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Abstract

We consider the Moran process, as generalized by
Lieberman, Hauert and Nowak (Nature, 433:312–316,
2005). A population resides on the vertices of a finite,
connected, undirected graph and, at each time step, an
individual is chosen at random with probability pro-
portional to its assigned “fitness” value. It reproduces,
placing a copy of itself on a neighbouring vertex chosen
uniformly at random, replacing the individual that was
there. The initial population consists of a single mutant
of fitness r > 0 placed uniformly at random, with every
other vertex occupied by an individual of fitness 1. The
main quantities of interest are the probabilities that the
descendants of the initial mutant come to occupy the
whole graph (fixation) and that they die out (extinc-
tion); almost surely, these are the only possibilities. In
general, exact computation of these quantities by stan-
dard Markov chain techniques requires solving a system
of linear equations of size exponential in the order of
the graph so is not feasible. We show that, with high
probability, the number of steps needed to reach fixation
or extinction is bounded by a polynomial in the num-
ber of vertices in the graph. This bound allows us to
construct fully polynomial randomized approximation
schemes (FPRAS) for the probability of fixation (when
r > 1) and of extinction (for all r > 0).

Keywords: Evolutionary dynamics, Markov-chain
Monte Carlo, approximation algorithm.

1 Introduction

Population and evolutionary dynamics have been ex-
tensively studied [2, 7, 16, 27, 30–32], usually with the
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assumption that the evolving population has no spatial
structure. One of the main models in this area is the
Moran process [23]. The initial population contains a
single “mutant” with fitness r > 0, with all other in-
dividuals having fitness 1. At each step of the process,
an individual is chosen at random, with probability pro-
portional to its fitness. This individual reproduces, re-
placing a second individual, chosen uniformly at ran-
dom, with a copy of itself. Population dynamics has
also been studied in the context of strategic interaction
in evolutionary game theory [10,13–15,29].

Lieberman, Hauert and Nowak introduced a gen-
eralization of the Moran process, where the members
of the population are placed on the vertices of a con-
nected graph which is, in general, directed [19, 26]. In
this model, the initial population again consists of a
single mutant of fitness r > 0 placed on a vertex cho-
sen uniformly at random, with each other vertex occu-
pied by a non-mutant with fitness 1. The individual
that will reproduce is chosen as before but now one of
its neighbours is randomly selected for replacement, ei-
ther uniformly or according to a weighting of the edges.
The original Moran process can be recovered by taking
the graph to be an unweighted clique. In the present
paper, we consider the process on finite, unweighted,
undirected graphs.

Several similar models describing particle interac-
tions have been studied previously, including the SIR
and SIS epidemic models [9, Chapter 21], the voter
model, the antivoter model and the exclusion pro-
cess [1, 8, 20]. Related models, such as the decreasing
cascade model [18, 24], have been studied in the con-
text of influence propagation in social networks and
other models have been considered for dynamic monop-
olies [3]. However, these models do not consider differ-
ent fitnesses for the individuals.

In general, the Moran process on a connected,
directed graph may end with all vertices occupied by
mutants or with no vertex occupied by a mutant —
these cases are referred to as fixation and extinction,
respectively — or the process may continue forever.
However, for undirected graphs and strongly-connected
digraphs, the process terminates almost surely, either at
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fixation or extinction. (We consider only finite graphs.)
At the other extreme, fixation is impossible in the
directed graph with vertices {x, y, z} and edges {−→xz,−→yz}
and extinction is impossible unless the mutant starts at
z. The fixation probability for a mutant of fitness r in a
graph G is the probability that fixation is reached and
is denoted fG,r.

The fixation probability can be determined by stan-
dard Markov chain techniques. However, doing so for
a general graph on n vertices requires solving a set of
2n linear equations, which is not computationally feasi-
ble. As a result, most prior work on computing fixation
probabilities in the generalized Moran process has ei-
ther been restricted to small graphs [7] or graph classes
where a high degree of symmetry reduces the size of the
set of equations — for example, paths, cycles, stars and
cliques [4–6] — or has concentrated on finding graph
classes that either encourage or suppress the spread of
the mutants [19,22]. Rychtář and Stadler present some
experimental results on fixation probabilities for ran-
dom graphs derived from grids [28].

Because of the apparent intractability of exact com-
putation, we turn to approximation. Using a potential
function argument, we show that, with high probabil-
ity, the Moran process on an undirected graph of order n
reaches absorption (either fixation or extinction) within
O(n5) steps if r = 1 and O(n4) and O(n3) steps when
r > 1 and r < 1, respectively. Taylor et al. [31] studied
absorption times for variants of the generalized Moran
process but, in our setting, their results only apply to
the process on regular graphs, where it is equivalent to
a biased random walk on a line with absorbing barri-
ers. The absorption time analysis of Broom et al. [4] is
also restricted to cliques, cycles and stars. In contrast
to this earlier work, our results apply to all connected
undirected graphs.

Our bound on the absorption time, along with poly-
nomial upper and lower bounds for the fixation proba-
bility, allows the estimation of the fixation and extinc-
tion probabilities by Monte Carlo techniques. Specifi-
cally, we give a fully polynomial randomized approxima-
tion scheme (FPRAS) for these quantities. An FPRAS
for a function f(X) is a polynomial-time randomized
algorithm g that, given input X and an error bound ε
satisfies (1− ε)f(X) 6 g(X) 6 (1 + ε)f(X) with prob-
ability at least 3

4 and runs in time polynomial in the
length of X and 1

ε [17].

For the case r < 1, there is no positive polynomial
lower bound on the fixation probability so only the
extinction probability can be approximated by this
technique. (Note that, when f � 1, computing 1−f to
within a factor of 1± ε does not imply computing f to
within the same factor.)

Notation. Throughout, we consider only finite,
connected, undirected graphs G = (V,E) and we write
n = |V | (the order of the graph). Our results apply only
to connected graphs as, for any disconnected graph, the
fixation probability is necessarily zero; we also exclude
the one-vertex graph to avoid trivialities. The edge
between vertices x and y is denoted by xy. For a subset
X ⊆ V (G), we write X + y and X − y for X ∪ {y} and
X \ {y}, respectively.

Throughout, r denotes the fitness of the initially
introduced mutant in the graph. Given a set X ⊆ V,
we denote by W (X) = r|X| + |V \X| the total fitness
of the population when exactly the vertices of X are
occupied by mutants. We write fG,r(x) for the fixation
probability of G, given that the initial mutant with
fitness r was introduced at vertex x. We denote by
fG,r = 1

n

∑
x∈V fG,r(x) the fixation probability of G;

that is, the probability that a single mutant with fitness
r placed uniformly at random in V eventually takes
over the graph G. Finally, we define the problem
Moran fixation (respectively, Moran extinction)
as follows: given a graph G = (V,E) and a fitness value
r > 0, compute the value fG,r (respectively, 1− fG,r).

Organization of the paper. In Section 2, we
demonstrate polynomial upper and lower bounds for
the fixation probability fG,r for an arbitrary undirected
graph G. In Section 3, we use our potential function to
derive polynomial bounds on the absorption time (both
in expectation and with high probability) in general
undirected graphs. Our FPRAS for computing fixation
and extinction probabilities appears in Section 4.

2 Bounding the fixation probability

Lieberman et al. observed that, if G is a directed graph
with a single source (a vertex with in-degree zero), then
fG,r = 1

n for any value of fitness r > 0 of the initially
introduced mutant [19] (see also [26, p. 135]). In the
following lemma we prove that fG,r > 1

n for every
undirected graph, whenever r > 1.

Lemma 2.1. Let G = (V,E) be an undirected graph
with n vertices. Then fG,r > 1

n for any r > 1.

Proof. Consider the variant of the process where every
vertex starts with its own colour and every vertex has
fitness 1. Allow the process to evolve as usual: at each
step, a vertex is chosen uniformly at random and its
colour is propagated to a neighbour also chosen uni-
formly at random. At any time, we can consider the
vertices of any one colour to be the mutants and all the
other vertices to be non-mutants. Hence, with proba-
bility 1, some colour will take over the graph and the
probability that x’s initial colour takes over is exactly
fG,1(x). Thus, fG,r > fG,1 = 1

n

∑
x∈V fG,1(x) = 1

n . �
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Note that there is no corresponding polynomial
lower bound when r < 1. For example, for r 6= 1, the
fixation probability of the clique Kn is given by

fKn,r =
1− 1

r

1− 1
rn

.

For r > 1, this is at least 1− 1
r but there is no non-trivial

polynomial lower bound where r < 1.

Lemma 2.2. Let G = (V,E) be an undirected graph
with n vertices. Then fG,r 6 1− 1

n+r for any r > 0.

Proof. For any vertex x ∈ V, let Q(x) =
∑
xy∈E

1
deg y .

Note that
∑
x∈V Q(x) = n.

To give an upper bound for fG,r(x) for every x ∈ V,
we relax the Markov chain by assuming that fixation is
reached as soon as a second mutant is created. From
the state S = {x}, the probability that a new mutant
is created is a(x) = r

n−1+r and the probability that
one of x’s non-mutant neighbours reproduces into x is
b(x) = 1

n−1+rQ(x). The probability that the population
stays the same, because a non-mutant reproduces to a
non-mutant vertex, is 1 − a(x) − b(x). The probability
that the mutant population reaches two (i.e., that the
first change to the state is the creation of a new mutant)
is given by

p(x) =
a(x)

a(x) + b(x)
=

r

r +Q(x)
.

Therefore, the probability that the new process reaches
fixation is

p =
1

n

∑
x∈V

p(x) =
r

n

∑
x∈V

1

r +Q(x)
.

Writing p = r
n

∑n
i=1(r + qi)

−1, we wish to find the
maximum value subject to the constraints that qi > 0
for all i and

∑n
i=1 qi =

∑
x∈V Q(x) = n. If we relax

the first constraint to qi > 0, the sum is maximized by
setting q1 = n and q2 = · · · = qn = 0. Therefore,

fG,r 6 p 6
r

n

(
1

r + n
+ (n− 1)

1

r + 0

)
= 1− 1

r + n
. �

3 Bounding the absorption time

In this section, we show that the Moran process on
a connected graph G of order n is expected to reach
absorption in a polynomial number of steps. To do this,
we use the potential function given by

φ(X) =
∑
x∈X

1

deg x

for any state X ⊆ V (G) and we write φ(G) for φ(V (G)).
Note that 1 < φ(G) 6 n and that, if (Xi)i>0 is a Moran
process on G then φ(X0) = 1/ deg x 6 1 for some vertex
x ∈ V (the initial mutant).

First, we show that the potential strictly increases
in expectation when r > 1 and strictly decreases in
expectation when r < 1.

Lemma 3.1. Let (Xi)i>0 be a Moran process on a graph
G = (V,E) and let ∅ ⊂ S ⊂ V. If r > 1, then

E[φ(Xi+1)− φ(Xi) | Xi = S] >

(
1− 1

r

)
· 1

n3
.

Otherwise,

E[φ(Xi+1)− φ(Xi) | Xi = S] <
r − 1

n3
.

Proof. Write W (S) = n+ (r− 1)|S| for the total fitness
of the population. For ∅ ⊂ S ⊂ V, and any value of r,
we have

E[φ(Xi+1)− φ(Xi) | Xi = S]

=
1

W (S)

∑
xy∈E

x∈S,y∈S

(
r · φ(S + y)− φ(S)

deg x

+
φ(S − x)− φ(S)

deg y

)
=

1

W (S)

∑
xy∈E

x∈S,y∈S

(
r · 1

deg y
· 1

deg x

− 1

deg x
· 1

deg y

)
=

r − 1

W (S)

∑
xy∈E

x∈S,y∈S

1

deg xdeg y
.(3.1)

The sum is minimized by noting that there must be
at least one edge between S and S and that its endpoints
have degree at most (n − 1) < n. The greatest weight
configuration is the one with all mutants if r > 1 and
the one with no mutants if r < 1. Therefore, if r > 1,
we have

E[φ(Xi+1)− φ(Xi) | Xi = S] >
r − 1

rn
· 1

n2

=

(
1− 1

r

)
1

n3

and, if r < 1,

E[φ(Xi+1)− φ(Xi) | Xi = S] < (r − 1)
1

n3
. �
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The method of bounding in the above proof appears
somewhat crude — for example, in a graph of order
n > 2, if both endpoints of the chosen edge from S to S
have degree n−1 then there must be more edges between
mutants and non-mutants. Nonetheless, over the class
of all graphs, the bound of Lemma 3.1 is asymptotically
optimal up to constant factors. For n > 2, let Gn be
the n-vertex graph made by adding an edge between
the centres of two disjoint stars of as close-to-equal size
as possible. If S is the vertex set of one of the stars,
E[φ(Xi+1)− φ(Xi) | Xi = S] = Θ(n−3).

However, it is possible to specialize equation (3.1)
to give better bounds for restricted classes of graphs.
For example, if we consider graphs of bounded degree
then (deg x deg y)−1 = O(1) and the expected change
in φ is O( 1

n ).
To bound the expected absorption time, we use

martingale techniques. It is well known how to bound
the expected absorption time using a potential function
that decreases in expectation until absorption. This has
been made explicit by Hajek [11] and we use following
formulation based on that of He and Yao [12]. The
proof is essentially theirs but modified to give a slightly
stronger result.

Theorem 3.1. Let (Yi)i>0 be a Markov chain with state
space Ω, where Y0 is chosen from some set I ⊆ Ω.
If there are constants k1, k2 > 0 and a non-negative
function ψ : Ω→ R such that

• ψ(S) = 0 for some S ∈ Ω,

• ψ(S) 6 k1 for all S ∈ I and

• E[ψ(Yi) − ψ(Yi+1) | Yi = S] > k2 for all i > 0 and
all S with ψ(S) > 0,

then E[τ ] 6 k1/k2, where τ = min{i : ψ(Yi) = 0}.

Proof. By the third condition, the chain is a super-
martingale so it converges to zero almost surely [25,
Theorem II-2-9].

E[ψ(Yi) | ψ(Y0) > 0]

= E
[
E
[
ψ(Yi−1) +

(
ψ(Yi)− ψ(Yi−1)

)
| Yi−1

]
| ψ(Y0) > 0

]
6 E[ψ(Yi−1)− k2 | ψ(Y0) > 0] .

Induction on i gives E[ψ(Yi) | ψ(Y0) > 0] 6 E[ψ(Y0) −
ik2 | ψ(Y0) > 0] and, from the definition of the stopping
time τ ,

0 = E[ψ(Yτ ) | ψ(Y0) > 0]

6 E[ψ(Y0)]− k2E[τ | ψ(Y0) > 0]

6 k1 − k2E[τ | ψ(Y0) > 0] .

The possibility that ψ(Y0) = 0 can only decrease the
expected value of τ since, in that case, τ = 0. Therefore,
E[τ ] 6 E[τ | ψ(Y0) > 0] 6 k1/k2. �

Theorem 3.2. Let G = (V,E) be a graph of order n.
For r < 1, the absorption time τ of the Moran process
on G satisfies

E[τ ] 6
1

1− r
n3.

Proof. Let (Yi)i>0 be the process on G that behaves
identically to the Moran process except that, if the
mutants reach fixation, we introduce a new non-mutant
on a vertex chosen uniformly at random. That is, from
the state V, we move to V −x, where x is chosen u.a.r.,
instead of staying in V. Writing τ ′ = min{i : Yi = ∅}
for the absorption time of this new process, it is clear
that E[τ ] 6 E[τ ′].

The function φ meets the criteria for ψ in the
statement of Theorem 3.1 with k1 = 1 and k2 =
(1 − r)n−3. The first two conditions of the theorem
are obviously satisfied. For S ⊂ V, the third condition
is satisfied by Lemma 3.1 and we have

E[φ(Yi)− φ(Yi+1) | Yi = V ] =
1

n

∑
x∈V

1

deg x
>

1

n
> k2 .

Therefore, E[τ ] 6 E[τ ′] 6 1
1−rn

3. �

The following corollary is immediate from Markov’s
inequality.

Corollary 3.1. The Moran process on G with fitness
r < 1 reaches absorption within t steps with probability
at least 1− ε, for any ε ∈ (0, 1) and any t > 1

1−rn
3/ε.

For r > 1, the proof needs slight adjustment
because, in this case, φ increases in expectation.

Theorem 3.3. Let G = (V,E) be a graph of order n.
For r > 1, the absorption time τ of the Moran process
on G satisfies

E[τ ] 6
r

r − 1
n3φ(G) 6

r

r − 1
n4.

Proof. Let (Yi)i>0 be the process that behaves iden-
tically to the Moran process (Xi)i>0 except that, if
the set of mutants is empty, a new mutant is cre-
ated on a vertex chosen uniformly at random. Setting
τ ′ = min{i : Yi = V }, we have E[τ ] 6 E[τ ′].

Putting ψ(S) = φ(G) − φ(S), k1 = φ(G) 6 n and
k2 = (1− 1

r )n−3 satisfies the conditions of Theorem 3.1
— the third condition follows from Lemma 3.1 for
∅ ⊂ S ⊂ V and

E[ψ(Yi)− ψ(Yi+1) | Yi = ∅] =
1

n

∑
x∈V

1

deg x
>

1

n
> k2.

The result follows from Theorem 3.1. �
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Corollary 3.2. The Moran process on G with fitness
r > 1 reaches absorption within t steps with proba-
bility at least 1 − ε, for any ε ∈ (0, 1) and any t >
r
r−1n

3φ(G)/ε.

The O(n4) bound in Theorem 3.3 does not seem
to be very tight and could, perhaps, be improved by a
more careful analysis, which we leave for future work.
In simulations, we have not found any class of graphs
where the expected fixation time is Ω(n3) for r > 1.
The graphs Gn described after Lemma 3.1 are the
slowest we have found but, even on those graphs, the
absorption time is, empirically, still O(n3). Note that
n − 2 < φ(Gn) < n − 1 so, for these graphs, even the
bound of r

r−1n
3φ(Gn) is O(n4).

The case r = 1 is more complicated as Lemma 3.1
no longer bounds the expected increase in φ away from
zero. However, it still shows that the expectation is non-
decreasing, which allows us to use standard martingale
techniques. The proof of the following is partly adapted
from the proof of Lemma 3.4 in [21].

To avoid cumbersome notation, we write φ′0 =
1
n

∑
x∈V (deg x)−2. For the Moran process (Xi)i>0 on

G, this is E[φ(X0)2].

Theorem 3.4. The expected absorption time for the
Moran process (Xi)i>0 with r = 1 on a graph G = (V,E)
is at most n3(φ(G)2 − φ′0).

Proof. Let m = φ(G)/2 and let ψi = m− φ(Xi). Thus,
−m 6 ψi 6 m for all i.

By Lemma 3.1, E[φ(Xi+1) | Xi] > φ(Xi) so

(3.2) E[ψi+1 | Xi] 6 ψi .

From the definition of the process, ψi+1 6= ψi if,
and only if, Xi+1 6= Xi. Therefore, P[ψi+1 6= ψi] =
P[Xi+1 6= Xi] and, for 0 < |Xi| < n, this probability
is at least n−2 because there is at least one edge from
a mutant to a non-mutant. From the definition of φ, if
ψi+1 6= ψi then |ψi+1 − ψi| > n−1. When |ψi| < m, it
follows that

(3.3) E[(ψi+1 − ψi)2 | Xi] > n
−3 .

Let t0 = min{t : |ψt| = m}, which is a stopping
time for the sequence (ψt)t>0 and is also the least t for
which Xt = ∅ or Xt = V. Let

Zt =

{
ψ2
t − 2mψt − n−3t if |ψt| < m

3m2 − n−3t0 otherwise.

We now show that (Zt)t>0 is a submartingale. This
is trivial for t > t0, since then we have Zt+1 = Zt. In

the case where t < t0,

E[Zt+1 − Zt | Xt]

> E[ψ2
t+1 − 2mψt+1 − n−3(t+ 1)

− ψ2
t + 2mψt + n−3t | Xt]

= E[−2m(ψt+1 − ψt) + ψ2
t+1 − ψ2

t − n−3 | Xt]

= E[ 2(ψt −m)(ψt+1 − ψt)
+ (ψt+1 − ψt)2 − n−3 | Xt]

> 0 .

The first inequality is because 3m2 > ψ2
t − 2mψt for

all t, since |ψt| 6 m. The final inequality comes from
equations (3.2) and (3.3). Note also that E[Zt+1 − Zt |
Xt] 6 6m2 <∞ in all cases.

We have

E[Z0] = E
[(
m− φ(X0)

)2 − 2m
(
m− φ(X0)

)]
= E[φ(X0)2 −m2]

= φ′0 −m2

and E[Zt0 ] = 3m2 − n−3E[t0]. Because t0 is a stopping
time, the optional stopping theorem says that E[Zt0 ] >
E[Z0], as long as E[t0] < ∞, which we will show in a
moment. It follows, then, that

3m2 − n−3E[t0] > φ′0 −m2,

which gives

E[t0] 6 n3(4m2 − φ′0) = n3(φ(G)2 − φ′0) ,

as required.
It remains to establish that t0 has finite expectation.

Consider a block of n successive stages Xk, . . . , Xk+n−1.
If the Moran process has not already reached absorption
by Xk, then |Xk| > 1. Consider any sequence of
reproductions by which a single mutant in Xk could
spread through the whole graph. Each transition in that
sequence has probability at least n−2 so the sequence
has probability at least p = (n−2)n, which means that
the probability of absorption within the block is at least
this value. But then the expected number of blocks
before absorption is at most∑

i>0

(1− p)i−1 =
1

1− (1− p)
=

1

p
.

and, therefore, E[t0] <∞ as required. �

Corollary 3.3. (i) The expected absorption time for
the Moran process with r = 1 on any graph is at most
t = φ(G)2n3. (ii) For any ε ∈ (0, 1), the process reaches
absorption within t/ε steps with probability at least 1−ε.

Proof. The first part is immediate from the previous
theorem and the fact that φ′0 > 0. The second part
follows by Markov’s inequality. �
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4 Approximation algorithms

We now have all the components needed to present our
fully polynomial randomized approximation schemes
(FPRAS) for the problem of computing the fixation
probability of a graph, where r > 1, and for computing
the extinction probability for all r > 0. Recall that an
FPRAS for a function f is a randomized algorithm g
that, given input X, gives an output satisfying

(1− ε)f(X) 6 g(X) 6 (1 + ε)f(X)

with probability at least 3
4 and has running time polyno-

mial in both n and 1
ε . In both of the following theorems,

we require that r be encoded in unary, to ensure that
N is bounded by a polynomial in the size of the input.

Theorem 4.1. There is an FPRAS for Moran fixa-
tion, for r > 1.

Proof. The algorithm is to simulate the Moran process
on G for some number T of steps (to be defined shortly),
N = d 12ε

−2n2 ln 16e times and compute the proportion
of simulations that reached fixation. If any simulation
has not reached absorption (fixation or extinction) after
T steps, we abort and immediately return an error
value. For r > 1, let T = d 8r

r−1Nn
4e and, for r = 1,

let T = 8Nn5.
Note that each transition of the Moran process can

be simulated in O(1) time. Maintaining lists of the
mutant and non-mutant vertices allows the reproducing
vertex to be chosen in constant time and storing a list of
each vertex’s neighbours allows the same for the vertex
where the offspring is sent. Therefore, the total running
time is O(NT ) steps, which is polynomial in n and 1

ε ,
as required.

It remains to show that the algorithm operates
within the required error bounds. For i ∈ {1, . . . , N},
let Xi = 1 if the ith simulation of the Moran process
reaches fixation and Xi = 0 otherwise. Assuming all
simulation runs reach absorption, the output of the
algorithm is p = 1

N

∑
iXi. By Hoeffding’s inequality

and writing f = fG,r, we have

P[|p− f | > εf ] 6 2 exp(−2ε2f2N)

= 2 exp(−2f2n2 ln 16)

6 1
8 ,

where the second inequality is because, by Lemma 2.1,
f > 1

n .
Now, the probability that any individual simulation

has not reached absorption after T steps is at most
1

8N by Corollary 3.2 for r > 1 and Corollary 3.3 for
r = 1. Taking a union bound, the probability of
aborting and returning an error because at least one of

the N simulations was cut off before reaching absorption
is at most 1

8 . Therefore, with probability at least 3
4 , the

algorithm returns a value within a factor of ε of fG,r. �

Note that this technique fails for disadvantageous
mutants (r < 1) because there is no analogue of
Lemma 2.1 giving a polynomial lower bound on fG,r.
As such, an exponential number of simulations may
be required to achieve the desired error probability.
However, we can give an FPRAS for the extinction
probability for all r > 0. Although the extinction
probability is just 1 − fG,r, there is no contradiction
because a small relative error in 1 − fG,r does not
translate into a small relative error in fG,r when fG,r is,
itself, small.

Theorem 4.2. There is an FPRAS for Moran ex-
tinction for all r > 0.

Proof. The algorithm is as above but taking N =
d 12ε
−2(r + n)2 ln 16e and T = d 8

1−rNn
3e for r < 1; we

keep T as the same multiples of N as before for r > 1.
The proof proceeds as before but using Lemma 2.2 to
show that the extinction probability is at least (r+n)−1

and Corollary 3.1 to bound the probability that a run
is truncated when r < 1. �

It remains open whether other techniques could lead
to an FPRAS for Moran fixation when r < 1.
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