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Abstract

We investigate the computational complexity of the empire colouring problem (as
defined by Percy Heawood in 1890) for maps containing empires formed by exactly
r > 1 countries each. We prove that the problem can be solved in polynomial
time using s colours on maps whose underlying adjacency graph has no induced
subgraph of average degree larger than s/r. However, if s ≥ 3, the problem is
NP-hard even if the graph is a forest of paths of arbitrary lengths (for any r ≥ 2,

provided s < 2r−
√

2r + 1
4 + 3

2). Furthermore we obtain a complete characterization
of the problem’s complexity for the case when the input graph is a tree, whereas our
result for arbitrary planar graphs fall just short of a similar dichotomy. Specifically,
we prove that the empire colouring problem is NP-hard for trees, for any r ≥ 2,
if 3 ≤ s ≤ 2r − 1 (and polynomial time solvable otherwise). For arbitrary planar
graphs we prove NP-hardness if s < 7 for r = 2, and s < 6r−3, for r ≥ 3. The result
for planar graphs also proves the NP-hardness of colouring with less than 7 colours
graphs of thickness two and less than 6r − 3 colours graphs of thickness r ≥ 3.

1 Introduction

Let r and s be fixed positive integers. Assume that a partition is defined on the n vertices
of a planar graph G. In this paper we usually call the blocks of such partition the empires
of G and we assume that each block contains exactly r vertices. The graph G along with a
partition of this type will be referred to as an r-empire graph. The (s, r)-colouring problem
(s-COLr) asks for a colouring of the vertices of G that uses at most s colours, never assigns

∗A preliminary version of this work was presented at the 37th International Workshop on Graph-
Theoretic Concepts in Computer Science (Teplá Monastery, Czech Rep., June 2011).
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the same colour to adjacent vertices in different empires and, conversely, assigns the same
colour to all vertices in the same empire, disregarding adjacencies.

For r = 1, the problem coincides with the classical vertex colouring problem on planar
graphs. The generalization for r ≥ 2 was defined by Heawood [11] in the same paper in
which he refuted a previous “proof” of the famous Four Colour Theorem. It has since
been shown that 6r colours are always sufficient and in some cases necessary to solve this
problem [13].

In [19] (also see [18]), we proved that 2r colours suffice and are sometimes needed to
colour a collection of empires defined in an arbitrary tree. We also looked at the proportion
of (s, r)-colourable trees on n vertices. We showed that, as n tends to infinity, for each r
there exists a value sr such that almost no tree can be coloured with at most sr colours and,
conversely, for s sufficiently larger than sr, s colours are sufficient with (at least) constant
positive probability. Later on [6] we improved on this showing that, as n tends to infinity,
the minimum value s for which a random tree is (s, r)-colourable is concentrated in a very
short interval with high probability.

Although our investigation considerably expanded the state of knowledge on s-COLr,
it failed to shed light on its computational complexity. Heawood [11] was the first to argue
that there is a simple algorithm that can find a (6r, r)-colouring in any planar graph G
in polynomial time. The same process uses at most 2r colours if G is a tree. But what
if we only have r available colours? How difficult is it to decide whether G has an (r, r)-
colouring? In this paper we show that s-COLr can be solved in polynomial time on planar
graphs containing no induced subgraph of average degree greater than s/r. This implies
that, for instance, (2r−1)-COLr (resp. (6r−1)-COLr) can be solved in polynomial time on
forests consisting of paths of length at most 2r−1 (resp. planar graphs with components of
size at most 12r). Unfortunately, the outcome of our investigation seems to indicate that
such algorithmic results cannot be extended much further. If r ≥ 2 and s ≥ 3, we prove

that s-COLr NP-hard on linear forests if s < 2r−
√

2r + 1
4

+ 3
2
. Furthermore, the hardness

extends to s < 6r−3 (resp. s < 7) when r ≥ 3 (resp. for r = 2) on arbitrary planar graphs.
Finally, for trees, our argument entails a nice dichotomy: s-COLr is NP-hard for any fixed
r ≥ 2, if s ∈ {3, . . . , 2r − 1} and solvable in polynomial time for any other positive value
of s.

The hardness proofs mentioned above hinge on the fact that the connectivity within
empires has no effect on the graph colourability. Essentially, to find an (s, r)-colouring in
a planar graph G, it suffices to be able to colour with at most s distinct colours (in such a
way that no two distinct vertices connected by an edge receive the same colour) its reduced
graph Rr(G). This is a (multi)graph obtained by contracting each empire to a distinct
pseudo-vertex and adding an edge between a pair of pseudo-vertices u and v for each edge
connecting two vertices in the original graph, one belonging to the empire represented by
u, the other one to that represented by v. The algorithmic results are based on the use of
simple minimum degree greedy colouring strategies [11] or more refined heuristics providing
algorithmic proofs (see [10, Theorem 7.9] or [15, Exercises 9.12, 9.13]) of the well-known
Brooks theorem [4] on such reduced graphs.
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The reader at this point may question the reasons for studying this type of colourings.
Our main interest in the problem comes from its relationship with other important colour-
ing problems. Each instance of s-COLr can be translated to an instance of the classical
colouring problem, but it is not clear to what extent the two problems are equivalent.
The empire colouring problem is also related to the problem of colouring graphs of given
thickness (a graph has thickness t [12, 20, 17], if t is the minimum integer such that its
edges can be partitioned into at least t planar graphs). Bipartite graphs can have high
thickness [3] but only need two colours, and on the other hand a graph of thickness t may
have chromatic number as larger as 6t. Theorem 12 in this paper implies that deciding
whether a graph of thickness t ≥ 3 can be coloured with s < 6t− 3 colours is NP-hard.

The rest of the paper is organized as follows. In Section 2 we present our positive results
concerning sparse planar graphs. We then move on (Section 3) to describe a new reduction
from the well-known satisfiability problem to the problem of colouring a particular type of
graph. Hardness results for the colourability of these graphs will be instrumental to our
main results. The next Section is devoted to the definition and analysis of a number of
gadgets that will be used in the subsequent reductions. Section 5 deals with the hardness
result for forests of paths. The last two sections deal with the hardness results for trees
and arbitrary planar graphs.

Let k and s be positive integers greater than two. In what follows k-SAT (resp. s-COL)
denotes the well known [9, 14] NP-complete problem of checking the satisfiability of a k-
CNF boolean formula (resp. deciding whether the vertices of a graph G can be coloured
using at most s distinct colours in such a way that no edge of G is monochromatic). Also,
if Π is a decision problem and I is a particular set of instances for it, then Π(I) will denote
the restriction of Π to instances belonging to I. If Π1 and Π2 are decision problems, then
Π1 ≤p Π2 will denote the fact that Π1 is polynomial-time reducible to Π2. Unless otherwise
stated we follow [8] for all our graph-theoretic notations.

2 Algorithms

The main outcome of our work is that the empire colouring problem is much harder than
the problem of colouring planar graphs in the classical sense. However there are cases
where things are easy. Let σ be an arbitrary positive real number. In the following result
SPARSE(σ) denotes the class of planar graphsG containing no induced subgraph of average
degree larger than σ.

Theorem 1 Let r be an arbitrary positive integer and σ be a positive real number such
that rσ is a whole number. The decision problem rσ-COLr(SPARSE(σ)) can be solved in
polynomial time.

Proof. Let r and σ be two positive numbers satisfying the assumptions above, and assume
that G ∈ SPARSE(σ), and its vertex set is partitioned into empires of size r.
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If Rr(G) contains a copy of Krσ+1 then there can be no (rσ, r)-colouring of G. We
now argue that if Rr(G) does not contain a copy of Krσ+1 then it is rσ-colourable (and
therefore G admits an (rσ, r)-colouring).

Let S be a connected component of Rr(G). In what follows we denote by GS the
subgraph of G such that Rr(G

S) ≡ S. Because all edges of S are edges in GS, the average
degree of this graph satisfies

|E(S)| = |E(GS)| = d(GS) · |V (GS)|
2

.

From this, using the fact that |V (S)| = |V (GS)|/r and the definition of SPARSE(σ), we
have

|E(S)| ≤ rσ

2
· |V (S)|.

This implies that the average degree of S is at most rσ. It follows that S is either a regular
graph of degree rσ or it must contain at least a vertex of degree less than rσ. In the former
case S can be coloured with rσ colours using, say, the algorithm in the proof of Brooks’
Theorem described in [10]. If S contains a vertex of degree less than rσ we argue that,
in fact, the assumptions about the average degree of all subgraphs of G imply that any
induced subgraph of S is either rσ-regular or, in turn, contains a vertex of degree at most
rσ − 1. Assume that some induced subgraph of S, S ′ is not rσ-regular and its minimum
degree is at least rσ. This implies that in particular d(S ′) ≥ rσ. But, by the assumptions
on G the average degree of S ′ cannot exceed rσ. Therefore d(S ′) = rσ and this implies S ′

must contain a vertex of degree less than rσ.
The result above has a number of interesting consequences. Let k be a positive integer.

Any induced subgraph on n vertices of a forest of paths of length at most k cannot span
more than kn/(k + 1) edges. Hence Theorem 1 implies, for instance, that

⌈
2kr
k+1

⌉
-COLr

can be decided in polynomial time for forests of paths of length at most k. Similarly
(6r− 1)-COLr can be decided in polynomial time for graphs G formed by arbitrary planar
components of size at most 12r.

Theorem 1 also implies that the minimum s for which G admits an (s, r)-colouring can
be determined in polynomial time for any G ∈ SPARSE(σ), with rσ ≤ 3.

3 A Useful Reduction

Let s and k be positive integers with s > max(2, k). An (s, k)-formula graph is an undi-
rected graph Φ such that V (Φ) = T ∪ C ∪ A where T = {T, F,X1, . . . , Xs−2}, C contains
m groups of vertices {c1,1, . . . , c1,s−1}, {c2,1, . . . c2,s−1}, . . . , {cm,1, . . . , cm,s−1} and A is a
set of 2n vertices paired up in some recognizable way. In particular, in what follows
we will denote the elements of A by a1, . . . , an, a1, . . . , an, and we will say that for each
i ∈ {1, . . . , n}, ai and ai are a pair of complementary vertices. Set T spans a complete
graph; for each pair of complementary vertices a and a, {a, a,Xj} spans a complete graph
for each j ∈ {1, . . . , s − 2}; for each i ∈ {1, . . . ,m}, {T, ci,1, . . . , ci,s−1} spans a complete
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graph and if j ∈ {1, . . . , k} then there is a single edge connecting ci,j to some vertex in A,
else if j ≥ k+ 1 then {ci,j, F} ∈ E(Φ). Figure 1 gives a simple example of a (5, 3)-formula
graph.

2

1,1

a3 3

c 1,2

c 1,3

c 1,4
X

1 3
X

X

c
T F

a a a a a1 1 2 2

Figure 1: A small formula graph

Let FG(s, k) denote the class of all (s, k)-formula graphs. We will now describe a reduc-
tion from k-SAT to the problem of colouring using at most s distinct colours the vertices
of a given (s, k)-formula graph. The reduction shows the NP-hardness of s-COL(FG(s, k))
for any k ≥ 3 and s > k. This in turn will be used repeatedly to prove our hardness results
on s-COLr.

Theorem 2 Let s be an integer with s ≥ 3. Then k-SAT ≤p s-COL(FG(s, k)) for any
positive integer k < s.

Proof. Given a k-CNF formula φ ≡ C1 ∧ . . .∧Cm where Ci is the disjunction of k literals
ci,1, . . . , ci,k for each i ∈ {1, . . . ,m}, we devise an (s, k)-formula graph Φ that admits an
s-colouring if and only if φ is satisfiable. The graph Φ will consist of one truth gadget, one
variable gadget for each variable in φ, and one clause gadget for each clause in φ.

The truth gadget is a complete graph on s vertices labelled T , F , and X1, . . . , Xs−2.
Note that every vertex in this gadget must be given a different colour in any s-colouring.
Hence w.l.o.g. we call these colours “TRUE”, “FALSE”, “OTHER1”, . . ., “OTHERs−2”
respectively. For each variable a of φ the variable gadget consists of two complementary
vertices labelled a, and a, connected by an edge and also adjacent to X1, . . . , Xs−2. There
are therefore only two ways to colour a and a: either a is TRUE and a is FALSE or
a is FALSE and a is TRUE. Thus the two colourings of a and a encode the two truth-
assignments of the variable a. Each clause ci,1 ∨ . . . ∨ ci,k will be represented by s + k +
1 vertices of Φ. Of these, k will correspond to the clause literals and will be labelled
ci,1, . . . , ci,k, s − 1 − k will be labelled ci,k+1, . . . , ci,s−1, and the remaining k + 2 will be k
vertices from variable gadgets and the vertices T and F from the truth gadget. Vertices
T, ci,1, . . . , ci,s−1 form a clique and, furthermore, for each j ∈ {1, . . . , k}, the vertex ci,j is
connected to the corresponding literal in a variable gadget. For k ≤ s− 2 vertices ci,j, for
j ∈ {k + 1, . . . , s − 1}, are adjacent to F . Note that, in any colouring of a clause gadget,
vertices ci,j, for j ≤ k, cannot have the same colour of vertex T , and vertices ci,j for j ≥ k
cannot be coloured like F either. The reader can readily verify that Φ ∈FG(s, k). The
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graph in Figure 1 is the (5, 3)-formula graph corresponding to the formula φ consisting of
the single clause a1 ∨ a2 ∨ a3.

If φ is satisfiable, the elements of A in Φ can be assigned a colour in {TRUE, FALSE}
so that, for each i ∈ {1, . . . ,m} at least one of the ci,j (say for j = j∗) is adjacent to some
literal coloured TRUE. This implies that ci,j

∗
can be coloured FALSE, while all other ci,j

for j ∈ {1, . . . , s− 1} \ {j∗} can be assigned a distinct colour in {OTHER1, OTHER2, . . . ,
OTHERs−2}. Conversely if there is no way to colour A so that for each i ∈ {1, . . . ,m} at
least one of the ci,j is adjacent to some literal coloured TRUE, then the clause gadget will
need s + 1 colours as the s − 1 vertices ci,j only have s − 2 colours available (as TRUE
and FALSE are used up by T , F , and the corresponding literals). From this we can see
that Φ admits an s-colouring if and only if there is some way to assign the variables of φ
as TRUE or FALSE in such a way that every clause contains at least one TRUE literal.

4 Gadgetry

Before moving to our hardness results it is convenient to introduce a number of gadgets.

Clique Gadgets. Let r and s be positive integers with s < 2r. In what follows the
clique gadget Br,s is an r-empire graph satisfying the following properties.

B0 Its graph has r(s+ 1) vertices partitioned into s+ 1 empires of size r.

B1 The graph of Br,s is a forest consisting of r paths.

B2 No path in the graph of Br,s contains two vertices from the same empire.

B3 The reduced graph of Br,s contains a copy of Ks+1. Hence Br,s admits an (s+ 1, r)-
colouring and cannot be coloured with fewer colours.

Theorem 3 Let r and s be positive integers with s < 2r. Then there exists an r-empire
graph Br,s satisfying properties B0, B1, B2, B3. Furthermore Br,s can be constructed in
time polynomial in r.

Proof. For any positive integer r, the clique K2r+1 can be decomposed into r edge-disjoint
Hamiltonian cycles. The result, reported in [5, p. 71], is attributed to Walecki (see [16]).
A dummy ∞ is added to the vertex set of K2r+1. The sequence

0, 1, 2r − 1, 2, 2r − 2, 3, 2r − 3, . . . , r − 1, r + 1, r,∞

can be seen as a Hamiltonian cycle of K2r+1 after label “∞” is identified with vertex 2r.
The remaining cycles are obtained as cyclic rotations of the first one.

Given one such decomposition (see top row in Figure 2) we define Br,2r−1 (see middle
part of Figure 2) by copying cycle i from the decomposition onto vertices 0i, . . . , (2r)i,
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Figure 2: Top row: Decomposition of K9 into Hamiltonian cycles. Middle
row: B4,7. Bottom row: B4,5.

and then taking the induced graph formed by deleting the vertex 0i from the cycle on
0i, . . . , (2r)i. Also, if r > 1, for any s ∈ {1, . . . , 2r− 2} graph of Br,s is obtained from that
of Br,s+1, by removing all vertices in the empire labelled s + 2 and adding an edge {u, v}
whenever u and v are the only two neighbours of (s+ 2)i.

Our results on trees will also need variants of these gadgets having particular connec-
tivity features. Thus if r > 1 and v ≡ {v1, . . . , vr} is some set of r vertices, the connected
clique gadget rooted at v, B+

r,s(v), is formed from Br,s, as defined in Theorem 3, by adding
edges {vi, vi+1} for all i such that 1 ≤ i ≤ r − 1. Note that the graph of such gadget is

11 51 21 41 31 61

22 12 62 42 52 32

43 13 33 23 63 53

B3,5

t t t t t t
t t t t t t
t t t t t t

A
A
A

11 51 21 41 31 61

22 12 62 42 52 32

4313 33 23 63 53

B+
3,5(1)

t t t t t t
t t t t t t
t t t t t t

11 51 21 41 31 61

22 12 62 42 52 32

43 13 33 23 63 53

B−3,5(1,5)

t t t t t t
t t t t t t
t t t t t t

Figure 3: Examples of clique gadgets.
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a tree. Furthermore B+
r,s(v) still satisfies B0, and B3. Finally, if u and v are two sets of

r vertices, the (u,v)-colour constraining gadget B−r,s(u,v) is an r-empire graph obtained
from Br,s, without loss of generality, by removing a single edge connecting the end-point
u1 of a path to its neighbour v1. Thus u1 becomes isolated in the graph of B−r,s(u,v). The
graph Rr(B

−
r,s(u,v)) contains a copy of Ks−1 in which every vertex is also adjacent to the

vertices corresponding to u and v. Thus any (s, r)-colouring of B−r,s(u,v) must give u and
v the same colour. Figure 3 gives a few examples. In the remainder of the paper we will
often need to describe schematically the colour constraining gadgets. Figure 4 gives an
example of the graphical notation that will be used.

u
v

Figure 4: A schematic representation of a (u,v)-colour constraining gadget.
the diagram shows the isolated vertex in empire u. The two dashed
blobs denote, respectively, the other vertices in u and the vertices in
v. The thick black line stands for the part of the gadget constraining
the colour of u and v: the two empires must be given the same colour
in any s-colouring of B−r,s(u,v).

Connectivity Gadgets. For positive integers r, s and m with r ≥ 2 and s ≥ 3, an
m-connector, denoted by Ar,s,m, is an r-empire graph satisfying the following conditions:

A0 The graph in Ar,s,m contains r× [1 + (s+ q− 1)t] vertices split into empires of size r.

A1 The graph in Ar,s,m is a linear forest.

A2 There is a set of at least m isolated vertices in the graph of Ar,s,m and such vertices
must be given the same colour in any (s, r)-colouring of Ar,s,m. These vertices define
the so called monochromatic set of the gadget and will collectively be denoted by Z.
The elements of such set will generically denoted by z.

Let q and t be arbitrary positive integers. In what follows Es,q,t is a (non-empire) graph
satisfying the following properties:

E0 Es,q,t contains (s+ q − 1)t+ 1 vertices.

E1 Es,q,t contains a set of qt+1 monochromatic vertices. Each of these must be given the
same colour in any proper s-colouring of the graph. Among these we identify a plug
vertex which we denote by u0, and q socket vertices denoted by u1, . . . , uq, all of degree
exactly s − 1. The remaining q(t − 1) monochromatic vertices are termed internal
monochromatic vertices. The remaining (s − 1)t vertices in Es,q,t are called colour
constraining vertices, and usually denoted by the letter w, appropriately indexed.

8



Figure 5: The graph E5,4,2, vertices in the monochromatic set are green, edges
within the clique are shown in red, and edges connecting a clique to
the plug vertex or socket vertices used in its place are blue.

E2 The maximum degree of Es,q,t is at most s+ q − 1.

E3 When s− 1 and q are both even, every vertex in the graph has even degree.

Figure 5 shows the graph E5,4,2. Graphs Es,q,t will “guide” the constrution of gadgets
Ar,s,m(v) in the sense that for each r, s, and m there will be values of q and t such that
Es,q,t will be the reduced graph of Ar,s,m(v).

Lemma 1 Let s, q and t be positive integers such that s ≥ 3, and q ≥
√
s− 1. Then there

exists a graph Es,q,t satisfying conditions E0, E1, E2, and E3.

Proof. The graph Es,q,1 consists of a plug vertex u0, s − 1 colour constraining vertices
w1, . . . , ws−1, and q socket vertices u1, . . . , uq. We can see immediately that condition E0
is satisfied. The edges of Es,q,1 are defined as follows: there is a clique on the s− 1 vertices
w1, . . . , ws−1, also for every i ∈ {0, . . . , q} and j ∈ {1, . . . , s− 1} there is an edge {ui, wj}.
In any proper s-colouring of Es,q,1 the vertices u0, . . . , uq must use a colour not used by
the s− 1 vertices in the clique, condition E1 follows from this. The vertices w1, . . . , ws−1

all have degree s+ q − 1 while the vertices u0, . . . , uq all have degree s− 1, conditions E2
and E3 follow from this.

For t > 1, assume that we already have a graph Es,q,t−1 satisfying all the required
conditions. To create the graph Es,q,t, we add Es,q,1, with its plug vertex removed, to
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Es,q,t−1, and we use the socket vertices of Es,q,t−1 to connect the two graphs. More precisely,
the vertices of Es,q,t are

V (Es,q,t−1) ∪
(
V (Es,q,1)\{u0}

)
.

Note that E0 is satisfied and Es,q,t contains a single plug vertex and s− 1 socket vertices.
In what follows w1, . . . , ws−1 are the s− 1 colour constraint vertices belonging to the copy
of Es,q,1 used to define Es,q,t. The edge set of Es,q,t contains all the edges of Es,q,t−1 and
Es,q,1−u0 plus s−1 additional edges to connect the socket vertices of Es,q,t−1 to the colour
constraining vertices of Es,q,1. Each of the colour constraining vertices in Es,q,1 is connected
to a socket vertex of Es,q,t−1, in such a way that, after this, the total degree of the socket
vertices is (q+ 1)(s−1). The assumption q ≥

√
s− 1 is needed at this point, for otherwise

the average degree of the socket vertices would be

(q + 1)(s− 1)

q
= s− 1 + (s− 1)/q > s− 1 +

√
s− 1 > s− 1 + q

where the expression on the right-hand side is the claimed bound on the maximum degree
of Es,q,t. Thus, if q <

√
s− 1 at least one of the sockets would have degree larger than

s− 1 + q (thus contradicting E2).
In details, for s odd, we add edges {ui mod q, w2i−1}, and {ui mod q, w2i} for i ∈ {1, . . . , (s−

1)/2}. Note that we connect an even number of vertices to each socket vertex thus preserv-
ing condition E3. For s even, we first add the edge {ui, wi} for i ∈ {1, . . . ,min(s−1, q)}. If
s− 1 < q some sockets are not used by any of these edges and this completes the construc-
tion of Es,q,t. Otherwise for 1 ≤ i ≤ (s − 1 − q)/2 we also add edges {ui mod q, wq+2i−1},
{ui mod q, wq+2i}. Finally, if q is even, we add {uq, ws−1}.

As each of the colour constraining vertices of Es,q,1 is adjacent to a socket vertex of
Es,q,t−1, the clique on these vertices must use all of the s − 1 other colours in any proper
s-colouring. The socket vertices of Es,q,1 must therefore use the one remaining colour and
hence are in the monochromatic set, condition E1 follows.

Theorem 4 Let m, r, and s be positive integers, with r ≥ 2, and s satisfying

3 ≤ s < 2r −
√

2r +
1

4
+

3

2
.

Then there exists a graph Ar,s,m satisfying conditions A0, A1, and A2. Furthermore Ar,s,m
can be constructed in time polynomial in r, s and m.

Proof. For m ≤ r a single empire of size r with no edges satisfies all conditions defining
Ar,s,m. If m > r, we define Ar,s,m in such a way that Rr(Ar,s,m) coincides with Es,q,t, where
q = 2r − (s− 1) and t is the smallest positive integer such that

r − 1 + t

(
qr − (q + 1)(s− 1)

2

)
≥ m.

Note that the stated bounds on s imply that q satisfies the conditions of Lemma 1.
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In what follows the empires of Ar,s,m will be denoted by bold type-face letters corre-
sponding to the labels used to denote the vertices of Es,q,t.

When s is odd, q is even and hence by condition E3 every vertex in Es,q,t has even
degree. By a well-known result of Euler the graph contains an Euler tour, and one such
tour can be found in time polynomial in the size of the graph (see for instance [10, Chapter
6]). Given one such tour T we can construct the graph Ar,s,m as follows. Let Ar,s,m be
the edgeless graph on (s + q − 1)t + 1 empires of r vertices, we visit the edges of T and
add corresponding edges to Ar,s,m keeping the invariant that one of the two end-points of
the latest added edge has degree one in Ar,s,,m. Without loss of generality we first add the
edge {u01, w1

1}. Then, assuming we have visited the first i − 1 edges of T and vk is the
vertex of degree one incident to the latest added edge, we connect vk to an isolated vertex
of empire u, if {v, u} is the next edge we visit in T .

The edge set of graph Ar,s,m consists of a single long path, and hence condition A1 is
satisfied. The degree distribution of Ar,s,m is described in the following table.

vertex set degree two degree one degree zero
u0 s−1

2
− 1 two r − s−1

2
− 1

an empire corresponding

to a colour constraining

vertex

r

one of the t − 1 groups

of q empires correspond-

ing to internal monochro-

matic vertices

(q + 1) s−1
2

qr − (q + 1) s−1
2

ui for i > 0 s−1
2

r − s−1
2

Thus Ar,s,m has

r − 1 + t

(
qr − (q + 1)(s− 1)

2

)
isolated vertices within the monochromatic set. Increasing the value of t will increase this
number provided that

qr >
(q + 1)(s− 1)

2
. (1)

When s is even, q = 2r−(s−1) is odd. As before, we define Ar,s,m using the graph Es,q,t.
However this time Es,q,t is not Eulerian. In particular, all colour constraining vertices have
even degree s+q−1. However, by the construction used in Lemma 1, in each set of internal
monochromatic vertices there are min{s − 1, q} of even degree. Denote by u1, ..., uq−s−1

the odd degree vertices in that set. Furthermore, the plug vertex u0, and the final set of
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q socket vertices are all of odd degree. To understand the definition of Ar,s,m we define a
subgraph H of Es,q,t. The edge set of H are defined as follows.

1. H contains a long path P0 starting at u0 and passing through ws−1 and uq of each
set of colour constraining and internal monochromatic vertices.

2. When s − 1 < q, for each set of internal monochromatic vertices and for all i ∈
{1, . . . , (q − s− 1)/2}, H contains a path {u2i−1, wi mod(s−1), u2i}.

3. Finally, for all i such that i ≤ (q − 1)/2, there is a path {u2i−1, wi, u2i}, where
u1, . . . , uq are the socket vertices of Es,q,t.

Figure 6: The graph Gs,q,t, when q > s− 1.

Note that Es,q,t − H is Eulerian. We construct Ar,s,m in two stages. We first use the
edges of an Euler tour of Es,q,t − H as we did in the case s odd. Then we define edges
corresponding to the edges of H. This second type of edges involve different vertices from
those used to deal with the Euler tour. Finally, if u01 and u0s/2 are the start and the end
point of the long path in Ar,s,m corresponding to Es,q,t −H Euler tour, and u0s/2+1 is the
starting point of the path P0 in H, then we can actually attach the edge from u0s/2+1 to
u0s/2. By doing this vertex u0s/2+1 becomes isolated, we lose a vertex of degree one, and
gain a vertex of degree two.

The degree distribution of Ar,s,m is given in the following table.

12



vertex set degree two degree one degree zero
u0 s

2 − 1 one r − s
2

an empire cor-
responding to a
colour constraining
vertex

r

one of the t − 1
groups of q empires
corresponding to
internal monochro-
matic vertices

(q + 1) s−1
2 −max(q − s− 1, 0) max(q − s− 1, 0) qr − (q + 1) s−1

2 −max(q − s− 1, 0)

ui for i > 0 s
2 − 1 one r − s

2

In total this gives us

(q + 1)
(
r − s

2

)
+ (t− 1)

(
qr − (q + 1)(s− 1)

2
−max(q − s− 1, 0)

)

isolated vertices within the monochromatic set. Increasing t will increase this number
provided that

qr >
(q + 1)(s− 1)

2
+ max(q − s− 1, 0) > 0. (2)

When s < r+1 and hence max(q−s−1, 0) = r−s+1, the above inequality is always true.
We therefore need only consider the case for larger r, in this case the bound (1) on graphs
where s is even is the same as the bound when s is odd. The bound can be rewritten as

(s− 1)2

2
−
(

2r +
1

2

)
(s− 1) + 2r2 > 0.

This inequality is satisfied for

s < 2r −
√

2r +
1

4
+

3

2
,

and hence for any m and any s and r satisfying the above inequality, there exists some
Ar,s,m satisfying conditions A0, A1, and A2.

Let r be a positive integer. Given an r-empire graph G, and an empire v in G, the
r-degree of v is simply the degree of vertex v in the reduced graph of G (of course the
1-degree of a vertex in a graph is just its (ordinary) degree). Let r′, s, and m be positive
integers as specified at the beginning of this section. Gadgets Ar′,s,m will be used in the
forthcoming reductions to replace particular empires with high r-degree by an array of
vertices of degree one or two, chosen among the monochromatic vertices of the gadget. Let

13



Figure 7: The graph D2,6(u, v)

m be an integer at least as large as the r-degree of v. The linearization of v in G is the
process of replacing v in G with a copy of Ar′,s,m attaching each edge incident with some
element of v to a distinct element of Z in Ar,s,m. We will say that these chosen elements of
Z simulate the empire v. Note that, in general, r′ may be different from r. Thus repeated
linearizations may be used to introduce larger empires in a given r-empire graph or even
transform a standard graph into an r′-empire graph, for some fixed r′ > 1.

Planar Gadgets. Let u and v be given set of r vertices and denote by δx,y the Kroeneker
delta function. For positive integers r, and s with r ≥ 2 and s < 6r−3−2δr,2, it is possible
to define a family of r-empire graphs Dr,s(u,v) satisfying the following properties:

D0 The graph of Dr,s(u,v) has r(s+ 1) vertices partitioned into s+ 1 empires all of size
r.

D1 The graph of Dr,s(u,v) contains an isolated vertex v1.

D2 No connected component of the graph of Dr,s(u,v) contains two vertices from the
same empire.

D3 The graph Ks+1 minus the edge {u,v} is a subgraph of Rr(Dr,s(u,v)).

Dr,s(u,v) will serve a similar purpose in Theorem 13 to that of B−r,s(u,v) in Theorem 11.

Theorem 5 Let r and s be positive integers with r ≥ 2 and s < 6r − 3− 2δr,2. Let u and
v be two disjoint sets of r vertices. There exists an r-empire graph Dr,s(u,v) satisfying
conditions D0, D1, D2, and D3. Furthermore Dr,s(u,v) can be constructed in time
polynomial in r.

Proof. For r = 2, s = 6 a suitable graph is shown in Figure 7. For r ≥ 3, we can
derive Dr,6r−4(u,v) from the proof in [2] that the thickness of K6r−3 is equal to r. In what
follow we describe Beineke’s construction highlighting few points that are important to
prove properties D0, D1, D2, and D3.

Beineke’s construction starts by showing that there is a graph of thickness r − 1 on
6(r − 1) vertices labelled u(i), v(i), w(i), u′(i), v′(i), w′(i) for all i ∈ {1, . . . , r − 1} in
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Figure 8: The graphs Hi and Gi, the triangles labelled 1, . . . 6 in Gi contain
copies of Hi in which the vertex vi corresponds to v(i)i, u

′(i)i, w(i)i,
v′(i)i, u(i)i, w

′(i)i respectively. The labelling of the interior vertices
of the Hi subgraphs is described in [2].

which there are edges connecting every pair of vertices except {u(i), u′(i)}, {v(i), v′(i)}
and {w(i), w′(i)} for each i ∈ {1, . . . , r − 1}.

To do this, he defines D′r to be a graph consisting of r − 1 connected components
G1, . . . , Gr−1 (see Figure 8), such that for each i ∈ {1 . . . r − 1} Gi consists of 6(r − 1)
vertices labelled u(j)i, v(j)i, w(j)i, u

′(j)i, v
′(j)i, w

′(j)i for all j ∈ {1, . . . , r − 1}. Vertices
u(i)i, v(i)i, w(i)i, u

′(i)i, v
′(i)i, w

′(i)i will be called external, all others internal (as they are
part of a copy of graph H). This satisfies property D2.

If corresponding vertices in distinct copies of Gi are grouped into empires of size r− 1,
the reduced graph of D′r is a graph meeting Beineke’s initial claim. It has 6(r− 1) vertices
labelled u(i), v(i), w(i), u′(i), v′(i), w′(i) for all i ∈ {1, . . . , r− 1} in which there are edges
connecting every pair of vertices except {u(i), u′(i)}, {v(i), v′(i)} and {w(i), w′(i)} for each
i ∈ {1, . . . , r − 1}.

Three more empires a, b and c, each of size r− 1 are added to D′r and connected to it
in the following way:

v
(⌊

r−1
2

⌋)
1
, v
(⌊

r−1
2

⌋
+ 1

)
1

are adjacent to a1

u(i)i, u
′(i+ 1)i, v(i)i are adjacent to ai(i > 1),

v(1)1, v(2)1, u
′(1)1 are adjacent to b1

u(1)d r−1
2
e+1, u

′(2)d r−1
2
e+1 are adjacent to bd r−1

2
e+1

v′(i)i, v(i+ 1)i, u(i)i are adjacent to bi(i ∈ {1, . . . , d
r − 1

2
e})
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v(i)i, v
′(i+ 1)i, u

′(i)i are adjacent to bi(i ∈ {d
r − 1

2
e+ 2, . . . , r − 1}),

w′(2)1 is adjacent to c1

w(i)i, w
′(i+ 1)i are adjacent to ci(i > 1).

As each vertex from empires a, b and c was added to a single component of D′r, property
D2 is still satisfied. Let Gr be the complement of Rr−1(D

′
r + {a,b, c}). It is not difficult

to see that Gr is planar. Therefore by adding the vertices u(j)r, v(j)r, w(j)r, u
′(j)r, v

′(j)r,
w′(j)r for all j ∈ {1, . . . , r − 1} with the same edge set as Gr we have a graph consisting
of r planar components (that’s Gr along with the components of the augmented graph
D′r + {a,b, c}) that reduces to K6r−3.

G1 contains a vertex c1 of degree one which is adjacent to w′(2)1. We can now form
the graph Dr,6r−4(u,v) from Gr along with the components of the augmented graph D′r +
{a,b, c} by renaming empires c and w′(2) as v and u respectively and removing all edges
between u and v. Dr,6r−4(u,v) satisfies property D0, D1 (as the only edge incident to v
has been deleted), D2 and D3 as the graph reduces to K6r−3 minus the edge {u, v}. For
s < 6r− 4, note that the induced graph formed by removing any empire other than u or v
from Dr,s+1(u,v) is an example of Dr,s(u,v). As the size of the graph Dr,s(u,v) depends
only on r and s, the graph can be constructed in polynomial time.

5 Linear Forests

In Section 2 we showed (amongst other things) that there are specific values for s such that
s-COLr becomes easy if the input graph is a collection short paths. Here we argue that if
the paths are allowed to have arbitrary length (let LFOREST denote the set of all forests
of this form) then the problem becomes NP-hard. We will prove the following result.

Theorem 6 Let r and s be positive integers with r ≥ 2 and 3 ≤ s < 2r −
√

2r + 1
4

+ 3
2
.

Then the s-COLr(LFOREST) problem is NP-hard.

Note that it follows from results in [18] that any r-empire graph defined on a linear
forest can be coloured in polynomial time using 2r colours. Thus Theorem 6 is, at least for
large values of r, close to best possible, in the sense that the largest values of s for which
it holds are 2r − 1 + o(r).

The proof is split into two parts. The argument for s = 3 is based on a direct construc-
tion which is reminiscent of a well-known hardness proof for 3-COL [7, p.1103]. For s > 3,
the hardness of s-COLr(LFOREST) will then follow from that of s-COL(FG(s, s− 1)).

We start from the case s = 3.

Theorem 7 Let r be an integer with r ≥ 2. Then 3-SAT ≤p 3-COLr(LFOREST).

Proof. The proof construction is reminiscent of that used to show that 3-COL is NP-hard
[7, p.1103].
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Given an instance φ of 3-SAT we can produce a linear forest P (φ) and a partition of
V (P (φ)) into empires of size r such that P (φ) admits a (3, r)-colouring if and only if φ is
satisfiable. P (φ) consists of one truth gadget, one variable gadget for each variable used
in φ, and one clause gadget for each clause in φ.

+2

+2

r,  ,n( )A       X3

a

a

r,  ,occ(a)3

   )

          (A               a       )

   (A                ar,  ,occ(a)3

Figure 9: The shape of a variable gadget for s = 3.

To define the truth gadget, we start by adding r − 2 distinct isolated vertices to each
empire in B2,2. The empires in the resulting graph (which we denote by B+r

2,2) will be
labelled T, F and X. Then, if φ uses n different variables and m clauses, we linearize T
and X in B+r

2,2, using one copy of Ar,3,deg(T)+2m, and one copy of Ar,3,deg(X)+n (here deg(v)
is the degree of empire v in B+r

2,2), respectively. We denote such gadgets by A(T) and
A(X) respectively. This completes the definition of the truth gadget. Since T, F and
X are all adjacent (in B+r

2,2) and the linearization preserves colour constraints (because of
property A2), the vertices of the truth gadget simulating the three empires of B+r

2,2 must
have different colours in any 3-colouring of the truth gadget. Without loss of generality we
call TRUE, FALSE and OTHER respectively such colours.

For each variable a in φ, P (φ) contains a variable gadget. Let occ(·) be a function
taking as input a literal of φ and returning the number of occurrences of its argument in
the given formula. The variable gadget for a is defined as the graph formed by the two
connectivity gadgets Ar,3,occ(a)+2 and Ar,3,occ(a)+2, along with a single monochromatic vertex
z in A(X) (a distinct monochromatic vertex is used for each variable of φ). The edges in
the variable gadgets will be those of Ar,3,occ(a)+2 and Ar,3,occ(a)+2 plus three further edges:
{z, za}, {z, za}, and {z′a, z′a}. Here za and z′a (resp. za and z′a) are monochromatic vertices
in Ar,3,occ(a)+2 and Ar,3,occ(a)+2. Figure 9 gives a schematic view of the truth gadget for an
arbitrary variable a. Since X has colour OTHER, there are only two possible colourings
for the vertices corresponding to a and a — either all vertices for a are coloured TRUE
and those for a are coloured FALSE, or the vertices for a are coloured FALSE and those
for a TRUE.

Finally, for each clause in φ, P (φ) contains a gadget like the one depicted in Figure 10.
This is connected to the rest of the graph via four connectivity gadgets. More specifically,
the two vertices labelled T1 and T2 (in the Figure) are two monochromatic vertices in A(T)
(a distinct pair of such monochromatic vertices for each case clause gadget). Also, vertices
labelled a, b and d in the Figure belong to the monochromatic set of three connectivity
gadgets of the form Ar,3,occ(`)+2 where ` is a literal (` = a, b, and d in the given example).
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T1

T2 c21

c11

c12

c31

c51

c41

c32 c42

a

c52

b

c22

dt
t t t t

t t t
t t t t

t t t

Figure 10: The clause gadget for the clause (a ∨ b ∨ d). Only at most two
vertices from each empire are shown. In particular vertices labelled
T1 and T2 are in Z(T), while vertices labelled a, b and d are in
Z(a), Z(b) and Z(d) respectively.

Since the vertices of A(T ) corresponding to T will always be coloured TRUE, it can be
shown that each clause gadget admits a proper (3, r)-colouring if and only if at least one
of the empires corresponding to a literal in the clause is coloured TRUE.

Note that P (φ) is (3, r)-colourable if and only if φ is satisfiable. This follows from the
properties of the well known reduction 3-SAT ≤p 3-COL, as the graph obtained from P (φ)
by shrinking each connectivity gadget first and then each remaining empire in P (φ) to
a distinct (pseudo-)vertex coincides with that created from φ using the classical 3-COL
reduction.

For s > 3 the NP-hardness of s-COLr(LFOREST) follows from that of s-COL(FG(s, s−
1)). The argument is much simpler than in the case described above. Given an (s, s− 1)-
formula graph Φ, the r-empire graph obtained by linearizing all vertices of Φ is an instance
of s-COLr(LFOREST). This immediately gives the following result.

Theorem 8 Let r and s be fixed positive integers with r ≥ 3, and 3 < s < 2r−
√

2r + 1
4
+ 3

2
.

Then s-COL(FG(s, s− 1)) ≤p s-COLr(LFOREST).

6 Trees

The result on linear forests of Section 5 already proves that s-COLr is NP-hard on planar
graphs if s ≥ 3 is sufficiently small. In this section we investigate the effect of connectedness
on the computational complexity of the s-COLr problem. The outcome of our investigation
is the following dichotomy result (in the next theorem TREE is the class of all trees).

Theorem 9 Let r and s be fixed positive integers with r ≥ 2, then the s-COLr(TREE)
problem is NP-hard if 2 < s < 2r, and polynomial time solvable otherwise.

The proof of Theorem 9 is split into two parts. The argument for s = 3 is very similar
to the one we used for forests of paths, but simpler, as trees are allowed to have vertices
of arbitrary large degree. We present the proof in some details only for the case r = 2
(see Theorem 10 below). For r > 2 note that a tree T1 with empires of size r1 can be
translated into a tree T2 with empires of size r2 > r1 by simply attaching r2−r1 new leaves
to a fixed element in each empire of T1. For s > 3 we argue as in Section 5, translating
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formula graphs into pairs formed by a tree and a partition of its vertices into empires. The
hardness of s-COLr(TREE) follows from Theorem 2. Details in Theorem 11 below.

Theorem 10 3-SAT ≤p 3-COL2(TREE).

Proof. (Sketch) Given an instance φ of 3-SAT we define a tree T (φ) and a partition of its
vertices into empires such that T (φ) admits a (3,2)-colouring if and only if φ is satisfiable.
T (φ) will consist of one truth gadget, one variable gadget for each variable used in φ, and
one clause gadget for each clause in φ.

The truth gadget is a copy of B+
2,2(T). Since empires T, F and X are adjacent to each

other (in the gadget’s reduced graph) w.l.o.g. we assume they are coloured TRUE, FALSE
and OTHER respectively. For each variable a in φ, T (φ) contains a copy of B2,2 spanned
by empires labelled a, a, and X. The construction forces empires a, a to be coloured
differently from X (and each other). Finally, for each clause in φ, we use a clause gadget
like the one in Figure 10.

Arguing like in the proof of Theorem 7 it is easy to see that T (φ) is (3, 2)-colourable
if and only if there is some way to assign the variables of φ as TRUE or FALSE so that
every clause contains at least one TRUE literal.

Theorem 11 s-COL(FG(s, s− 1)) ≤p s-COLr(TREE), for any r ≥ 3 and 3 < s < 2r.

Proof. As in the proof of Theorem 8 we give a set of replacement rules that translate an
(s, s− 1)-formula graph Φ into a tree T (Φ) and a partition of V (T (Φ)) into empires of size
r such that T (Φ) is (s, r)-colourable if and only if the formula graph is s-colourable. This
time there is no need to use the connectivity gadgets Ar,s,m as the vertices of T (Φ) can
have arbitrarily large degrees. However some care is needed to make sure that the resulting
graph is in fact a tree.

In details, the complete graph on {T, F,X1, . . . , Xs−2} is replaced by a copy of B+
r,s−1(T)

with empires labelled T, F, and X1, . . . ,Xs−2. Note that, as discussed in Section 4, this
graph is in fact a tree (Figure 3 displays the connected clique gadget for r = 3 and s = 5).
Also, because of constraint B3 in the definition of Br,s, w.l.o.g. we may assume that
colours “TRUE”, “FALSE”, “OTHER1”, . . ., “OTHERs−2” are assigned to empires T, F,
X1 . . . ,Xs−2 respectively.

For each complementary pair a, a of V (Φ) we create 2s−5 empires W2(a), . . . ,Ws−2(a)
and W1(a), . . . ,Ws−2(a). These are then connected toB+

r,s−1(T) using the graphsB−r,s(W
i(a),Xi),

and B−r,s(W
i(a),Xi) for all i ∈ {1, . . . , s− 2}. For each a ∈ A the subgraph of Φ spanned

by
⋃
i{a, a,X i} is represented by a graph like the one sketched in Figure 11 for r = 3

and s = 5. This graph involves empires a, a, X1, . . . ,Xs−2, W2(a), . . . ,Ws−2(a) and
W1(a), . . . ,Ws−2(a). Empires a, and a, each span a tree with one vertex, w.l.o.g. a1
(resp. a1) of degree r − 1 and r − 1 vertices of degree one, all adjacent to it. These two
trees are connected by the edge {a1, a1}. Vertex a1 (resp. a1) is also connected to the ver-
tex in W2(a), . . . ,Ws−2(a) left isolated in the graph B−r,s(W

i(a),Xi) (resp. to the isolated
vertex in W1(a)1, . . . ,W

s−2(a)1 belonging to B−r,s(W
i(a),Xi)). Finally a1 is connected
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Figure 11: The gadget for the complementary pair a and a when r = 3, s = 5.
The dashed blobs represent either empires, or part of them. The
diagram clearly shows all copies of B−3,5(W

i(`),Xi), following the
graphical notation introduced in Figure 4.

to X1
1 . The edge {a1, X1

1} ensures that the union of B+
r,s−1(T) and the graph spanned

by empires a, a, X1, W2(a), . . . ,Ws−2(a) and W1(a), . . . ,Ws−2(a) is just a single tree.
The edges connecting empires a, a, with W2(a), . . . ,Ws−2(a) and W1(a), . . . ,Ws−2(a),
because of the properties of the (Wi(`),Xi)-colour constraining gadgets, prevent a and a
from being able to use the colours of the Xi in any colouring of T (Φ).

Each group {c1, . . . , cs−1} in C is replaced by empires c1, . . . , cs−1 (different groups
replaced by different sets of empires). The complete graph on {T, c1, . . . , cs−1} is replaced
by a copy of Br,s−1 on the corresponding empires (this ensures that the union of B+

r,s−1(T)
and such Br,s−1 form a single tree). We then attach to this graph s− 1 graphs B−r,s(b

j, cj),
for j ∈ {1, . . . , s−1}. Empire bj must have the same colour as cj and it has, in B−r,s(b

j, cj),

an isolated vertex, bj1. If ` is the unique element of A adjacent to cj in the formula graph
then {bj1, `1} is an edge of T (Φ). A schematic representation of the subgraph induced by
T, empires c1, . . . , cs−1, along with the copies of B−r,s(b

j, cj) is given in Figure 12.
The overall construction is such that for each vertex in V (Φ) there is an equivalent

empire in V (T (Φ)), and for each edge in E(Φ) there is an edge {u, v} ∈ E(T (Φ)) that
either connects the corresponding empires u and v or connects u to an empire that must
be given the same colour as v in any (s, r)-colouring of T (Φ). From this we can see that
T (Φ) admits an (s, r)-colouring if and only if Φ admits an s-colouring.

7 General Planar Graphs

Theorem 9 of last section does not exclude the possibility that s-COLr be solvable in
polynomial time for arbitrary planar graphs provided s ≥ 2r. Here we show that in fact
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Figure 12: A schematic representation of T, empires c1, . . . , cs−1, all edges
among these along with the copies of B−r,s(b

j , cj).

this is not the case. The main result of this section is the following:

Theorem 12 Let r and s be fixed positive integers with r ≥ 2, then the s-COLr problem
is NP-hard if 3 ≤ s < 6r − 3− 2δr,2, and solvable in polynomial time if s = 2 or s ≥ 6r.

Note that s-COLr can be solved in polynomial time for s = 2 (as checking if the reduced
graph of a planar graph is bipartite is easy) and for s ≥ 6r (because of Heawood’s result).
Also, Theorem 9 proves the case s < 2r. Therefore only the case s ≥ 2r needs further
discussion. The bulk of the argument is similar to that of Theorem 8 and 11 with a couple
of differences. First, this time we only need the graph resulting from the transformation
of the initial formula graph to be planar (note that the formula graph in general is NOT
planar). On the other hand, we want the transformation to work for much larger values
of s. Our solution hinges on proving that all complete subgraphs of the starting formula
graph and a number of other gadgets attached to them have sufficiently large thickness.
For the complete graphs we may use well-known results [1], whereas for the specific gadgets
we need a bespoke construction.

Using the gadgets descrived above we can prove the following result, which completes
the proof of Theorem 12.

Theorem 13 s-COL(FG(s, s− 1)) ≤p s-COLr, for any r ≥ 2 and 2r ≤ s < 6r− 3− 2δr,2.

Proof. The proof mirrors that of Theorem 11. We once again give a set of replacement
rules to convert a (s, s − 1)-formula graph Φ into a planar graph G(Φ) that is (s, r)-
colourable if and only if Φ is s-colourable.

The copy of Ks induced by the vertex set T in Φ is replaced by r edge disjoint subgraphs
of Ks. For s ≤ 6r − 4 the existence of such graphs is granted by known results on the
thickness of Ks [1]. W.l.o.g. we may assume that the empires of the resulting graph (which,
as usual, we label T, F, and X1,X2, . . .) are coloured “TRUE”, “FALSE”, “OTHER1”, . . .,
“OTHERs−2” respectively. The graph is then expanded, for each a, a ∈ A using empires
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W2(a), . . . ,Ws−2(a) and W1(a), . . . ,Ws−2(a) and the graphs Dr,s(W
i(a),Xi) for all i such

that 2 ≤ i ≤ s − 2, and Dr,s(W
i(a),Xi) for all i such that 1 ≤ i ≤ s − 2. The graphs

Φ[
⋃{a, a,Xj}] and Φ[{T} ∪ C] are subject to transformations similar to those in Theorem

11 but using the planar decomposition of the complete graph instead of copies of Br,s and
graphs Dr,s(u,v) instead of B−r,s(u,v).

As in Theorem 11, every vertex in V (Φ) has a corresponding empire in V (G(Φ)), and
every edge {u, v} ∈ E(Φ) has a corresponding edge in E(G(Φ)) that connects either the
empires u and v or empires that must be given the same colour as them in any proper
(s, r)-colouring. It follows that G(Φ) admits a proper (s, r)-colouring if and only if Φ
admits a proper s-colouring.

The reduction in the proof of Theorem 13 shows that for any given formula graph Φ
one can define a planar graph G(Φ) which is formed by (at least) r connected components
and reduces to Φ. Thus the proof is actually showing, for s ≥ 2r, the NP-hardness of
colouring, in the traditional sense, graphs of thickness r. The following result can be
obtained extending the proof to any s > 3 and using a more direct reduction from 3-SAT
for s = 3.

Theorem 14 It is NP-hard to decide whether a graph of thickness r > 1 can be coloured
with s < 6r − 3− 2δr,2 colours.

An obvious way to improve Theorem 13 (and perhaps close the small gap between NP-
hard and polynomially decidable cases) would be to use different gadgets to replace the
complete subgraphs of Φ. However, it seems difficult to devise a graph with high thickness
that shares the colour constraining properties of the complete graph. Perhaps, a more
direct reduction from the satisfiability problem may provide a handle on the remaining
open cases.
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