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Practical and Efficient Split Decomposition

via Graph-Labelled Trees

Emeric Gioan1, Christophe Paul1, Marc Tedder2, Derek Corneil2

Abstract

Split decomposition of graphs was introduced by Cunningham (under the name join de-
composition) as a generalization of the modular decomposition. This paper undertakes an
investigation into the algorithmic properties of split decomposition. We do so in the context
of graph-labelled trees (GLTs), a new combinatorial object designed to simplify its considera-
tion. GLTs are used to derive an incremental characterization of split decomposition, with a
simple combinatorial description, and to explore its properties with respect to Lexicographic
Breadth-First Search (LBFS). Applying the incremental characterization to an LBFS ordering
results in a split decomposition algorithm that runs in time O(n+m)α(n+m), where α is the
inverse Ackermann function, whose value is smaller than 4 for any practical graph. Compared to
Dahlhaus’ linear time split decomposition algorithm [16], which does not rely on an incremental
construction, our algorithm is just as fast in all but the asymptotic sense and full implemen-
tation details are given in this paper. Also, our algorithm extends to circle graph recognition,
whereas no such extension is known for Dahlhaus’ algorithm. The companion paper [25] uses
our algorithm to derive the first sub-quadratic circle graph recognition algorithm.

1 Introduction

Split decomposition ranks among the classical hierarchical graph decomposition techniques, and
can be seen as a generalization of modular decomposition [21, 33, 28] and the decomposition of a
graph into 3-connected components [41]. It was introduced by Cunningham and Edmonds [14, 15]
as a special case of the more general framework of bipartitive families. Since then, a number of
extensions and applications have been developed. For example, the decomposition scheme used in
the proof of the Strong Perfect Graph Theorem [6] and in the recognition of Berge graphs [5] is
based in part on the 2-join decomposition, which generalizes split decomposition. Also, clique-width
theory [13] and rank-width theory [34] can be considered generalizations of split decomposition
theory. Indeed, split decomposition is one of the important subroutines in the polynomial-time
recognition of clique-width 3 graphs [11]. Moreover, the graphs of rank-width one are precisely
the graphs that are totally decomposable by split decomposition (i.e. the distance-hereditary
graphs [30] or completely-separable graphs [29]).

As with distance hereditary graphs [29], parity graphs can be characterized by their split de-
composition [3, 8]. In [7], split decomposition is used to define a hierarchy of graph families between
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distance hereditary and parity graphs. Split decomposition also appears in the recognition of cir-
cular arc graphs [31] and in structure theorems of various graph classes (see e.g. [40]). One of the
more important applications of split decomposition is with respect to circle graphs; these are the
intersection graphs of chords inscribing a circle. Prime circle graphs – those indecomposable by
split decomposition – have unique chord representations (up to reflection) [1] (see also [12]). All of
the fastest circle graph recognition algorithms are based on this fact [1, 20, 36]. Recent work has
focused on their connection to rank-width and vertex-minors [2, 34]. For a brief introduction to
split decomposition, the reader may refer to [37].

The first polynomial-time algorithm for split decomposition appeared in [14], and ran in time
O(nm). Ma and Spinrad later developed an O(n2) algorithm [32], which yields an O(n2) circle graph
recognition algorithm when combined with their prime testing procedure in [36]. The only linear
time algorithms for split decomposition are due to Dahlhaus [16] and, more recently, Montgolfier
et al. [4]. However, so far neither of these linear time algorithms seems to extend to circle graph
recognition. This paper develops a split decomposition algorithm that runs in time O(n+m)α(n+
m), where α is the inverse Ackermann function [9, 38] (we point out that this function is so
slowly growing that it is bounded by 4 for all practical purposes.3) Hence, there is essentially no
running time tradeoff in using our algorithm. Moreover, the algorithm presented here is used by
the companion paper [25] to derive the first sub-quadratic circle graph recognition algorithm.

Our algorithm benefits from the recent reformulation of split decomposition in terms of graph-
labelled trees (GLTs), introduced in [23, 24] (see Section 2). That paper enabled the authors to
derive fully-dynamic recognition algorithms for distance-hereditary graphs and various subfamilies.
GLTs are a combinatorial structure designed to capture precisely the underlying structure of split
decomposition [14] and in other similar reformulations that have been considered in the literature,
for instance in a logical context [12] or in a distance-hereditary graph drawing context [19]. GLTs
can also be understood as a special case of a term in a graph grammar [18]. They are valuable
here for greatly simplifying the consideration of split decomposition and providing the insight for
the results in this paper.

The overview of our algorithm appears as Algorithm 1, where G0 refers to the empty graph,
Gi denotes the subgraph of G induced on {x1, · · · , xi}, and ST (Gi) denotes the GLT (called the
split-tree) that captures the split decomposition of Gi.

We use GLTs to derive a combinatorial incremental characterization of split decomposition,
generalizing that given for distance-hereditary graphs in [23, 24] (see Section 4). Note that in
Theorem 4.14 and its subsequent propositions, we characterize all possible ways in which ST (Gi−1)
is modified to produce ST (Gi). GLTs are also used to demonstrate properties of split decomposition
with respect to Lexicographic Breadth-First Search (LBFS) [35] (see Section 3). Sections 3 and 4
are independent, and their content provides general results and constructions that may be useful
on their own. Notably, the results of Section 4 easily yield an efficient split decomposition dynamic
algorithm supporting vertex insertion and deletion.

By applying the incremental characterization to an LBFS ordering we achieve a split decomposi-
tion algorithm that is conceptually straightforward, but requires a careful and detailed explanation

3 Let us mention that several definitions exist for this function, either with two variables, including some variants,
or with one variable. For simplicity, we choose to use the version with one variable. This makes no practical difference
since all of them could be used in our complexity bound, and they are all essentially constant. As an example, the

two variable function considered in [9] satisifies α(k, n) ≤ 4 for all integer k and for all n ≤ 2.
.
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Algorithm 1: The Split Decomposition Algorithm

Input: A connected graph G with n vertices.
Output: ST (G), the split-tree of G.

ST (G0)← null;
Using Algorithm 2, do an LBFS on G to produce ordering x1, x2, · · · , xn;
for i = 1 to n do

ST (Gi)← ST (Gi−1) + xi, using Algorithm 3;
end for

return ST (Gn);

of the implementation in order to achieve the stated running time (see Section 5). We develop a
charging argument based on the structure of GLTs that allows us to evaluate the amortized cost of
inserting each vertex, according to an LBFS ordering. We use it to prove the O(n +m)α(n +m)
running time (see Section 6). Furthermore, our algorithm extends to circle graph recognition;
the companion paper [25] uses it to develop the first sub-quadratic circle graph recognition algo-
rithm, which also runs in O(n +m)α(n +m) time. Note that different versions of both the split
decomposition algorithm and the circle graph recognition algorithm appear in [39].

2 Preliminaries

All graphs in this document are simple, undirected, and connected. The set of vertices in the graph
G is denoted V (G) and the set of edges by E(G). The graph induced on the set of vertices S is
signified by G[S]. We let NG(x), or simply N(x), denote the neighbours of vertex x, and for S a
set of vertices N(S) = (∪x∈SN(x)) \ S. A vertex is universal to a set of vertices S if S ⊆ N(x); it
is isolated from S if N(x) ∩ S = ∅. A vertex is universal in a graph if it is adjacent to every other
vertex in the graph. We use N [x] = N(x) ∪ {x} to denote the closed neighbourhood of a vertex.
Two vertices x and y are twins if N(x) \ {y} = N(y) \ {x}. A pendant is a vertex of degree one. A
clique is a graph in which every pair of vertices is adjacent. A star is a graph with at least three
vertices in which one vertex, called its centre, is universal, and no other edges exist; the vertices
other than the centre are called its degree-1 vertices. The clique on n vertices is denoted Kn; the
star on n vertices is denoted Sn.

The graph G+(x,N(x)) is formed by adding the vertex x to the graph G adjacent to the subset
N(x) of vertices, its neighbourhood; when N(x) is clear from the context, we simply write G+ x.
The graph G− x is formed from G by removing x and all its incident edges.

The non-leaf vertices of a tree T are called its nodes. The edges in a tree not incident to leaves
are its internal edges. If S is a set of leaves of T , then T (S) denotes the smallest connected subtree
spanning S. If T is a tree, then |T | represents its number of nodes and leaves. In a rooted tree T ,
every node or leaf x (except the root) has a unique parent, namely its neighbour on the path to the
root. A child of a node x is a neighbour of x distinct from its parent.

2.1 Split decomposition

This subsection recalls original definitions from [14].

3



Definition 2.1. A split of a connected graph G = (V,E) is a bipartition (A,B) of V , where
|A|, |B| > 1 such that every vertex in A′ = N(B) is universal to B′ = N(A). The sets A′ and B′

are called the frontiers of the split.

A graph not containing a split is called prime. A bipartition is trivial if one of its parts is the
empty set or a singleton. Cliques and stars are called degenerate since every non-trivial bipartition
of their vertices is a split:

Remark 2.2. Let (A,B) be a bipartition of the vertices in a clique or a star such that |A|, |B| > 1.
Then (A,B) is a split.

Degenerate graphs and prime graphs represent the base cases in the process defining split
decomposition:

Definition 2.3. Split Decomposition is a recursive process decomposing a given graph G into a set
of disjoint graphs {G1, . . . Gk}, called split components, each of which is either prime or degenerate.
There are two cases:

1. if G is prime or degenerate, then return the set {G};

2. if G is neither prime nor degenerate, it contains a split (A,B), with frontiers A′ and B′. The
split decomposition of G is then the union of the split decompositions of the graphs G[A] + a
and G[B] + b, where a and b are new vertices, called markers, such that NG[A]+a(a) = A′ and
NG[B]+b(b) = B′.

Notice that during the split decomposition process, the marker vertices can be matched by
so called split edges. Then given a split decomposition, provided the marker vertices and their
matchings are specified, the input graph G can be reconstructed without ambiguity. The set of
split edges merely defines the split decomposition tree whose nodes are the components of the split
decomposition.

Cunningham showed that every graph has a canonical split decomposition tree [14]. As Cun-
ningham’s original work was on the decomposition of a graph by a family of bipartitions of the
vertex set, his paper focuses on the tree representation of the family of splits to obtain a canonical
tree rather than on how the graph’s adjacencies can be retrieved from its split decomposition tree.
At first sight, it is not immediately clear how the graph’s adjacencies are encoded by the split de-
composition tree, and what role the marker vertices play in determining them. Tellingly, the base
case treats prime and degenerate graphs the same; looking at the tree, the viewer is left to guess
which one applied. In recent papers [22, 12], split decomposition is represented by the skeleton
graph which is the union of the split components connected by the split edges. The fact that G’s
vertices and the marker vertices are mixed is a drawback of this representation.

A recent reformulation of split decomposition in terms of graph-labelled trees (GLTs) aims to
clarify this [23, 24]. Our investigation of split decomposition takes place entirely in this new GLT
setting, which is described below.

2.2 Graph-labelled trees

This subsection recalls definitions from [23, 24] and adds useful terminology.
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Definition 2.4 ([23, 24]). A graph-labelled tree (GLT) is a pair (T,F), where T is a tree and F
a set of graphs, such that each node u of T is labelled by the graph G(u) ∈ F , and there exists a
bijection ρu between the edges of T incident to u and the vertices of G(u). (See Figure 1.)

When we refer to a node u in a GLT, we usually mean the node itself in T (non-leaf vertex). We
may sometimes use the notation u as a shortcut for its label G(u) ∈ F ; the meaning will be clear
from the context. For instance, notation will be simplified by saying V (u) = V (G(u)). The vertices
in V (u) are called marker vertices, and the edges between them in G(u) are called label-edges. For
a label-edge e = uv we may say that u and v are the vertices of e. The edges of T are tree-edges.
The marker vertices ρu(e) and ρv(e) of the internal tree-edge e = uv are called the extremities of e
. Furthermore, ρv(e) is the opposite of ρu(e) (and vice versa). A leaf is also considered an extremity
of its incident edge, and its opposite is the other extremity of the edge (marker vertex or leaf).
For convenience, we will use the term adjacent between: a tree-edge and one of its extremities; a
label-edge and one of its vertices; two extremities of a tree-edge, etc., as long as the context is clear.
The most important notion for GLTs with respect to split decomposition is that of accessibility :

Definition 2.5 ([23, 24]). Let (T,F) be a GLT. The marker vertices q and q′ are accessible from
one another if there is a sequence Π of marker vertices q, . . . , q′ such that:

1. every two consecutive elements of Π are either the vertices of a label-edge or the extremities
of a tree-edge;

2. the edges thus defined alternate between tree-edges and label-edges.

Two leaves are accessible from one another if their opposite marker vertices are accessible;
similarly for a leaf and marker vertex being accessible from one another; see Figure 1 where the
leaves accessible from q include both 3 and 15 but neither 2 nor 11. By convention, a leaf or marker
vertex is accessible from itself.

Note that, obviously, if two leaves or marker vertices are accessible from one another, then the
sequence Π with the required properties is unique, and the set of tree-edges in Π forms a path in
the tree T .

Definition 2.6 ([23, 24]). Let (T,F) be a GLT. Then its accessibility graph, denoted Gr(T,F),
is the graph whose vertices are the leaves of T , with an edge between two distinct leaves ℓ and ℓ′ if
and only if they are accessible from one another. Conversely, we may say that (T,F) is a GLT of
Gr(T,F).

Accessibility allows us to view GLTs as encoding graphs; an example appears in Figure 1.

Let (T,F) be a GLT, and let q be a marker vertex belonging to the node u of T and corresponding
to the tree-edge e of T . Then we denote:

- L(q) the set of leaves of T from which there is a path to u using e;
- A(q) the subset of leaves of L(q) that are accessible from q;
- T (q) = T (L(q)) the smallest subtree of T that spans the leaves L(q); note that q /∈ T (q).
To unify our notation, for a leaf ℓ of T , the sets L(ℓ), A(ℓ), T (ℓ) can be similarly defined, so

that A(ℓ) = NG(ℓ), ℓ’s neighbourhood in G = Gr(T,F), and L(ℓ) = V (G) \ {ℓ}.
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Figure 1: A graph-labelled tree (T,F) and its accessibility graph Gr(T,F).

Definition 2.7. Let (T,F) be a GLT and let q and p be distinct marker vertices. Then p is a
descendant of q if L(p) ⊂ L(q), that is if T (p) is a subtree of T (q).

The above notation and definitions are illustrated in Figure 2. Also note that a leaf is never a
descendant of a leaf or a marker vertex.
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Figure 2: A marker vertex q, with L(q) = {1, 2, 3, 4, 5, 6, 7} and A(q) = {1, 3, 4, 7}. Bold edges are
those used in sequences certifying the accessibility between q and elements of A(q). The vertices of
the subtree T (q) are the elements of L(q) together with the three upper nodes. The marker vertex
p with L(p) = {1, 2} is a descendant of q. The marker vertex r is the opposite of q, and is not a
descendant of q.

We conclude this subsection by a series of remarks following directly from the definitions.

Remark 2.8. If a graph G is connected, then every label in a GLT of G is connected.

Remark 2.9. For any marker vertex q in a GLT of a connected graph, A(q) 6= ∅.

As a consequence, by choosing one element of A(q) for every marker vertex q in the label we
see that every label in a GLT of a connected graph G is an induced subgraph of G.

Remark 2.10. Let p and q be two marker vertices of a GLT such that p is a decendent of q. If p
and q are accessible from one another, then A(q)∩L(p) = A(p). If p and q are non-accessible from
one another, then A(q) ∩ L(p) = ∅.
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2.3 The split-tree

This subsection reformulates split decomposition [14] in the GLT setting, as done in [23, 24].

Definition 2.11. Let e be a tree-edge incident to nodes u and u′ in a GLT, and let q ∈ V (u)
and q′ ∈ V (u′) be the extremities of e. The node-join of u, u′ replaces u and u′ with a new node
v labelled by the graph formed from G(u) and G(u′) as follows: all possible label-edges are added
between N(q) and N(q′), and then q and q′ are deleted. See Figure 3.

Definition 2.12. The node-split is the inverse of the node-join. More precisely, let v be a node such
that G(v) contains the split (A,B) with frontiers A′ and B′. The node-split with respect to (A,B)
replaces v with two new adjacent nodes u and u′ labelled by G[A] + q and G[B] + q′, respectively,
where q and q′ are the extremities of the new tree-edge thus created, q being universal to A′, and
q′ being universal to B′. The extremities of the tree-edges incident to v remain unchanged. See
Figure 3.

When a node-split or a node-join operation is performed, a marker vertex of the initial GLT is
inherited by the resulting GLT through the operation if its corresponding tree-edge has not been
affected by the operation, i.e. if its corresponding tree-edge is not created or deleted in one of the
above definitions.

The key property to observe is:

Observation 2.13. The node-join operation and the node-split operation preserve the accessibility
graph of the GLT.

N(q) N(q’)

1

2

3

4

5

split

join

q
1

2

5

u

q’

3

4
u’

Figure 3: Example of the node-join and node-split.

Hence, GLTs do not uniquely encode graphs. In particular, recursive application of the node-
join on every edge of a GLT of G leads to the GLT with a unique node labelled by the accessibility
graph G. And conversely, any GLT of a graph G can be obtained by recursive application of the
node-split from the GLT consisting of a unique node labelled by G.

Also, observe that, as a consequence, the accessibility graph G of a GLT and the tree structure
of the GLT (with leaves labelled by V (G)) completely determine the node labels of the GLT.
Therefore, transforming a GLT into another GLT using node-splits and node-joins can be done
using any ordering for such operations. In particular, performing a set of node-joins can be done
in any order without changing the result (the final tree structure is obtained by contracting edges
from the initial tree). And concerning node-splits, creating two tree-edges using these operations
can be done equally by creating first one tree-edge or the other. We emphasize these two remarks,
as they will guarantee the consistency of further constructive statements.
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Remark 2.14. Applying a sequence of node-joins on a GLT yields the same GLT, regardless of
the order of the node-joins.

Remark 2.15. Recalling the notation of Definition 2.12, let v be a node of a GLT and let (A,B)
and (C,D) be two splits of G(v) such that A ⊂ C. Then applying the node-split on v with respect
to (A,B) and then on node u′ with respect to ((C \ A) ∪ {q′},D) or applying the node-split on v
with respect to (C,D) and then on node u with respect to (A, (B \D) ∪ {q}) yields the same GLT.

Of special interest are those node-joins/splits involving degenerate nodes. The clique-join is
a node-join involving adjacent cliques: its result is a clique node; the clique-split is its inverse
operation. The star-join is a node-join involving adjacent stars whose common incident tree-edge
has exactly one extremity that is the centre of its star: its result is a star node; the star-split is its
inverse operation. Figure 4 provides examples.

K4 K3

clique-join

clique-split

K5

S 4 S 3

star-join

star-split

S 5

Figure 4: Examples of the clique-join/split and star-join/split.

Definition 2.16. A GLT is reduced if all its labels are either prime or degenerate, and no clique-
join or star-join is possible.

We can now state the main result of [14], as reformulated in [23, 24].

Theorem 2.17 ([14, 23, 24]). For any connected graph G, there exists a unique, reduced graph-
labelled tree (T,F) such that G = Gr(T,F).

The unique GLT guaranteed by the previous theorem is the split-tree, and is denoted ST (G).
The GLT in Figure 1 is the split-tree for the accessibility graph pictured there. The split-tree is
the intended replacement for Cunningham’s split decomposition tree. The following theorem first
appeared in Cunningham’s seminal paper [14] in an equivalent form. We phrase it in terms of GLTs
and the split-tree:

Theorem 2.18 ([14]). Let G be a connected graph. A bipartition (A,B) is a split of G if and only
if either there exists an internal tree-edge of ST (G) with extremities p and q such that A = L(p) and
B = L(q), or there exists a degenerate node u and a split (Au, Bu) of G(u) such that A = ∪p∈Au

L(p)
and B = ∪p∈Bu

L(p).

In order words, the split-tree can be understood as a compact representation of the family of
splits of a connected graph. Indeed it is easy to show that the size of the split-tree ST (G) of a
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graph is linear in the size of G (the sum of the sizes of label graphs of ST (G) is linear in the size of
G), whereas a graph can have exponentially many splits (it is the case for the clique and the star).
The following corollary is simply a rephrasing of Theorem 2.18 based on the node-split operation.

Corollary 2.19 ([14, 23, 24]). Let ST (G) = (T,F). Any split of G is the bipartition (of leaves)
induced by removing an internal tree-edge from T̃ , where T̃ = T , or T̃ is obtained from T by exactly
one node-split of a degenerate node.

Compared to Cunnigham’s split decomposition tree or the skeleton graph representation (see
the remarks following Definition 2.3), the advantage of the split-tree is manifest. The adjacency
relation in the underlying graph is now explicitly represented by the accessibility relation, and
the role played by the marker vertices (and their own adjacencies) is established. All this added
information comes with no space-tradeoff:

Lemma 2.20 ([23, 24]). Let ST (G) = (T,F). If x ∈ V (G), then |T (N(x))| ≤ 2 · |N(x)|.

3 Lexicographic breadth-first search

As mentioned in the introduction, our algorithm incrementally builds the split-tree by adding
vertices one at a time from the input graph. Now, adding a single vertex to the split-tree of a
graph with n vertices can require Θ(n) changes, as demonstrated in Figure 5. However, later in
the paper we prove that if vertices are added according to a Lexicographic Breadth-First Search
(LBFS) ordering, then the total cost of inserting all vertices of G can be amortized to linear time
up to inverse Ackermann function.

x

a path G ST(G)

x

ST(G+x)

Figure 5: Adding a single vertex adjacent to the ends of a path requires Θ(n) changes to the
split-tree (the neighbours of x appear as the grey leaves).

This section presents new LBFS results on the split decomposition and more generally on GLTs.
We first present the LBFS algorithm and some known results.

3.1 LBFS orderings

Lexicographic Breadth-First Search (LBFS) was developed by Rose, Tarjan, and Lueker for the
recognition of chordal graphs [35] and has since become a standard tool in algorithmic graph
theory [10].

An ordering σ of a graph G is a linear ordering of its set of vertices V (G). Formally, we can
define it either as an injective mapping from V (G) to the integers, or as an ordering binary relation.

9



We slightly abuse notation by allowing σ to represent such a mapping as well as the ordering, and
we let <σ denote the binary relation: x <σ y is equivalent to σ(x) < σ(y). In such a case, we say
that “x appears before y”, or “earlier than y”, in σ. Similarly, by “first”, “last” and “penultimate”,
we denote respectively, the smallest element of <σ, the greatest element and the element appearing
immediately before the last one.

By an LBFS ordering of the graph G, we mean any ordering produced by Algorithm 2 on input
graph G. Notice that such an ordering can be built in linear time (see e.g. [26, 27]).

Algorithm 2: Lexicographic Breadth-First Search

Input: A graph G with n vertices.
Output: An ordering σ defined by a mapping σ : V (G)→ {1, . . . , n}.

foreach x ∈ V (G) do label(x) ← null;
for i = 1 to n do

pick an unnumbered vertex x with lexicographically largest label;
σ(x)← i ; // assign x the number i
foreach unnumbered vertex y ∈ N(x) do append n− i+ 1 to label(y);

end for

The next result characterizes LBFS orderings:

Lemma 3.1 ([17, 26]). An ordering σ of a graph G is an LBFS ordering if and only if for any
triple of vertices a <σ b <σ c with ac ∈ E(G), ab /∈ E(G), there is a vertex d <σ a such that
db ∈ E(G), dc /∈ E(G).

For a subset S of V (G), σ[S] denotes the restriction of σ to S. A prefix of an ordering σ is a
set S such that x <σ y and y ∈ S implies x ∈ S. One obvious result is the following:

Remark 3.2. Let S be a prefix of any LBFS ordering σ of connected graph G. Then σ[S] is an
LBFS ordering of G[S], and G[S] is connected.

3.2 LBFS and split decomposition

We now introduce a general lemma about split decomposition, followed by lemmas relating LBFS
orderings and split decomposition.

Lemma 3.3. Let G and G + x be two connected graphs such that G is prime but G + x is not.
Then either x is a pendant vertex or x has a twin.

Proof. Since G + x is not prime, it has a split (A,B). Let A′ and B′ be the frontiers of the split.
Without loss of generality, assume that x ∈ A. Since (A \ {x}, B) is not a split in G, we know
that |A| = 2. If A′ = {x}, then G is disconnected. If A′ = {x, y}, then y is a twin of x. If
A′ = {y}, y 6= x, then N(x) = {y}, since G+ x is connected. Therefore x is a pendant.

Lemma 3.4. Let G and G + x be two connected graphs and let σ be an LBFS ordering of G + x
in which x appears last. If G is prime and x has a twin y, then y is either universal in G or is the
penultimate vertex in σ.

10



Proof. Observe that if |V (G)| > 3, then y is unique since G is prime. Consider an execution of
Algorithm 2 that produced the ordering σ. Let S be the set of vertices with the same label as y
at the time y is numbered by Algorithm 2 (of course y ∈ S). As x and y are twins, we must have
x ∈ S. We can assume that S \ {y, x} 6= ∅ as otherwise y would be the penultimate vertex of σ.
Let B be the set of vertices numbered before y by Algorithm 2. Observe that |B| 6 1 as otherwise
G would contain the split (B,S \ {x}).

Consider the case where B = ∅. Then y is the first vertex in σ and immediately following y are
the vertices in N(y). If y is not universal in G, then the set Z = V (G)−N(y) is non-empty and in
σ, all of its vertices appear after those in N(y). We claim that there is a join between N(y) and Z.
Suppose for contradiction that there is no such join. Then there is a vertex w ∈ N(y) that is not
universal to Z. Consider some vertex z ∈ Z such that wz /∈ E(G). With x and y twins, it follows
that wx ∈ E(G). Hence, w <σ z <σ x, and wx ∈ E(G) but wz /∈ E(G). Therefore, by Lemma 3.1,
there is a vertex d <σ w such that dz ∈ E(G) but dx /∈ E(G). But x is universal to N(y) since it
is y’s twin, and thus d /∈ N(y). Given the restrictions on σ noted above, it follows that d = y. But
then dz /∈ E(G), since z ∈ Z, providing the desired contradiction.

That means there is a join between N(y) and Z. But now, unless |N(y)| = 1, (N(y), Z ∪ {y})
is a split in G contradicting G being prime. When |N(y)| = 1, if |Z| = 1, then G is a star on three
vertices and G+ x is a star on four vertices, where the penultimate vertex is a twin of x (note that
by Lemma 3.1, xy /∈ E); if |Z| > 1, (N(y) ∪ {y}, Z) is a split in G. Thus B is not empty.

So let s be the unique vertex of B. Now S, as ordered by σ, consists of y followed by Z1 =
N(y) ∩ S, followed by Z2 (vertices of S ∩ V (G) not adjacent to y); x is the last element of S As
S \ {y, x} 6= ∅, we have that Z1 ∪ Z2 6= ∅. Since x and y are twins, x is universal to Z1 and not
adjacent to any vertices in Z2. Since y is not universal in G, |Z2| > 0 and thus by Lemma 3.1, x is
not adjacent to y. If |Z1| = 0, then unless |Z2| = 1, G has the split ({y, s}, Z2). If |Z2| = 1, then,
as in the B = ∅ case, G is a star on three vertices and G + x is a star on four vertices, where the
penultimate vertex is a twin of x. Thus |Z1| > 0 and |Z2| > 0. By the application of Lemma 3.1 to
(z1, z2, x), where z1 ∈ Z1, z2 ∈ Z2, we see that z1z2 ∈ E(G) and thus ({s} ∪ Z1, {y} ∪ Z2) is a split
of G, contradicting G being prime.

Let u be a node in a GLT (T,F). Notice that the sets L(q), q ∈ V (u) partition the leaves of T .
In other words, each marker vertex can be associated with a distinct leaf in T . This allows us to
define a type of induced LBFS ordering on G(u) as demonstrated below.

Definition 3.5. Let u be a node of a GLT (T,F) and let σ be an ordering of G = Gr(T,F). For
any marker vertex p, let xp be the earliest vertex of A(p) in σ. Define σ[G(u)] to be the ordering
of G(u) such that for q, r ∈ V (u), q <σ[G(u)] r if xq <σ xr.

Lemma 3.6. Let σ be an LBFS ordering of a connected graph G = Gr(T,F), and let u be a node
in (T,F). Then σ[G(u)] is an LBFS ordering of G(u).

Proof. First observe that if we collect in a set S one leaf ℓq of A(q) for every marker vertex q ∈ V (u),
then the induced subgraph G[S] is isomorphic to G(u). Notice that σ[G(u)] is then the ordering
σ[S] if each selected leaf ℓq is chosen to be the earliest in σ. We prove by induction on the number
of nodes in T that σ[S] = σ[G(u)] is an LBFS ordering of G(u). To that aim, we use Lemma 3.1.

As an induction hypothesis, assume the lemma holds for all graphs whose split-tree has fewer
nodes than ST (G). The lemma clearly holds if (T,F) contains only one node, because G[S] is
isomorphic to G in this case.
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So assume that (T,F) contains more than one node. Then there is a q ∈ V (u) such that
T (q) contains at least one node. Let ℓq ∈ A(q) be the leaf associated with q in σ[G(u)]. Let
G′ = G[(V (G) \L(q))∪{ℓq}]. Remove T (q) from (T,F), choosing ℓq to be the leaf that replaces its
nodes; let (T ′,F ′) be the resulting GLT. Clearly G′ = Gr(T ′,F ′). For simplicity, let σ′ = σ[V (G′)].
Suppose a, b and c form a triple of vertices of V (G′) as in Lemma 3.1. As σ is an LBFS ordering of
G, there exists d ∈ V (G) appearing earlier than a in σ which is adjacent to b but not to c. Suppose
that d does not belong to V (G′), i.e. d 6= ℓq and d ∈ L(q). Let p be q’s opposite in (T,F). As
(L(q), L(p)) is a split of G, the vertex b either belongs to L(p) or L(q). In the former case, since
b is adjacent to a vertex in L(q), b ∈ A(p) and thus d ∈ A(q). By the choice of ℓq, it can replace
vertex d. (Note that c ∈ L(p) \ A(p) and thus lq and c are not adjacent.) In the latter case, since
ℓq is the only L(q) vertex in G′, b = ℓq and b ∈ A(q). Moreover, by the choice of ℓq, d belongs to
L(q) \A(q). We now prove that a cannot appear before b in σ, yielding a contradiction. As b is the
only vertex of L(q) present in V (G′), so vertex a belongs to L(p) \ A(p). By the choice of ℓq, no
vertex of A(q) appears before a in σ. By Remark 3.2, the subgraph of G induced on the vertices
of σ up to, and including a is connected. But, there can be no path in the subgraph connecting
d ∈ L(q) \A(q) and a since A(q) is a separator for d and a, and b = ℓq is the earliest vertex of A(q)
in σ. Thus a cannot appear before b in σ, thereby contradicting the existence of the triple {a, b, c}.
It follows that σ′ is an LBFS ordering of G′.

Of course, (T ′,F ′) has fewer nodes than (T,F). We can therefore apply our induction hypoth-
esis. Hence, σ[S] is an LBFS ordering of G′[S]. But notice that G′[S] is isomorphic to G[S] which
is isomorphic to G(u). The induction step follows.

4 Incremental split decomposition

Throughout this section we assume that the graphs G and G+ x are both connected. We provide
a simple combinatorial description of the updates required in ST (G) to arrive at ST (G+ x). The
proof is obtained by a case by case analysis of the properties of ST (G) when removing x from
ST (G+ x), which turns out to be easily invertible.

4.1 State assignment

Most results in the paper rely on the next definition. Intuitively, its aim is to allow a characterization
of the portions of the split-tree that change or fail to change under the insertion of a new vertex.

Definition 4.1. Let (T,F) be a GLT, and let q be one of its leaves or marker vertices. Let S be a
subset of T ’s leaves. Then the state (with respect to S) of q is:

- perfect if S ∩ L(q) = A(q);
- empty if S ∩ L(q) = ∅;
- and mixed otherwise.
For a node u, define the sets P (u) = {q ∈ V (u) | q perfect}, M(u) = {q ∈ V (u) | q mixed}, and

NE(u) = P (u) ∪M(u) (“NE” for “Not-empty”). See Figure 6.

Remark 4.2. The state of a marker vertex before and after a node-split or a node-join is the same.

Notice that the opposite of any leaf l must be either perfect (if l ∈ S) or empty (if l 6∈ S).
We extend the state definition to subtrees: if a marker vertex (or leaf) q is perfect (respectively
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Figure 6: A GLT and states assigned according to the shaded leaves (“P” for “perfect”, “M” for
“mixed”, and “E” for “empty”.)

empty, mixed), then the subtree T (q) is perfect (respectively empty, mixed) as well. A node u of T
is hybrid if every marker vertex q ∈ V (u) is either perfect or empty and q’s opposite is mixed. A
tree-edge e of T is fully-mixed if both of its extremities are mixed. A fully-mixed subtree T ′ of T is
one that contains at least one tree-edge, all of its tree-edges are fully-mixed, and it is maximal for
inclusion with respect to this property. For a degenerate node u, we denote:

P ∗(u) = {q ∈ V (u)| q perfect and not the centre of a star},

E∗(u) = {q ∈ V (u)| q empty, or q perfect and the centre of a star}.

We now describe some basic properties. The first key lemma follows directly from Remark 2.10,
and implies the subsequent corollary.

Lemma 4.3 (Hereditary property). Let (T,F) be a GLT marked with respect to a subset of leaves
S. Then

1. a marker vertex q is perfect if and only if every accessible descendant of q is perfect and every
non-accessible descendant of q is empty.

2. a marker vertex q is empty if and only if every descendant of q is empty.

Corollary 4.4. Let (T,F) be a GLT marked with respect to a subset of leaves S.

1. If marker vertex q is mixed, then every marker vertex having q as a descendant is mixed.

2. If a tree-edge has a perfect or empty extremity q with a mixed opposite, then, for every tree-
edge in T (q), the extremity that is a descendant of q is perfect or empty and its opposite is
mixed.

3. If there exists a hybrid node, then it is unique.

4. In a clique node, if every marker vertex is perfect, then every opposite of a marker vertex is
also perfect.

5. In a star node, if every marker vertex is empty, except the centre which is perfect, then every
opposite of a marker vertex is perfect, except the opposite of the centre which is empty.
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4.2 Lemmas deriving ST (G) from ST (G+ x)

This subsection is devoted to technical lemmas, which aim to enumerate and characterize in terms
of states all possible cases for the deletion of x from ST (G+ x). Their proofs rely on an extensive
use of the hereditary property (Lemma 4.3) and Corollary 4.4. These lemmas will only be used in
the proofs of the next subsection to describe how to update ST (G) when inserting a new vertex.

In this subsection, we let u denote the node of ST (G+ x) to which the leaf x is attached. Let
(Tx,Fx) be the GLT, obtained from ST (G+x) by removing leaf x and x′ its opposite marker vertex
in the label of u, and let ux be the node corresponding to u in (Tx,Fx), such that G(ux) = G(u)−x′.
Note that the accessibility graph of (Tx,Fx) is G. For convenience, but contrary to the definition,
the GLT (Tx,Fx) is allowed to have a binary node ux in the case where u was ternary; in this case,
“contraction of ux to e” refers to the operation of replacing ux and its two adjacent tree-edges by a
single tree-edge e. To simplify, we may identify a marker vertex in (Tx,Fx) with the corresponding
marker vertex in ST (G+x). Finally, we assume that ST (G) and (Tx,Fx) are marked with respect
to S = NG(x). Notice we consider x to have the perfect state and thus the states of the descendants
of x in (Tx,Fx) are determined to be either perfect or empty by applying Lemma 4.3-1 in ST (G+x).
To shorten statements, a tree-edge is said to be PP , PE, PM , EM , or MM (i.e. fully-mixed),
depending on the states of its two extremities, where P , E, and M , stands respectively for perfect,
empty, and mixed.

In the following subsections, we deal with all possibilities of u, the node in ST (G+ x) to which
x is adjacent.

4.2.1 u is a clique

Lemma 4.5. Assume x is adjacent to a clique u in ST (G + x). Then every tree-edge of (Tx,Fx)
incident to ux is PP , and every other edge in (Tx,Fx) is either PM or EM .

Proof. Every marker vertex of ux is a descendant of x in ST (G+ x) and hence it is perfect by the
hereditary property (Lemma 4.3-1). Then by Corollary 4.4-4, every opposite p of a marker vertex
t of ux is perfect. So every tree-edge incident to ux is PP .

Let v be a node adjacent to ux by the tree-edge e, and let p and t be respectively the extremities
of e in v and in ux. Let r be the opposite of a marker vertex q of v distinct from p. Observe that
T (r) contains the node ux and thus r has a perfect descendant. So by the hereditary property
(Lemma 4.3-2), r cannot be empty.

We now prove that if r is perfect then, by the hereditary property (Lemma 4.3-1), v is a clique
node. Observe first that Lemma 4.3-1 applied on r and p implies that p and q are adjacent. Since
G(v) is connected and contains at least 3 marker vertices, v contains a marker vertex distinct from
p and q adjacent to at least one of p or q. As every such vertex s is a descendant of t and r
(both being perfect), Lemma 4.3-1 implies that s is adjacent to both p and q. It follows that either
({p, q}, V (G(v)) \ {p, q}) forms a split in G(v) or v is ternary. Since ST (G+ x) is reduced, in both
cases v is degenerate and by the adjacencies between p, q and s, v is a clique node.

So we proved that if r is perfect, then ST (G + x) contains two adjacent clique nodes: contra-
diction. It follows that r is mixed. By the hereditary property (lemma 4.3-1), since t is perfect, q
is either perfect or empty. Hence, every tree-edge not incident to ux is PM or EM by Corollary
4.4-2.

Lemma 4.6. Assume x is adjacent to a clique node u in ST (G+ x).
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1. If u is ternary, let (T,F) be the GLT resulting from the contraction of ux to e in (Tx,Fx).

(a) If (T,F) is reduced then ST (G) = (T,F) and e is the unique PP tree-edge of ST (G),
every other tree-edge is PM or EM .

(b) Otherwise, ST (G) results from the star-join in (T,F) of the nodes incident to e (let v
be the resulting node). Then v is the unique hybrid node of ST (G), and every tree-edge
is PM or EM .

2. If u is not ternary then ST (G) = (Tx,Fx), ux is the unique clique node of ST (G) whose
marker vertices are all perfect, the tree-edges incident to ux are PP and every other tree-edge
is PM or EM .

Proof. The correctness of the construction of ST (G) follows directly from the definition of the
split-tree since the involved operations preserve the accessibility graph G and yield a reduced GLT.
The state properties of tree-edges come directly from Lemma 4.5 since, by Remark 4.2, states of
marker vertices are preserved by the involved operations. This conclude the proof for cases 1(a)
and 2 since uniqueness follows in both cases from Lemma 4.5.

In case 1(b), let p and q denote the two marker vertices of ux. Observe that as u is a clique
node and as (T,F) is not reduced, the two neighbours v1 and v2 of ux are star nodes such that the
centre of v1 is the opposite of p, whereas the centre of v2 is not the opposite of q. It follows that
ST (G) results from a star-join of v1 and v2. Note that the node v (resulting from the star-join)
inherits from v1 and v2 the descendants of x in ST (G + x). It follows by the hereditary property
(Lemma 4.3-1), that the marker vertices of v are perfect or empty. Finally observe that v contains
empty and perfect marker marker vertices: the non-centre marker vertices inherited from v2 are
empty, all the others are perfect. It follows that v is a hybrid node and it is unique (by Corollary
4.4-3).

4.2.2 u is a star node

Lemma 4.7. Assume x is adjacent to a star node u in ST (G+x). Then every tree-edge of (Tx,Fx)
incident to ux is PE, and every other edge in (Tx,Fx) is either PM or EM .

Proof. Let c be the centre of the star G(u). Since G is connected, x′ the opposite of x is a degree-1
marker vertex of G(u). It follows that S = A(c), and thus, c is perfect and, by Corollary 4.4-5, its
opposite p is empty. Now let q be a marker vertex of ux distinct from c and let r be its opposite.
By the hereditary property (Lemma 4.3-2), as a descendant of p, q is empty. By Corollary 4.4-5, r
is perfect. So we proved that every tree-edge incident to ux is PE.

We now prove that every tree-edge non-incident to ux is either PM or EM. Let v be a node
adjacent to ux by the tree-edge e, and let p and t be respectively the extremities of e in v and in
ux. Let r be the opposite of a marker vertex q of v distinct from p.

Assume first that t 6= c. Then by Lemma 4.3-2, since c is a perfect descendant of r, r is not
empty. So suppose for contradiction that r is perfect. Observe first that Lemma 4.3-1 applied to
r and p implies that p and q are adjacent and that by Lemma 4.3-2, as a descendant of t, q is
empty. Since G(v) is connected and contains at least 3 marker vertices, v contains a marker vertex
s distinct from p and q adjacent to at least one of p or q. As S = A(c), we have that L(s) ∩ S = ∅
implying that s is empty. As s is a descendant of r, by Lemma 4.3-1, s is not adjacent to q and
thereby it is adjacent to p. It follows that in G(v), the marker vertex q has degree one. Then v has

15



to be a star node whose centre is p: this contradicts the fact that ST (G+ x) is reduced. It follows
that r is mixed (it can not be perfect or empty).

Assume now that t = c. If r is empty, by definition L(r) ∩ S = ∅. For every neighbour q′ of p,
there exists a leaf accessible from c in T (q′), and hence an element of S is in T (q′). But now, for
every q′ 6= q, T (q′) ⊆ T (r) which contradicts L(r) ∩ S = ∅. Thus q is the only neighbour of p in
G(v), and v has to be a star node whose centre is q; this contradicts the fact that ST (G + x) is
reduced. So r is perfect or mixed. Now assume r is perfect. Since p is an empty descendant of r,
by Lemma 4.3-1, p and q are not adjacent in G(v). Since G(v) is connected and contains at least 3
marker vertices, v contains a marker vertex distinct from p and q adjacent to at least one of p or q.
As every such vertex s is a descendant of r and c, both being perfect, Lemma 4.3-1 implies that s
is adjacent to p and q. It follows that either ({p, q}, V (G(v)) \ {p, q}) forms a split in G(v) or v is
ternary. In both cases, v is degenerate and by the adjacencies between p, q and s, v is a star node
whose centre is s. This contradicts the fact that ST (G+ x) is reduced. It follows in this case also
that r is mixed (it can not be perfect or empty).

So r is always mixed and q is perfect or empty by the hereditary property (Lemma 4.3-1 applied
to the marker vertices of ux). Then, every tree-edge not incident to ux is PM or EM by Corollary
4.4-2.

Lemma 4.8. Assume x is adjacent to a star node u in ST (G+ x).

1. If u is ternary, let (T,F) be the GLT resulting from the contraction of ux to e in (Tx,Fx).

(a) If (T,F) is reduced then ST (G) = (T,F) and e is the unique PE tree-edge of ST (G),
and every other tree-edge is PM or EM .

(b) Otherwise, ST (G) results from the star-join or a clique-join in (T,F) of the nodes inci-
dent to e (let v be the resulting node). Then v is the unique hybrid node of ST (G), and
every tree-edge is PM or EM .

2. If u is not ternary then ST (G) = (Tx,Fx), ux is its unique star node whose marker vertices
are all empty except the centre, which is perfect, tree-edges adjacent to ux are PE, and all
other tree-edges are PM or EM .

Proof. The proof follows the same lines as the proof of Lemma 4.6, using Lemma 4.7 instead of
Lemma 4.5. Only the arguments to show that v is a hybrid node in case 1(b) differ slightly.

So assume case 1(b) holds. As u is ternary and (T,F) is not reduced, the two neighbours v1
and v2 of u are either clique nodes or star nodes. Suppose that the centre c of u is the extremity
of the tree-edge uv1. Let: p1 be the opposite of c; p2 be the marker vertex of v2’s extremity of the
tree-edge uv2; and q be the opposite of p2. Observe that p1 is universal in G(v1): this is trivial if
G(v1) is a clique node; if G(v1) is a star node, then the fact that ST (G+x) is reduced implies that
p1 is the centre of the star. Now, due to their adjacency with x′ (the opposite of x), c is perfect
and q is empty. It follows by Lemma 4.3-1, that the marker vertices of v1 distinct from p1 are
perfect (since they are accessible descendants of c). Similarly, by Lemma 4.3-2, the marker vertices
of v2 distinct from p2 are empty (since they are descendant of q). As all these marker vertices are
inherited by v, v is an hybrid node which is unique (by Corollary 4.4-3).

4.2.3 u is a prime node

Here we have two cases depending on whether or not G(ux) is also prime.
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Lemma 4.9. Assume that x is adjacent to a prime node u in ST (G+ x) such that G(ux) is also
prime. Then ST (G) = (Tx,Fx), ux is its unique hybrid node, and every tree-edge is PM or EM .

Proof. Observe that by construction, every marker vertex of ux is either perfect or empty. Let p
be the opposite of a marker vertex t of ux. Assume that p is perfect. Then, in G(u), t is a twin of
x′, the opposite of x: contradicting the fact that u is a prime node of ST (G+ x). So assume that
p is empty. Then, by the hereditary property (Lemma 4.3-2), every marker vertex q distinct from
t in ux is empty. It follows that A(t) = S and thereby t is the only neighbour of x′ in G(u). This
is again a contradiction with the fact that u is a prime node of ST (G + x), since a prime graph
does not contain pendant vertices. Thus p is mixed and now the proof follows from Corollary 4.4
(-2 and -3).

It remains to analyse the case where x is adjacent to a prime node u in ST (G+ x) but G(ux)
is not prime. To that aim, we describe a three step construction that computes ST (G) from
ST (G+ x). Note that this construction is not part of the Split Decomposition Algorithm itself.

Let us first recall that when a node-join or a node-split has been performed on an initial GLT,
then a marker vertex is inherited by the resulting GLT if its corresponding tree-edge is not affected
by the operation. We say that a tree-edge e = uv of a GLT is non-reduced if a node-join on u and
v yields a star node or a clique node.

The announced construction is the following; it uses (Tx,Fx) as input:

1. While the current GLT contains a node v which is neither prime nor degenerate, find a split
in G(v) and perform the node-split accordingly.

2. While the resulting GLT contains a non-reduced tree-edge e both extremities of which are not
inherited from (Tx,Fx), perform the corresponding node-join. Let (T ′

x,F
′

x) be the resulting
GLT.

3. While the current GLT contains a non-reduced tree-edge, perform the corresponding node-
join. Let (T,F) be the resulting GLT.

The rest of the results in this section should be interpreted in the context of the above con-
struction, which will subsequently be referred to as the prime-splitting construction for simplicity.
The following observation concerning the prime-splitting construction follows from the fact that
a node-join and a node-split do not change the accessibility of a GLT and that (T,F) is clearly
reduced.

Observation 4.10. The GLT (T,F) resulting from the prime-splitting construction is the split-tree
ST (G).

Intuitively, the GLT (T ′

x,F
′

x) is obtained from Tx,Fx by replacing the node ux with the split-
tree ST (G(ux)). Such a replacement is obtained by accurately identifying the leaves of ST (G(ux))
with the marker vertices opposite the marker vertices of ux. Indeed, note that in the case where
G+ x is prime, but not G, then ST (G) = (T ′

x,F
′

x) = (T,F). To help the intuition of the following
lemmas, we state the summarizing lemma (Lemma 4.13) in the context of this special case.

We will now describe the properties of ST (G) and of the intermediate GLT (T ′

x,F
′

x) in terms
of the states of their marker vertices. Recall that by Remark 4.2, the states of inherited marker
vertices remain unchanged. Also observe that after a series of node-joins and node-splits, a tree-
edge e of the resulting GLT has its two extremities either both inherited or both non-inherited.
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In the former case, e is an inherited tree-edge, in the latter case a non-inherited tree-edge. Finally
observe that if e is a non-inherited tree-edge, then it corresponds to a split (Ax, Bx) of G(ux)
since it results from the first and second steps of the prime-splitting construction. Intuitively, the
non-inherited tree-edges correspond to the internal tree-edges of ST (G(ux)).

Lemma 4.11. Consider the prime-splitting construction. Assume that x is adjacent to a prime
node u in ST (G + x). Then every non-inherited tree-edge of (T ′

x,F
′

x) is MM and every inherited
tree-edge is PM or EM.

Proof. Note that if G(ux) is prime, the result is trivial. We first prove that inherited tree-edges are
PM or EM. To that aim we first argue that every opposite q of a marker vertex p of ux is mixed
in (Tx,Fx) marked with respect to S. Observe that q cannot be perfect, since otherwise p and x′

are twins in G(u), contradicting node u being a prime node (a prime graph cannot have a pair of
twins). So assume that q is empty. Then p cannot be empty since otherwise we would have S = ∅
(as L(q) = L(p) = ∅). If p is perfect, then p has degree 1 in G(u) (since L(q) = ∅). Thus p is
a pendant vertex of G(u): contradiction, a prime graph cannot have a pendant vertex. It follows
by Corollary 4.4-2 that every tree-edge of (Tx,Fx) is PM or EM. Now by Remark 4.2, the state of
the inherited marker vertices are preserved under node-joins and node-splits. Thus every inherited
tree-edge of (T ′

x,F
′

x) is PM or EM.
We now deal with non-inherited tree-edges. Let p be the extremity of such a tree-edge e in

(T ′

x,F
′

x). Denote by (A,B) the split of G corresponding to e with L(p) = B. As noticed before,
e also corresponds to a split (Ax, Bx) of G(ux) (we see that A = ∪q∈Ax

L(q) and B = ∪q∈Bx
L(q)).

We prove that if p is not mixed, then G(u) contains a split, a contradiction with u being a prime
node. So assume first that p is empty. Then by definition L(p) ∩ S = B ∩ S = ∅. It follows that
the bipartition (A ∪ {x}, B) is a split of G+ x and thus (Ax ∪ {x

′}, Bx) is a split of G(u). Assume
now that p is perfect, then L(p)∩S = B ∩S = A(p). It follows that (A∪{x}, B) is a split of G+x
(here x belongs to the frontier of A). Thereby (Ax ∪ {x

′}, Bx) is again a split of G(u). Thus p is
mixed, as required.

Lemma 4.12. Consider the prime-splitting construction. Assume that x is adjacent to a prime
node u in ST (G+x). Let w be a degenerate node incident to a non-inherited tree-edge in (T ′

x,F
′

x).

1. If w is a star, the centre of which is perfect, then w has no empty marker vertex and at most
two perfect marker vertices.

2. Otherwise w has at most one empty marker vertex and at most one perfect marker vertex.

Proof. First observe that the result is trivial if G(ux) is prime. Note that every empty or perfect
marker vertex p is inherited. Otherwise p would be the extremity of a tree-edge e corresponding to
a split (Ax, Bx) of G(ux) and being empty or perfect would imply that (Ax ∪ {x}, Bx) is a split of
G(u), contradicting u being prime.

1. w is a star node, the centre c of which is perfect: Suppose that w has an empty marker vertex
q (distinct from c). As q is inherited from ux and not accessible from every marker vertex
inherited from ux, q is a pendant vertex in G(u): contradicting u being a prime node. So no
marker vertex of w is empty. Suppose now that w has two perfect marker vertices p and p′

distinct from c. Again p and p′ are inherited from ux. Moreover, every inherited vertex from
ux accessible to p is accessible to p′ (and vice versa). It follows that p and p′ form a pair of
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twins in G(u): contradicting u being a prime node. So w contains at most two perfect marker
vertices (including c).

2. otherwise: Suppose that w is a clique node containing two perfect (or two empty) marker
vertices p and p′. Again p and p′ are inherited from ux and have the same accessibility set
among the inherited marker vertices of ux. Thereby p and p′ are twins in G(u): contradicting
u being a prime node.

Assume that w is a star node, the centre c of which is not perfect. If c is mixed, then the
same argument as for the clique node proves the property. So assume that c is empty. Then
the same argument as in case 1 applies. If w contains an empty marker vertex q distinct from
c, then q is pendant in G(u). If w contains two perfect marker vertices p and p′ (distinct from
c by hypothesis), then p and p′ are twins in G(u). Both cases lead to a contradiction.

The following lemma summarizes what we have found so far and completes the picture. Recall
that P ∗(u) = {q ∈ V (u)|q is perfect and not the centre of a star} and that E∗(u) = {q ∈ V (u)|q is
empty, or q is perfect and the centre of a star}.

Lemma 4.13. Consider the prime-splitting construction. Assume that x is adjacent to a prime
node u in ST (G+ x) such that G(ux) is not prime. Then:

1. ST (G) = (T,F);

2. every tree-edge of ST (G) both extremities of which are not inherited from (Tx,Fx) is MM
and all other tree-edges are PM or EM ;

3. a degenerate node v of (T,F) incident to a non-inherited tree-edge results from at most two
node-joins during step 3 of the construction and these node-joins respectively generate the
split (P ∗(v), V (v) \ P ∗(v)) and/or (E∗(v), V (v) \ E∗(v)) of G(v).

Proof. The first assertion is given by Observation 4.10 and the second follows from Lemma 4.11
and Remark 4.2. So it remains to prove the third property.

Let v be a degenerate node of (T,F) incident to a non-inherited tree-edge (i.e. an MM tree-
edge). Observe that if v results from the node-join of nodes w and w′ during the third step, then
the tree-edge e = ww′ is inherited (i.e. EM or PM) and exactly one of the two nodes, say w is
incident to an MM tree-edge. Let p the extremity of e in w and q be the (mixed) extremity of e in
w′. We need to examine all the possibilities for p and w. We provide all details for the first case;
the others use similar arguments.

If w is a star node and p its perfect centre, then q is a degree-1 marker vertex of w′. The
resulting star node v contains the split (E∗(v), V (v) \ E∗(v)) where E∗(v) is the set of inherited
marker vertices of w′ (E∗(v) contains the perfect centre and the empty degree-1 marker vertices of
w′). This follows from Lemma 4.12-1 which shows that q is the only empty marker vertex and from
Remark 4.2 that claims that the states of inherited marker vertices are unchanged under node-join.

The other cases follow from Lemma 4.12-2. If p is an empty marker vertex of w (in that case,
the node w can be a star or a clique as well), then node v contains the split (E∗(v), V (v) \ E∗(v))
with E∗(v) is the set of inherited marker vertices of w′. Now if p is a perfect marker vertex but not
the centre of a star, then the resulting node contains the split (P ∗(v), V (v) \P ∗(v)) where P ∗(v) is
composed of the marker vertices inherited from w′.
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Finally, by Lemma 4.12 a degenerate node incident to an MM tree-edge contains at most two
non-mixed marker vertices, and thus at most two node-joins are required to generate node v. We
mention that forthcoming Figure 9 illustrates the two inverse node-split operations on v.

4.3 Construction of ST (G+ x) from ST (G)

Having shown how ST (G) can be derived from ST (G+x), we now use these results to characterize
how ST (G + x) can be derived from ST (G). The various cases of the following theorem drive
our Split Decomposition algorithm in Section 5. Recall that by definition, a fully-mixed subtree is
maximal.

Theorem 4.14. Let ST (G) = (T,F) be marked with respect to a subset S of leaves. Then exactly
one of the following conditions holds:

1. ST (G) contains a clique node, whose marker vertices are all perfect, and this node is unique;

2. ST (G) contains a star node, whose marker vertices are all empty except the centre, which is
perfect, and this node is unique;

3. ST (G) contains a unique hybrid node, and this node is prime;

4. ST (G) contains a unique hybrid node, and this node is degenerate;

5. ST (G) contains a PP tree-edge, and this edge is unique;

6. ST (G) contains a PE tree-edge, and this edge is unique;

7. ST (G) contains a unique fully-mixed subtree.

Moreover, in every case, the unique node/edge/subtree is obtained from T by deleting, for every
tree-edge e with a perfect or empty extremity q whose opposite r is mixed, the tree-edge e and the
node or leaf corresponding to r. In case 1 and case 2, the node, together with its adjacent edges, is
obtained in this way.

Proof. By Lemmas 4.6, 4.8, 4.9 or 4.13, applied to G + x with N(x) = S, we directly know that
(at least) one condition holds. A more careful look at these lemmas also proves that exactly one
condition holds, implying directly with Corollary 4.4-2 the given construction by deletion of PM
and EM edges. First, notice that the following conditions are mutually exclusive: there exists
a PP edge; there exists a PE edge; there exists an MM edge. Indeed, every time one of these
conditions holds, all the tree-edges of another type are known to be PM or EM (Lemmas 4.6, 4.8,
and 4.13). These three cases are mutually exclusive from the existence of a hybrid node (Lemmas
4.6, 4.8, and 4.9). Together, these four cases – existence of a PP edge, PE edge, MM edge, and
hybrid node – determine the cases in the theorem: if there is exactly one (respectively at least two)
PP edge(s), then case 5 (respectively case 1) holds; if there is exactly one (respectively at least
two) PE edge(s), then case 6 (respectively case 2) holds; if there is a hybrid node, then it is either
prime (case 3) or degenerate (case 4) but not both; if there is an MM edge, then case 7 holds.

Proposition 4.15 (Cases 1, 2 and 3 of Theorem 4.14). Let ST (G) = (T,F) be marked with respect
to a subset N(x) of leaves. If ST (G) contains:
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• [case 1] a unique clique node u the marker vertices of which are all perfect, or

• [case 2] a unique star node u the marker vertices of which are all empty except its centre
which is perfect, or

• [case 3] a unique hybrid node u which is prime,

then ST (G + x) is obtained by adding to node u a marker vertex q adjacent in G(u) to P (u) and
making the leaf x the opposite of q.

Proof. Trivial by the definition of the split-tree; the resulting GLT is reduced and its accessibility
graph is G+x. Notice that each of these three cases is the converse construction of the one provided
in Lemma 4.6-2, or Lemma 4.8-2, or Lemma 4.9, respectively.

Proposition 4.16 (Case 4 of Theorem 4.14). Let ST (G) = (T,F) be marked with respect to
a subset N(x) of leaves. If ST (G) contains a unique hybrid node u which is degenerate, then
ST (G+ x) is obtained in two steps:

1. performing the node-split corresponding to (P ∗(u), E∗(u)) thus creating a tree-edge e both of
whose extremities are perfect or empty (see Figure 7);

2. subdividing e with a new ternary node adjacent to x and e’s extremities, such that the node
is a clique if both extremities of e are perfect, and such that the node is a star whose centre
is the opposite of e’s empty extremity otherwise (see Figure 8).

Proof. First, observe that (P ∗(u), E∗(u)) is a split since |P ∗(u)| > 1 and |E∗(u))| > 1, otherwise
the degenerate node u would either be a clique adjacent to a PP edge or a star adjacent to a
PE edge, contradicting u being hybrid. Then the construction follows easily from the definition
of the split-tree: the resulting GLT is reduced and its accessibility graph is G + x. Notice that
this construction is the converse of the one provided in Lemma 4.6-1(b) if the label is a clique, or
Lemma 4.8-1(b) if the label is a star.

Proposition 4.17 (Cases 5 and 6 of Theorem 4.14). Let ST (G) = (T,F) be marked with respect
to a subset N(x) of leaves. If ST (G) contains:

• [case 5] a unique tree-edge e both of whose extremities are perfect, then ST (G+x) is obtained
by subdividing e with a new clique node adjacent to x and e’s extremities (see Figure 8);

• [case 6] a unique tree-edge e one of whose extremities is perfect and the other empty, then
ST (G+x) is obtained by subdividing e with a new star node adjacent to x and e’s extremities,
such that the centre of the star is opposite e’s empty extremity (see Figure 8).

Proof. Direct by the definition of the split-tree; the resulting GLT is reduced and its accessibility
graph is G+x. Notice that each of these two cases is the converse construction of the one provided
in Lemma 4.6-1(a), or Lemma 4.8-1(a), respectively.

Definition 4.18. Let (T,F) be a GLT marked with respect to a subset of leaves and having a
fully-mixed subtree. Cleaning the GLT consists of performing, for every degenerate node u of the
fully-mixed subtree, the node-splits defined by (P ∗(u), V (u) \ P ∗(u)) and/or (E∗(u), V (u) \ E∗(u))
as long as they are splits of G(u). The resulting GLT is denoted cℓ(T,F).
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Figure 7: Node-split performed when there is a degenerate hybrid node (case 4 of Theorem 4.14,
first step of Proposition 4.16). The dashed rectangle shows where the local transformation takes
place, as described by the second step of Proposition 4.16 (Figure 8).
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Figure 8: Insertion of vertex x in case 4 of Theorem 4.14, second step of Proposition 4.16 and when
there is a unique edge with no mixed extremity (cases 5 or 6 of Theorem 4.14, Proposition 4.17).
The dashed rectangle shows where the local transformation is made.

The above definition makes sense thanks to Remark 2.15 since P ∗(u) ∩ E∗(u) = ∅; the two
node-splits corresponding to these splits can be done in any order with the same result. Figure 9
illustrates the possible local transformations at each node u.

Remark 4.19. With Lemma 4.3 and the fact that u contains at least one mixed marker vertex whose
opposite is mixed, one can easily show that (P ∗(u), V (u)\P ∗(u)), respectively (E∗(u), V (u)\E∗(u)),
is a split of u if and only if |P ∗(u)| > 1, respectively |E∗(u)| > 1.

Proposition 4.20 (Case 7 of Theorem 4.14). Let ST (G) = (T,F) be marked with respect to a
subset N(x) of leaves. If ST (G) contains a fully-mixed tree-edge e, then ST (G+ x) is obtained by:

• contracting, by a series of node-joins, the fully-mixed subtree of cℓ(ST (G)) into a single
node u;

• adding to node u a marker vertex qx adjacent in G(u) to P (u) and making x, qx’s opposite.
The resulting node u is prime. See Figure 10 for an illustration of the whole process.

Proof. First, observe that the series of node-joins is well defined by Remark 2.14. This construction
is exactly the inverse of the prime-splitting construction referenced in Lemma 4.13. More precisely,
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centre. The right picture concerns a star node with a perfect centre. Bold edges are fully-mixed.

the GLT cl(ST (G)) here is exactly the GLT (T ′

x,F
′

x) there. So the fully-mixed subtree of cl(ST (G))
here is the fully-mixed subtree induced by ST (G(ux)) there. And the series of node-joins applied
to this subtree leads to the node labelled by ux, to which x is added naturally.

Throughout the rest of the paper, we will use the phrase contraction step, or simply contraction,
to refer to the procedure involved in Proposition 4.20 which transforms the fully-mixed subtree of
cℓ(ST (G)) into a prime node that has the new vertex x attached.

To end this section, we point out a number of observations that follow from the results in this
section. First, the construction provided by Propositions 4.15, 4.16, and 4.17 applied to a distance
hereditary graph (i.e. when every node is degenerate), amounts to the one provided in [23, 24].
Thus, the present construction is a generalization to arbitrary graphs.

Secondly, note that we chose to separate the cases in Theorem 4.14 for consistency with our next
algorithm. But other shorter and equivalent presentations would have been possible; for instance:
case 1 and case 5 (respectively case 2 and case 6) could be grouped and treated the same way
as they are the only cases where there exists a PP (respectively PE) edge, with a clique-join or
star-join after insertion if the edge was not unique; case 4 comes to cases 5 and 6 by making a PP
or PE edge appear after splitting the node; case 1 could be considered as a trivial subcase of case
7.

Finally, the results of this subsection, together with Lemmas 4.11 and 4.12 yield the following
theorem which plays an important role in our circle graph recognition algorithm [25].

Theorem 4.21. A graph G + x is a prime graph if and only if ST (G), marked with respect to
N(x), satisfies the following:

1. Every marker vertex not opposite a leaf is mixed,

2. Let w be a degenerate node. If w is a star node, the centre of which is perfect, then w has no
empty marker vertex and at most two perfect marker vertices; otherwise, w has at most one
empty marker vertex and at most one perfect marker vertex.
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Figure 10: A complete example of the split-tree update where case 7 of Theorem 4.14 applies
(Proposition 4.20). The dashed rectangle contains the fully-mixed subtree of ST (G) in the left
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5 An LBFS incremental split decomposition algorithm

Our combinatorial characterization, described by Theorem 4.14 and the subsequent Propositions 4.15,
4.16, 4.17 and 4.20, immediately suggests an incremental split decomposition algorithm. Our char-
acterization makes no assumption about the order vertices are to be inserted. For the sake of
complexity issues, we choose to add vertices according to an LBFS ordering σ, which we assume
to be built by a preprocess. From Remark 3.2, such an ordering is compatible with the assump-
tion made in Section 4: all iterations of the algorithm satisfy the condition that G and G + x are
connected. Roughly speaking, the LBFS ordering will play two crucial parts: first, it permits a
costless twin test allowing us to avoid “touching” non-neighbours of the new vertex when iden-
tifying states (Subsection 5.2); second, it means that successive updates of the split-tree have an
efficient amortized cost (Section 6).

As in the previous section, we assume throughout that ST (G) = (T,F), and that leaves and
marker vertices in ST (G) are assigned states according to the set N(x); then we consider the
changes required to form ST (G + x). Algorithm 3 outlines how the split-tree is updated to insert
the last vertex of an LBFS ordering.

The first task consists of identifying which of the cases of Theorem 4.14 holds, at line 1 of
Algorithm 3. The implementation of line 1 is by a procedure which also returns the states of
the involved marker vertices (see Subection 5.2), and hence allows us to apply the constructions
provided by the propositions. At line 2, testing the uniqueness of the tree-edge e amounts to a
check as to whether e is incident to a clique or a star node. This is required to discriminate between
cases 1 and 5 or cases 2 and 6. More precisely, if e has two perfect extremities and is adjacent to
a clique u, then all the marker vertices of u are perfect by Lemma 4.3, and then Proposition 4.15
is applied to this clique node. If e has a perfect extremity q and its opposite r is empty, and if q is
the centre of a star or r is a degree-1 vertex of a star, then by Lemma 4.3, this star has all of its
marker vertices empty except the centre, which is perfect, and then Proposition 4.15 is applied to
this star node. These tests at line 2 can be done in constant time in the data-structure we use, as
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Algorithm 3: Vertex insertion

Input: A graph G, a vertex x /∈ V (G) which is the last vertex in an LBFS ordering of
G+ x, and the split-tree ST (G) = (T,F)

Output: The split-tree ST (G+ x)

1 Determine whether ST (G) contains either a tree-edge neither of whose extremities is mixed,
or a hybrid node, or a fully-mixed subtree;
if ST (G) contains a tree-edge e neither of whose extremities is mixed then

2 if e is unique then update ST (G) according to Proposition 4.17;
else update ST (G) according to Proposition 4.15;

if ST (G) contains a hybrid node u then

3 if u is degenerate then update ST (G) according to Proposition 4.16;
else update ST (G) according to Proposition 4.15;

if ST (G) contains a fully-mixed subtree then

4 compute and update cℓ(ST (G)) according to Proposition 4.20;

well as the updates required in these simplest cases (Proposition 4.15 and Proposition 4.17). They
will not be considered again in the implementation.

Now, this section fills out the framework by specifying procedures for the state assignment,
node-split, node-join, cleaning, and contraction involved at lines 1, 3, and 4 of Algorithm 3. We
first describe our data-structures which is partly based on union-find [9]. We then provide a
complexity analysis of the insertion algorithm parameterized by elementary union-find requests.
An amortized complexity analysis is developed in the next section.

5.1 The data-structure

In order to achieve the announced time complexity, we implement a GLT (T,F) with the well-known
union-find data-structure [9], making T a rooted tree. There are two reasons for this choice. First,
identifying empty and perfect subtrees is easier if the tree T is rooted. Second, in the contraction
step, we’ll need to union the neighbourhoods of two nodes to perform a node-join. We first present
how the tree T will be encoded with a union-find data-structure. We then detail how each node
and its labels are represented.

A union-find data-structure maintains a collection of disjoint sets. Each set maintains a distin-
guished member called its set-representative. Union-find supports three operations:

1. initialize(x): creates the singleton set {x};

2. find(x): returns the set-representative of the set containing x;

3. union(S1, S2): forms the union of S1 and S2, and returns the new set-representative, chosen
from amongst those of S1 and S2.
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The initialization step takes O(1) time, and a combination of k union and find operations takes
time O(α(N) · k+N), where N is the number of elements in the collection of disjoint sets and α is
the inverse Ackermann function [9]. The complexity of the algorithms described in this section will
be parameterized by initialize-cost, find-cost, union-cost the respective costs of the above
requests.

Our algorithm will store a GLT (T,F) as a rooted GLT where a leaf of T will serve as the root
(it is the leaf corresponding to the first inserted vertex). Each node or leaf of T , except the root,
has a parent pointer to its parent (which is a node or the root leaf) in T with respect to the root.
To each prime node is associated a children-set containing the set of its children in T with respect
to the root (nodes or leaves). The children-sets of prime nodes form the collection of disjoint sets
maintained by the union-find data-structure. Every children-set has a set representative, which is
a child of the node in T . A parent pointer may be active or not. The nodes or leaves with an active
parent pointer are: the child of the root, the children of degenerate nodes (clique or star), and the
nodes or leaves that are the set representative of the children-set of a prime node. A non-active
parent pointer is just one that will never be used again; there is no need to update information for
it.

Remark 5.1. A traversal of a rooted GLT (T,F) can be implemented in time O((1+ find-cost) ·
|T |).

Union-find is required only to update the tree structure (child-parent relationship) efficiently.
As the node-splits only apply to degenerate nodes (lines 3, 4), union-find is not required here.
Union operations are performed after the cleaning step, during the contraction step (line 4).

Remark 5.2. The data-structure described here concerns a split-tree, whose labels are either prime
or degenerate, since after each step of the construction it is such a GLT that will be obtained. Still,
we need to allow node-joins in the data-structure. In what follows, during the successive node-joins
in the contraction step (Proposition 4.20), the GLT has one non-degenerate node whose label graph
will eventually become prime only after the final insertion step. The data-structure for such a GLT
remains the same by recording the type of this non-degenerate node as prime, and dealing with it
the same way as a prime node.

It is important to note that removing elements from sets is not supported in the union-find data-
structure. It follows that when a node-join is performed and the children-set of a node u′ is unioned
with the children-set of its parent u, the node object corresponding to u′ still exists in the children-
set of u. As we will see later, the persistence of these fake nodes is not a problem. Indeed, their
total number will be suitably bounded, they will never be selected again as set representatives,
and the data-structure we develop below guarantees that they will never be accessed again. In
particular, no active parent pointer points to a fake node. That is why the children-set of a prime
node may strictly contain its set of children in T .

To complete our data-structure we define a data-object for every node and leaf in the rooted
GLT. These data-objects will maintain several fields:

• We already mentioned that every node and leaf, except the root, has a parent pointer. Each
node u has a distinguished marker vertex, called the root marker vertex, which is the extremity
of the tree-edge between u and its parent. Every node maintains a pointer to its root marker
vertex. As already implied, we need to store the type of every node (prime, clique, or star),
and we also store the number of its children.
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Figure 11: Representation of a rooted GLT with the union-find data-structure. In the left picture:
full arrows going up represent active parent pointers, the dashed arrows are non-active; the dashed
rectangle represents the children-set of the prime node; small circles outside nodes represent leaves,
the black one is the root. In the right picture: small circles inside nodes represent marker vertices,
the black one is a root marker vertex; curved arrows represent pointers to the opposite marker
vertex or leaf.

On the top of that, depending on its type, every node u maintains the following fields:

• if u is prime: an adjacency-list representation of G(u); a pointer to the last marker vertex in
σ[G(u)]; a pointer to its universal marker vertex (if it exists);

• if u is degenerate: a list of its marker vertices V (u); and a pointer to its centre if it is a star;

To each leaf and marker vertex, we associate:

• a pointer, called the opposite pointer, to its opposite marker vertex; a field for its perfect-
state (at each new vertex insertion, perfect states, but no other state, will be computed and
recorded, and the content of these fields from previous vertex insertions is not reused); and,
for every root marker vertex, a pointer, called the node pointer, toward the node to which it
belongs.

Figure 11 illustrates this rooted GLT data-structure. For instance, notice how a prime node
accesses its children-set using this data-structure: pick a non-root marker vertex of the node, then
its opposite marker vertex, then the node to which this marker vertex belongs, then the find on
this node gives the set-representative of the corresponding children-set.

5.2 State assignment and case identification

Prior to any update, a preprocessing of the split-tree is required to identify which of the cases of
Theorem 4.14 holds. This preprocessing is based on state assignment and tree traversals. The
LBFS ordering will play an important role here. The procedure we use for the empty subtrees
detection (Algorithm 4) differs from that for perfect subtrees (Algorithm 5).
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5.2.1 Empty subtrees

If a marker vertex or leaf q is empty, then, by definition, T (q) contains no leaf in N(x), and thus
it will be unchanged under x’s insertion. For the sake of complexity issues, we will want to avoid
“touching” q and any part of T (q). We are fortunate that identifying such empty subtrees can be
simulated indirectly:

Lemma 5.3. Consider ST (G) = (T,F), and let T (N(x)) be the smallest connected subtree of T
spanning the leaves N(x). Then q is an empty leaf or an empty marker vertex if and only if T (q)
and T (N(x)) are node disjoint.

Proof. It’s important to recall that if q ∈ V (u), then the node u is not part of T (q). If q is empty,
then L(q) ∩ N(x) = ∅, meaning T (q) and T (N(x)) must be disjoint. If T (q) and T (N(x)) are
disjoint, then L(q) ∩N(x) = ∅, meaning q is empty.

Algorithm 4: [23, 24] Detection of empty subtrees: computing the smallest connected subtree
spanning a set of leaves

Input: A tree T rooted at a leaf and a subset N(x) of its leaves (assuming |N(x)| > 1).
Output: The tree T (N(x)), the smallest connected subtree of T spanning the leaves N(x).

Mark each leaf of N(x) as active (other nodes and leaves are considered inactive);

while [the root is not visited and there are at least two active leaves or nodes] OR [the root
is visited and there is at least one active leaf or node] do

Let L be the current set of active leaves or nodes;
foreach element of L, u do

u is no longer active, it becomes visited ;
if u is not the root and its parent is not visited then u’s parent is marked active;

end foreach

end while

Let T ′ be the subtree of T induced by the visited leaves and nodes;
if t′, the root of T ′, has a unique visited child but t′ does not belong to N(x) then

remove in T ′ the path from t′ to the closest node with at least two visited children;
return T ′;

We can compute T (N(x)) using the procedure specified in [23, 24], which is repeated here
as Algorithm 4. It was proved in [23, 24] that a call to Algorithm 4 runs in time O(|T (N(x))|),
assuming each node maintains a pointer to its parent. Therefore, given the data-structure proposed
above, a find() request is needed to move from a node to its parent, when prime. So the following
holds:

Lemma 5.4. Given a GLT (T,F), Algorithm 4 returns a subtree of T that is node disjoint from
every empty subtree, and runs in time O((1+find-cost) · |T (N(x))|).

5.2.2 Perfect subtrees

As T is rooted, the subtree T ′ = T (N(x)) has a root which is a leaf or a node of T . For every
node u of T ′, the marker vertices of u which are the extremity of a tree-edge in T ′ form the set
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NE(u) (recall Definition 4.1). The next task is to identify the perfect subtrees and derive the case
identification used at line 1 of Algorithm 3. Our procedure, described in detail as Algorithm 5,
outputs either a tree-edge or a hybrid node, or the fully-mixed subtree of ST (G). (Recall that a
fully-mixed subtree is maximal, by definition.) It works in three main steps:

1. First it traverses the subtree T (N(x)) in a bottom-up manner to identify the pendant perfect
subtrees: for each non-leaf node u, we test if the marker q opposite u’s root marker is perfect
and if so remove u from T ′ and move to u’s parent.

2. Then, if the root of the remaining subtree T ′ has a unique child v in T ′, we check whether v’s
root marker vertex r is perfect and if so remove the root from T ′ and move to v. This test
is repeated until the current root of T ′ neighbours at least two nodes in T ′ or is the unique
remaining node of T ′.

3. In the former case, we are done and the resulting tree T ′ is fully-mixed. In the latter case, we
still need to test whether the remaining node is hybrid or contains a marker vertex opposite
a perfect leaf, in which case the output is this edge. As we will see, using the LBFS ordering
allows us to test only two marker vertices.

The next remark explains how one can test whether a given marker vertex is perfect and will
be used in the bottom-up and top-down traversal of T (N(x)).

Remark 5.5. Let q ∈ V (u) be a marker vertex in ST (G), and let r be q’s opposite. Then r is
perfect if and only if:

1. P (u) = NG(u)(q), or P (u) = NG(u)[q]; and

2. NE(u) \ P (u) = ∅ or NE(u) \ P (u) = {q}.

Remark 5.5 must not be applied, at the third step of our procedure, to every marker vertex of
the unique remaining node u. Indeed, consider q, q′ ∈ V (u), and let r and r′ be their opposites,
respectively. To test if r and r′ are perfect using Remark 5.5 requires us to test if P (u) = N(q)
and P (u) = N(q′). But if N(q) ∩ N(q′) 6= ∅, then this involves “touching” marker vertices of u
multiple times. In general, we cannot bound the number of times marker vertices in u will have to
be “touched”.

The solution for a degenerate node follows from the next lemma. In the case of a prime node,
we will use the LBFS Lemmas 3.4 and 3.6 of Section 3.

Lemma 5.6. Let u be a degenerate node of ST (G), the marker vertices of which are all either
perfect or empty (i.e. P (u) = NE(u)). There exists a marker vertex q ∈ V (u) whose opposite r is
perfect if and only if one of the following conditions holds:

1. P (u) = V (u) (in this case, if u is a clique then any q ∈ V (u) is suitable, and if u is a star
then q is its centre);

2. P (u) = V (u) \ {q} and, when u is a star, q is the centre of u;

3. P (u) = {c} and u is a star with centre c (in this case any q ∈ V (u) \ {c} is suitable);

4. P (u) = {c, q} and u is a star with centre c.
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Proof. Choose some q ∈ V (u) and let r be its opposite marker vertex. Assume that r is perfect.
Then if u is a clique or a star with centre q, all marker vertices in V (u) − {q} are accessible
descendants of r and are therefore perfect, by Lemma 4.3-1. Therefore either items 1 or 2 of the
lemma hold.

So assume that u is a star with centre c 6= q. Then c is an accessible descendant of r, and
all marker vertices in V (u) − {c, q} are inaccessible descendants of r. Thus, c is perfect and the
marker vertices in V (u)− {c, q} are empty, by Lemma 4.3-1. It follows that either items 3 or 4 of
the lemma hold.

Now assume that one of items 1-4 of the lemma holds. If items 1 or 2 hold, then all marker
vertices in V (u) − {q} are accessible descendants of r, and all are perfect. So by Lemma 4.3-1,
r is perfect as well. And if items 3 or 4 hold, then only c is perfect, and only c is an accessible
descendent of r. It follows that r is perfect, once again by Lemma 4.3-1.

Applying Lemma 5.6 at node u is straightforward as soon as P (u) has been computed. Notice
that in cases 2 and 3, the marker vertex q is empty, but it can be determined without considering
other empty marker vertices. Hence at most one empty marker vertex is involved in this step of
the procedure.

Let us now turn to prime nodes. First observe the following remark, which is a straightforward
application of the definitions:

Remark 5.7. Let q ∈ V (u) be a marker vertex in ST (G), and let r be its opposite. Let t be a
marker vertex added to u, made adjacent precisely to P (u). Then r is perfect if and only if q and
t are twins.

The next lemma merely translates Lemma 3.4 to the split-tree; its corollary is the important
result for our purposes:

Lemma 5.8. Let σ be an LBFS of the connected graph G+x in which x appears last, and let u be
a prime node in ST (G). Let r be the opposite of some q ∈ V (u). If r is perfect, then q is universal
in G(u) or q appears last in σ[G(u)].

Proof. Let u′ be the same as u but with a new marker vertex t adjacent precisely to P (u). Consider
the GLT (T ′,F ′) that results from replacing u with u′, and adding a new leaf ℓ opposite t. Let σℓ
be the same as σ but with x replaced by ℓ. Since t is only adjacent to P (u), we have N(ℓ) ⊆ N(x).
Therefore σℓ is an LBFS of G + ℓ in which ℓ appears last, and σℓ[G(u′)] is an LBFS of G(u′) in
which t appears last, by Lemma 3.6 applied to the split-tree.

Assume that r is perfect. Then q and t are twins, by Remark 5.7. Therefore u′ is not prime.
But recall that u was prime. So by Lemma 3.4, either q is universal in G(u) or it is the penultimate
vertex in σℓ[G(u′)]. If it is the penultimate vertex in σℓ[G(u′)], then it must be the last vertex in
σ[G(u)].

Corollary 5.9. Let σ be an LBFS of G + x in which x appears last. Let ℓ be a leaf adjacent to
a prime node u in ST (G), and let q ∈ V (u) be ℓ’s opposite. Then ℓ is perfect if and only if q is
universal in G(u) or q appears last in σ[G(u)].

Proof. A direct consequence of Remark 5.7 and Lemma 5.8.
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Therefore to perform the third step of the case identification procedure, at most two marker
vertices of the remaining prime node u can have opposites that are perfect. Thus, Remark 5.5 needs
to be applied at most twice. Remember that our data-structure keeps track of these two marker
vertices.

Lemma 5.10. Given an LBFS ordering of a connected graph G + x and the split-tree ST (G),
Algorithm 5 returns:

• a tree-edge e, one of whose extremities is perfect and the other is either empty or perfect, if
case 1, 2, 5 or 6 of Theorem 4.14 applies;

• a hybrid node u, if case 3 or 4 of Theorem 4.14 applies;

• the full-mixed subtree T ′ of T , if case 7 of Theorem 4.14 applies;

It can be implemented to run in time O((1+find-cost) · |T (N(x))|).

Proof. By Lemma 5.4, we know that T (N(x)), and thus T ′, is node disjoint from every empty
subtree of ST (G). Clearly, before the while loop at line 3, the current subtree T ′ is disjoint from
every pendant perfect subtree of ST (G). Thus, if the root of the tree belongs to a perfect subtree
T (p), then the nodes of T (p)∩T ′ can only form a path of T ′: otherwise T (p) should contain a node
u with two non-root marker vertices q and r which are neither perfect nor empty, as T (q) and T (r)
have not been removed so far, contradicting the fact that T (p) is perfect.

Concerning the correctness of the third step (case identification), first observe that if, at line 4,
T ′ contains more than one node, then every tree-edge in T ′ is fully-mixed (otherwise one of its
extremities would have been removed during the tree traversals). Thus case 7 of Theorem 4.14
holds. So assume that T ′ consists of one node. It follows from Lemma 5.6, Remark 5.7 and
Corollary 5.9, that a single tree-edge is returned by the algorithm if there exists a tree-edge with
a perfect extremity and the other extremity either perfect or empty. Notice that we do not test
the uniqueness of such a tree-edge. If none of the previous cases applies, then, by Theorem 4.14,
ST (G) contains a hybrid node which is correctly identified by the algorithm. This corresponds to
cases 3 and 4 of Theorem 4.14.

By Remark 5.1, the cost of performing the tree traversals is O((1 + find-cost) · |T (N(x))|).
During the algorithm, either Remark 5.5 or Lemma 5.6 is applied a constant number of times at
each node. The cost to apply each remark/lemma in the context of the data-structure presented
above is clearly O(|NE(u)|), where NE(u) = P (u) ∪ M(u) (recall Definition 4.1). But every
q ∈ NE(u) has its corresponding edge in T (N(x)), by Lemma 5.3 and the definition of NE(u). So
the total cost of applying Remark 5.5 and Lemma 5.6 is O(|T (N(x))|). Of course, once q is found
to be perfect, then u can be removed from T ′ in constant time.

Before describing how the split-tree is updated in each of the different cases, let us point out how
the states (perfect, empty, mixed) of marker vertices are computed (or not) during Algorithm 5:

Remark 5.11. Algorithm 5 assigns a state to a marker vertex q and updates the data-structure
accordingly only if q is perfect. From these recorded perfect-state fields, the states of all marker
vertices involved in the output of Algorithm 5 can be deduced.

It is not a problem to avoid explicitly computing the state of all the marker vertices. Indeed,
computing them would affect our complexity. Moreover, notice that in every case (see Proposi-
tions 4.15, 4.16, 4.17 and 4.20) the knowledge of the perfect marker vertices is enough to determine
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Algorithm 5: Detection of perfect subtrees, and split-tree case identification

Input: The rooted split-tree ST (G) = (T,F) and an LBFS ordering σ of G+ x where x is
the last vertex.

Output: A tree-edge e, with one extremity perfect and the other empty or perfect (if one
exists); or a hybrid node u (if one exists); or the fully-mixed subtree T ′ of T (if
one exists).

1 T ′ ← T (N(x)), the result of Algorithm 4 with input T and N(x);
Set the non-root marker vertices opposite leaves of N(x) to perfect (these markers belong to
nodes of T ′);

// bottom-up traversal: discard the pendant perfect subtrees

if T ′ contains more than one node then

2 while there exists a non-processed node u in T ′ all of whose children in T ′ are leaves do

let q be the (non-root) marker vertex opposite u’s root marker vertex;
determine q’s state by applying Remark 5.5;
if q is perfect then remove u from T ′;

end while

let u be the root of T ′;

// top-down traversal: discard the perfect subtree containing the root

3 while node u has exactly one non-leaf child v in T ′ and no fully-mixed edge has been
identified do

apply Remark 5.5 to determine the state of the root marker vertex q of v;
if q is perfect then remove u from T ′ and u← v;
else the tree-edge uv is fully-mixed;

end while

// case identification

4 if T ′ contains a unique node u then

if u is degenerate then

apply Lemma 5.6 to determine if there is a q ∈ V (u) whose opposite r is perfect;
if such a q exists then return the tree-edge e of T whose extremities are q and r;
else return the hybrid node u;

else

// twin-test in a prime node

let q be the last marker vertex in σ[G(u)] and let r be its opposite;
let q′ be u’s universal vertex (if it exists), and let r′ be its opposite;
apply Remark 5.5 to determine the states of r and r′;
if r (respectively r′) is perfect then

return the tree-edge e of T whose extremities are q and r (respectively q′ and r′);
else return the hybrid node u;

else return the fully-mixed subtree T ′;
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the state of every other marker vertex which will be affected in the successive steps of the updates.
For example, in a hybrid node, the non-perfect marker vertices are by definition empty. Similarly
if ST (G) contains a fully-mixed subtree T ′, then a marker vertex of a node of T ′ is empty if and
only if it is not perfect and not incident to a tree-edge of T ′. If follows that, once Algorithm 5 has
been performed, we can conclude that the state of every useful marker vertex has been determined.

5.3 Node-split and cleaning

The node-split operation (see Definition 2.12) is required when cases 4 and 7 of Theorem 4.14 hold.
Case 4, existence of a degenerate hybrid node u (Proposition 4.16), only requires the node-split
of u according to (P ∗(u), V (u) \ P ∗(u)). Case 7 potentially implies a large number of node-splits
since, before the contraction step, the cleaning of ST (G) is necessary (Proposition 4.20). Notice
that degenerate nodes are the only nodes that are ever node-split.

To be as efficient as possible, to perform a node-split we won’t create two new nodes as seemingly
required by the definition. Instead, we will reuse the node being split so that only one new node
has to be created. This is presented in Algorithm 6.

Algorithm 6: Node-split(v,A,B)

Input: A rooted GLT with a node v such that G(v) contains the split (A,B) having
frontiers A′ and B′.

Output: The rooted GLT with nodes u and u′ resulting of the node-split of v with respect
to (A,B).

replace the vertices in A with a new marker vertex q adjacent precisely to B′;
call the result u′;

create a new node u consisting of the vertices in A, plus one new marker vertex r adjacent
precisely to A′;

add an internal tree-edge between u and u′ having extremities q and r;
if the root marker vertex of v belongs to A then make u′ a child of u;
else make u a child of u′;
return the resulting GLT with u, u′ and their child relation;

Lemma 5.12. Algorithm 6 performs a node-split (A,B) for a degenerate node in time O(|A|).

Proof. The correctness follows from the definitions. The time complexity is obvious as well from a
simple examination of our data-structure. Recall that every child of a degenerate node maintains a
parent pointer (unlike for prime nodes which use the union-find). Depending on whether the root
marker vertex of v belongs to A or B, u′ becomes a child of u or vice-versa. The root marker vertices
(and their respective node pointers) of the resulting nodes are updated accordingly. As these two
nodes are degenerate, they need to have a list of their marker vertices: u′ inherits the list of v in
which A has been removed plus the new marker vertex q, while u’s list is created and contains
A∪{r}. Meanwhile, the marker vertices of A update their node pointer. This work requires O(|A|)
time. Other information such as type of the node, number of children, pointer to the centre (if it
is a star) or opposite pointer, perfect-states, is easily updated in constant time.
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Cleaning was introduced in Definition 4.18 along with the notation cℓ(ST (G)). Notice that
it amounts to repeated application of the node-split operation. The cleaning step will proceed
according to Algorithm 7. To determine if a degenerate node needs to be node-split according to
(E∗(u), V (u) \ E∗(u)), Algorithm 7 takes advantage of the equivalence: E∗(u) = V (u) \ (P ∗(u) ∪
M(u)), where P ∗(u) and M(u) are deduced directly from perfect-states fields and the fully-mixed
subtree structure. As before, the reason is one of efficiency; we want to avoid “touching” empty
subtrees. To this end, it is important that the node-split is performed only “touching” perfect and
mixed marker vertices of V (u) \E∗(u). This is the reason for defining Algorithm 6 as we did. The
rest of Algorithm 7 is a direct implementation of the definition.

Algorithm 7: Cleaning((T,F), T ′)

Input: The rooted split-tree ST (G) = (T,F) marked with respect to N(x) and the
fully-mixed subtree T ′ of T .

Output: The rooted GLT cl(ST (G)) resulting from the cleaning of (T,F) and the
fully-mixed subtree Tc of cl(ST (G)).

Assume all nodes are marked unvisited ;
Tc ← T ′;

foreach unvisited degenerate node v in Tc do

if |P ∗(v)| > 1 then

node-split v according to the split (P ∗(v), V (v) \ P ∗(v)), using Algorithm 6;
mark visited the two nodes that result from the node-split;
keep in Tc only the node containing the marker vertices in V (v) \ P ∗(v);

end foreach

reset all the marks in Tc;

foreach unvisited degenerate node v in Tc do

if |V (v)| \ (|P ∗(v)|+ |M(v)|) > 1 then

node-split u according to the split (V (v) \ E∗(v), E∗(v)), using Algorithm 6;
mark visited the two nodes that result from the node-split;
keep in Tc only the node containing the marker vertices in V (v) \ E∗(v);

end foreach

return the updated GLT, cℓ(ST (G)) together with its fully-mixed subtree Tc;

Lemma 5.13. Given the split-tree ST (G) = (T,F) marked with respect to N(x) and the fully-
mixed subtree T ′ of T , Algorithm 7 computes cℓ(ST (G)) together with its fully-mixed subtree, and
it runs in time O((1 + find-cost) · |T (N(x))|).

Proof. Correctness is clear as Algorithm 7 traverses T ′ twice. In both traversals, a single test is
performed at each node, and then if it succeeds, a node-split is applied. Recall that (P ∗(u), V (u) \
P ∗(u)), respectively (E∗(u), V (u) \ E∗(u)), is a split of u if and only if |P ∗(u)| > 1, respectively
|E∗(u)| > 1, by Remark 4.19. The resulting subtree Tc is the fully-mixed subtree of cl(ST (G)) by
construction.
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The traversals require time O((1 + find-cost) · |T (N(x))|). To perform the test required by
Algorithm 7, we first need to compute P ∗(u). But this clearly can be done in time bounded by
O(|P (u)|), which is bounded by O(|NE(u)|). So by the argument already used in the proof of
Lemma 5.10, the total cost of computing the sets P ∗(u) is O(|T (N(x))|). Once P ∗(u) is computed,
the test performed at each node can be carried out in constant time. If the degenerate node u is
node-split during the first pass, then the set P ∗(u) plays the role of A in the input to Algorithm 6;
if u is split during the second pass, then the set V (u) \E∗(u) plays the role of A. The size of both
of these sets is bounded by |NE(u)|. But every q ∈ NE(u) has its corresponding edge in T (N(x)),
by Lemma 5.3 and the definition of NE(u). So the total cost of the node-splits performed during
cleaning is O(|T (N(x))|), by Lemma 5.12.

No union() operation has so far been needed; it has been sufficient to employ find() operations
while traversing various trees.

5.4 Node-joins and contraction

Contraction amounts to repeated application of the node-join, which requires the union() opera-
tion. In the same way that we reused one node for the node-split, we will want to reuse one node
for the node-join (we arbitrarily choose to reuse the parent node). Algorithm 8 provides the details
of the implementation of the node-join between a node u′ and its parent u. Notice that in the case
where u′ is a star and its root marker vertex q′ has degree one, a node-join is performed differently.
Here we reuse the marker vertex q of u adjacent to u′ to play the role of the unique neighbour t of
q′. We do so for reasons of efficiency that will become clear later. In other cases, the label-edges
adjacent to the two marker vertices disappearing in the node-join are not reused.

The node resulting from the node-join of u and u′ in Algorithm 8 may be neither prime nor
degenerate. In the data-structure of the resulting rooted GLT, this resulting node is nevertheless
marked as prime (standing for non-degenerate), as explained in Remark 5.2, since it will finally
be prime after insertion of the new vertex. The children-set associated with this node is created
at line 3, and may require several initialize() and union() operations when u and/or u′ were
degenerate and thus were not associated with a children-set.

Lemma 5.14. Let u and u′ be two adjacent nodes of a GLT and let q and q′ be the respective extrem-
ities of the tree-edge between u and u′. Algorithm 8 computes the GLT resulting from the node-join of
u and u′. It can be implemented to run in time join-cost =O( #new-label-edge)+tree-update-cost
where:

• #new-label-edge denotes the number of newly created label-edges (i.e. at line 2: the number
of neighbours of q multiplied by the number of neighbours of q′).

• the tree-update-cost amounts to

– O(d · (union-cost+ initialize-cost)) if u is a degenerate node with d children, plus

– O(d′ · (union-cost+initialize-cost)) if u′ is a degenerate node with d′ children, plus

– O(union-cost) to perform the union of children-sets of u and u′.

Proof. The correctness easily follows from the definitions. The resulting node is assigned the prime
type and therefore is associated with a children-set, and its graph label has to be represented
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Algorithm 8: Node-join(u, u′)

Input: A rooted GLT with two adjacent nodes u and u′, where u′ is the child of u.
Output: The rooted GLT resulting from the node-join of u and u′.

let q ∈ V (u) and q′ ∈ V (u′) be the extremities of the tree-edge between u and u′;

if u′ is a star node and its root marker vertex q′ has degree one then

1 foreach non-neighbour t′ of q′ in G(u′) do
move t′ to G(u) and make it adjacent to q;
let v be the child of u′ containing the marker vertex opposite t′;
update v’s parent pointer to u;

end foreach

2 else

move all the marker vertices of G(u′) except q′ to G(u) and remove q;
add adjacencies in G(u) between every neighbour of q′ and every neighbour of q;
if u′ is prime then

let v be the representative of the children-set of u′;
update the parent pointer of v to u;

else update the parent pointer of every child v of u′ to u;

3 create a single children-set containing the children of u and u′ (by the way of a series of

initialize() and union());
return the resulting rooted GLT ;
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by an adjacency list. Concerning the series of union() and initialize() requests to build the
children-set: if a degree d degenerate node is involved in a node-join, then the cost to create a set
containing its children amounts to the cost of d initialize() and d union() requests. Concerning
the adjacency-lists: we first create those not already present at degenerate nodes. Then the existing
ones can be combined to create one for the result of the node-join. This can be done in the obvious
way.

Recall that node-joins on a given set of tree-edges can be performed in any order (Remark 2.14).
But to ease the amortized time complexity (developed in Section 6), during the contraction step,
different types of node-joins are performed before others. This is reflected in Algorithm 9, which
separates the node-joins into three phases, defined as phase 1, phase 2, and phase 3 node-joins,
and dealing with different types of node-joins.

Algorithm 9: Contraction((T,F), T ′)

Input: The rooted GLT (T,F) = cℓ(ST (G)) and the fully-mixed subtree T ′ of T
Output: The rooted GLT resulting from the contraction of T ′ into a single node u to which

the new leaf x has to be attached, with x’s opposite made adjacent in G(u)
precisely to P (u).

// Phase 1 node-joins

foreach star node u in T ′ whose root marker vertex is its centre do

perform node-join(u, u′) (Algorithm 8) for every non-leaf child u′ of u in T ′;
update T ′ accordingly;

end foreach

// Phase 2 node-joins

foreach node u′ in T ′ whose root marker vertex r has degree 1 do

if the parent node u of u′ is not a leaf and is in T ′ then perform node-join(u, u′)
(Algorithm 8);
update T ′ accordingly;

end foreach

// Phase 3 node-joins

recursively perform node-joins to contract T ′ into a single node u, using Algorithm 8;

// New vertex insertion

add a marker vertex q to u, adjacent precisely to P (u), then make x opposite q;
let u+ x be the resulting node and mark q as the last marker vertex of σ[G(u + x)];
x’s parent is u+ x;
return the resulting rooted GLT ;

Lemma 5.15. If ST (G) contains a fully-mixed subtree, given cℓ(ST (G)) = (T,F) and its fully-
mixed subtree T ′, Algorithm 9 computes ST (G+ x). It can be implemented to run in time:

O(|T (N(x))| · (1 + find-cost) + k · join-cost+ intialize-cost+ union-cost)

where k is the number of fully-mixed tree-edges of T ′.
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Proof. From Remark 2.14, the GLT resulting from the node-joins between nodes incident to the
tree-edges of T ′ is independent of the order in which they are applied. If u is the node re-
sulting from the contraction of T ′ (together with the new vertex insertion), then observe that
∪q∈P (u)A(q) = N(x). If follows that the accessibility graph of the resulting GLT is G + x. Now
from Proposition 4.20, u is prime thereby showing that Algorithm 9 computes ST (G+ x) since its
result is reduced.

The nodes participating in each phase can be located by performing a single pass over the
tree. This traversal can be performed in time O((1 + find-cost) · |T (N(x))|). Once the nodes
participating in each phase have been located, the node-joins can proceed. The cost of each one is
described by Lemma 5.14. The outcome of these node-joins is a single node u. At this point, all of
u’s children are organized into a children-set.

The new vertex x is made a neighbour of u, which in our situation means it is made a child
of u. This requires x to be added to the set that represents u’s children. To do so we need one
initialization() operation and one union() operation. The opposite of x is a new marker vertex
q added to G(u) and made adjacent precisely to P (u). Recall that our split-tree algorithm inserts
vertices according to an LBFS ordering, say σ. Notice that q clearly becomes the last vertex in
σ[G(u) + q]. So given the data-structure assumed earlier, the cost of adding q is O(|P (u)|). But
every marker vertex in NE(u) has its corresponding edge in T (N(x)), by Lemma 5.3 and the
definition of NE(u). Therefore the total cost of adding q is O(|T (N(x))|).

At this point of the paper, the reader can completely compute the split decomposition of a
graph with our algorithm. It is the number of node-joins involved in successive uses of Lemma
5.15 for contraction that prevents us from concluding its running time. We have already seen one
example where the number of node-joins required by contraction is linear in the size of the split-tree
(see Figure 5). But later we emphasized that this was worst-case behaviour. We promised that our
LBFS ordering would make it possible to amortize the cost of contraction. We finally prove this in
the next section.

6 An ammortized running time analysis

This section completes the proof for the running time of our algorithm, described completely in
Section 5. Our main goal is to amortize the cost of contraction (Lemma 5.15), involving the number
of updates and requests to the union-find data-structure, and the number of created label-edges
and vertices involved in the adjacency lists of label graphs.

So far, the number of find() operations required by our algorithm has always been bounded
by O(T (|N(x)|). This will directly imply a suitable bound (by Lemma 6.18 in Subsection 6.3).

The initialization() routine is always performed just prior to a union() during a node-join
operation and it involves a child of a degenerate node or the new vertex to be inserted (Algorithm
8 line 3). It follows that the number of initialization() operations is bounded by the number of
non-root marker vertices belonging to a degenerate node that appear at some step of the algorithm
(when x is inserted or when a node-split is performed). Bounding the number of such vertices is
also required since they participate in the data-structure (see Subsection 6.1).

The union() operations are performed during a node-join (Algorithm 8 line 3) once together
with each initialization() operation, and once to finalize the node-join. The total number for
the first part is bounded the same way as initialization() operations, and the total number
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for the second part is bounded by the total number of node-joins, which is bounded by the total
number of created label-edges, since each node-join implies the creation of a label-edge (Lemma
5.14).

Therefore, bounding the number of created label-edges is the key to the complexity analysis and
is the difficult part of our complexity argument. To count and bound the number of label-edges
created during the whole algorithm, we use a charging argument in which the role of LBFS is
critical (see Subsection 6.2.3).

6.1 Bounding the number of degenerate marker vertices

We prove that the number of non-root marker vertices that are created in some degenerate node
during the process of building ST (G) is linearly bounded by the number of vertices of the input
graph G. The idea is to show that at each vertex insertion, only a constant number of such marker
vertices are generated by our incremental algorithm.

Lemma 6.1. Let G be a connected graph. The insertion of vertex x in the process of building
ST (G+ x) creates at most two new non-root marker vertices belonging to a degenerate node in the
rooted GLT data-structure.

Proof. Consider forming the split-tree ST (G + x), where x is some new vertex not already in G.
We consider the changes required of ST (G) to form ST (G+ x), as described by Theorem 4.14 and
the subsequent propositions. Notice that the set of marker vertices belonging to some degenerate
node is modified in three different ways:

• the leaf x is attached to a degenerate node. This occurs when cases 1, 2, 4, 5 and 6 of The-
orem 4.14 apply. Two subcases are to be considered. If the degenerate node u neighbouring
leaf x has degree 3 (that is case 4, 5 or 6 holds and u is a new node), then exactly two new
non-root marker vertices have been created. It also follows that the degree in G(u) of these
two marker vertices is at most two. Otherwise (case 1 or 2), the only new non-root marker
vertex q ∈ V (u) is the opposite of x.

• a node-split is performed on a degenerate node. This occurs when cases 4 or 7 (during cleaning)
of Theorem 4.14 applies. Observe that every split creates exactly two new marker vertices,
one of which is the root of its node. In case 4, only one node-split is performed, thereby
creating one extra non-root marker vertex in a degenerate node.

So let us consider the node-splits performed during the cleaning step when case 7 holds. Each
degenerate node u of the fully-mixed subtree is involved in at most two node-splits (see Figure
9). Among the two nodes resulting from each node-split, one will eventually be node-joined
to form a prime node and the other remains degenerate in ST (G + x). Let us call v such a
created degenerate node. All marker vertices inherited by v through the node-split are reused,
and remain non-root marker vertices if they were non-root marker vertices in u. Hence the
only case where a non-root marker vertex is created in v is when v inherits the root marker
of u and thus a non-root marker vertex is created as the extremity of the new tree-edge
resulting from the split. Of course, this case can happen at most once for any degenerate
node u affected by a node-split. Moreover, this can only happen at the node at the root of
the fully-mixed subtree. Thus at most one non-root degenerate marker is created during the
series of node-split required by x’s insertion.
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• a node-join is performed and involves a degenerate node. This only occurs during the con-
traction step while a prime node is being formed. In this case, marker vertices of a degenerate
node are lost. The invariant trivially holds.

From the previous lemma, we can conclude the following:

Lemma 6.2. The total cost of initialization() operations to the construction of ST (G) is
O(n), where n is the number of vertices in G.

Proof. Each initialization() operation takes constant time. They are only employed prior to
a node-join involving a degenerate node (see Lemma 5.14), and when the vertex x to be inserted
is made a neighbour of a newly formed prime node (see Lemma 5.15). Of the latter, there can
be at most O(n). The initialization() operations of the former are dealt with below. Every
such initialization() operation corresponds to a child of a degenerate node, or equivalently to a
non-root marker vertex of a degenerate node. Thus by Lemma 6.1, building ST (G) requires O(n)
calls to initialization().

6.2 Bounding the number of label-edges

We shall first recall that, in our data-structure, degenerate nodes do not store any label-edge.
label-edges belong to prime nodes, which are only formed by contraction. So, the label-edges in the
resulting prime node either existed previously or were created by a node-join during contraction
(Lemma 5.14). Recall also that label-edges adjacent to marker vertices that disappear during a
node-join are lost since these are not reused, but of course they count in the total number of created
label-edges.

To bound the number of created label-edges, we develop a charging argument driven by a
stamping scheme. The stamps will help us to spread and distribute the charge over the successive
steps of our algorithm. The charging argument depends on our LBFS ordering. Keep in mind that
the split-tree construction algorithm does not involve the stamping scheme, nor the subsequent
charging argument. These are only defined for the sake of counting created label-edges and of the
amortized complexity analysis.

Let us sketch the construction. First, we need to show as a preliminary result that our LBFS
ordering regulates how stars are formed during the construction of the split-tree: see Subsubsection
6.2.1. Second, every non-root marker vertex is associated with some stamps (0, 1 or 2 depending
on its type), which are vertices of the input graph: see Subsubsection 6.2.2. Independently, marker
vertices are associated with Charge lists such that spreading units of charge in the lists during
the incremental process serves to count created label-edges: see Subsubsection 6.2.3. Lastly, the
way stamps and Charge lists are associated with marker vertices will allow us to evaluate the total
number of units of charge in terms of parameters of the input graph (number of edges and vertices),
and hence to get the awaited complexity bound: see Lemma 6.16 in Subsection 6.3.

6.2.1 LBFS and stars

Let us introduce extra notation and definitions related to an LBFS ordering σ (see Section 3).
First we will abusively use xi instead of σ−1(i) to denote the i-th vertex in σ. Then Gi stands for
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the subgraph induced by the subset {x1, . . . xi} of vertices and we denote by Bi the set of vertices
appearing before xi (not including xi).

Definition 6.3. Let σ be an LBFS ordering of a connected graph G. A subset of consecutive
vertices S = {xi, . . . xj} (with i ≤ j) is a slice of σ if for every y ∈ S, N(y) ∩ Bi = N(xi) ∩ Bi.
The set Slice(xi) denotes the largest slice starting at vertex xi.

In addition to the properties proved in Subsection 3.2, LBFS controls the formation of star
nodes. During the split-tree construction process, some new marker vertices appear (e.g. the one
opposite the new leaf, or when a node-split is performed), some disappear (when a node-join is
performed) and some others are kept. More formally:

Definition 6.4. Let σ be an LBFS ordering of a connected graph G. Building on the definition
given in Subsection 2.3, we say that ST (Gi+1) inherits a marker vertex q of a node in ST (Gi) if q
is not the extremity of a fully-mixed tree-edge of ST (Gi) marked by the neighbourhood of xi+1.
By extension, ST (Gj), with j > i + 1, inherits the marker vertex q from ST (Gi) if ST (Gj−1)
inherits q from ST (Gi) and q is not the extremity of a fully-mixed tree-edge of ST (Gj−1) marked
by the neighbourhood of xj .

Recall that in a split-tree the centre of a star is never the opposite of a degree-1 marker vertex
(since otherwise the split-tree wouldn’t be reduced). For our charging argument, we need to extend
this property over the life time of a marker vertex that was created as the centre of a star, assuming
the vertex insertion follows an LBFS ordering.

Lemma 6.5. Let σ be an LBFS ordering of a connected graph G. Assume that to insert vertex xi,
a degree three node ui labelled by a star has been created. Let ci be the centre of ui and qi be the
degree-1 marker vertex of ui not opposite xi. If xj ∈ Slice(xi), then ST (Gj) contains a star node
uj which contains ci as centre and qi as one of its degree-1 marker vertices. Moreover uj contains
a degree-1 marker vertex qj such that xj ∈ L(qj).

Proof. The result clearly holds if i = j. Consider the case j = i + 1. Notice that xi+1 is a twin
of xi since xi+1 ∈ Slice(xi). This implies that, if ST (Gi) is marked by the neighbourhood of xi+1,
then ci is perfect and qi is empty. In other words the tree-edges respectively incident to ci and qi
are not fully-mixed. So by definition, ci and qi are inherited by ST (Gi+1). Obviously, the opposite
of xi is either perfect or empty in ST (Gi) and is inherited by ST (Gi+1). It follows that ST (Gi+1)
contains the desired star node ui+1.

Assume that for i < k < j, ST (Gk) has a star node uk in which ci is the centre and qi is the
degree-1 marker vertex identified at the creation of ui. Notice that by the definition of a star, i > 2.
It follows that for every k such that i < k < j, (Bi, {xi, . . . , xk}) is a split of Gk. Moreover, observe
that Bi = L(ci) ∪ L(qi). Consider the GLT obtained by a node-split of uk, creating a tree-edge e
corresponding to the split (Bi, {xi, . . . , xk}). Since (Bi, {xi, . . . , xk, xk+1}) is also a split of Gk+1,
the extremity q of e such that L(q) = Bi is perfect or empty in this GLT marked with respect to
the neighbourhood of xk+1. So, by our incremental split-tree construction, the marker vertices in
T (q), and in particular ci and qi, are inherited by ST (Gk+1). Hence ST (Gk+1) contains the desired
star node uk+1.

Lemma 6.6. Let σ be an LBFS ordering of a connected graph G. Let ci be the centre marker
vertex of a star ui in ST (Gi). If ci is inherited by ST (Gj), with i 6 j, then it is not opposite a
degree-1 marker vertex of a star in ST (Gj).
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Proof. Assume without loss of generality that ci has been generated by xi’s insertion, that is ui is
a degree three node ui labelled by a star. Let qi be the degree-1 marker vertex of ui not opposite
xi in ST (Gi). Let k be the smallest index such that ci is inherited by ST (Gk) and is opposite a
degree-1 marker vertex. Clearly as ST (Gi) is reduced, i < k. By assumption, in ST (Gk−1), ci’s
opposite has degree at least two. By Propositions 4.15, 4.16, 4.17 and 4.20, the only way to make
ci the opposite of a degree-1 marker vertex in ST (Gk) is to subdivide the tree-edge e incident to
ci in ST (Gk−1) by a star node adjacent to xk. That is, case 6 of Theorem 4.14 holds and e was
the unique tree-edge with one perfect and one empty extremity (the perfect extremity being ci).
Observe that the node u containing ci in ST (Gk−1) cannot be a star node (Corollary 4.4-5). We now
contradict this fact. To that aim observe that as ci is perfect in ST (Gk−1) and in ST (Gi), we have
N(xk)∩Bi ⊆ N(xi)∩Bi. As i < k, for σ to be a LBFS ordering, we have N(xk)∩Bi = N(xi)∩Bi;
in other words, xk ∈ Slice(xi). But now Lemma 6.5 implies that u is a star: contradiction.

The last results rely on the crucial assumption that an LBFS ordering is followed. One way of
interpreting them is to say that once a star is created, it is then expanded maximally. The important
consequence is what the last result says about the phase 1 node-joins defined by Algorithm 9. Recall
that phase 1 node-joins involve a star whose root marker vertex is its centre, and one of its children.
Lemma 6.6 therefore restricts the number of phase 1 node-joins a node can undergo. We need this
fact to bound the number of new label-edges created during contraction.

6.2.2 Stamping schemes

The amortized complexity analysis relies on two stamping schemes. First, every non-root marker
vertex q of a degenerate node is stamped with a vertex of the input graph G, called the degenerate
stamp of q. As a consequence of Lemma 6.1, degenerate stamps can be assigned such that every
vertex of G is used at most three times. Intuitively, the role of degenerate stamping is to amortize
the cost of the creation of the label-edges of degenerate nodes prior to some node-join operation.

In addition, another stamping scheme is developed to amortize the cost of the creation of
the label-edges generated by the node-join operations during contraction. Consider the following
inductive procedure which, given a reduced GLT, assigns a stamp s(q) = (s1(q), s2(q)) ∈ V (G)2 to
every non-root marker vertex q that is not the centre of a star:

1. If q is opposite the leaf y, then s(q) = (y, y).

2. Let uv be an internal tree-edge in the split-tree ST (G) with extremities q ∈ V (u) and r ∈
V (v), where u is the parent of v:

(a) if d(r) > 1, then set s(q) = (s2(t), s2(t
′)) for two (arbitrary) neighbours t and t′ of r;

(b) if d(r) = 1, and therefore v is a star with centre c, then set s(q) = s(c), and then remove
c’s stamp.

We will refer to s1(q) as q’s primary stamp and s2 as q’s secondary stamp. We are interested in
primary stamps; secondary stamps only exist to be “passed up” in step 2(a) above. The procedure
guarantees the following properties of these stamps:

Lemma 6.7. At the end of the procedure, centres of stars are the only non-root marker vertices
without a stamp.
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Proof. This follows from the observation that only step 2(b) removes a stamp.

Lemma 6.8. At the end of the procedure, if the leaf y is the primary stamp of the marker vertex
q, then y ∈ A(q).

Proof. An easy inductive argument shows this, applying the fact that q only receives a stamp via
its accessibility paths.

Lemma 6.9. At the end of the procedure, every leaf is a primary stamp at most twice.

Proof. Let uv be an arbitrary edge in T , where u is the parent of v, and let q ∈ V (u) and p ∈ V (v)
be arbitrary non-root marker vertices, where p is accessible from q. We let y be an arbitrary vertex
and examine how occurrences of y in s(p) can be transmitted to s(q). Note that the stamp (y, y)
applies to the marker vertex opposite y, and thus a bottom-up argument starts with y having
appeared once as a primary stamp.

First, we observe that no step of the algorithm allows a primary occurrence of y in s(p) to be a
secondary occurrence of y in s(q). Suppose for contradiction that a primary occurrence of y in s(p)
is also a primary occurrence of y in s(q). This can only happen by execution of step 2(b), but now
the stamp is removed from p. Thus this case does not allow an increase in the number of times
that x appears as a primary stamp.

Finally, suppose that a secondary occurrence of y in s(p) becomes a primary occurrence of y
in s(q). Step 2(a) allows this to happen thereby increasing by one the number of times that y can
appear as a primary stamp. The preceding argument shows that this cannot occur again.

What these properties will allow us to do, after the next subsubsection, is to transfer the charge
assigned to marker vertices (that are not centres of stars) to their primary stamps. Lemma 6.8
allows us to associate charge with an edge (incident to the primary stamp) in the underlying
accessibility graph. Lemma 6.9 allows us to associate the charge with a vertex (i.e. the primary
stamp) in the underlying accessibility graph (and to do this at most twice for each vertex). Then
we will be able to bound the total charge in terms of the input graph parameters.

6.2.3 The charging apparatus

The idea of the charging argument is to charge the creation of each new label-edge to one of its
incident marker vertices. To that aim, each marker vertex q is associated throughout its lifetime
with a list of vertices Charge(q) that can be given units of charge.

Definition 6.10. Let q be a marker vertex of a node u in a (rooted) split-tree ST (G) of a connected
graph G. The list Charge(q) of vertices of G contains a set of vertices of G such that:

• each element in the list can be given a number of units of charge;

• the vertices are divided into groups, one for each of q’s neighbours in G(u);

• the vertices in neighbour t’s group are the vertices in A(t);

• the root marker vertex’s group (if it exists) is called the root group.

For a leaf x of ST (G) (i.e. a vertex of G), the list Charge(x) contains the vertices of N(x) = A(x).
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The way we assign charge during the algorithm is described precisely in forthcoming Lemmas
6.12, 6.13, 6.14 and 6.15. Of course, the Charge lists are not static during the construction of
ST (G): as new vertices are inserted, new elements must be added to some Charge lists; and as
node-joins and node-splits occur, new groups are created and destroyed, respectively. However,
throughout these changes, the following invariant will be maintained:

Invariant 6.11. Let ST (G) be the (rooted) split-tree of a connected graph G.

• if q is a marker vertex of a node u of ST (G), then

1. the list Charge(q) is free of charge if

(a) u is a degenerate node or at some intermediate step of the contraction, q has degree
one in G(u);

(b) q is a root marker vertex and has never been the centre of a star at some prior step;

2. if q is adjacent to the root of G(u), then the root group in Charge(q) is free of charge;

3. at most one vertex in each group in Charge(q) has been assigned charge;

4. every vertex in Charge(q) has been assigned at most one unit of charge if q is a root
marker vertex, and at most three units of charge otherwise.

• if x is a leaf of ST (G), then each vertex in Charge(x) is assigned at most three units of
charge.

Moreover the number of label-edges created during the process of constructing ST (G) is bounded by
the total charge on all the Charge() lists.

Let us observe that a marker vertex can have degree one (condition 1(a)) and not belong to
a degenerate node only at some intermediate step of the contraction prior to the vertex insertion.
Of course, once the new vertex is inserted, this is no longer possible since the current GLT is a
split-tree (see Proposition 4.20).

Assume the invariants hold for the split-tree ST (G). Now consider forming the split-tree ST (G+
x), where x is is the last vertex in an LBFS ordering of G+x. We will consider the changes required
of ST (G) to form ST (G+ x), as described by Propositions 4.15, 4.16, 4.17 and 4.20.

Lemma 6.12. Let x be the last vertex of an LBFS ordering of the connected graph G+x. If Invari-
ant 6.11 is satisfied by ST (G) and if ST (G) does not contain a fully-mixed edge, then Invariant 6.11
is satisfied by ST (G+ x).

Proof. In every case, except if ST (G) contains a unique hybrid prime node (case 3 of Theorem 4.14),
the modifications performed on ST (G) to obtain ST (G + x) only involve degenerate nodes. Thus
no label-edge is created. By condition 1 of Invariant 6.11 every list Charge(q) for a marker vertex
of a degenerate node is free of charge, and Invariant 6.11 is still valid after x’s insertion.

In the case ST (G) contains a unique hybrid prime node u, then by Proposition 4.15 new label-
edges are created incident to x’s opposite, namely q ∈ V (u) the new created marker vertex. Clearly
q is not the root marker of u and Charge(q) is divided in |P (u)| = d(q) groups. One vertex of
each of these groups receives a unit charge. If one of these group is the root group, then the charge
assigned to one of its vertices is shifted to one of the other already charged vertices of Charge(q).
It follows that Invariant 6.11 it still satisfied.
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We now deal with the case where ST (G) contains a fully-mixed subtree T ′. By the arguments
used in the proof above, since the cleaning step only involves degenerate nodes and thus does not
create any label-edges, the GLT cℓ(ST (G)) still satisfies Invariant 6.11. Our split-tree algorithm
uses Algorithm 9 to perform contraction. Recall that it separates node-joins into three phases.
Phase 1 node-joins involve star nodes whose root marker vertex is its centre. Phase 2 node-joins
involve nodes whose root marker vertex has degree one. Phase 3 node-joins are all those remaining.
No matter the phase, a node-join creates new label-edges. We need to assign charge to account for
every one of these edges. However, this is done differently for each of contraction’s three phases,
as explained below.

Lemma 6.13 (Phase 1 node-joins). Let x be the last vertex of an LBFS ordering of the connected
graph G+x and assume cℓ(ST (G)) satisfies Invariant 6.11. If the node-join(u, u′) is performed on
cℓ(ST (G)) between a star node u, whose root marker vertex is its centre, and a child u′ of u, then
the resulting GLT satisfies Invariant 6.11.

Proof. Let c be the centre of u. Notice that Charge(c) is free of charge, by condition 4 of Invari-
ant 6.11. Let t ∈ V (u) and t′ ∈ V (u′) be the extremities of the tree-edge between u and u′. Notice
that t is a degree one marker vertex.

Prior to the node-join, we need to create the label-edges of the graph G(u) since it is degenerate
and of G(u′) if u′ is degenerate. Every such label-edge e is incident to a non-root marker vertex q
whose degenerate stamp is a vertex z of G. Let y be a leaf of A(q′), where q′ is the other marker
vertex incident to e. Observe that y belongs to Charge(z). Then one unit is charged to y’s entry
in Charge(z) for the cost of the creation of e. As z appears at most three times as a degenerate
stamp (see Lemma 6.1), Invariant 6.11 is satisfied.

So assume the label-edges of G(u) and G(u′) exist. If d(t′) > 1, then the node-join of u and
u′ results in d(t′) extra label-edges being created. But notice that it also results in t’s group in
Charge(c) being replaced by d(t′) new groups, each free of charge. So to each of these new groups
we assign one unit of charge. If t′ is a degree one marker vertex, then recall the node-join is
handled differently (see Algorithm 8). Only one new label-edge is added between c and t′’s unique
neighbour. Again, for this we assign one unit of charge to what was t’s group in Charge(c).

Now, since d(t) = 1, we know Charge(t) is free of charge, by condition 1(a) of Invariant 6.11.
We also know that t′ is not the centre of a star, because ST (G) is reduced. Moreover, t′ can never
have been the centre of a star, because of Lemma 6.6 and the fact that d(t) = 1. It follows from
condition 1(b) of Invariant 6.11 that Charge(t′) is free of charge. In other words, no charge is
lost in deleting Charge(t) and Charge(t′) along with t and t′. It follows easily that the number of
label-edges created so far is bounded by the total charge on all the Charge() lists.

It is also easy to verify that every condition of Invariant 6.11 continues to hold, although we
single out condition 1(b) for comment. The key for condition 1(b) is that c is no longer the centre
of a star after the node-join is performed, and thus is allowed to have charge.

We can now assume that all phase 1 node-joins are complete. Let us turn to phase 2 node-joins.
Recall from Algorithm 9 that a phase 2 node-join involves a node u and one of its children u′ such
that the root of u′ is a degree one marker vertex. This type of node-join is implemented differently
(see Algorithm 8). Observe also that u′ could not have resulted from any node-join in phase 1.

Lemma 6.14 (Phase 2 node-joins). Let x be the last vertex of an LBFS ordering of the connected
graph G + x. Assume that all the phase 1 node-joins have been performed on cℓ(ST (G)) and that
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the resulting GLT satisfies Invariant 6.11. If the node-join(u, u′) is performed between a node u and
one of its children u′ which is a star node rooted at a degree one marker vertex, then the resulting
GLT satisfies Invariant 6.11.

Proof. First observe that as u′ is a star node and u is possibly a clique node, the label-edges of
G(u) and G(u′) have to exist prior to the node-join. The cost of this creation can be charged, as
described in the proof of Lemma 6.13, to the degenerate stamps of their non-root marker vertices.

Let r be the root of u′ (r has degree one in G(u′)) and let c be the centre of u′. Let q be
the opposite of r. The node-join proceeds by deleting c’s neighbours (other than r) from u′, and
adding them to u as neighbours of q. Suppose that k neighbours of c are moved in this way. Then
k new label-edges are created by the node-join. But notice that adding the new edges incident to
q creates k new groups in Charge(q), each being free of charge by virtue of being new. So to each
of these groups we assign one new unit of charge.

By condition 1(a) of Invariant 6.11, both Charge(c) and Charge(r) are free of charge. So no
charge is lost deleting Charge(c) and Charge(r) along with c and r. Therefore the number of
label-edges created so far is bounded by the total charge on all the Charge() lists.

We now consider phase 3 node-joins. This means that all the node-join involving a star node
have been performed.

Lemma 6.15 (Phase 3 node-joins). Let x be the last vertex of an LBFS ordering of the connected
graph G+x. Assume that all the phase 1 and phase 2 node-joins have been performed on cℓ(ST (G))
and that the resulting GLT satisfies Invariant 6.11. If the node-join(u, u′) is performed, then the
resulting GLT satisfies Invariant 6.11.

Proof. As discussed in the proof of Lemma 6.13, if u or u′ is a degenerate node (it must be a clique
in this case), then the cost of creating the corresponding label-edges can be charged to the list of
some degenerate stamps while preserving Invariant 6.11.

Let q ∈ V (u) and r ∈ V (u′) be the extremities of the edge uu′. Since all phase 1 and phase 2
joins have been performed, we can assume that d(q) > 1 and d(r) > 1. Before assigning charge to
account for the d(q) · d(r) new label-edges that are created, we will want to redistribute any charge
on Charge(q) and Charge(r).

First consider the redistribution of the charge on Charge(q). Let t be a neighbour of q in
G(u). If t is the root marker vertex, then t’s group in Charge(q) is free of charge by condition 2
of Invariant 6.11, and so no charge in this group needs to be redistributed. So let t be a non-root
marker vertex that is a neighbour of q. Then by condition 3 of Invariant 6.11, we know that at
most one vertex in t’s group in Charge(q) has been assigned charge. If such a vertex exists, then
call it λ. Notice that during the u, u′ node-join, Charge(t) will lose q’s group but will gain the
d(r) > 1 groups in Charge(r). By condition 3 of Invariant 6.11, at least one of these groups (say
γ) will be free of charge. The charge on λ is reassigned to one of the vertices in γ in this case.
Continuing this for all such t removes all charge on Charge(q), and so it can be deleted along with
q and no charge is lost.

We now turn to the redistribution of the charge on Charge(r). Let t′ be a neighbour of r in
G(u′), and notice that by condition 3 of Invariant 6.11, at most one vertex in t′’s group in Charge(r)
has been assigned charge. If such a vertex exists, call it λ′. By condition 4 of Invariant 6.11, we
know that λ′ has been assigned no more than one unit of charge. Now, once more by condition 2
of Invariant 6.11, we know that r’s group in Charge(t′) is free of charge. Furthermore, during the
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join, Charge(t′) will lose r’s group but will gain the d(q) > 1 groups in Charge(q). Let γ′ be one
of these new groups. In this case we reassign λ′’s one unit of charge (if it exists) to a label in γ′.
Continuing this for all such t′ removes all charge on Charge(r), and so it can be deleted along with
r and no charge is lost.

We finally assign d(q) · d(r) new units of charge. Let t′ and γ′ be as above. So r’s former group
in Charge(t′) is replaced by d(q) > 1 new groups, one of them called γ′. Only γ′ (possibly) has
any charge assigned to it, and only one unit at that; the other d(q) − 1 groups are free of charge.
To d(q) − 2 of the groups free of charge we assign one unit of charge, and to the remaining group
free of charge we assign two units of charge. Lastly, if one of the groups corresponds to the root
marker vertex of u, then the charge just assigned to that group is shifted to another, which must
exist. The result is that only one vertex in each group contains charge, none having been assigned
more than three units, and the root group becomes free of charge.

It is easy to verify that Invariant 6.11 continues to hold under this (re)assignment of charge.

6.3 Bounding the total charge, and the running time of our algorithm

Lemmas 6.12, 6.13, 6.14 and 6.15 guarantee that Invariant 6.11 holds during the LBFS incremental
construction of the split-tree of G. Consequently, the total number of label-edges created all along
the construction is bounded by the total charge residing on all Charge lists.

Lemma 6.16. Let G be a connected graph. The total number of label-edges created during our
LBFS incremental construction of ST (G) is O(n+m), where n is the number of vertices in G and
m is the number of its edges.

Proof. Assign primary stamps to the marker vertices in ST (G) as described earlier. By condi-
tion 1(a) of Invariant 6.11, we can focus on the Charge lists residing on marker vertices in prime
nodes and on leaves of ST (G).

By Invariant 6.11, the elements of the lists Charge(x) received at most 3 units of charge. As
these lists contain exactly

∑
x∈V (G) dG(x) =

∑
x∈V (G) |A(x)| elements, the total charge on these

lists is bounded by O(m).
Let u be a prime node, and let r ∈ V (u) be u’s root marker vertex, and let q be one of u’s

non-root marker vertices. If q and r are adjacent, then download all the charge from q’s group
in Charge(r) to r’s group in Charge(q). By condition 4 of Invariant 6.11, the total charge in r’s
group in Charge(q) is not more than four units. By the same condition 4, the total charge in the
other groups in Charge(q) is no more than three units.

Now, by choice of q and Lemma 6.7, we can assume that q has been assigned a primary stamp.
Moreover, the vertex s1(q) acting as primary stamp is in A(q), by Lemma 6.8. So by definition of
Charge(q), we know s1(q) is adjacent to every label in Charge(q). The total charge on all such
Charge lists is therefore O(n+m), by Lemma 6.9 and our discussion above.

More important than the bound above is what it implies:

Lemma 6.17. Let G be a connected graph. The total number of node-joins and union() operations
performed by our LBFS incremental construction of ST (G) is O(n+m), where n is the number of
vertices in G and m is the number of its edges.

Proof. Notice that during every node-join at least one new label-edge is created (Lemma 5.14).
The bound on the number of node-joins now follows from Lemma 6.16: it is O(n+m).
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There are exactly three ways our algorithm applies a union() operation: once after each
initalization() in a node-join, once for finalizing every node-join, and once when a new prime
node is formed. The number of such applications of the first way is O(n) by Lemma 6.2, the number
of the second way is O(n +m) as said above, and the number of the third way is O(n), since at
most one new prime node is formed for each vertex inserted.

Lemma 6.18. Let Gn be a connected graph with n vertices and m edges whose split-tree is incre-
mentally constructed by repeated application of Algorithm 3; that is ST (Gi+1) = ST (Gi + xi+1)
is built from ST (Gi) = (Ti,Fi) for 1 ≤ i ≤ n − 1. Then the sum of |Ti(NGi+1

(xi+1))| over all
1 ≤ i ≤ n− 1 is O(n+m).

Proof. For a fixed i, let G denote Gi, T denote Ti, x denote xi+1, and N(x) denote NGi+1
(x). We

can divide the nodes of T (N(x)) into two groups: those that remain in ST (G+ x), and those that
do not. The number of those that remain is O(|N(x)|), by Lemma 2.20. So the total number of
nodes in the first group over the entire execution of our algorithm is O(n+m). Every node in the
second group participates in at least one node-join. So the total number of nodes in the second
group over the entire execution of our algorithm is also O(n+m), by Lemma 6.17.

Lemma 6.19. Let G be a connected graph. The total number of find() operations performed by
our LBFS incremental construction of ST (G) is O(n + m), where n is the number of vertices in
G+ x and m is the number of its edges.

Proof. Our algorithm uses find() operations to traverse the split-tree. These traversals can take
place during case identification and state assignment, cleaning, and contraction. Case identification
and state assignment take place according to Algorithm 5; cleaning takes place according to Algo-
rithm 7; and contraction takes place according to Algorithm 9. So by Lemmas 5.10, 5.13, and 5.15,
the total number of find operations required for the insertion of x is O(|T (N(x))|). So the total
number for the whole algorithm is O(n+m) by Lemma 6.18.

Lemma 6.20. Let G be a connected graph. The total number of nodes (including fake nodes)
created in the rooted GLT data-structure used by our algorithm, and the total number of elements
in the union of children-sets, is O(n+m).

Proof. A node is created either when the new vertex x is inserted, or when a node-split is performed.
At most one node-split is performed in the case where there is no fully-mixed subtree. Therefore,
the total number of nodes created in this case and by the insertion of x is O(n) over the course of
the LBFS construction of ST (G). If there is a fully-mixed subtree, then node-splits are performed
during the cleaning step and they involve nodes in T (N(x)). At most two node-splits are performed
at each such node. So the total number of created nodes for the whole algorithm is O(n +m) by
Lemma 6.18. Elements of children-sets in the data-structure are either leaves or some nodes created
at some step of the algorithm, hence their total number is also O(n+m).

The previous lemmas culminate in the theorem below, which is the main result of our paper:

Theorem 6.21. The split-tree ST (G) of a graph G = (V,E) with n vertices and m edges can
be built incrementally according to an LBFS ordering in time O(n +m)α(n +m), where α is the
inverse Ackermann function.
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Proof. Lemma 6.1 establishes an O(n) bound on the number of non-root degenerate marker vertices.
As every node has degree at least 3, the total number of degenerate marker vertices created during
the LBFS incremental construction is O(n). The total number of label-edges created during the
LBFS incremental construction is O(n +m), by Lemma 6.16. Therefore our algorithm generates
an O(n+m) size data-structure.

In addition to the cost of computing an LBFS, which takes time O(n + m) [26, 27], we have
to bound the cost of the tree traversals, based on find() operations, plus the total cost of the
initialization(), union() operations involved in the contraction steps. The sum, over all the
algorithm, of the term |T (N(x))| in Lemmas 5.10, 5.13, and 5.15, is O(n+m), by Lemma 6.18. The
total cost of initialization() operations required by the algorithm is O(n), by Lemma 6.2. The
total number of union and find operations is O(n+m), by Lemmas 6.17 and 6.19, respectively.

Finally, the cost of the union-find requests amounts to O(α(N)(n +m) +N), where N is the
total number of elements in the union of children-sets. This number N is O(n + m) by Lemma
6.20. It is easy to prove that α(C · (n+m)) ∼ α(n+m) for any fixed constant C. Indeed, because
of the way the Ackermann function increases, for any n, α(n) = k− 1 implies α(C.n) ≤ k for every
k large enough. Hence α(C.n) − α(n) ≤ 1 for n large enough, which implies α(C.n) ∼ α(n). In
particular, we have that α(O(n +m)) = O(α(n +m)).

So to conclude, the total cost of our algorithm is O((n+m)α(n+m)), which can also be written
O(n+m)α(n +m).

To conclude, let us mention that we are prevented from achieving linear time only by the node-
join. Let u and u′ be two adjacent nodes, with u the parent of u′. To effect their node-join, the
children of u′ must be made children of u. That is the bottleneck. Our implementation does its
best to avoid it by using union-find, but the optimal complexity for union-find involves the inverse
Ackemann function. It seems to us that our charging argument can not be extended to cover the
cost of reassigning u′’s children, thereby eliminating union-find and achieving linear time. However,
it is worth emphasizing that, from the practical viewpoint, the inverse Ackermann function can be
thought of as a constant, and that every other aspect of our algorithm is consistent with linear
time.

This paper’s companion [25] extends our split decomposition algorithm to recognize circle graphs
in same time. It is the first sub-quadratic circle recognition algorithm, and the first progress on
the problem in fifteen years.
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[17] F. Dragan, F. Nicolai, and A. Brandstädt. LexBFS-orderings and powers of graphs. In Inter-
national Workshop on Graph Theoretical Concepts in Computer Science (WG), Lecture Notes
in Computer Science, 1197:166–180, 1996.

[18] J. Engelfriet and V. van Oostrom. Logical description of context-free graph languages. Journal
of Computer and System Science, 55:489–503, 1997.

[19] D. Eppstein, M.T. Goodrich, and J. Yu Meng. Delta-confluent drawings. In International
Symposium on Graph Drawing (GD), Lecture Notes in Computer Science, 3843:165–176, 2005.

[20] C.P. Gabor, W.L. Hsu, and K.J. Suppovit. Recognizing circle graphs in polynomial time.
Journal of ACM, 36:435–473, 1989.

[21] T. Gallai. Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hungar., 18:25–66, 1967.

[22] C. Gavoille and C. Paul. Distance labelling scheme and split decomposition. Discrete Mathe-
matics, 273(1-3):115–130, 2003.

50



[23] E. Gioan and C. Paul. Dynamic distance hereditary graphs using split decomposition. In In-
ternational Symposium on Algorithms and Computation (ISAAC), Lecture Notes in Computer
Science, 4835:41–51, 2007.

[24] E. Gioan and C. Paul. Split decomposition and graph-labelled trees: characterizations and
fully-dynamic algorithms for totally decomposable graphs. Discrete Applied Mathematics,
160(6):708–733, 2012.

[25] E. Gioan, C. Paul, M. Tedder, and D. Corneil. Practical and efficient circle graph recognition.
arXiv:1104.3284, 2011.

[26] M.C. Golumbic. Algorithmic graph theory and perfect graphs, 2nd Edition. Elsevier, 2004.

[27] M. Habib, R.M. McConnell, C. Paul, and L. Viennot. Lex-BFS and partition refinement, with
applications to transitive orientation, interval graph recognition and consecutive ones testing.
Theoretical Computer Science, 234:59–84, 2000.

[28] M. Habib and C. Paul. A survey of the algorithmic aspects of modular decomposition. Com-
puter Science Review, 4(1):41–59, 2010.

[29] P. Hammer and F. Maffray. Completely separable graphs. Discrete Applied Mathematics,
27:85–99, 1990.

[30] E. Howorka. A characterization of distance hereditary graphs. Quart. Journal Math. Oxford
Series, 2(112):417–420, 1977.

[31] W.-L. Hsu. O(n.m) algorithms for the recognition and isomorphism problems on circular-arc
graphs. SIAM Journal on Computing, 24(3):411–439, 1995.

[32] T.-H. Ma and J. Spinrad. An O(n2) algorithm for undirected split decomposition. Journal of
Algorithms, 16:145–160, 1994.
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