Skip to main content
Log in

The Parallel Complexity of Graph Canonization Under Abelian Group Action

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the problem of computing canonical forms for graphs and hypergraphs under Abelian group action and show tight complexity bounds. Our approach is algebraic. We transform the problem of computing canonical forms for graphs to the problem of computing canonical forms for associated algebraic structures, and we develop parallel algorithms for these associated problems.

  1. 1.

    In our first result we show that the problem of computing canonical labelings for hypergraphs of color class size 2 is logspace Turing equivalent to solving a system of linear equations over the field \(\mathbb {F} _{2}\). This implies a deterministic NC 2 algorithm for the problem.

  2. 2.

    Similarly, we show that the problem of canonical labeling graphs and hypergraphs under arbitrary Abelian permutation group action is fairly well characterized by the problem of computing the integer determinant. In particular, this yields deterministic NC 3 and randomized NC 2 algorithms for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Formally, x should be written as a column vector x T in this expression. But since it will be clear from the context which form has to be used we will simply write Bx instead of (Bx T)T or xB T.

References

  1. Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajíček, J. (ed.) Complexity of Computations and Proofs. Quaderni di Matematica, vol. 13, pp. 33–72. Seconda Universita di Napoli, Naples (2004)

    Google Scholar 

  2. Allender, E., Ogihara, M.: Relationships among PL, #L and the determinant. RAIRO Theor. Inform. Appl. 30(1), 1–21 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Comput. Complex. 8, 99–126 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arvind, V., Köbler, J.: On hypergraph and graph isomorphism with bounded color classes. In: Proceedings of 23rd Annual Symposium on Theoretical Aspects of Computer Science (STACS). Lecture Notes in Computer Science, vol. 3884, pp. 384–395. Springer, Berlin (2006)

    Google Scholar 

  5. Arvind, V., Vijayaraghavan, T.C.: The complexity of solving linear equations over a finite ring. In: Proceedings 22nd Annual Symposium on Theoretical Aspects of Computer Science (STACS). Lecture Notes in Computer Science, vol. 3404, pp. 472–484. Springer, Berlin (2005)

    Google Scholar 

  6. Arvind, V., Das, B., Mukhopadhyay, P.: Isomorphism and canonization of tournaments and hypertournaments. J. Comput. Syst. Sci. 76(7), 509–523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings 15th Annual ACM Symposium on Theory of Computing (STOC), pp. 171–183 (1983)

    Google Scholar 

  8. Buntrock, G., Damm, C., Hertrampf, U., Meinel, C.: Structure and importance of logspace-MOD class. Theory Comput. Syst. 25(3), 223–237 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Buss, S.R.: Alogtime algorithms for tree isomorphism, comparison, and canonization. In: Computational Logic and Proof Theory. Lecture Notes in Computer Science, vol. 1289, pp. 18–33. Springer, Berlin (1997)

    Chapter  Google Scholar 

  10. Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Inf. Control 64(1–3), 2–22 (1985)

    Article  MATH  Google Scholar 

  11. Damm, C.: DET=L #l. Technical Report Informatik-Preprint 8, Fachbereich Informatik der Humboldt-Universität zu Berlin (1991)

  12. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph isomorphism is in log-space. In: Proceedings 24th Annual IEEE Conference on Computational Complexity (CCC), pp. 203–214. IEEE Comput. Soc., Los Alamitos (2009)

    Google Scholar 

  13. Furst, M., Hopcroft, J.E., Luks, E.M.: Polynomial-time algorithms for permutation groups. Technical report, Cornell University (1980)

  14. Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph isomorphism. J. Comput. Syst. Sci. 66(3), 549–566 (2003)

    Article  MATH  Google Scholar 

  15. Karchmer, M., Wigderson, A.: On span programs. In: Proc. of the 8th IEEE Structure in Complexity Theory Conference, pp. 102–111. IEEE Comput. Soc., Los Alamitos (1993)

    Google Scholar 

  16. Köbler, J., Schöning, U., Torán, J.: Graph Isomorphism: Its Structural Complexity. Birkhäuser, Boston (1992)

    Google Scholar 

  17. Lindell, S.: A logspace algorithm for tree canonization. In: Proceedings 24th Annual ACM Symposium on Theory of Computing (STOC), pp. 400–404 (1992)

    Google Scholar 

  18. Luks, E.M.: Parallel algorithms for permutation groups and graph isomorphism. In: Proceedings 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, pp. 292–302 (1986)

    Google Scholar 

  19. Luks, E.M.: Permutation groups and polynomial-time computation. In: Finkelstein, L., Kantor, W.M. (eds.) Groups and Computation. Discrete Mathematics and Theoretical Computer Science, vol. 11, pp. 139–175. Am. Math. Soc., Providence (1993)

    Google Scholar 

  20. Luks, E.M., McKenzie, P.: Parallel algorithms for solvable permutation groups. J. Comput. Syst. Sci. 37(1), 39–62 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. McKenzie, P., Cook, S.A.: The parallel complexity of Abelian permutation group problems. SIAM J. Comput. 16(3), 880–909 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miller, G.L., Reif, J.H.: Parallel tree contraction part 2: further applications. SIAM J. Comput. 20(6), 1128–1147 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Reingold, O.: Undirected st-connectivity in log-space. In: Proceedings 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 376–385 (2005)

    Google Scholar 

  24. Toda, S.: Counting problems computationally equivalent to the determinant. Manuscript (1991)

  25. Torán, J.: On the hardness of graph isomorphism. SIAM J. Comput. 33(5), 1093–1108 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Valiant, L.G.: Why is boolean complexity theory difficult? In: Hemaspaandra, L.A., Selman, A.L. (eds.) Boolean Function Complexity. Lecture Notes Series, vol. 169, pp. 53–80. Cambridge University Press, Cambridge (1992). London Mathematical Society

    Google Scholar 

  27. Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In: Proc. of the 6th IEEE Structure in Complexity Theory Conference, pp. 270–284 (1991)

    Google Scholar 

  28. Wielandt, H.: Permutation Groups. Academic Press, New York (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Arvind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arvind, V., Köbler, J. The Parallel Complexity of Graph Canonization Under Abelian Group Action. Algorithmica 67, 247–276 (2013). https://doi.org/10.1007/s00453-013-9805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9805-0

Keywords

Navigation