
Analyses of Cardinal Auctions

Mangesh Gupte∗

Google Inc
mangesh@cs.rutgers.edu

Darja Krushevskaja
Rutgers University
darja@cs.rutgers.edu

S. Muthukrishnan
Rutgers University

muthu@cs.rutgers.edu

October 21, 2018

Abstract

We study cardinal auctions for selling multiple copies of a good, in which bidders specify
not only their bid or how much they are ready to pay for the good, but also a cardinality
constraint on the number of copies that will be sold via the auction. We perform first known
Price of Anarchy type analyses with detailed comparison of the classical Vickrey-Clarke-Groves
(VCG) auction and one based on minimum pay property (MPP) which is similar to Generalized
Second Price auction commonly used in sponsored search. Without cardinality constraints, MPP
has the same efficiency (total value to bidders) and at least as much revenue (total income to
the auctioneer) as VCG; this also holds for certain other generalizations of MPP (e.g., prefix
constrained auctions, as we show here). In contrast, our main results are that, with cardinality
constraints, (a) equilibrium efficiency of MPP is 1/2 of that of VCG and this factor is tight, and
(b) in equilibrium MPP may collect as little as 1/2 the revenue of VCG. These aspects arise
because in presence of cardinality constraints, more strategies are available to bidders in MPP,
including bidding above their value, and this makes analyses nontrivial.

1 Introduction

Assume we have n bidders and m identical items to sell via an auction, s.t. n ≥ m. What auction
is suitable? In particular, there are three decisions to be made:

• how many items to sell: k∗,

• how to allocate k∗ items: a(.) and

• how to price each of them: p(.).

We consider the case of negative externality when the number of bidders who win and are allotted
the item affects the value of the item to each of the winners. In particular, each bidder is not
interested in a copy if the number of copies eventually allocated exceeds her threshold. Cardinal
auctions explicitly incorporate this externality into the bidding language. In this paper we study
efficiency and revenue tradeoffs for such auctions.

2 Model

In cardinal auctions, there are n buyers competing for at most m ≤ n identical copies of an item
in the auction. Each buyer wants to buy exactly one copy and has two private numbers vi and

∗This work was done while the author was graduate student at Rutgers University.
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ki. Auctioneer has no prior information about values of buyers. The utility ui(vi, ki) that bidder i
derives from the auction is

ui(vi, ki) =

{
xivi − pi if number of copies sold is less than ki
−∞ otherwise

where xi ∈ {0, 1} is indicator variable that shows whether i was allotted a copy or not, and pi is
the price at which i obtains it.

Buyers express their preferences through 2 dimensional bid (bi, li) where bi is the maximum
amount buyer i is willing to pay if at most li copies are allocated. Note, that bi may differ from
vi, and li from ki. Once the auctioneer gathers all the bids she has to decide on optimal number
of copies k∗, allocation of k∗ copies according to function a(.) and payments according to pricing
function p(.). In mechanisms we will consider, no bidder i will be a winner if li < k∗.

Motivating Scenarios. An important motivation arises in auctions for online advertisements
(ads). Consider display ads, or visual ads, on a webpage. Advertisers whose ad is shown on the
page compete for attention of the viewers. Clearly, the number of ads shown is an important
feature, e.g., publishers recognize that showing fewer ads helps1. Currently, this cardinality is
largely determined by the publisher of the web page, who may choose to make it exclusive showing
only one ad, but in many cases mixes several. They choose the number of ads on a page based
on variety of techniques from machine learning to user studies, esthetics of UI design and revenue
maximization. This approach does not let advertisers influence how many ads appear with their
own; hence, they bid depending on the average of their values over the possible number of ads that
might appear on that page. This induces inefficiencies and potential revenue loss. Cardinal auctions
are an alternative. They let advertisers explicitly specify how many other advertisers may appear
with their ad on a given page.

Cardinal auctions are also suitable in a variety of other instances:

• Say we can produce a collectors item such as a signed copy of an album or a book. The more
exclusive the copy is, the more valuable it is to the possessor. How many copies shall we
produce? While traditionally this is determined by estimating the demand function, one can
imagine an auction-based method, where bidders can specify in some way the value of the
item to them as a function of how many copies are made and sold.

• Consider a situation that arises in a data exchange such as BlueKai2 where certain pertinent
data about a user is sold for ads targeting. The data may be sold to any number of advertisers
for targeting, but in some cases, the more the information is shared, the less value it gives
to the advertisers. Hence, when data is sold via auction, advertisers may wish to be able to
influence how many of others get access to the data.

2.1 Auctions

Allocation A is the set of k∗ winners who obtain a copy. We consider set of feasible allocations:
allocation A is feasible if {li ≥ |A|, ki ≥ |A| : ∀i ∈ A}. The total efficiency EA of allocation A is the
sum of values of allotted bidders or

∑
i∈A vi.

There are two natural auctions to consider.

VCGCA. V CGCA is a straightforward extension of the standard Vickrey-Clarke-Groves (VCG)
auction [Gro71, Vic61, Cla73]. V CGCA is truthful, i.e., bidder’s bid their true valuations. This

1http://www.technologyreview.com/web/25827/?a=f
2http://www.bluekai.com/
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is a well-known property of VCG mechanism. Thus we can assume that bidders submit their
bids as (vi, ki). V CGCA chooses the feasible allocation that maximizes the total sum of values:
E∗ = maxA

∑
i∈A vi. Let E−i be highest efficiency achievable without bidder i, then the price for

bidder i is

pV CGi = E−i − E∗ + vi (1)

V CGCA, as generally known, can have low revenue. Furthermore, with cardinality constraints
its outcomes are not envy-free: losing bidder would agree to purchase a copy for the price higher
than what is being asked from winners. For more intuition, consider the following example:

Example 2.1. There are 3 bidders with true valuations: A = (100, 1), B = (90, 2) and C = (80, 2).
For this setting V CGCA will identify winning allocation with bidders B and C in it since the total
efficiency is 90 + 80 = 170 > 100). It will charge B amount pB = 100 − 170 + 90 = 20 and C
amount pC = 100−170 + 80 = 10. Thus total collected payment is 30. However, bidder A will envy
this low payment of 30. �

MPPCA. MPPCA was introduced in [Mut09] and is based on the minimum pay property for the
outcome: auction requires every buyer to pay no more than what she would have bid, if she knew
all other bids, to get the exact same assignment she got. To calculate prices, let winning allocation
be A∗ and A2 the allocation that gives second highest sum of bids after A∗. Let winning bids in
A∗ be sorted top-down in decreasing order of bids, b1 ≥ b2 ≥ . . . . The ith winner pays price

pMPP
i = max{

∑
j∈A2

bj −
∑
j∈A∗

bj + bi, bi+1}

The price consists of two components. The first term is the minimum amount i needs to bid to
ensure that the allocation A∗ is the winner, and the second term is the minimum bid to get above
the i+ 1’st largest bid. The overall price is the maximum over both.

MPP auction is inspired by Generalized Second Price (GSP) auction used by many popular
search engines [EOS05, Gro71, AGM06] to determine placement of advertisements (ads) on the
page. In GSP there are n advertisers bidding for m advertisement slots. Each slot i has associated
click through rate (CTR) with it, or probability of being clicked, denoted by αi ∈ (0, 1). Slots are
ordered in decreasing order of CTR’s: αi > αj for i < j. Advertiser i has private valuation vi,
which expresses the value of getting a click. To participate in the auction advertiser submits bid bi
that indicates maximum payment she is willing to make. Auctioneer receives all bids, and assigns
advertisers to slots in decreasing order of their bids. For convenience, let us renumber advertisers
in decreasing order of their bids, then, advertiser i is assigned to slot i with CTR αi. Payment of
advertiser i is pi = αi+1

αi
bi+1, and is charged only if the ad is clicked.

MPPCA naturally generalizes GSP auction and in absence of cardinality constraints is the
special case of GSP without click through rates, or when αi = 1 for all i.

2.1.1 Analysis of Auctions

Unlike V CGCA, MPPCA is not truthful. While bidder cannot benefit from misreporting her cardi-
nality preference3, she can improve her utility by reporting bi 6= vi. Consider the following example:

Example 2.2. Consider 3 bidders with their true valuations: A = (100, 1), B = (80, 2) and
C = (70, 2). Auctioneer runs MPPCA. If auctioneer receives truthful bids, then she will choose

3we will show this in a separate argument later on
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allocation of 2 bidders: (B,C), and charge them 70 and 20, respectively. Utility of bidder B is
uB = 80 − 70 = 10. However, bidder B can improve it by lowering her bid to (40, 2). Then,
allocation is the same (bidders B and C), but payments are different: payment of B is 30, and
payment of C is 60. Now, utility of B is u′B = 80 − 30 = 50 > 10. Hence, bidder B benefits from
submitting untruthful bid bB < vB. �

MPPCA can have many outcomes, we consider only bid vectors that are in Nash equilibria, that
is, for every bidder i ∈ A the following inequalities hold:

vi − pi,A ≥ vi − pj,A′ ∀A′ ∈ F ,A 6= A′

vi − pi,A ≥ vi − pj,A ∀j 6= i

There is a set of Nash equilibria efficiencies of Σ1,Σ2, . . . . Define Emin = mini Σi and Emax =
maxi Σi. Then, price of anarchy is defined as PoA(.) = Emax

Emin
. Observe, that Emax = E∗. Thus,

PoA(V CGCA) = 1, furthermore in order to evaluate performance of MPPCA, one can use V CGCA
as a benchmark, and compare efficiency of V CGCA outcome with that of the worst outcome of
MPPCA:

PoA(MPPCA) =
E∗

Emin
.

To analyze revenue we use V CGCA as the benchmark for consistency, and compare it to the
revenue collected by MPPCA.

Bidders are strategic and their goal is to maximize their utility. Their behavior, or strategy,
is determined by mechanism. Strategy s is weakly dominant if regardless of what other bidders
do, strategy s gets a player utility that is at least as high as utility obtained by playing any other
strategy. Strategy s is (strictly) dominant if utility of playing strategy s is strictly larger than
playing any other strategy, regardless what other bidders do. We consider two types of bidders:

• Conservative bidders do not bid over their value, i.e. bi ≤ vi, hence they do not risk paying
more than their true valuation and getting negative utility.

• Rational bidders can bid above their true valuation vi in equilibria iff the payment pi does
not exceed vi. Equilibria that contain such bids are fragile, because bidder can get negative
utility if some other bidder changes her bid. Such equilibria help us explore the properties of
possible outcomes.

2.2 Our Results

We perform first known analyses of cardinal auctions, and compare efficiency and revenue of V CGCA
vs MPPCA in equilibrium.

• (Efficiency) We show that PoA is 1 for conservative bidders. For rational bidders, we show
that PoA is 2 and this is optimal.

As noted before, without cardinal constraints li, MPPCA becomes GSP without click through
rates. In that case, it is a dominant strategy for bidders to be conservative, and PoA is 1.
Further, we show that, even with a slightly different bidding language of prefix constraints
(defined later precisely), it is still (weakly) dominant strategy for bidders to be conservative,
and PoA of prefix auctions is still 1. It is interesting that with cardinality constraints, there
is provable loss of efficiency in equilibrium.

4



• (Revenue) We show that for conservative bidders revenue of MPPCA is always at least that
of V CGCA, and for rational bidders, revenue of MPPCA may be only 1/2 of that of V CGCA.

In contrast, without cardinality constraints, MPPCA has larger revenue than V CGCA, no
matter the nature of bidders.

In both analyses of efficiency and revenue, the central technical challenge is that MPPCA pricing
has two components, first ensures that the eventual allocation is “better” than others with fewer, or
more items, and the other is the impact of the bidder in the chosen allocation. The role of position
component of price of MPPCA has been studied extensively in analyses of GSP [LT10, LPL11].
The cardinality component of the pricing of MPPCA allows bidders to bid over their true valuation,
this induces the nontrivial PoA properties, complicates the analyses, and is novel.

2.3 Related Work

The work closest to ours is [GS10, JS11, Mut09]. In [Mut09] authors introduce auction with
cardinal externality, formulate and motivate pricing, and give efficient algorithms for calculating
the allocation and pricing. However, they do not perform PoA type analysis we do here.

[GS10, JS11] introduce auction with negative externality: valuation of bidder i is a pair (vEi , v
M
i ),

where vEi is value of the bidder for being exclusively allocated, and vMi is valuation if bidder i for
being allocated among with other bidders. The auction determines allocation type (exclusive vs
non exclusive), set of bidders allotted, and prices at which they get the item. The authors consider
various pricing schemes including variations of VCG and MPP and provide analysis of efficiency and
revenue in equilibrium. Our work differs from [GS10, JS11] in the bidding language. The bidding
language in [GS10, JS11] can not specify preference for the number of copies being sold, while our
bidding language does not allow to specify more than a single bid. Thus, the bidding languages are
incomparable. We believe both languages are natural and interesting.

Another relevant auction was presented in [AFM07], where authors consider the auction for the
ordered set of items, in which bidders specify the largest prefix of allocation in which they want to
participate: valuation of the bidder is (vi, ki), where bidder i has valuation vi only if she is in top
ki allotted bidders. In their model bidders have no influence on valuations of each-other or the size
of final allocation. Authors present two auctions: one based on VCG and the other based on MPP.
The paper shows that MPP based auction can achieve efficiency of VCG, however do not present
PoA type results. In this paper we present analysis of efficiency and revenue for this model and
contrast it with our main results of efficiency and revenue for cardinal auctions.

In general, there are limited PoA style analyses of auctions. Closely related to cardinal auc-
tions are sponsored search auctions where each item has an associated click through rate. A recent
paper performs PoA style analysis in this setting: in [LT10] authors show that it is weakly dom-

inant strategy for bidders to bid conservatively and PoA of 1+
√
5

2 for Nash equilibria of GSP with
conservative bidders.

There is extensive body of literature on multi-unit auctions: auctioneer has m items to sell
among n buyers. The problem was studied at least since [SS71], however much of that work
does not accommodate externalities, and considers the number of items to sell k as an input to the
model. A more recent phenomena is auctions with unlimited supply, or digital good auctions [GH03,
GHK+06]. Here, auctioneer has unlimited supply of the good to sell, she needs to find optimal price
p∗ that determines both allocation and uniform price. However buyer valuation vi’s are independent
of the outcome of the allocation, unlike what we study here.

Externalities have been studied extensively in Economics and Computer Science. [HIMM11]
considers model where buyers experience positive externalities once sufficient number of their friends
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are also allocated the copy of the item. In [JMS96] authors consider situation when winning buyer
subjects other participants to negative externality. [AC08] studies the problem of allocating a pair
of goods among group of sellers who have pairwise externalities to each other.

[PKK11] considers auction for sharable goods. In their setting, valuation of the bidder is
multidimensional and represents value of strict ownership, sharing value, and that of no allocation.
They investigate unique perfect Bayesian equilibrium. All of these works consider externality as
an input to the problem or model value of a bidder as some function of number of items allocated.
All bidders are treated equally and no bidder has control over allocation in which they participate.
This is different from cardinal auctions we study here where the bidding language explicitly allows
bidders to specify the cardinal constraints.

At the highest level, it will be of interest to study auctions for the model in which buyer can
explicitly define her valuation for each possible allocation size and the set of different identities of
co-winners. However, such exponential input can not be processed or analyzed efficiently, and even
in restricted cases, at least as hard as various multidimensional auctions.

In practical terms, within the context of advertising, there were machine learning approaches
to estimating the optimal number of ad slots on the page. In [SKN+10] authors consider several
utility functions that incorporate user experience in order learn number of slots that optimizes
utility unction. [BCF+08] formulates a binary problem: given a set of relevant ads the goal is to
decide whether system benefits from showing ads or should it not show the ads and by that benefit
in a long run. These are interesting directions, different from our approach which relies on the
bidders to address the issue (at least in the short run).

3 Preliminary Observations

Our first observation is regarding truthfulness of the cardinal constraint.

Lemma 3.1. In MPPCA, bidders truthfully reveal their private ki’s, that is li = ki for all i in
Nash equilibria of MPPCA auction.

Proof. Consider any bidder i who participates in winning allocation of size k∗. For contradiction
let their revealed li > ki. There are two possibilities: (1) k∗ ≤ ki, then bidder i would have identical
utility by reporting ki instead of li; (2) k∗ > ki, bidder now has utility −∞ which is worse than
utility from reporting ki truthfully. Hence, bidder does not have incentive to submit li > ki.

Consider same bidder i, and say for contradiction that their revealed li < ki. Again, there
are two cases: (1) k∗ ≤ li, then bidder i would have identical utility by reporting ki instead of li;
(2) with some positive probability ki ≥ k∗ > li, bidder now has utility 0 which is worse than utility
from reporting ki truthfully. Hence, bidder does not have incentive to submit li < ki.

Our second observation concerns bidding behavior of losing bidders. There exist bids which are
in equilibrium, but the efficiency is bounded away from the maximum achievable efficiency by an
arbitrarily large factor. Consider the case of three bidders (100, 1), (75, 2), (75, 2), who make the
following bids: (100, 1), (1, 2), (1, 2). This set of bids forms Nash equilibrium since no bidder by
herself has an incentive to change her bid. However, the efficiency of the resulting allocation is 100,
compared to the optimum efficiency of 150. This is due that losing bidders can arbitrarily shade
their bids. This is a common problem, previously faced in [GS10]. Like [GS10], we will henceforth
assume that losing bidders bid their true valuation.

6



4 Efficiency Analyses

Theorem 4.1. With conservative bidders, MPPCA’s allocation has the same total value as V CGCA
in Nash equilibrium.

Proof. Let σ = σV CG be the set of winning bidders that maximizes efficiency and µ be the set of
winning bidders under MPPCA in Nash equilibria. Let {bi|i ∈ µ} be a set of equilibrium bids under
MPPCA. Since MPPCA chooses the set of bidders who maximizes total sum of bids, then it must
be true that

∑
j∈µ bj ≥

∑
j∈A bj . Since σ is feasible,

∑
j∈µ bj ≥

∑
j∈σ bj . Hence∑

i∈µ\σ

bi +
∑
i∈µ∩σ

bi ≥
∑
j∈σ\µ

bj +
∑
j∈µ∩σ

bj

=⇒
∑
i∈µ\σ

bi ≥
∑
j∈σ\µ

bj

=⇒
∑
i∈µ\σ

vi ≥
∑
j∈σ\µ

vj (2)

=⇒
∑
i∈µ

vi ≥
∑
j∈σ

vj

In (2) we use the assumption on the right hand side that losers bid at least their true valuations
and on the left hand side that bidders are conservative. Then the only possibility is that total value
of µ equals that of σ.

It follows that the PoA of MPPCA is 1 for conservative bidders.

Theorem 4.2. For rational bidders, PoA of MPPCA is 2 and this is tight.

Proof. Let µ and σ denote the set of bidders chosen by the allocation of MPPCA and V CGCA
respectively. Let µ2 denote set of bidders who belong to second best allocation of MPPCA.

If σ = µ, then the efficiency is 1 and we are done. Otherwise,

µ =
∑
i∈µ

bi >
∑
j∈σ

bj

=⇒
∑
i∈µ\σ

bi +
∑
i∈µ∩σ

bi >
∑
j∈σ\µ

bj +
∑
i∈µ∩σ

bi

=⇒
∑
i∈µ\σ

bi >
∑
j∈σ\µ

bj

=⇒
∑
i∈µ\σ

bi >
∑
j∈σ\µ

vj (3)

where to get (3) we use assumption that losing bidders bid at least their value. Remainder of the
proof deviates from the conservative bidder case as we can not bound the left hand side for rational
like we did with conservative bidders.

Without loss of generality, assume that the bidders in µ\σ = {b1, b2, . . . , bk} are ordered in
non-increasing order of bids, i.e., b1 ≥ b2 ≥ · · · ≥ bk. To lowerbound the payment of the highest
bidder, we start by working on one of the components of the pricing:∑

i∈µ2

bi −
∑
i∈µ

bi + b1 ≥
∑
i∈σ

bi −
∑
i∈µ

bi + b1

≥
∑
i∈σ\µ

vi −
∑

2≤i≤k
bi + b1 (4)

7



where we get the first term of (4) from Eq. 3. Notice, that if highest bidder i belongs to σ, then
there is at least one bidder in µ who pays more then her value and gets negative utility. Hence, for
allocation to be in Nash equilibria highest bidder i must belong to µ\σ, and we can exclude highest
bidder from second term of (4). Hence,

p(b1) ≥ max

b2, ∑
i∈σ\µ

vi −
∑

2≤i≤k
bi


For other bidders, we bound MPPCA payment by the p(bi) ≥ bi+1. Using these, we get a lower
bound on the total revenue of MPPCA as follows:∑

1≤i≤k
p(bi) = p(b1) +

∑
2≤i≤k

p(bi)

≥ max

b2, ∑
i∈σ\µ

vi −
∑

2≤i≤k
bi

+
∑

2≤i≤k
bi+1

≥ max

b2, ∑
i∈σ\µ

vi −
∑

2≤i≤k
bi +

∑
3≤i≤k

bi


= max

b2, ∑
i∈σ\µ

vi − b2

 ≥ 1

2

∑
i∈σ\µ

vi

Since, the bidders are rational, ∑
i∈µ\σ

vi ≥
∑
i∈µ\σ

pi =
∑

1≤i≤k
p(bi)

and chaining with the previous equation, we get that
∑

i∈µ\σ vi ≥
1
2

∑
vi∈σ\µ vi.

Tightness. To see that the bound is tight consider three bidders with the following valuations:
(100, 1), (50, 2), (ε, 2) and the bids they place are (100, 1), (100, 2), (50, 2). Bids form NE, and none
of the bidders can improve her utility acting on her own. MPPCA will allocate bidders (2, 3) and
charge them 50 and 0 respectively. PoA is then 50+ε

100 ≈
1
2 .

Contrasts with other auctions As mentioned earlier, without cardinality constraints MPPCA
becomes GSP auction without click-through rates. It is known, that in that case PoA of GSP is
1. To highlight our result further, we consider PoA of prefix auctions [AFM07] and show that it is
also 1.

The model is as follows. There are n ordered identical items to sell. There are m bidders, each
bidder i has two private values vi and ki. Utility ui of bidder i is vi − pi if she obtains any of the
first ki copies, and it is −∞ otherwise. Notice that now, bidder i has positive utility even if more
than ki copies are auctioned. In the auction, each bidder i submits a pair (bi, li): bi is the maximum
they are willing to pay, if they are allotted one of the first li copies.

We consider two different auctions: pV CG and pGSP :
pVCG. pV CG is extension of V CG and is truthful. In the auction bidders submit their true
valuations (vi, ki) to auctioneer, upon recieval of bids auctioneer creates feasible allocation that
maximizes total efficiency and calculates payments using Eq. 1.

8



pGSP. pGSP is iterative second price (SP) auction from first copy of the item to the last, where
for each item, we run a SP auction among bidders who are not yet assigned a copy but who still
have nonnegative utility from obtaining one.

Notice, that bidder cannot benefit by submitting bid bi > vi, hence it is weakly dominant
strategy for bidders to bid conservatively. Similarly to MPPCA it is dominant strategy for the
bidder to report her preference ki truthfully. The argument is identical to Lemma 3.1.

Unlike second price auction pGSP is not truthful. Thus, similarly to MPPCA, we analyze bid
vectors that are in Nash equilibria. For pGSP , Nash equilibrium is defined as follows. For each i,

vi − pi ≥ vi − pj ∀j 6= i and j ≤ min{k, ki}

Here we give PoA results for prefix auctions without click-through rates.

Theorem 4.3. PoA of pGSP is 1.

Proof. Let σ be set of bidders allocated by pV CG and δ be set of bidders allocated by pGSP in
Nash equilibria. Then, similarly to Eq. 3 we have∑

i∈σ\δ

vi ≥
∑
j∈δ\σ

vj

It is possible only if

∃i ∈ σ\δ ∀j ∈ δ\σ s.t. vi > vj (5)

Assume, it is not the case. Then, ∃j ∈ δ\σ ∀i ∈ σ\δ s.t. vj > vi. However, this is possible
only if bidder vj cannot replace any of bidders i ∈ σ\δ, otherwise vj would improve E∗. This, in
turn, is possible if and only if |{i|i ∈ σ\δ}| = 0 that would imply that |σ| < |δ|. However, it gives a
contradiction, as efficiency of E∗ could be improved by adding vj to it.

If (5) is true, then there must be a losing bidder l who can raise her bid, enter the allocation
and as the result improve her utility. That gives a contradiction. Thus, total values of σ and δ are
identical.

5 Revenue Analyses

Let Rev(X) be revenue generated by mechanism X. We show two results.

Theorem 5.1. With conservative bidders, Rev(MPPCA) ≥ Rev(V CGCA).

Proof. Let σ be the allocation with maximum total value (hence, the value attained by V CGCA),
µ be the allocation of MPPCA in equilibrium, µ2 be the set of bidders who participate in second
best allocation of MPPCA and σ−i the set of bidders that gives the largest total value allocation
when bidder i is not present.

Consider payments of each bidder i ∈ σ ∩ µ under V CGCA and MPPCA:

pV CGi =
∑
j∈σ−i

vj −
∑
j∈σ

vj + vi

pMPP
i = max{bi+1,

∑
j∈µ2

bj −
∑
j∈µ

bj + bi} ≥
∑
j∈µ2

bj −
∑
j∈µ

bj + bi

9



Since bidders are conservative and losers bid their values,

pV CGi =
∑
j∈σ−i

vj −
∑
j∈σ

vj + vi ≤
∑
j∈µ2

vj −
∑
j∈µ

bj + bi

=
∑

j∈µ2\µ

bj +
∑

j∈µ2∩µ
bj −

∑
j∈µ∩µ2

bj −
∑

j∈µ\µ2

bj + bi = pMPP
i

Now, consider payments of all such bidders i ∈ σ\µ or i ∈ µ\σ. This is possible, when there are
2 allocations of different size that have equally high efficiency, lets denote them by Aσ and Aµ. If
bidder i is present in only one of allocations, then her payment is pMPP

i = pV CGi = vi. Payment of
V CGCA follows from definition. Observe, that bidder i submits truthful bid in MPPCA, because
otherwise she will be not be in winning configuration. Now, one can derive the payment from
definition.

With rational bidders, we show that revenue of MPPCA can be as low as half of that of V CGCA.

Example 5.1. Consider 3 bidders with the following valuations A = (100 + ε, 1), B = (50, 2)
and C = (50, 2). Rational bidders can converge to bids A = (100, 1), B = (100, 2) and C =
(50, 2) respectively. V CGCA gets truthful bids and chooses allocation consisting of bidder A and her
payment is 100, while MPPCA chooses allocation with bidders (B and C) and prices them 50 and
0 respectively, achieving exactly half of revenue of V CGCA. �

As in case with efficiency, revenue of cardinal auctions is also surprising in contrast with other
auctions. It is believed, that one of the reasons to use MPP auctions is to improve revenue, e.g.,
revenue of GSP without click-through rates is always at least as much as that of V CG. This is
also true for modification presented in [GS10]. Likewise, for prefix auctions, this continues to hold.

Theorem 5.2. In equilibrium, Rev(pV CG) ≤ Rev(pGSP ).

Proof. Let A be the allocation of pGSP (or pV CG). Consider payment of bidder i ∈ A. Let l
be the bidder who enters allocation A if i leaves it. If no such bidder exist, let l be a bidder with
valuation vl = 0 and kl = n. Then payment of bidder i in pV CG is ppV CGi = E−i + E + vi = vl and

ayment of bidder i in pGSP allocation ppGSPi = max{bi+1, bl}.
Payment is minimized when ppGSPi = bl. bl = vl, since bidders are conservative, and l is loosing

bidder. Hence, Rev(pV CG) ≤ Rev(pGSP ).

In contrast to pV CG and V CG that have lower revenue than the corresponding versions of
MPP, for cardinal auctions, we have shown that in some cases V CGCA may have more revenue
than MPPCA. This is because cardinal constraints enable richer strategies for bidders in particular
strategy of rational bidders who can bid above their value.

6 Concluding Remarks and Future Directions

We consider the problem of selling identical copies of an item via an auction in which the number of
copies sold is unknown a priori, and valuation of a bidder depends on the total number of winners.
This scenario is motivated by number of ads on a page or number of parties that get access to certain
information. While there are many ways to solve this problem, we consider cardinal auctions in
which the bidding language lets buyers explicitly bid on the maximum number of winners allowed.
Our work analyzes cardinal auctions of MPPCA and V CGCA for revenue and efficiency tradeoffs
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in equilibria, and shows that they are quite different from the case without the cardinal externality.
We find that MPPCA which is inspired by widely used Generalized Second Price (GSP) auction has
surprising properties. In case of rational bidders efficiency of MPPCA is half of that of V CGCA.
At the same time, in the worst case MPPCA can collect only half of revenue of V CGCA.

There are many open directions to pursue. For example, in display ads, slots may differ in terms
of their location and dimensions, as well as click through rates. We need to extend the study of
cardinal auctions to auctions for configurations of display ads with varying quality scores or with
varying click through models.

Externality is a richer phenomenon than we have studied here. For instance, the value for
a bidder might depend not only on the number of other possessors, but also on their identity,
quality, etc. Further, one can consider bidding languages which go beyond the step function we
have adopted here, for example, by letting bidders specify their value for each potential number of
winners. Studying such notions of externalities and bidding languages is an active area in Economics
and problems are still open.

From a technical point of view, we would like to extend our analysis to Bayesian case and study
dynamics of cardinal auctions.
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