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Abstract

We consider the (precedence constrained) Minimum Feedback Arc Set problem with tri-
angle inequalities on the weights, which finds important applications in problems of ranking
with inconsistent information. We present a surprising structural insight showing that the
problem is a special case of the minimum vertex cover in hypergraphs with edges of size at
most 3. This result leads to combinatorial approximation algorithms for the problem and
opens the road to studying the problem as a vertex cover problem.

1 Introduction

The Minimum Feedback Arc Set problem (MinFAS) is a fundamental and classical combi-
natorial optimization problem that finds application in many different settings that span from
circuit design, constraint satisfaction problems, artificial intelligence, scheduling, etc. (see e.g.
Chapter 4 in [25] for a survey). For this reason it has been deeply studied since the late 60’s
(see, e.g., [23]).

Its input consists of a set of vertices V and nonnegative weights {w(i,j) : (i, j) ∈ V ×
V } for every oriented pair of vertices. The goal is to find a permutation π that minimizes∑

π(i)<π(j)w(i,j), i.e. the weight of pairs of vertices that comply with the permutation1. A
partially ordered set (poset) P = (V, P ), consists of a set V and a partial order P on V , i.e., a
reflexive, antisymmetric, and transitive binary relation P on V , which indicates that, for certain
pairs of elements in the set, one of the elements precedes the other. In the constrained MinFAS
(see [30]) we are given a partially ordered set P = (V, P ) and we want to find a linear extension
of P of minimum weight.

MinFAS was contained in the famous list of 21 NP-complete problems by Karp [18]. Despite
intensive research for almost four decades, the approximability of this problem remains very
poorly understood due to the big gap between positive and negative results. It is known to
be at least as hard as vertex cover [17], but no constant approximation ratio has been found
yet. The best known approximation algorithm achieves a performance ratio O(log n log logn)
[28, 13, 12], where n is the number of vertices of the digraph. Closing this approximability
gap is a well-known major open problem in the field of approximation algorithms (see e.g. [32],
p. 337). Very recently and conditioned on the Unique Games Conjecture, it was shown [15] that
for every constant C > 0, it is NP-hard to find a C-approximation to the MinFAS.

Important ordering problems can be seen as special cases of MinFAS with restrictions on
the weighting function. Examples of this kind are provided by ranking problems related to

1Different, but equivalent formulations are often given for the problem. Usually the goal is defined as the
minimization of the weight of pairs of vertices out of order with respect to the permutation, i.e.

∑
π(i)<π(j) w(j,i).

Clearly by swapping appropriately the weights we obtain the equivalence of the two definitions.
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the aggregation of inconsistent information, that have recently received a lot of attention [2,
3, 4, 19, 30, 31]. Several of these problems can be modeled as (constrained) MinFAS with
weights satisfying either triangle inequalities (i.e., for any triple i, j, k, w(i,j) + w(j,k) ≥ w(i,k)),
or probability constraints (i.e., for any pair i, j, w(i,j) + w(j,i) = 1), or both. Ailon, Charikar
and Newman [4] give the first constant-factor randomized approximation algorithm for the
unconstrained MinFAS problem with weights that satisfy the triangle inequalities. For the
same problem Ailon [2] gives a 3/2-approximation algorithm and van Zuylen and Williamson [31]
provide a 2-approximation algorithm for the constrained version. These are currently the best
known results for the (constrained) MinFAS with triangle inequalities and are both based on
solving optimally and rounding the linear program relaxation of (1). When the probability
constraints hold, Mathieu and Schudy [19] obtain a PTAS.

Another prominent special case of MinFAS with restrictions on the weighting function is
given by a classical problem in scheduling, namely the precedence constrained single machine
scheduling problem to minimize the weighted sum of completion times, denoted as 1|prec |∑wjCj
(see e.g. [22] and [16] for a 2-approximation algorithm). This problem can be seen as a con-
strained MinFAS where the weight of arc (i, j) is equal to the product of two numbers pi and
wj : pi is the processing time of job i and wj is a weight associated to job j (see [5, 6, 9, 10, 11, 21]
for recent advances). In [5, 11], it is shown that the structure of the weights for this problem
allows for all the constraints of size strictly larger than two to be ignored, therefore the schedul-
ing problem can be seen as a special case of the vertex cover problem (in normal graphs). The
established connection proved later to be very valuable both for positive and negative results:
studying this graph yielded a framework that unified and improved upon previously best-known
approximation algorithms [6, 8, 21]; moreover, it helped to obtain the first inapproximability
results for this old problem [9, 10] by revealing more of its structure and giving a first answer
to a long-standing open question [27].

New Results. The (constrained) MinFAS can be described by the following natural (com-
pact) ILP using linear ordering variables δ(i,j) (see e.g. [31]): variable δ(i,j) has value 1 if vertex
i precedes vertex j in the corresponding permutation, and 0 otherwise.

[FAS] min
∑
i 6=j

δ(i,j)w(i,j) (1a)

s.t. δ(i,j) + δ(j,i) = 1, for all distinct i, j, (1b)

δ(i,j) + δ(j,k) + δ(k,i) ≥ 1, for all distinct i, j, k, (1c)

δ(i,j) = 1, for all (i, j) ∈ P, (1d)

δ(i,j) ∈ {0, 1}, for all distinct i, j. (1e)

Constraint (1b) ensures that in any feasible permutation either vertex i is before j or vice versa.
The set of Constraints (1c) is used to capture the transitivity of the ordering relations (i.e., if i
is ordered before j and j before k, then i is ordered before k, since otherwise by using (1b) we
would have δ(j,i) + δ(i,k) + δ(k,j) = 0 violating (1c)). Constraints (1d) ensure that the returned
permutation complies with the partial order P . The constraints in (1) were shown to be a
minimal equation system for the linear ordering polytope in [14].

To some extent, one source of difficulty that makes the MinFAS hard to approximate
within any constant is provided by the equality in Constraint (1b). To see this, consider, for the
time being, the unconstrained MinFAS. The following covering relaxation obtained by relaxing
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Constraint (1b) behaves very differently with respect to approximation.

min
∑
i 6=j

δ(i,j)w(i,j) (2a)

s.t. δ(i,j) + δ(j,i) ≥ 1, for all distinct i, j, (2b)

δ(i,j) + δ(j,k) + δ(k,i) ≥ 1, for all distinct i, j, k, (2c)

δ(i,j) ∈ {0, 1}, for all distinct i, j. (2d)

Problem (2) is a special case of the vertex cover problem in hypergraphs with edges of sizes
at most 3. It admits “easy” constant approximate solutions (i.e. a trivial primal-dual 3-
approximation algorithm, but also a 2-approximation algorithm for general weights (no triangle
inequalities restrictions) by observing that the associated vertex cover hypergraph is 2 colorable
and using the results in [1, 20]); Vice versa, there are indications that problem (1) may not
have any constant approximation [15]. Moreover, the fractional relaxation of (2), obtained
by dropping the integrality requirement, is a positive linear program and therefore fast NC
approximation algorithms exists: Luby and Nisan’s algorithm [24] computes a feasible (1 + ε)-
approximate solution in time polynomial in 1/ε and logN , using O(N) processors, where N
is the size of the input (fast approximate solution can also be obtained through the methods
of [26]). On the other side, the linear program relaxation of (1) is not positive. An interesting
question is to understand under which assumptions on the weighting function the covering
relaxation (2) represents a “good” relaxation for MinFAS.

Surprisingly, we show that the covering relaxation (2) is an “optimal” relaxation, namely,
a proper formulation, for the unconstrained MinFAS when the weights satisfy the triangle
inequalities. More precisely, we show that any α-approximate solution to (2) can be turned in
polynomial time into an α-approximate solution to (1), for any α ≥ 1 and when the weights
satisfy the triangle inequalities. The same claim applies to fractional solutions. (We also
observe that the same result does not hold when the weights satisfy the probability constraints
(see Appendix A)).

Interestingly, a compact covering formulation can be also obtained for the more general
setting with precedence constraints. In this case we need to consider the following covering
relaxation which generalizes (2) to partially ordered sets P = (V, P ).

min
∑
i 6=j

δ(i,j)w(i,j) (3a)

s.t. δ(x1,y1) + δ(x2,y2) ≥ 1, (x2, y1), (x1, y2) ∈ P, (3b)

δ(x1,y1) + δ(x2,y2) + δ(x3,y3) ≥ 1, (x2, y1), (x3, y2), (x1, y3) ∈ P, (3c)

δ(i,j) ∈ {0, 1}, (i, j) ∈ inc(P). (3d)

where inc(P) = {(x, y) ∈ V ×V : (x, y), (y, x) 6∈ P} is the set of incomparable pairs of P. When
the poset is empty, then (3) boils down to (2) (since P is a reflexive binary relation). Note that
(3) is a relaxation to constrained MinFAS, since Constraint (3b) and (3c) are valid inequalities
(otherwise we would have cycles).

Recall that a function w : V ×V → R is hemimetric if for all i, j, k the following is satisfied:

1. w(i, j) ≥ 0 (non-negativity),

2. w(i, i) = 0,

3. w(i,k) ≤ w(i,j) + w(j,k) (triangle inequality).
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The following theorem summarizes the main result of the paper that can be generalized to
fractional solutions.

Theorem 1.1. If the weighting function w : V × V → R is hemimetric then any (fractional)
solution to (3) can be transformed in polynomial time into a feasible (fractional) solution to (1)
without deteriorating the objective function value.

We emphasize that a straightforward application of Theorem 1.1 does not imply a bet-
ter approximation algorithm for the (constrained) MinFAS with triangle inequality. How-
ever, Theorem 1.1 gives a new surprising structural insight that opens the road to studying
the problem under a new light which can benefit from the vast literature and techniques de-
veloped for covering problems (this was actually the case for the previously cited scheduling
problem [5, 6, 9, 10, 11, 21] where the vertex cover insight was essential to obtain improved
lower/upper bounds on the approximation ratio). Moreover, the fractional relaxation of (3),
obtained by dropping the integrality requirement, is a positive linear program and, therefore,
we can obtain fast combinatorial approximation algorithms that match the best known approx-
imation algorithms up to an arbitrarily small error ε > 0, by first approximately solving the
fractional relaxation of (3) [24, 26], then using Theorem 1.1, and finally applying the rounding
algorithms in [2, 31]. (The only known combinatorial approach that matches the best known ra-
tio for the constrained MinFAS with triangle inequality was obtained in [31] with the additional
assumption that the input is “consistent” with the constraints, i.e., w(i,j) = 0 for (i, j) ∈ P .)

The arguments that we use to prove Theorem 1.1 have some similarities, but also substantial
differences from those used to prove the vertex cover nature of problem 1|prec |∑wjCj [5]. The
differences come from the diversity of the two weighting functions that make, for example, the
scheduling problem without precedence constraints a trivial problem and the (unconstrained)
MinFAS with triangle inequality NP-complete. However, we believe that they both belong to
a more general framework, that still has to be understood, and that may reveal the vertex cover
nature of several other natural MinFAS problems (see Section 3 for a conjecture).

In the next section we prove Theorem 1.1 by showing how to “repair” in polynomial time
any feasible solution to (3) to obtain a feasible solution to (1) that satisfies the claim (similar
arguments can be used to generalize the claim to fractional solutions, but details are omitted
in this extended abstract). We conclude the paper with a conjecture locating the addressed
problem into a general hierarchy within MinFAS.

2 Proof of Theorem 1.1

In this section we prove Theorem 1.1 for integral solutions. The proof for fractional solutions is
similar and omitted due to space limitations. The structure of the proof is as follows. Consider
any minimal integral solution2 δ∗ = {δ∗(i,j) : for all i, j} that is feasible to (3), but violates

Constraint (1b). Let us say that pair {i, j} is contradicting if δ∗(i,j) = δ∗(j,i) = 1. The violation

of Constraint (1b) implies that there exists a non-empty set A of contradicting pairs. The
minimality of δ∗ implies that the removal of one of the two arcs of a contradicting pair yields
an infeasible solution to (3). The proof works by identifying a subset A′ ⊆ A of contradicting
pairs, together with another set B of arcs such that, by removing one of the two arcs in any
pair from A′ and by reverting the arcs in B, we obtain a feasible solution to (3) with a strictly
smaller set of contradicting pairs. Moreover, the new solution is shown to be at least as good
as the old one (here we use the assumption that the weighting function is hemimetric). By

2Recall that a 0 \ 1 solution δ∗ is minimal if the removal of any arc (i, j) from its support makes it unfeasible.
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reiterating the same arguments we end up with a solution where no contradicting pair exists,
i.e. feasible for (1), of value not worse than the initial one.

We start with a preliminary simple observation that characterizes minimal solutions and
that will be used several times.

Lemma 2.1. For any feasible minimal solution δ∗ = {δ∗(i,j) : for all i, j} to (3) and any

i, j, k, ` ∈ V such that j 6= k and i 6= `, if δ∗(j,k) = 1, δ∗(k,j) = 0 and (i, j), (k, `) ∈ P then
δ∗(i,`) = 1 and δ∗(`,i) = 0.

Proof. Note that δ(i,`) + δ(k,j) ≥ 1 is part of constraints (3b), therefore by the assumptions we
have δ∗(i,`) = 1.

By contradiction, assume that δ∗(`,i) = 1. By minimality of solution δ∗, there must be a
constraint that would be violated if we set δ∗(`,i) to zero. The latter means that there are

incomparable pairs (x2, y2) and (x3, y3) such that either (i) the following is a valid constraint (3b)
with δ∗(x2,y2) = 0

δ(`,i) + δ(x2,y2) ≥ 1,

or (ii) the following is a valid constraint (3c)

δ(`,i) + δ(x2,y2) + δ(x3,y3) ≥ 1,

with δ∗(x2,y2) = δ∗(x3,y3) = 0. Case (i) implies that δ(k,j) + δ(x2,y2) ≥ 1 is a valid constraint that is

violated by solution δ∗. Similarly, Case (ii) implies that δ(k,j) + δ(x2,y2) + δ(x3,y3) ≥ 1 is a valid
constraint that is violated by solution δ∗.

Let δ∗ = {δ∗(i,j) : for all i, j} be an α-approximate minimal solution to (3). For any triple

(a, c, b) ∈ V 3 of distinct vertices, we say that (a, c, b) is a basic triple if the following holds (see
Fig. 1): δ∗(a,c) = δ∗(c,b) = δ∗(a,b) = δ∗(b,a) = 1 and δ∗(c,a) = δ∗(b,c) = 0. Let T be the set of all the basic
triples. The following lemma states that basic triples are witnesses of infeasibility.

a b

c

Figure 1: Basic triple: δ∗(a,c) = δ∗(c,b) = δ∗(a,b) = δ∗(b,a) = 1, δ∗(c,a) = δ∗(b,c) = 0.

Lemma 2.2. If solution δ∗ is a minimal solution to (3) but not feasible to (1), then T 6= ∅.
Proof. Assume that δ∗(a,b) = δ∗(b,a) = 1. Variable δ∗(a,b) cannot be turned to zero because there

exists c, d, e, f ∈ V such that δ∗(c,d) = δ∗(e,f) = 0 and the following is a valid constraint (3c)

δ(a,b) + δ(c,d) + δ(e,f) ≥ 1.

By a simple application of Lemma 2.1 (see Fig. 2) it follows that (a, b, d) is a basic triple.

For any given vertex v, let us define the following set of arcs that will be used to “drop and
reverse” arcs in a synchronized way to obtain new solutions:

Sv = {(i, j) : (v, i, j) ∈ T}. (4)

Mv = {(i, j) : (j, v, i) ∈ T}. (5)

Ev = {(i, j) : (i, j, v) ∈ T}. (6)

Note that Sv, Mv and Ev are pairwise disjoint.
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a b

f

e d

c

Figure 2: Existence of a basic triple (a, d, b) assuming δ∗(a,b) = δ∗(b,a) = 1. Bold arrows represent

poset relationship, namely (a, f), (e, d), (c, b) ∈ P .

Lemma 2.3. For any v ∈ V and X ∈ {Sv, Ev}, solution δX = {δX(i,j) : for all i, j} as defined

in the following is a feasible solution for (3):

1. δX(i,j) = 0 for each (i, j) ∈Mv.

2. δX(i,j) = 0 and δX(j,i) = 1 for each (i, j) ∈ X.

3. δX(i,j) = δ∗(i,j) elsewhere.

Proof. We start showing that solution δX satisfies the second set (3c) of constraints in (3) for
any X ∈ {Sv, Ev}. The proof that δX satisfies the first set of constraints (3b) is similar.

Let us assume that X = Sv (the proof for X = Ev is symmetric). Since solution δX is
obtained from the feasible solution δ∗ by switching some variables to zero and others to one,
we might violate only those constraints with at least one variable from δX that is turned to
zero, i.e. the set of constraints that have at least one variable from {δX(i,j) : (i, j) ∈ X ∪Mv}.
Let (i, j′) ∈ X ∪Mv and for any j, k′, k, i′ ∈ V such that δ(i,j′) + δ(j,k′) + δ(k,i′) ≥ 1 is a valid
constraint (3c), we want to prove that the following holds:

δX(i,j′) + δX(j,k′) + δX(k,i′) ≥ 1. (7)

We distinguish between the following cases:

Case (a): δ∗(j,k′) = 1. Since (i, j′) ∈ Sv ∪Mv then δ∗(j′,v) = 1 (see Fig. 5).

If (i, j′) ∈ Mv then δ∗(j′,v) = 1 and δ∗(v,j′) = 0. By applying Lemma 2.1 we can conclude
that δ∗(j,v) = 1.

If (i, j′) ∈ Sv we claim that δ∗(j,v) = 1 as well. By contradiction assume δ∗(j,v) = 0 and
therefore δ∗(v,j) = 1. By applying Lemma 2.1 we would have δ∗(v,j′) = 1 and δ∗(j′,v) = 0. The

latter contradicts the assumption that (i, j′) ∈ Sv.
Since δ∗(j,v) = 1, we have (j, k′) 6∈ Sv ∪Mv (since if (j, k′) ∈ Sv ∪Mv then δ∗(j,v) = 0 as

shown in Fig. 5) and therefore δX(j,k′) = δ∗(j,k′) = 1.

Case (b): δ∗(k,i′) = 1. Since (i, j′) ∈ Sv ∪Mv then δ∗(i,v) = 0 (see Fig. 6) and δ∗(i′,v) = 0 by Lemma 2.1.

The latter implies that (k, i′) 6∈ Sv ∪Mv (since if (k, i′) ∈ Sv ∪Mv then δ∗(i′,v) = 1 as shown

in Fig. 6) and therefore δX(k,i′) = δ∗(k,i′) = 1.

Case (c): δ∗(j,k′) = δ∗(k,i′) = 0. Under the current assumption, by Lemma 2.1 and constraint (3c),

it is easy to check that δ∗(v,k) = 1 (see Fig. 7). We distinguish between two subcases:

(i) δ∗(k,v) = 1 (if (i, j′) ∈ Mv this is the only possible case) and (ii) δ∗(k,v) = 0. If (i)

holds then (i′, k) ∈ Sv and therefore δX(k,i′) = 1. Otherwise, by Lemma 2.1 we have
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δ∗(v,k′) = 1 and δ∗(k′,v) = 0. Moreover, since under (ii) we have δ∗(v,j′) = δ∗(j′,v) = 1,
by minimality of the solution, there exists a node q such that δ∗(j′,q) = δ∗(q,v) = 1 and
δ∗(q,j′) = δ∗(v,q) = 0. By applying Lemma 2.1 we have δ∗(j,q) = 1 and δ∗(q,j) = 0. Therefore,
δ∗(v,k′) = δ∗(k′,j) = δ∗(j,q) = δ∗(q,v) = 1 and δ∗(k′,v) = δ∗(v,q) = δ∗(q,j) = δ∗(j,k′) = 0 imply that

(k′, j) ∈ Sv which implies that δX(j,k′) = 1.

According to solution δ∗, let us say that pair {i, j} is contradicting if δ∗(i,j) = δ∗(j,i) = 1. By

Lemma 2.3, any solution δ′ ∈ ∆ = {δX : v ∈ V and X ∈ {Sv, Ev}} is a feasible solution for (3).
Moreover, it is easy to observe that δ′ has a strictly smaller number of contradicting pairs.

The claim of Theorem 1.1 follows by proving the following Lemma 2.4 which shows that
among the feasible solutions in ∆ there exists one whose value is not worse than the value of
δ∗. Therefore, after at most O(|V |2) “applications” of Lemma 2.4 we end up with a solution
where no contradicting pair exists, i.e. feasible for (1).

Lemma 2.4. If δ∗ is not a feasible solution for (1) then there exists a feasible solution for (3)
in ∆ = {δX : v ∈ V and X ∈ {Sv, Ev}} whose value is not worse than the value of δ∗.

Proof. By contradiction, we assume that every solution in ∆ has value worse than δ∗.
By Lemma 2.3, for any vertex v we can obtain two feasible solutions by removing all the arcs

from Mv and reverting, alternatively, either all the arcs from Sv, or all the arcs from Ev. Since
we are assuming that every solution in ∆ has value worse than δ∗, the following two inequalities
express the latter for any v ∈ V .∑

(b,a)∈Mv

w(b,a) +
∑

(i,j)∈Sv

w(i,j) <
∑

(i,j)∈Sv

w(j,i), (8)

∑
(b,a)∈Mv

w(b,a) +
∑

(i,j)∈Ev

w(i,j) <
∑

(i,j)∈Ev

w(j,i). (9)

By summing (8) and (9) for all v we obtain the following valid inequality:

∑
v∈V

2 ·
∑

(b,a)∈Mv

w(b,a) +
∑

(i,j)∈Sv∪Ev

w(i,j)


︸ ︷︷ ︸

LHS(1)

<
∑
v∈V

 ∑
(i,j)∈Sv∪Ev

w(j,i)

 .

︸ ︷︷ ︸
RHS(1)

(10)

A Triangle Inequality Condition. For any basic triple (a, c, b) ∈ T we consider the follow-
ing two valid triangle inequalities.

w(c,a) ≤ w(c,b) + w(b,a), (11)

w(b,c) ≤ w(b,a) + w(a,c). (12)

By summing (11) and (12) for all (a, c, b) ∈ T we obtain the following valid inequality:∑
(a,c,b)∈T

(
w(b,c) + w(c,a)

)
︸ ︷︷ ︸

LHS(2)

≤
∑

(a,c,b)∈T

(
2 · w(b,a) + w(a,c) + w(c,b)

)
.

︸ ︷︷ ︸
RHS(2)

(13)
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The Contradiction. Note that for every (a, c, b) ∈ T we have (a, c) ∈ Eb and (c, b) ∈ Sa.
Therefore:

LHS(2) =
∑

(a,c,b)∈T

(
w(b,c) + w(c,a)

)

=
∑
v∈V

 ∑
(i,j):(v,i,j)∈T

w(j,i) +
∑

(i,j):(i,j,v)∈T

w(j,i)


(4),(6)

=
∑
v∈V

 ∑
(i,j)∈Sv∪Ev

w(j,i)

 = RHS(1). (14)

Therefore, by (10), (13) and (14) we have LHS(1) < RHS(1) = LHS(2) ≤ RHS(2). We get a
contradiction by showing that RHS(2) = LHS(1):

RHS(2) =
∑

(a,c,b)∈T

(
2 · w(b,a) + w(a,c) + w(c,b)

)

=
∑
v∈V

2 ·
∑

(a,b):(a,v,b)∈T

w(b,a) +
∑

(i,j):(v,i,j)∈T

w(i,j) +
∑

(i,j):(i,j,v)∈T

w(i,j)


(4),(6),(5)

=
∑
v∈V

2 ·
∑

(b,a)∈Mv

w(b,a) +
∑

(i,j)∈Sv∪Ev

w(i,j)

 = LHS(1). (15)

3 Future directions

The constrained MinFAS problem admits a natural covering formulation with an exponential
number of constraints (see e.g. [7]):

min
∑
(i,j)

δ(i,j)w(i,j) (16a)

s.t.

c∑
i=1

δ(xi,yi) ≥ 1, for all c ≥ 2, (xi, yi)
c
i=1 s.t. (xi, yi+1) ∈ P, (16b)

δ(i,j) ∈ {0, 1}, (i, j) ∈ inc(P). (16c)

The condition (xi, yi+1) ∈ P in constraint (16b) is to be read cyclically, namely, (xc, y1) ∈ P .
The hyperedges in this vertex cover problem are exactly the alternating cycles of poset P (see
e.g. [29]).

In this paper we prove that when the weights satisfy the triangle inequality then we can
drop from (16) all the constraints of size strictly larger than three. Generalizing, it would be
nice to prove/disprove the following statement that we conjecture to be true.

Hypothesis 3.1. When the weights satisfy the k-gonal inequalities, i.e., if for all a1, . . . , ak ∈ V
we have w(a1,ak) ≤ w(a1,a2) + . . . + w(ak−1,ak), then there exists a constant c(k), whose value
depends on k, such that a proper formulation for the constrained MinFAS problem can be
obtained by dropping from (16) all the constraints of size strictly larger than c(k).
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MinFAS problems with weights belonging to interval [1, k − 1] are examples of problems
with k-gonal inequalities on the weights. If true, the above structural result has the impor-
tant implication that, for any constant k, constrained MinFAS with k-gonal inequalities on
the weights admits a constant approximation algorithm (in contrast to the general case with
arbitrary k that does not seem to have any constant approximation assuming the Unique Games
Conjecture [15]).
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Appendix

A Ranking with probability inequalities: a counterexample

The following example shows that probabilities inequalities are not sufficient for (3) to be a
proper formulation:

w(i,j) + w(j,i) = 1 for all distinct i, j

Consider the instance with 8 nodes with weight zero on the arcs displayed in Fig. 3 (therefore
the reversed arcs have weight 1). Moreover, all the arcs in {2, 3} × {7, 8} have weight 1 (the
reversed zero). Finally, all the remaining arcs have weight 0.5, namely those in {1} × {4, 5, 6}
and the reversed ones. A feasible solution for (2) is obtained by picking all the displayed arcs

1

2

3

4

5

6
7

8

Figure 3: Counterexample for probability inequalities.

in Fig. 3 and none of the reversed ones (therefore we have to pick also those in {2, 3} × {7, 8},
{7, 8}×{2, 3}, {4, 5, 6}×{1} and {1}×{4, 5, 6} in order to satisfy the constraints in (2)). This
solution has value 7, whereas any total ordering has value not smaller than 7.5 (the best total
ordering is (2, 3, 4, 5, 6, 7, 8, 1)).

B A comment on formulation (3)

If the poset is not empty the additional constraints that are present in formulation (3) but not
in (2) are also necessary. Indeed, in Figure 4 any permutation that complies with the precedence
constraints has value larger than the solution suggested in the picture with a cycle.

1 4

2 3

2
3

3

1

3

2

2

 (a) The non displayed arcs have weight = 0. 
       Arc (3,4) is a precedence constraint.

1 4

2 3

2
3

3

1

3

2

2

 (b) The non displayed arcs have weight = 0. 
       Arcs (3,4) and (1,2) are precedence constraints.

Figure 4: Solution δ∗(1,2) = δ∗(2,3) = δ∗(3,4) = δ∗(4,1) = δ∗(1,3) = δ∗(3,1) = δ∗(2,4) = δ∗(4,2) = 1 has value
smaller than any valid permutation.
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C Figures used in the proof of Lemma 2.3
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Figure 5: Case (a).

j'

i

v
k

j'

i

v k

k

i'

v

(i, j′) ∈ Sv(i, j′) ∈ Mv

k

i'

v

(k, i′) ∈ Mv (k, i′) ∈ Sv

i' i'

Figure 6: Case (b).
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Figure 7: Case (c).
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