs, Graphs and Combinatorics 4 (1988), 307–321.
16. A. Gräf, Coloring and recognizing special graph classes, Technical Report Musik-

informatik und Medientechnik Bericht 20/95, Johannes Gutenberg-Universität
Mainz, 1995.

17. J. R. Griggs and D. B. West, Extremal values of the interval number of a graph,
SIAM Journal on algebraic and discrete methods 1 (1980), 1–7.

18. H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz,
and R.E. Stearns, NC-approximation schemes for NP- and PSPACE-hard problems
for geometric graphs, J. Algorithms 26 (1998), 238–274.

19. J. L. Hurink amd T. Nieberg, Approximating minimum independent dominating
sets in wireless networks, Inform. Process. Lett. 109 (2008), 155–160.

20. H. Imai and T. Asano, Finding the connected components and a maximum clique
of an intersection graph of rectangles in the plane, J. Algorithms 4 (1983), 310–323.

21. D. . S. Johnson, Approximation algorithms for combinatorial problems, J. Comput.

System Sci. 9, 256–278.
22. E. Malesińska, Graph-theoretical models for frequency assignment problems, PhD

thesis, University of Berlin, 1997.
23. M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz, Simple

heuristics for unit disk graphs, Networks 25 (1995), 59-68.
24. T. Nieberg, J. Hurink, and W. Kern, Approximation Schemes for Wireless Net-

works, ACM Transactions on Algorithms 4 (2008), Article No. 49.
25. C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and com-

plexity classes, J. Comput. System Sci. 43 (1991), 425–440.
26. É. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs,

Operations Research 34 (1986), 250–256.

12

Appendix

Proof of Lemma 4. For proving case a) and b), let G be the intersection
graph of a set S of squares. It remains to show that, for a square Q of minimal
side length `, there are 10 points—called the barriers of Q—such that every
Q-intersecting square Q′ of length ≥ ` must cover at least one of them. This fact
also proves case c) since the universe of a set of t-squares then must have fatness
10.

We first describe our choice of the 10 barriers of Q. See also the left side of
Fig. 1 for the following construction. Let b1 and b2 be the two perpendicular
bisectors of the sides of Q. Choose two barriers x and y of Q as points on b1

such that the part of b1 inside Q is divided into three parts of equal length. We
call these points the inner barriers of Q. Let C be the curve surrounding Q that
consists of all points having distance exactly ` to one of the inner barriers and
distance at least ` to the other inner barrier. The remaining 8 barriers, called
outer barriers, are almost equidistant points on C. More exactly, 4 outer barriers
of Q are placed on the 2+2 intersection points of C with b1 and b2. Choosing the
other 4 outer barriers of Q is more sophisticated. Let x′ and y′ be the two points
on b1 having the same distance to the center of Q as to x and y, respectively.
In addition, let r1, . . . , r4 be the 4 rays starting from x′ and y′, respectively,
and intersecting a corner of Q but neither b1 nor b2. The four remaining outer
barriers are placed on the intersection points of C with the rays r1, . . . , r4.

By a simple mathematical analysis one can show that the distance between
any two consecutive barriers on C is strictly smaller than `. It remains to show
that each square of side length at least ` intersecting Q also covers one of the
barriers of Q. Assume for a contradiction that we can find a square Q′ of side
length at least ` intersecting Q but none of the barriers of Q. W.l.o.g. we can
assume that Q′ has side length exactly ` since otherwise Q′ also contains a
smaller square intersecting Q. Let H be the convex hull of the outer barriers and
let B be the largest circle contained in H and having the same center as Q. B,
and thus also H, contains at least one corner of Q′ since Q′ intersects Q and
B, and since a simple mathematical analysis shows that each chord of B with
length at most l does not intersect Q. We now distinguish two cases.

Case 1: No side of Q′ is completely contained in the convex hull H of the
outer barriers. For each pair of consecutive outer barriers p and q on C, let us
define Cp,q to be the semi-circle inside H with endpoints p, q and hence having
a diameter equal to the distance between p and q. See again the left side of Fig.
1. Let z be the corner of Q′ inside B with the smallest distance to a point in
Q. Note that the two sides of Q′ ending in z are not completely contained in H.
Consequently, by Thales’ theorem and by Q′ not containing any barriers there
must be two consecutive outer barriers p and q on C such that z is contained in
the face enclosed by Cp,q and pq. Again a simple mathematical analysis shows
that none of our semi-circles intersects Q. Thus, neither z nor any other point
of Q′ is covered by Q. Contradiction.

13

�

�

�

��x yb1

b2
B C

Fig. 1. Left: A square with some barriers. Right: A square intersects 7 disjoint squares.

Case 2: At least one side of Q′ is completely contained in H. Since each pair
of consecutive outer barriers on C have a distance smaller than `, the center q
of Q′ is inside H.

By symmetry, w.l.o.g. we can assume that the distance between q and y is
smaller or equal than the distance between q and x. Let H′ be the convex hull
of x and the outer barriers having distance ≤ ` to y. On the one hand, for each
pair of consecutive barriers q1 and q2 on H′, there is at most one corner in the
face bounded by q1q2 and the semi-circle outside H′ with endpoints q1 and q2.
On the other hand, at least one corner of Q′ is outside H′ since the inball of Q′,
which does not contain y, must intersect the border of H′. Consequently, there
are two sides s1 and s2 of Q′ that have a common corner p outside H′ and that
intersect H′ between to outer barriers, say q1 and q2.

Let T be the triangle with corners y, q1 and q2. Since Q′ is a square of side
length `, since p is not covered by T and since T is a triangle with two sides of
length ` and with an s1-intersecting side of length ≤ `, y has to be inside Q′.
Contradiction. �

Observation 18 Some square graphs are not 6-perfectly groupable as shown on
the right side of Fig. 1.

Lemma 19. The intersection graph of a set of rectangles, all having aspect ratio
of α, is 10dαe-perfectly eliminable.

Proof. Consider each rectangle as a set of dαe squares. For each rectangle r1

replaced by squares of a size s1 one can find 10dαe points such that every r1-
intersecting square of size s2 ≥ s1 replacing another rectangle r2 must cover one
of this points. Here we use the fact that the at most dαe squares replacing a
single rectangle can all be chosen of the same size. �

Proof of Lemma 5. The intersection of two intersecting non-rotated r-regular
polygons must contain at least one of the corners of the two polygons. Let

14

V = {v1, . . . , vn}. We assign an edge {vi, vj} in G with i < j to vi, if and only
if one of the polygons in the union of polygons represented by vi has a corner
contained in the union of polygons represented by vj . Otherwise, we assign it to
vj . The edges assigned to a vertex v can be partitioned into t · r sets such that
the endpoints of the edges of each set induce a clique in G. More precisely, we
have one clique for each corner of the t polygons. �

Proof of Lemma 6. For proving the lemma we first show how to find, for a
given ball B with radius ≤ R′ and a real number r > 0, a set of points such
that every ball b with radius at least r intersecting B must cover at least one
of these points. Therefore, let us consider the d-dimensional space, paved with
d-dimensional cubes of edge length s = 2r/

√
d and volume sd = 2drdd−

d
2 . Then,

every ball b of radius at least r must contain at least one of their midpoints,
as the cubes’ diagonals have length 2r. Furthermore, the distance between the
center of a ball b of radius ≥ r intersecting B and B’s center is at most R′ + r.
Hence it suffices to pave a ball of radius R′+2r. To do this, we do not need more
cubes than completely fit in a ball of radius R′+3r. A ball of radius R′ +3r has
volume (

√
π(R′ + 3r))d/Γ (d

2 + 1) and hence

⌊

(
√

π(R′ + 3r))d

Γ (d
2 + 1)

· 1

2drdd−
d
2

⌋

=









(√
dπ

2

(

R′

r
+ 3

)

)d

/Γ

(

d

2
+ 1

)









cubes are enough.
Let S be a set of geometric objects such that G is the intersection graph of

S. We first consider the case, where all objects are convex and where there is
a k such that, for each object, the ratio between its size and the radius of its
inball is bounded by k. Let S1 be an object of S with smallest size R and let
S2 be an S1-intersecting object in S with size s2 ≥ R. Choose S′

2 as the image
of a dilation of S2 with an arbitrary point p ∈ S1 ∩ S2 as center and scaling
factor λ = R/s2 > 0. Then—as S2 is convex—every point covered by S ′

2 is also
covered by S2. Furthermore, the inball of S ′

2 having radius r ≥ R/k must be
completely contained in the ball of radius R′ := 3R around the center of S1.
Now the considerations above imply that S ′

2—and hence S2—must cover the
midpoint of at least one cube of edge length s = 2r/

√
d completely contained

in a ball of radius R′ + 3r. If we number the vertices of G in an order such
that the sizes of objects represented by the vertices do not decrease, we obtain
a (3

2

√
dπ(k + 1))d/Γ (d/2 + 1))-perfect elimination order proving the claim.

Finally, let us consider the case, where the objects of S are not necessarily
convex, but the ratio between the largest size of the objects and the radius of a
smallest inball of the objects is bounded by a constant k′. Consider intersecting
geometric objects S1 (with size R1) and S2 (with size R2 and inball radius r2) in
S. Then the considerations above imply, that the inball of S2 must completely
lie inside the ball of radius R′ := R1 + 2R2 around the center of S1. With
R′

r2
= R1+2R2

r2
≤ 3k′ the second part of the lemma follows immediately. �

15

