
Scheduling with an Orthogonal
Resource Constraint

Martin Niemeier1 and Andreas Wiese2

1 TU Berlin, Sekretariat MA 5-1, Straße des 17. Juni 136, 10623 Berlin, Germany
martin.niemeier@tu-berlin.de

2 Università di Roma "La Sapienza", Via Ariosto 25, 00185 Roma, Italy
wiese@dis.uniroma1.it

Abstract. We address a scheduling problem that arises in highly par-
allelized environments like modern multi-core CPU/GPU computer ar-
chitectures. Here simultaneously active jobs share a common limited re-
source, e.g., memory cache. The scheduler must ensure that the demand
for the common resource never exceeds the available capacity. This in-
troduces an orthogonal constraint to the classical minimum makespan
scheduling problem. Such a constraint also arises in many other contexts
where a common resource is shared across the machines.
We study the non-preemptive case of this problem and give a (2 + ε)-
approximation algorithm which relies on the interplay of several classical
and modern techniques in scheduling like grouping, job-classification, and
the use of configuration-LPs. This improves upon previous bound of 3
that can be obtained by list scheduling approaches, and gets close to
the (3/2− ε) inapproximability bound. If the number of machines or the
number of different resource requirements are bounded by a constant we
have a polynomial time approximation scheme.

1 Introduction

Highly parallelized processing in modern multi-core CPU/GPU computer ar-
chitectures poses the following scheduling challenge: Simultaneously active jobs
need to share a common limited resource, e.g. a memory cache. The sched-
uler must ensure that the demand for the common resource never exceeds the
available capacities. This introduces an additional “orthogonal” constraint to
scheduling problems.

In this paper we address the imposition of such an orthogonal constraint
to the classical and well studied minimum makespan problem. We are given a
set of jobs where each job j has a processing time p(j) and resource require-
ment r(j). The goal is to schedule the jobs to m identical machines minimizing
the makespan, i.e. the largest finishing time of a job. The scheduler must ensure
that the resource constraint is not violated: At no time t, the total resource
consumption (i.e. the sum of resource requirements of jobs active at time t) ex-
ceeds 1. (Note that fixing the resource capacity to 1 is without loss of generality.)
This problem is called the resource constrained scheduling problem (see e.g. [15]).

Note that this model also captures many other settings where the jobs on the
machines share a common resource like power supply, workers, etc.

This problem can be seen as a hybrid of two classical problems from two
different domains. On the one hand, one obtains minimum makespan scheduling
on identical machines if all resource requirements are zero. On the other hand, the
well-known Bin-Packing problem is a special case of the resource constrained
scheduling problem: Given a Bin-Packing instance, create a job of processing
time 1 for each item and set its resource requirement to the item size. The hybrid
nature of the problem is also reflected in our algorithms. To tackle it, we combine
ideas and techniques from both domains.

1.1 Related Work

Without the resource constraint, one obtains the classic and well studied problem
of scheduling on identical machines. Here Graham shows that a natural greedy
list scheduling algorithm, where jobs are scheduled in the order of non-increasing
processing times, yields an approximation ratio of 4

3 −
3
m [9,10]. After a series

of improvements [4,6,18,20] Hochbaum and Shmoys present a a polynomial time
approximation scheme (PTAS) [14].

The problem with orthogonal resource constraints, i.e. the resource con-
strained scheduling problem, was first studied by Garey and Graham [7]. They
consider s independent orthogonal resources and show that every list scheduler
is a (s+2− 2s+1

m)-approximation algorithm. In the setting of unrelated machines
and one resource a 3.75-approximation algorithm follows from a more general
result for scheduling with resource dependent processing times [11]. For the lat-
ter problem on identical machines also a (3.5 + ε)-approximation algorithm is
known [16]. If preemption is allowed then there is a PTAS if the number of re-
source requirements is bounded by a constant [15]. If additionally the number of
machines is constant, the problem can be solved in polynomial time [2]. There is
extensive work in classifying further variants of the problem into polynomial time
solvable and NP-hard problems. We refer to [8] and [2] for good overviews. Also,
the problem can be seen as a special case of the resource-constrained project
scheduling problem (RCPSP), see [1,12] for overviews on this problem.

As already mentioned above, the problem of scheduling jobs to minimize the
makespan is closely related to the intensively studied Bin-Packing problem,
see [13] for a good survey. For this problem, an asymptotic PTAS is known [5]
while it is NP -hard to approximate with a better ratio than 3/2 [13].

Several related, yet clearly different problems are studied in the literature,
including multi-dimensional packing problems [3] and geometrical packing prob-
lems like strip-packing [17]. For a survey on results for two-dimensional packing
problems see [19].

1.2 Our Contribution

We study the problem to minimize the makespan for non-preemptive scheduling
with an orthogonal resource constraint. Our main result is a (2+ε)-approximation

2

algorithm which requires a novel and complex combination of modern and clas-
sical techniques from scheduling and Bin-Packing, including

– Configuration-LPs and geometric properties of extreme point solutions
– Enumeration by exploiting structure and search-space reduction
– Linear grouping techniques in the spirit of de la Vega and Lueker [5]
– Classification of jobs (large, small, fat, thin jobs).

In particular, our techniques for constructing the schedule go far beyond the list
scheduling type methods used in previous work on the problem and its gener-
alizations [7,11,16]. If either the number of machines or the number of different
resource requirements is bounded by a constant, these techniques allow us even
to obtain a PTAS.

As mentioned above, a simple list scheduler as in [7] achieves an approxima-
tion guarantee of 3. In contrast, our (2 + ε)-approximation algorithm is rather
complex, but gets close to the (3

2 − ε)-inapproximability bound of the problem.
The extra effort to achieve an improvement of 1− ε in the approximation ratio
might not appear to be justified for practical purposes. However, considering
that the (2 + ε)-guarantee is close to the inapproximability bound, we believe
that our contribution to the theoretical understanding of the problem is well
worth it.

1.3 Formal Definition and Notation

We define the resource constrained scheduling problem formally. An instance
consists of an integerm and a set of jobs J where each job j ∈ J is characterized
by its processing time p(j) and its resource requirement r(j). For notational
convenience, we usually denote an instance just by the job set J , implicitly
assuming that m, p and r are given as well. For a natural number ` ∈ N, we
write [`] := {0, . . . , `−1}. A slot is a time-interval [t1, t2) with t2 ≥ t1. A machine
slot (k, t1, t2) ∈ [m]×Q≥0×Q≥0 is a slot assigned to a machine k. LetM denote
the set of all machine slots. For notational convenience we often identify machine
slots s with the interval they represent: We write |s| instead of |[t1, t2)|, and t ∈ s
instead of t ∈ [t1, t2). The same applies for unions and intersections of machine
slots. A schedule is a map ϕ : J → M that assigns a machine slot to each
job j ∈ J . We call a schedule feasible, if the length of the assigned machine
slot to each job is sufficient, assigned machine slots on the same machine are
pairwise non-intersecting, and the resource constraint is satisfied. Formally, a
schedule is feasible if |ϕ(j)| ≥ p(j) for all j ∈ J , we have that ϕ(j) ∩ ϕ(j′) = ∅
for all j, j′ ∈ J assigned to the same machine, and

∑
j∈J : t∈ϕ(j) r(j) ≤ 1 for all

t ∈ Q≥0. If not noted otherwise, when talking about schedules we always mean
feasible schedules. The makespan T (ϕ) of a schedule ϕ is the largest endpoint of
an assigned machine slot, i.e. T (ϕ) := sup

⋃
j∈J ϕ(j). With OPT (J) we denote

the optimal makespan of an instance J . We write c = O(1) to denote that c is
some constant. If the constant depends on the parameter ε, we write c = Oε(1)
instead.

3

2 A List Scheduler

Before we describe the main result, we discuss the following simple list scheduling
algorithm introduced by Garey and Graham [7]: On input J , we iteratively
compute a schedule by adding the jobs one by one as follows. While there are
unassigned jobs, determine the smallest time t a not yet assigned job could be
placed into the schedule without making it infeasible. Assign it by allocating a
suitable machine slot (k, t, t + p(j)). If there are several candidates, choose an
arbitrary one. Garey and Graham proved an approximation guarantee of 3− 3

m ,
and give examples that show that the analysis is tight. Hence this list schedulers
is insufficient for our purposes as we are aiming for a (2 + ε)-approximation
algorithm. Nevertheless, it will prove useful as a subroutine of our main algorithm
later, however in a slight variation. Instead of starting with an empty schedule,
we start with a partial schedule ϕ′ that schedules a subset of jobs J ′ ⊆ J . The
list scheduler is then used to complete the schedule by adding the remaining jobs
J \J ′ one by one as described above. We will now derive a simple upper bound
on the makespan of schedules generated by this algorithm. It depends on three
parameters that we define now. Given an instance J , we set

P̄ (J) :=
∑
j∈J

p(j)/m and R̄(J) :=
∑
j∈J

p(j)r(j).

Both values are lower bounds on the optimal makespan (which was also observed
by Garey and Graham), a fact that will come in handy later.

Lemma 1. OPT (J) ≥ max{P̄ (J), R̄(J)}.

Proof (sketch). The first bound follows from the fact that no schedule can do
better than keeping all machines busy at all times. The second bound follows
from the resource constraint limiting the total resource consumption to 1. ut

While the parameters P̄ (J) and R̄(J) only depend on the instance, the third
parameter depends on the given partial schedule ϕ′. An activation point of ϕ′
is a time-index t where some machine becomes busy that was idle before, or
the resource consumption increases. Let A(ϕ′) denote the number of activation
points of a schedule ϕ′. We now derive the following bound on the makespan
of the schedule computed by our list scheduler when used to complete a partial
schedule ϕ′.

Lemma 2. Let J ′ ⊆ J and let ϕ′ be a schedule for J ′. Let p and r be such that
p(j) ≤ p and r(j) ≤ r for all j ∈ J \ J ′. In polynomial time we can compute a
schedule ϕ for J with T (ϕ) ≤ max{T (ϕ′), P̄ (J) + 1

1−r R̄(J) + (A(ϕ′) + 1) · p}.

Proof. If the makespan of ϕ is T (ϕ′), we are done. Hence assume that the
makespan increased when adding the jobs of J \ J ′. Let j∗ ∈ J \ J ′ be a
job that finishes last, i.e. it determines the makespan.

Let t ≤ T (ϕ) be a time index. Observe that we are always in (at least) one
of the following three cases: (a) All machines are busy at time t, (b) Job j∗ is

4

active, (c) A machine is idle and job j∗ is not active. Clearly the total time case
(a) can apply is bounded by P̄ (J). Trivially, the total time spent in case (b) is
at most p(j∗) ≤ p. Now assume that we are in case (c),and there is no activation
point in the interval [t, t + p). Then the resource consumption at time t is at
least 1 − r as otherwise the algorithm could and would have scheduled job j∗

or some other job at time t on the idle machine. It follows that the total time
spent in case (c) with no upcoming activation point in the interval [t, t + p) is
at most 1

1−r R̄(J). The remaining time spent in case (c) not yet accounted for
is then A(ϕ′) · p. Summing up the individual bounds for all cases, we get the
desired running time bound. ut

Observe that if both r and p are “very small” and A(ϕ′) is “not too large”,
the second term of the statement from the lemma gets arbitrarily close to 2 ·
OPT (J). This is why the algorithm will be useful as a subprocedure of our
(2 + ε)-approximation algorithm. We will use the algorithm also to schedule
some very small sub-instances separately. To do so, we will rely on the following
bound.

Corollary 1. Given an instance J , and let p := max{p(j) : j ∈ J }. In polyno-
mial time we can compute a schedule ϕ for J with T (ϕ) ≤ P̄ (J) + 2R̄(J) + 2p.

Proof. Let J ′ := {j ∈ J : r(j) > 1
2}. Let ϕ′ be a schedule for J ′ that

schedules all jobs of that instance sequentially on the first machine, sorted non-
increasingly by resource requirement. Observe that the schedule has makespan
at most 2R̄(J) as the resource usage is at least 1

2 at all times. Moreover, the
schedule has only one activation point. Hence applying Lemma 2 to this schedule
proves the claim. ut

3 The (2 + ε)-Approximation Algorithm

Fix a constant ε > 0. We present a polynomial time algorithm with the following
property. For any instance J with OPT (J) ≤ 1, it computes a feasible schedule
of makespan at most 2 +O(1) · ε. Such an algorithm can easily be turned into a
(2 + ε)-approximation algorithm using a binary search framework. We simplify
the problem even further by considering only instances that are (γ,M)-restricted.

Definition 1. Let 1 ≥ γ > 0, M > 1. An instance J is (γ,M)-restricted if for
each job j it holds that either p(j) ≥ γ or p(j) < γ/M .

In (γ,M)-restricted instances, we classify jobs j with p(j) ≥ γ as large and jobs j
with p(j) < γ/M as small. Every large job is at least M times as long as any
small job. This fact will become handy later. For a (γ,M)-restricted instance J ,
let Jlarge be the set of large and Jsmall be the set of small jobs respectively. The
following lemma justifies that we can restrict ourselves to restricted instances.

Lemma 3. For any constants ε > 0, M > 1, there is a constant γ∗ε,M such that
for any instance J , in polynomial time we can find a value γ ≥ γ∗ε,M and a
partition of the instance J = J1∪̇J2 so that J1 is (γ,M)-restricted and for J2
the list scheduler computes a schedule of makespan at most O(1) · ε ·OPT (J).

5

Proof (sketch). Choose Oε(1) many disjoint sub-intervals from (0, Oε(1)] so that
each right endpoint is M times larger than its left endpoint. By the pigeonhole-
principle, the jobs of one of the intervals have negligible P̄ and R̄ values. Call
them J2. Using the greedy list scheduler from Section 2, by Lemma 1 and Corol-
lary 1 the list scheduler computes a schedule of makespan at most O(1) · ε ·
OPT (J) for J2. ut

We set M := ε−3. For the remainder of this section, let J be a (γ,M)-
restricted instance with OPT (J) ≤ 1. The algorithm to schedule restricted
instances is in itself composed of several steps. The rough outline is as follows.
We first consider only the large jobs. We compute a schedule of makespan 1 + ε
for all except a constant number of jobs. Next we compute a set of candidate
schedules for the remaining jobs. Each of them has makespan 1 + ε as well. We
can guarantee that for at least one of the schedules, all small jobs can be added
without increasing the makespan (we do not know which one though, so we
try them all). As the problem of adding the small jobs is NP -hard on its own,
we again rely on approximations by allowing the makespan to increase “a bit”.
Adding small jobs takes place in two steps. First, for each candidate schedule we
add the fat jobs, i.e. small jobs of “large” resource requirement. This is successful
at least for one candidate. We then concatenate the successful schedule with the
separate schedule for only large jobs that we computed in the first step. Finally
we complete the schedule by adding the so far not yet scheduled thin jobs, i.e.,
small jobs with “small” resource requirement, using a list scheduler. In total this
will result in a schedule of makespan 2 + O(1) · ε. In summary, we have the
following steps.

Step 1a: Compute schedule ϕ1 for “almost” all large jobs.
Step 1b: Compute set of candidate schedules for remaining large jobs.
Step 2a: For each candidate, try to add small fat jobs.

Concatenate ϕ1 with successful schedule from step 2a.
Step 2b: Add small thin jobs to concatenated schedule using the list scheduler.

Step 1a: Scheduling “almost” all large jobs. We discretize the scheduling
decisions for large jobs by setting δ := ε ·γ/2 and requiring the assigned machine
slots to start and end at integer multiples of δ. I.e., for each j ∈ Jlarge, its
machine slot should be of the form (k, `1 · δ, `2 · δ) with `1, `2 ∈ N0. We call
schedules whose large jobs have this property δ-atomic. The following lemma
asserts that it is sufficient to consider only δ-atomic schedules.

Lemma 4. There exists a δ-atomic schedule for J whose makespan is at most
(1 + ε) ·OPT (J) ≤ 1 + ε.

Proof. Take an optimal schedule ϕ. Define another schedule ϕ′ by setting ϕ′(j) :=
(k, (1 + ε) · a, (1 + ε) · b) for each ϕ(j) = (k, a, b). Observe that ϕ′ is feasible and
has a makespan of at most (1 + ε)T (ϕ) = (1 + ε)OPT (J). For every large job
j ∈ Jlarge, its machine slot ϕ′(j) has length |ϕ′(j)| = (1 + ε)|ϕ(j)| ≥ p(j) + 2δ.
The last inequality is by the fact that j is large and hence ε · p(j) ≥ εγ = 2δ.

6

Hence, we can round the starting times of large machine slots up and their end-
ing times down to multiples of δ without decreasing their length below p(j). This
way we obtain a feasible δ-atomic schedule. ut

We call a set of |Jlarge| many machine slots (without job assignment) a template.
It is called feasible if it corresponds to a feasible schedule (i.e. there is a feasible
schedule that uses the slots from the template). To compute a schedule for the
large jobs, we will first find a feasible template, and later assign jobs to its slots.
More precisely, we want to find the template corresponding to the schedule of
makespan 1 + ε due to Lemma 4. To do so, we partition the timeline [0, 1 + ε)
into frames F` := [δ · (`− 1), δ · `) for ` ∈ N and set F :=

{
F` : 1 ≤ ` ≤

⌈
1+ε
δ

⌉}
.

Observe that all large machine slots in our δ-atomic schedule are unions of
frames from F . Note that since γ ≥ γ∗ε,M (and γ∗ε,M is a constant), we have
that |F| =

⌈
1+ε
δ

⌉
= Oε(1) is constant. This allows us to find a feasible template

by enumeration:

Lemma 5. In polynomial time we can compute a polynomial number of candi-
date templates. At least one of them is feasible.

Proof. In a feasible δ-atomic schedule there are at most |F| many large jobs on
a single machine. For each job, start and end times are chosen from |F|+1 many

possibilities. Hence, there are at most Q :=
(|F|+1

2

)|F|
feasible combinations of

machine slots for one machine. Up to permutation of machines, we can describe
every template by specifying how many machines use each of the Q possibilities.
This results in at most mQ = mOε(1) many candidate templates. ut

To compute the schedule, we repeat the following procedure for each of the
candidate templates. It will be successful for any feasible template. Let T be a
template. We use a linear program to compute an assignment of large jobs to
machine slots from T . Let I denote the set of all slots from T (i.e. the time
intervals without the machine assignment). For each slot s ∈ I, let µI denote
the number of machines slots from the template T that use it. We model the
problem of assigning jobs to intervals with the following linear program.∑

I∈I, |I|≥p(j)

xj,I = 1 ∀j ∈ Jlarge (1)

∑
j∈Jlarge

xj,I ≤ µI ∀I ∈ I

∑
I∈I,F⊆I

∑
j∈Jlarge

r(j)xj,I ≤ 1 ∀F ∈ F

xj,I ≥ 0 ∀j ∈ Jlarge ∀I ∈ I

The variables xj,I model the assignment of jobs to intervals, where xj,I = 1
means that job i is assigned a machine slot with time interval I.

Lemma 6. Given a feasible template, in polynomial time we can compute a δ-
atomic schedule of makespan (1 + ε) that schedules all except for |I|+ |F| many
large jobs. The schedule has at most O(1) 1

εγ activation points.

7

Proof. An extreme point solution of the above linear program has at most
|Jlarge|+ |I|+ |F| many non-zero entries. Hence, due to Constraints (1) at most
|I|+ |F| jobs are fractionally assigned. We output the schedule obtained for the
integrally assigned jobs. Since it is δ-atomic, there are at most |F| activation
points. ut

Note that |I| = Oε(1) just like |F|. Hence all except for a constant number of
jobs are scheduled.

Step 1b: Scheduling the remaining large jobs. If there are only constantly
many large jobs to schedule, we can enumerate all possible δ-atomic schedules
in polynomial time. Importantly, one of these schedules is extendable.

Definition 2. Let J be a set of jobs and let ϕ be a schedule for a subset J ′ ⊆ J .
The schedule ϕ is extendable for J if the jobs J \J ′ can be added to ϕ without
increasing the makespan.

Lemma 7. Let J ′large ⊆ J be a set of large jobs with |J ′large| = Oε(1). In poly-
nomial time we can compute a set of δ-atomic schedules of makespan 1+ε. Each
of them is feasible for the sub-instance J ′large. At least one of them is extendable
for J . The number of activation points of each schedule is at most O(1) · 1

εγ .

Proof (sketch). We can restrict to only using the first |J ′large| = Oε(1) machines.
Hence there are only constantly many machine slots to consider. ut

Step 2a: Adding small fat jobs. We now describe how to add small jobs to
a δ-atomic schedule for large jobs. As mentioned previously, there are two kinds
of small jobs that need to be treated differently. Define β := ε. We say that a
small job is fat if r(j) ≥ β. Otherwise it is thin.

We are now in the following situation: We consider a sub-instance J ′ ⊆
J consisting of some large jobs J ′large and all tiny fat jobs J ′small. Note that
J ′small does not contain the small thin jobs. We have a schedule ϕ2 for J ′large of
makespan 1 + ε, and we want to add the small fat jobs J ′small. For simplicity
we assume that ϕ2 is extendable and show that in this case, the algorithm is
successful. The roadmap is as follows: We first round the resource requirements
so that only a constant number of different values remain. We then compute
an “optimal invalid” schedule for a transformed instance. It is invalid because it
allows preemption, migration and parallelization. However, in the end this invalid
schedule allows us to compute a “good” feasible schedule for our instance.

The resource rounding is done with a linear grouping technique similar in
spirit as the technique employed in [5] for Bin-Packing. We first sort the jobs
from J ′small non-decreasingly by resource requirement. Let J ′small = {j1, . . . , jn}
be in this order. For K :=

⌈
1/ε2

⌉
, we divide the jobs into K groups as follows:

Figuratively, we take a schedule where the jobs from J ′small are scheduled se-
quentially in the order from above, slice it into K intervals of equal length and
define that Ji is the group of jobs that are completely contained in interval i.
Group J0 is the set of jobs that are cut when defining the intervals. Formally,

8

define Ji := {jk : (i− 1) · p(J ′small)/K ≤
∑k−1
`=1 p(j`) ≤ i · p(J ′small)/K − p(jk)}

for i = 1, . . . ,K, and J0 := J ′small \
⋃K
i=1 Ji. By construction, we obtain the

following properties of the set system.

Lemma 8. We have |J0| ≤ K, p(Ji) ≤ p(J ′small)/K for all i = 1, . . . ,K, and
for any two jobs j ∈ Ji and j′ ∈ Ji′ with 1 ≤ i < i′ it holds that r(j) ≤ r(j′).

Based on this grouping, we define a set of jobs J̃ ′small := {g1, ..., gK−1} by setting
p(gi) := p(J ′small)/K and r(gi) := max {r(j) | j ∈ Ji} for each i ∈ {1, ...,K}.
For the resulting instance J̃ ′ := J ′large ∪ J̃ ′small, we later compute an “invalid”
schedule. The jobs gi are going to act as placeholders to fill in the jobs from Ji
in the final solution later. The groups J0 and JK are treated differently. They
can be scheduled separately:

Lemma 9. The jobs in J0 ∪ JK can be scheduled with makespan O(1) · ε.

Proof. Because the jobs in J0 are small we have p(J0) ≤ K · γM ≤ O(1) · ε.
For JK , recall the lower bound R̄ from Section 2. We get

1 ≥ OPT (J ′) ≥ R̄(J ′) ≥ R̄(J ′small) ≥ β · p(J ′small) ≥ β ·K · p(JK) ≥ p(JK)/ε.

We conclude that if we schedule the jobs J0 ∪ JK sequentially on one machine,
the makespan is O(1) · ε. ut

We now discuss how to compute the “invalid” helper schedule. We call it a
relaxed schedule. In relaxed schedules, we allow jobs to be preempted, migrated,
and executed in parallel. However the same rules for feasibility apply as for “real”
schedules. For simplicity of presentation, we refrain from a formal definition of
relaxed schedules. We first prove the existence of a relaxed schedule for J̃ ′.

Lemma 10. If ϕ2 is extendable for J ′, then it is extendable (as a relaxed sched-
ule) for J̃ ′.

Proof (sketch). Let ϕ̄2 be an extension of ϕ2 for J ′. Recall the illustration of
slicing a sequential schedule for J ′small intoK equally sized intervals. To construct
a relaxed schedule for J̃ ′, for each i we use the jobs from interval i + 1 as a
template to fill in the job gi. Note that this might include some fractions of jobs
from that interval which are not included in Ji but in J0. ut

We now show how to compute such a relaxed schedule for J̃ ′. We again resort to
linear programming. Note that in order to extend ϕ2 we can use only resources
“left over” by the large jobs J ′large. Based on ϕ2, for each frame F ∈ F let
r(F) denote the amount of resources available for non-large jobs, and let m(F)
denote the number of machines available. Note that these quantities are the same
throughout a frame as the schedule ϕ2 is δ-atomic. We will use these remaining
resources to schedule small jobs of the instance.

Every possibility of small jobs being simultaneously active during frame
F ∈ F can be described by a characteristic vector χ ∈ [m]K−1 such that∑K−1
i=1 χir(gi) ≤ r(F) and

∑
i χi ≤ m(F). Let C(F) be the set of all such vectors.

9

For each job gi, the entry χi specifies the number of machines used for executing
job gi in parallel. We call a vector χ ∈ C(F) a job configuration. This allows us
to formulate a “configuration-LP” that packs job configurations to frames and
ensures that all small jobs are covered. Denote by CONF-LP the following linear
program. ∑

F∈F
∑
χ∈C(F) χixFχ ≥ p(gi) ∀i = 1, . . . ,K − 1 (2)∑

χ∈C(F) xFχ ≤ δ ∀F ∈ F (3)

xFχ ≥ 0 ∀F ∈ F ∀χ ∈ C(F)

The variable xFχ models for how much time configuration χ should be used
within frame F . Due to Lemma 10 we know that CONF-LP has a solution and
an extreme point solution fulfills the properties of the following lemma.

Lemma 11. There is a polynomial time algorithm which computes a relaxed
schedule for J̃ ′ which extends ϕ2. In particular, in polynomial time we can com-
pute a solution to CONF-LP with at most K + |F| non-zero variables.

Based on the solution to CONF-LP we construct a non-relaxed schedule ϕ′2
for J ′. We partition each frame F ∈ F into subframes, each subframe corre-
sponds to a positive variable xFχ and has length xFχ. The packing constraints (3)
ensure that we can do that. Now for each subframe and each i ∈ [K], create χi
many machine slots (assign them to free machines greedily) and reserve them for
jobs of group Ji. The machine slots created in this way act as placeholders and,
to avoid confusion, we will refer to them as placeholder slots. Our construction
ensures that if we pack jobs of group Ji arbitrarily to its reserved placeholder
slots, we will not violate the resource requirement (as by Lemma 8, the resource
requirement of all jobs from Ji is at most r(gi)). As the covering constraints (2)
are satisfied, the total amount of execution time reserved for each group Ji is at
least p(gi) which by definition and Lemma 8 is at least

∑
j∈Ji p(j).

Now for each group Ji, i = 1 . . .K−1 and each job j ∈ Ji, select an arbitrary
placeholder slot reserved for group Ji which has a positive amount of space left
and assign j to it. By the observations from above, it is clear that this algorithm
manages to assign all jobs. However, it might produce an infeasible solution as
some placeholder slots might be over-packed. We can repair this as follows: For
each subframe (i.e. for each positive variable in the LP-solution), and for each
placeholder slot belonging to this subframe, pick the job added last and remove
it. Now the placeholder slots are not over-packed anymore, i.e. the resulting
schedule is feasible. For the removed jobs, observe that those that are taken
from the same subframe can be scheduled in parallel. Hence, because they are
small, we can schedule them separately in a time-frame of γ/M timeunits. As
there are at most |F|+K many nonzeros the LP solution due to Lemma 11, we
conclude that the increase of the makespan is at most γ/M · (|F|+K) = O(1) ·ε.
Hence, in summary we get the following result:

Lemma 12. Given ϕ2, in polynomial time we can compute a schedule ϕ′2 for
J ′ with T (ϕ′2) ≤ 1 +O(1) · ε. Moreover we have A(ϕ′2) ≤ O(1) · 1

ε2γ .

10

Proof. The makespan increase due to the above procedure, as well as the length
of the schedules for J0 and JK , is bounded by O(1) · ε. To see the bound on the
activation points, observe that new activation points can only be introduced for
each subframe from the construction above. ut

Step 2b: Adding small thin jobs. Let ϕ1 and ϕ′2 be the schedules obtained
due to Lemma 6 and Lemma 12, respectively. Observe that if we concatenate
ϕ1 and ϕ′2, we obtain a schedule of makespan 2 +O(1) · ε that schedules all jobs
from J except for the small thin ones. The number of activation points of this
schedule is O(1) · 1/(ε2γ).

We use the list scheduler from Section 2 to complete the schedule. Applying
Lemma 2 in this situation, we can set p := γ/M and r := β. Hence we obtain a
full schedule of makespan

max

{
2 +O(1) · ε, P̄ (J) +

1

1− β
R̄(J) +O(1) · 1

ε2γ
γ/M

}
= 2 +O(1) · ε.

With the discussion from the beginning of this section we conclude:

Theorem 1. There is a (2 + ε)-approximation algorithm for the resource con-
straint scheduling problem.

4 Complexity and Special Cases

For complexity of the resource constrained scheduling problem, consider the
following reduction from Bin-Packing: for each given item aj ∈ {a1, ..., an}
introduce a job j with p(j) = 1 and r(j) = aj and define m := n. Then, the
inapproximability for Bin-Packing [14] carries over to our problem.

Theorem 2. The resource constrained scheduling problem is NP -hard to ap-
proximate with a factor of 3

2 − ε for any ε > 0.

In the case where the number of machines is bounded by a constant, one
can get a PTAS by adapting the components of the (2 + ε)-approximation al-
gorithm. The same is true if instead we bound the number of different resource
requirements by a constant. Essentially there are two steps of the algorithm that
need to be improved. The first one is the way we deal with large jobs: Instead of
creating two schedules of makespan 1 + ε and concatenating them, we need to
treat all large jobs at the same time. The second issue is the use of the greedy
list scheduler to schedule the thin/small jobs: No matter how we tweak the pa-
rameters, this algorithms performance guarantee will not get better than 2 + ε.
Both issues can be addressed for both special cases, but in different ways.

For space reasons we omit further details.

Theorem 3. For any constant C, there is a PTAS for the resource constrained
scheduling problem for instances J with m ≤ C or with |{r(j) : j ∈ J }| ≤ C.

Acknowledgements. We would like to thank Marco Di Summa, Friedrich Eisen-
brand, Thomas Rothvoß, and José Verschae for helpful discussions.

11

References

1. C. Artigues, S. Demassey, and E. Néron. Resource-Constrained Project Scheduling:
Models, Algorithms, Extensions and Applications. ISTE, 2010.

2. J. Blazewicz, J.K. Lenstra, and A.H.G.Rinnooy Kan. Scheduling subject to re-
source constraints: classification and complexity. Discrete Applied Mathematics,
5(1):11 – 24, 1983.

3. C. Chekuri and S. Khanna. On multi-dimensional packing problems. In Proceedings
of the 10th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1999),
pages 185–194. SIAM, 1999.

4. E. G. Coffman Jr., M. R. Garey, and D. S. Johnson. An application of bin-packing
to multiprocessor scheduling. SIAM Journal on Computing, 7:1–17, 1978.

5. W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1+ε
in linear time. Combinatorica, 1:349–355, 1981.

6. D. K. Friesen. Tighter bounds for the multifit processor scheduling algorithm.
SIAM Journal on Computing, 13:170–181, 1984.

7. M. R. Garey and R. L. Grahams. Bounds for multiprocessor scheduling with
resource constraints. SIAM Journal on Computing, 4:187–200, 1975.

8. M. R. Garey and D. S. Johnson. Complexity results for multiprocessor scheduling
under resource constraints. SIAM Journal on Computing, 1975.

9. R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Tech-
nical Journal, 45:1563–1581, 1966.

10. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17:263–269, 1969.

11. A. Grigoriev, M. Sviridenko, and M. Uetz. Machine scheduling with resource
dependent processing times. Mathematical Programming, 110:209–228, 2007.

12. S. Hartmann and D. Briskorn. A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of OR, 207:1–14, 2010.

13. D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. Thom-
son, 1996.

14. D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: Theoretical and practical results. Journal of the ACM,
34:144–162, 1987.

15. K. Jansen and L. Porkolab. On preemptive resource constrained scheduling:
Polynomial-time approximation schemes. In Integer Programming and Combi-
natorial Optimization, volume 2337 of Lecture Notes in Computer Science, pages
329–349. Springer Berlin / Heidelberg, 2006.

16. H. Kellerer. An approximation algorithm for identical parallel machine scheduling
with resource dependent processing times. OR Letters, 36:157–159, 2008.

17. C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional cutting
stock problem. Mathematics of Operations Research, 25:645–656, 2000.

18. M. A. Langston. Processor scheduling with improved heuristic algorithms. PhD
thesis, Texas A&M University, 1981.

19. A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: A survey.
European Journal of Operational Research, 141:241–252, 2002.

20. S. Sahni. Algorithms for scheduling independent tasks. Journal of the ACM,
23:116–127, 1976.

12

