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AN ALGORITHMIC CHARACTERIZATION OF POLYNOMIAL
FUNCTIONS OVER Zy

ASHWIN GUHA AND AMBEDKAR DUKKIPATI

ABSTRACT. In this paper we consider polynomial representabilityusfdtions
defined ovelZpn, wherep is a prime anch is a positive integer. Our aim is to
provide an algorithmic characterization that (i) answéues decision problem:
to determine whether a given function ovég is polynomially representable
or not, and (ii) finds the polynomial if it is polynomially regsentable. The
previous characterizations given by Kempner (1921) andit€4t964) are ex-
istential in nature and only lead to an exhaustive searchadete., algorithm
with complexity exponential in size of the input. Our chaesization leads to
an algorithm whose running time is linear in size of input. &0 extend our
result to the multivariate case.

1. INTRODUCTION

The problem of polynomial representability of functionscisntral to many
branches of mathematics. In literature, there have beempts to represent var-
ious functions using polynomials and power series. Withatieent of calculus
various methods were developed to approximate analytictifums using polyno-
mials. An important milestone in this regard is the Taylatese put forth by Brook
Taylor.

Itis well known that if the underlying set is a finite field, eyéunction from the
field to itself can be represented as a polynomial. The fattatery function over
finite fields of the formZ,, wherep is prime, can be represented by a polynomial
was noted by Hermite [5]. Dickson proved the above propeamyafgeneral finite
field in [4]. Dickson also showed that for a finite field of orapevery function is
uniquely determined by a polynomial of degree less tpdPolynomials over finite
fields are also discussed n [3]. A comprehensive surveyrdaggfinite fields can
be found in[10].

In this paper we consider polynomial representabilitf.ja, wherep is a prime
andn is a positive integer. Such residue rings have an elegamnttste and their
study is the first step to understand polynomial represdityaib rings. This prob-
lem has been studied in literature and the two importantltesuere given by
Carlitz [2] and Kempner [8].

A necessary and sufficient condition for a function o¥ge to be polynomial
using Taylor series is provided inl/[2]. KempnE&r [8] showedttthe only residue
class rings where all functions can be represented by potiale areZ,, wherep
is prime. Kempner also provides a method to enumerate athpatial functions
overZ; for any positive integet.

A simpler formula to express the number of polynomial fumes inZp» is given
in [7]. An alternative formula for the same is provided [in[[1&hich is also ex-
tended to polynomials in several variables. The formulaeisegalized over a Ga-
lois ring in [1]. Some other related work can be found.in/[12].
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Until now the problem of polynomial representability hasebesiewed from
a traditional standpoint and its computational aspectg l@en ignored. In this
paper we give an alternate characterization by considénimget of functions over
Zy as aZp-module. We provide a linear time algorithm that solves trabem
of polynomial representability and identify the polynoimihich corresponds to
the given function. Further, we give the characterizatiothe multivariate case.

This paper is organized as follows. In Sectidn 2 we provide lihckground
and motivation for a new characterization. Secfibn 3 costaur characterization
of polynomial functions inZy. In Sectior #4 we give an algorithm based on our
characterization. We also discuss its correctness andlewityp In Sectior 5 we
determine the polynomial that corresponds to the giventfonc In Sectioni b we
extend the characterization to functions in several véggabConcluding remarks
are provided in Sectidn 7.

2. BACKGROUND AND PRELIMINARIES

In this section we look at polynomials over finite rings, irrtgaular, polyno-
mials over residue class rings. Liebe a positive integer. One can easily verify
thatZ:[x] is aZt-module. Every polynomial ovef; defines a function frori; to
Zy by the universal property of polynomial rings. In other ward we allow the
indeterminatex to vary overZ;, then each polynomial corresponds to a mapping
from Z; to Z;. Let F; denote the set of all functions frof to Z. Ft = (Z)',
therefore we represent each elemengoés at-tuple (ap,a3,az,...,8-1), which
corresponds to the functiohwith f (i) = a. 3t is aZ-module of cardinality!.

It should be noted that there are infinitely many polynomial&;[x]. Let B;
denote the set distinct functions produced b¥[x]. 3 is finite and a subset of

St

Definition 2.1. Aring A is said to bgolynomially complete if every function from
A to itself can be represented as a polynomial.

Examples of such rings ai&,Z3, Zs. In generalZ, is polynomially complete,
if pis a prime. In other words, for primewe haveld, = F,. Given any function
it is possible to construct a polynomial which corresporal¢hat function. This
is achieved using Lagrange interpolation which is posdigleauseZ,, is a field.
This does not hold for an arbitrary integePolynomially complete structures are
discussed extensively inl[9].

Kempner discusses polynomials ogrfor any positive integetin [8]. Kemp-
ner gives a method to compute the cardinalityif The conditions for two poly-
nomials to be equal as functions,, f(x) = g(x) modt is described using the ideas
of signatureandcharacteristicof t. A method to enumerate all distinct polynomial
functions is also provided.

Carlitz [2] proved a key result regarding polynomial remstion of functions
in residue class ring modulo prime power. The result is vémilar to Taylor
series. The result states that a functibfrom Zy to itself is polynomial if and
only if there exist functionspg, @1,...,®P,_1 overZpy such that for alk,s € Zp,
we have

f(x+5sp = Po(X) + (SPP1(X) + ...+ (sp" 1d,_1(x) mod p". (1)

A key feature, and in a certain respect, a drawback, is thedethesults use
existential proofs. The results hinge on the existence wfestunctions satisfying
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certain properties. The previous works do not address sue isf finding the afore
mentioned functions. Consequently these results do ndtteany constructive
method to test whether a given function is polynomial repnégble, hence the
results cannot be implemented in computation.
One can apply a brute-force algorithm using the result byitZaoy considering
all possible functions iff» as shown below.
Input: f = (ag,as,...,ap_1).
for all x, s€ Zp do
for all ®g,@q,..., Py 1 € Fpr do
if f(X+ps) = Po(X)+ (SPPL(X) + ...+ (sp 1P, 1(x) then
Output: f is polynomial
exit
else
Output: f is not polynomial

The above algorithm is extremely inefficient. The cardiyadif the ringZp is
exponential inp. |§Fp| = p"P" is doubly exponential irp making it infeasible to
compute.

We can modify the method in|[8] to suit our problem of testingether a given
function f is polynomial. We can evaluate all polynomialsiif» and compare it
with f. If f does not match any of the functionsJi,» we can infer thaff is not
polynomially representable. The algorithm is presentddvibe

Input: f = (ag,ay,...,ap_1).

for allge Py do

for allxe Zy do
if f(x)=9(x) then
Output : f is polynomial
else
Output : f is not polynomial

This approach is better than the earlier one, still it is viesfficient. B,
which is much smaller thagy, is still extremely large. One can very well see that
given an arbitrary function i it is less likely to be polynomially representable
than otherwise. A simple example from [8] illustrates thegmitude of the sets
involved.

Example 1. Consider p=3,n= 11 Then,
p" =31~ 105,

| Spn| _ 311.311 ~ 101000000

[P pn| = 3354 ~ 106

We can see that even for small valuespadndn, Bp» becomes unmanageably
large.

In this paper we provide an algorithm that answers the questosed earlier.
We present a new characterization to describe polynomigtions ovetZ» using
which we bring down the complexity of the algorithm from dgubxponential in
p to exponential irp.

3. CHARACTERIZATION OF POLYNOMIAL FUNCTIONS OVERZpy

The question we wish to resolve can be stated as follows:
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Given a primep and a positive integar, and a functionf : Zpy —
Z, is there an algorithm to test whetheis polynomially repre-
sentable or not?

In order to answer the above question we make use of the matiuieture
of P. One can easily verify that for any integgr3;, the set of polynomial
functions, is &-submodule of§;.

Lemma 3.1. If (ap,a,...,&-1) and (bg,b,...,b_1) € Py, then (ap + b, a1 +
by,...,a1+b1) € Pr.
Proof. If f andg are the polynomials such th&tx) = (ap,...,&-1), andg(x) =

(bo,...,b—1), forx=0,...,t — 1, thenh(x) defined asf (x) +g(x) for all x € Z; is
also a polynomial.

Lemma3.2.If (ag,ay,...,a&-1) € P, then(sa, sa, . ..,sa_1) € Pt, where s Z;.

Proof. If f(x) = (ap,as,...,&-1), for x=0,...,t — 1, thensf(x), which is also
polynomial corresponds t(s&,sas,...,Sa-1). Hence(sa,sa,...,Sa-1) € PBt.
Il
From these two lemmas we have the following proposition.
Proposition 3.3. 3, is aZ-submodule of;.

We intend to find a ‘suitable’ generating set 83k thereby translating it to a
Zy-submodule membership problem.

3.1. Paraphernalia.

Definition 3.4. Let f € . The [ cyclic shift of f, denoted by<#>, is defined
as

£<I>(i) = f(i + j modp")
fori=0,...,p"—1

Definition 3.5. Letw, Vs, ..., Vm € §pr. TheZyp-submodule generated byfor i =
1,2,...,mand their cyclic shifts for0,..., p"— 1lis denoted by(vi,Vz,...,Vm)).

We shall identify a seG’ C P such thaty» = ((G')). The following lemma
helps us describe such a set.

Lemma 3.6. If (ag,ay,...,ap_1) € P, then its cyclic shif(ay,...,ap_1,a0) €

mp”-

Proof. Let f(x) € Zy[x| be the polynomial that gives rise to the function
(ag,as,...,ap—1). Thenf(x+1), which is also a polynomial, gives rise(ay, ay, ..., apy_1,a0).
Hence the cyclic shift also belongsJy. O

Clearly, shifting byj places is equivalent to replacirfgx) by f(x+ j). Hence
all cyclic shifts are polynomially representable. We noetstand prove two lem-
mas which are crucial in establishing our main result.

Lemma 3.7. The function y: Zy — Zy defined as

wog={ 9 {10 @

belongs taP .
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Proof. We show thatyy satisfies[(lL). LetPy(x) = up(x) and®; be zero functions
fori=1,...,n—1. Now if p{x, pf (x+sp) for all s€ Zy. Therefore,

Uo(x+sp = 0O
= Up(x)+0
= Do(x) + (SPP1(X) + (SP P2(X) + ... + (5P Pp1(x).

If p|xthenug(x) =1 andp|(x+sp) forall s€ Zp.
U(x+sp = 1
= Up(x)+0

= ®o(X) + (SPP1(X) + (SP P2(X) + ...+ (5P Pn1(x).

Henceup € ‘Bp.

O
Lemma 3.8. The function W: Zy — Zpy defined as
[0 ifptx
U() = { X< ifplx 3)

belongs toPy fork=1,2,...,n—1.

Proof. We make use of (1) again. Defid® = u, for a fixedk € {1,2,...,n—1}.
Fori=1,2,... kdefine®; as

0 if ptx
()X if plx

d;(x) = {

Fork < i < n— 1 define®; as zero function.
If ptxthenug(x+ ps) = ux(x) =0 and it satisfied (1).
If p|xthen

U(x+sp) = (x+sp*

= X4 <';>xk‘1(sp)+ <;>Xk‘2(sp)2+---+ @ X(sp*

= U(X)+ (SPPL(X) + ...+ (SP*Dy(X) + 0
= Do(X) + (SPP1(X) + (SP*P2(X) + ...+ (SP"  Pp_1(X).

Hence it satisfies {1). Therefotg € P.



6 ASHWIN GUHA AND A. DUKKIPATI

Lemmal[3.7 is in fact a special case of Lemmd 3.8 wken0. Lemma3.B
essentially means that the following vectors can be reptedeas polynomials.

uw = (1,0,...,0,1,0,...,0,1,...,1,0,...,0)
p-1times  p-1times p-1times

uw = (0,0,...,0,p,0,...,0,2p,...,(p" = p),0,...,0)
N—— N—— N——
p-ltimes  p-1times p-1times

u = (0,0,...,0,p%0,...,0,(2p)%,...,(p"— p)?,0,...,0)
—— N—— ——
p-1times p-1times p-1times

u1 = (0,0,...,0,p"%0,...,0,2p)" L., (p"— p)"1,0,...,0)
~—— S—— S——
p-1times p-1times p-1times
3.2. The Characterization. We now provide the main result of this paper. It as-
serts that a function is polynomial if and only if it belongsthe submodule gen-
erated by, for k=0,...,n— 1 and their cyclic shifts.

Theorem 3.9. f € P if and only if fe ((Ug,ur,...,un_1)), where y for k =
0,...,n—1 are defined as il3) and ((up, us, ..., un_1)) denotes the set generated
by the vectors wfor k=0,...,n— 1 and their cyclic shifts.

Proof. (=)To show thatf € ((ug,us,...,un—1)) implies f € Ppn.
From Lemmd 318 we know that € Py for k=0,...,n—1. Letus!” denote
the j™ cyclic shift of u.. From Lemmd 316 we know thaf '~ € Ry for all k =
0,1,...,n—1andj=0,1,...,p—1. From Lemma$ 3|1 arid 3.2 we know that
linear combinations ofi;!~ € P

Let f € ((Up,...,Un—1)). Then there exist scalacy j € Zy, fork=0,1,...,n—
landj=0,1,...,p—1such that

<p-—1>
f= GQ’0U(§O> + 0071U§1> + ...+ 0o,p-1Yqy P

<p—-1>
+ 0170Uf0> + 0171Ufl> + ...+ 01p-1Ug P

<0> <1> <p-—-1>
+0n-1,0Un7 + 0n 11Us "7 4. 4 Ono1p 1Up Py

n-1p-1

<j>
= z %C{k’jukj .
k=0 j=

Clearly all terms in the summation belong¥gy. Hencef € L.

(<=)To show thatf € Py implies f € ((Up,Uy,...,Un—1)).

Let f = (ap,a1,...,ap—1), Whereg; € Z, fori =0,..., p"— 1. We can writef as
f=Vo+Vvi+...+Vp_1,

whereyv; is the function defined as

. a ifi=jmodp
vi(i) {o if i Z j modp, @
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for j=0,...,p—1. We now show that eaal) € PB. From [1),

Qjtrps = f(j+ps
= ®g(j)+ (SPP1(j) +...+ (sP" " Pp_a(]).

Forj=0,...,p—1

vi (i) = ®o(j) + (SPP1(j) + ...+ (sP" Py _1(j) ifi=jmodp
0 if i # j mod p,

wherei = j + ps Eachv; can be written as

vi=ng’+...+ny, (5)

wherenlﬁ” denotes the function

(i) = Pe(j)(sp* ifi=j+sp
0 otherwise

fork=0,...,n— 1. From Lemma&3l8, we can see that

n = o(j)uc .
From (3)

Vi = Oo(j)ug” +.. 4+ P a(jHusly.
®y is well defined andby € Z» fork=0,1,...n—1. Hencey; is a linear combina-
tion of u, fork=0,...,n—1 and their cyclic shifts. Sincg € ((Up,us,...,Un_1))
forj=0,....,p—1,f ¢ <<U0,U1,...,Un,1>>.
O

Note that not all cyclic shifts afiy are required, fok =0,...,n—1, but only the
first p shifts of eachuy. This is because all the other cyclic shifts can be written as
linear combination of the firgd cyclic shifts. Hence each polynomial 3> can
be represented as a scalar sum of at m@stectors.

This result is in fact a generalization of the generating@etector space. The
standard basis of the vector sp&gggcorresponds tap mentioned above and its
cyclic shifts.

4. ALGORITHM BASED ON NEW CHARACTERIZATION

Using Theoreni_3]9 we provide a method in Algorithm 1 whichseslthe de-
cision problem mentioned earlier by reducing it to a systdrinear equations.
The advantage of this reduction is that it is much easier &zklif a system has
solutions rather than check for the existence of functiohéckvis done in[(1L).
The linear equations can be solved by standard computatiogthods. We now
present the algorithm based on the characterization. lalgwithm the following
notations are used.

Adenotes thén— 1) x (n— 1) matrix with elements fronZ »
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P P p"-t
2p 2p? ... (2p"t
3p Bp* ... (Bp"t . (6)

(n-1)p (n-1p? ... ((n—1p"*
v; represents @"-tuple which forms a subarray of input for= 0,...,p— 1. w
represents @"~*-tuple of the form(p', (2p)', ..., (p"—p)') fori=0,...,n—1i.e,
u; without the extraneous zeroes.

One can see froni 1) thd(x+ sp) depends orf (x). In step 1 of Algorithm 1
we collect all the dependents in a single veatoof length p"~1. Note that all the
v;, fori =0,...,n—1 are independent of each other.

Letq= p". Substitutings= 0, we getdy(x) = f(x) for all x € Zq. In step 2 we
subtract this first term from eachto get a new vector

(0,8 4p—&,8i12p— &,..., 89— &)
which is written ag0, bl by, ..., bY ).

(@) implies that if the input functiorf is a polynomial therg;, ps— & must be
divisible by p. Therefore alb\’s must be zeroes or multiples pf With a single
pass onv, fori =0,...,n—1, we perform this check in step 3. If any of thdails
we conclude thaf is not polynomial.

In step 4, we consider the following system of linear equetioverZg, with
variablesx;.

p p2 p”_l X1 billz
2 n—-1 i

2:p (2?) s (Zp? ‘ X:2 _ b:2 e
(n-1)p (n-1p? ... ((n—D1p"* Xn-1 b

Qip—q = bg) = p¢1+p2d>2+...+p”*1d>n_1
aiop—a= bl = 2p®;+ (2p)2Ds+ ...+ (2p)" 1y 4

innp—a= byy= (N—1)pPr+((N—1)p)2Pz+...+((N—1)p)" 1Py 1

We remind ourselves that we are working with elements fromrthg Zn,
where division byp is not defined. However, if happens to be a polynomial,

then all multiples ofp in bg') evenly cancel out. If at any stage a division pys
encountered it immediately implies thhais not polynomial, since the system has
no solution.
If solution exists for ali = 0,1,...,p— 1, we then proceed to check in step 5 if
the solution satisfies the condition for remaining compsenv;, i.e., we check
if
WiE (U5 UL U,
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Algorithm 1 Determination of Polynomial Functions

Input: f = (ag,as,...,ap_1), wherepis prime anch € N.

Split f into p subarraysy; such that > Step 1
Vi = (aivai+p7ai+2p7 s 7ai+p”—p)-
fori=0,1,...,p—1do > Step 2
Vi = Vi —a&Wo
Letv; = (O, b<;>,bg>,...,bg3n,l>_l>.
fori=0,1,...,p—1do > Step 3
for j=0,1,...,p"Y—1do
if ptbi” then
Output: f is not polynomial.
exit
fori=0,1,...,p—1do > Step 4
X1 b(ll)
Xo p)
ifA| . = 2 has no solutiorthen >Aasin [B)
Xn-1 b(n'll
Output: f is not polynomial.
exit

Letd® = (o) o .. ol ) be the solution.

fori=0,1,...,p—1do > Step 5
n—-1 X
if vi= S ®"w then
e

Output: f is polynomial.
else
Output: f is not polynomial.

whereu" is thei™ cyclic shift of u;. If the above condition is true foir =
0,1,...,p— 1 we conclude thaf is polynomial representable.

The reason we choose to check for {flme- 1) components first separately is
because had we considered all the components together wd Wwave arrived
at an over-defined system of equations with- 1 equations fon — 1 variables.
Computation of rank to check for solutions would taB& p")?) instead ofO(n?)
as in the case of our algorithm.

The Algorithm 1 can be fully understood with the help of anrapée.

Example 2. Consider p=2,n= 3. Then
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= (1 0101010
b= (0 0 2 0 4 0 6 0
lb= (0 0 4000 40

Let f overZg be defined as
f=(2,16,1,2,1,6,1).

After Step 1.
o= (2 6 2 6
vi= (1 1 119
After Step 2:
Vo = (0 4 0 4)
vi= (0 0 0 O

After Step 3 we find that all the entries are divisible by 2.

(40)(5)=(5)

Forvg:

for which solution exists, namek = 2,x, = 0. Henceyy € Bg. We are misusing
the notation slightly. We have avoided the extra zeroesléoity.

Clearlyvs = (0,0,0,0) € ‘Bs. Thereforef is a polynomial function.

Proposition 4.1. Algorithm 1 computes whether input function is polynoryiall
representable.

Proof. The proof of termination of the algorithm is trivial becausiethe finite
nature of the structures involved.
From Theoreni_3]9 we have that a functibris polynomial if and only iff
{{uo, s, ..., un_1)). More specifically,f is polynomial if and only iy, € (uy'>,u;">,...,usl3),
fori=0,1,...,p—1, whereu:"> denotes th&" cyclic shift of u;.
In other words, there exist scalawg, oy, ...,0n—1 in Zpy such that

Vi = aous'” 4 aauy’” . an Uy

Suppose for convenience we drop the implicit zeros and wettorv; asv; =
(b(1'>,b(2'),...,bg<)nfl)_l), whereb(j') are as described in Algorithm 1. Then there
exist scalarsrg, ay, ..., dn_1 such that

o

Y 1 p pnt
by’ 1 2p (2p)t
. = 0o : + 01 . +...+0n1 :
(i) ' , n._ n_. n-1
bp'm,m1 1 p'—p (P"—p)

After step 2 of Algorithm 1, we get the first componentvwpfo be zeroj.e., we
eliminate the contribution afip. Let x be the vector(x, X, ..., X,—1). We check
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for solutions of

S B (Y (8
2:p (2|::>) . (Zp? ‘ X:2 _ b? @®
(D) (PP . (Pt - bg/)p
Now eachv; € ((us™,u;'">,...,us3)) if (B) has a solution fox; in Zy. LetAbe

the matrix defined ir({6). Thew; € (u5™,u;"™,...,us";) if and only ifA-x = v,

in (7) has solution and foy=nn+1,...,p" 1 -1
0 _"S o (i)
b}’ = Zlon(Jp)'-
J:

Step 3 checks iA-x in () has a solution. Step 4 checks if the solution obtained
in previous step satisfies for remaining componentglin (8).
O

We now give a brief analysis of space and time complexitiethefalgorithm.
We assume that the input is given in an array of $2ewhich is a reasonable
assumption. Also we assume that addition and scalar nioétgn on vector of
size p" takesO(p") time.

Time complexity:Step 1 takes constant time as no explicit computation idvedo
O(1).

Step 2 involves a vector additio@(p"1).

Step 3 involves one array traversal{ p"—1).

Step 4 involves computing rank ofi — 1) x (n— 1) matrix to check for solution.
If solution exists it can be found using Gaussian eliminato(n3).

Step 5 involves a comparison between two vect@(@"1).

Note that steps 2-5 can be performed in parallel asjthee independent of each
other. Assuming a sequential model of computation,

T(pn) = O(1)+0(p") +O(p") +O(pr) +O(p")
= O(p"+ pn’)
= O(p"+ prd).
For all practical purposes® < p". Hence time complexity is linear in size of
input.

Space complexityThe input take$O(p"), which is unavoidable. Apart from that
the only space requirement is to store flme— 1) x (n— 1) matrix which takes
O(r?). Hence space complexity @(n?).

5. DETERMINATION OF THE POLYNOMIAL

A natural continuation of the problem is to find the polynoimidnich corre-
sponds to the given function. This can accomplished by meyieing the poly-
nomials that correspond to the elements in the generatinglsgroving upon
Algorithm 1 we can obtain a solution of the system of lineanapns, if it ex-
ists. Since the solution corresponds to the scalars in tiealicombination of the
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generating elements, if we are equipped with the polyn@wairesponding to the
vectorsy; defined in LemmBA3]8 far=0,...,n— 1, determining the polynomial of
the given function becomes a trivial task. In this sectionwesent the polynomials
that correspond to the generating vectors.

Proposition 5.1. The polynomial(1 — x?(P") corresponds to the functiory ule-
fined in Lemm&3l7 as
0 ifptx
() = { pf

1 ifp|x
whereg@(m) refers to Euler’s totient function.
Proof. From Euler’s totient theorem we have
x?™ = 1 modm,
for all x such that gctk, m) = 1.
Whenm= p" we have
o(p") =p"—p"
x?P") = 1 modp"
if and only if gcdx, p") = 1.
In other words we have?P") = 1 modp" if ptxfor all x € Zp. Also @(p") >n
for all p>2,n> 1. Hence(Ip)?P") = 0 mod p", wherel € Zy, which means if

p|xthenx?(P") =0,
From these two observations we infer that the monoxfiéf’”) corresponds to

the function
() _ 1 if ptx
0 if p|x
Then the polynomiaf1— x?(P")) = (p" — 1)x?(P") 41 corresponds to the function
1_X(p(pn): 0 if p'fX
1 if p|x
which is identical to the definition afp.
[

It should be noted that many polynomials give rise to the fionovectorug. The
polynomial mentioned above is just one of them. It is in faaigible to list all the
polynomials which correspond tg using the method given in[[8].

Let up denote the polynomial & x?(P"). Usingug one can easily construct the
polynomials for all the generators §». Eachu; defined in Lemm@_3]8 as the

function
o J 0 ifptx
w(x) = { VAL
corresponds to the polynomiad given as follows.
U = Xug = 0 _If Pix_ U.
X if p|x

The cyclic shifts ofu; are obtained by replacing by x+ j in eachu;. The
polynomials corresponding to the generators are
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Up = 1—x?P) ©)
Ui = X (1—x9P) (10)
U = () (2 (x+ ) PPY) (12)

fori=1,...,.n—landj=1,...,p— 1.
Written explicitly the desired polynomials are
1—x9(P") 1 (x+ 1)<p(p”)7_._71_ (X+ p_l)fp(p”)7
X(L—=x2P) (x+1)(1— (x4+21)2P)), ... (x+p—1)(1— (x+p—21)?P), ...,
XL (1—x2P)) (x+ 1)L (1— (x+ 1)), (x4 p— 1) 11— (x4 p—1)9(PY).

6. POLYNOMIALS IN SEVERAL VARIABLES

The problem of determining whether a given function is polyial can be
extended to functions over several variables as wgall, given a functionf :
(Zp)™ — Zn, wherem is a positive integer, can we determine whetltigran
be written as a polynomial im variables? The characterization given[in (1) is
extended to multivariate functions in/[2]. As in the case ioigke variable the
characterization is existential in nature. Some relateckwan be found in[[6].
We show that our characterization Theorem 3.9 can be exdettdenultivariate
functions.

Let &E,T) denote the set of all functions frofZy)™ to Zy. Let ‘BE)T) denote
those functions which are polynomially representable.

The definition of cyclic shift in mulitvariate case is noinvial, but follows
closely the univariate case given in Definitlon]3.4.

Definition 6.1. Let f ¢ &EJT). For (j1,...,Jjm) € Z™ we denote its cyclic shift by
f<in-im> and define it as

f<nesdm>(xg L xm) = f(xe+ jomod @,...,%m+ jm mod B)
forall (x1,...,%m) € (Zpn)™

For functions involving several variables the result’in §@&jen in [1) takes the
form: f: (Zy)™ — Z is polynomial if and only if there exists suitable functions
Dy i (an)m — L such that

f (X1 4 PSL, ..., Xm+ PSn) = z iy i (Xas - Xm) (PSL)' - .. (PSm)™ mod p".
i14...Fim<n
Using the above result we define a generating set similardootie defined
earlier in Lemma_3]8.

Lemma 6.2. The function |, : (Zp)™ — Zy» defined as

kg
Xt .

Km i : P
Uk174447m(X1,---7m):{0 X ifplxforalli=1,...,m

if ptx foratleastonei=1,....m

belongs toq’.?gl‘), where0 <k, ..., kn < n.

Proof. Proof is by induction om. Form=1, the above statement is true by Lenima 3.8.
Assume that the functiony, . k., , : (an)"‘*1 — Zpn defined as

XXt if pixforalli=1,...,m—1

Uky,.. k1 (X1, Xmo1) = { 0 otherwise
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is polynomially representable Late Zn [xl, ., Xm-1] be the polynomial which

Consider the functiomlkm Zyp —> Ly defined as

; [0 ifptx
u"m(x)_{ X if p|x.

From Lemma 3.8 we know that it is polynomially representalblet g € Z g [Xm|
be the polynomial that corresponds to the functian

Consideth andg as polynomials itZ g [X1, . .., Xm|. Clearlyhge Zp (X, . .., Xm].
Let f = gh. As a functionf is defined as

XMLk i plx foralli=1,....m—1andp|Xn
(o ) kl. Xri.0  ifplxforalli=1,....m—1andp}xm
LT 0. ke if ptx for somei =1,....m— 1 andp|xn
0-0 if pfx forsomei =1,....m—1andptXn.
That is we have
kl km . . .:
F(Xero o Xm) = Xt X |.fp|x.foraII| .1,...,m
0 if ptx forsomei=1,....m

which is identical ta,. ..k, (X1, - -, Xm). HENCeUK, i (X4, -, Xm) € BT
0

Theorem 6.3. f ¢ ‘BE)T) if and only if fe ((Uq.. Kk, : K +...4+kn<n)), where
(K1,...,km) € Z" and u, .., is defined as above.

Proof. The proof is similar to one given in Theorém13.9. One implarats trivial.
To prove thatf is polynomial impliesf € ((Ug, .k, :Ki+...+km<n)) write f as

f= Vit
o§j17*“7jm<p

such thawj, . j.: (Zy)" — Zp defined as

f(as,...,am) ifa=jmodpforalli=1,...,m
0 otherwise.

lev'“vjm(al’ cte ,arn) = {

Thatisf(ay,...,am) is placed in exactly one of thg™ differentv;, ;. func-

tions. We now show that eachy ;. € ‘Bpn forall (ja,...,jm) € Z™.
This can be written as

(ps)f  ifa=ji+ps

1—]s

Dy, ke (J15- -+ Jm)

ki+...+km<n i=
Vi i (ag,... = .
jtrejm (815> 8m) foralli=1,...,m

0 otherwise.

Let Nk, ky © (Zpn)™ — Z such that

Vigoim = Mg, ko
ki+...+Kkm<n
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where
Py k(155 Jm) (PS4 (psm)* if @& = i + ps
Nky,... k(@25 -, 8m) = foralli=1,...,m
0 otherwise.

<J1yeeryJm>

r’k17“47|(;n - q)kl,...,krn(j:b LR Jm) : ukl‘,";ykr;rl )
reu, km’”‘> denotes th¢jy, ..., jm) cyclic shift ofu,, . x,. Hence eachyy, k€
(U Im Tk + .. +km < n). Inother wordsii,, ..k, € ((Uky....kn - K1t .4k <

“““

ny), which impliesvj, ., and therefore € ((U, _k,:Ki+...+kn<n)).

whereu '
1

O

Using the above result we can obtain an algorithm similar lgoAthm 1 that
determines whether the given function is polynomial or nbhe complexity in
multivariate case i©((np)™), which is linear in the size of the input.

Determination of the polynomial is extended to the mulis@ case in a natural

way. In the case af variables we know thaﬁgl‘) is generated byu, . .|k +
...+ km < n}. The functionug o is given by the polynomial

“““

(1 —x8PNy L —xEP) (1 —x@P),
In general the function vector

U _[Xal Xo ifp|xforalli=1,...,m
klv'“‘,km - .
0 otherwise,

is given by the polynomial
Xtz (1 — xf(pn>)(1— xg’(‘ﬂ) (1= X8,

This way it is possible to determine the polynomial that esponds to the function
in multivariate case as well.

7. CONCLUDING REMARKS

In this paper we considered the problem of polynomial regoresbility of func-
tions overZpy. A new characterization of polynomial functions is giveattheads
to a non-exhaustive algorithm which runs in linear time. Vé®ehalso given a
method to identify the polynomial that corresponds to thesgifunction by pro-
viding the polynomials for the generating vectors. The Itssare extended to
multivariate case as well.
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