Skip to main content
Log in

A Randomized Sieving Algorithm for Approximate Integer Programming

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The Integer Programming Problem (IP) for a polytope \(P \subseteq \mathbb{R} ^{n}\) is to find an integer point in P or decide that P is integer free. We give a randomized algorithm for an approximate version of this problem, which correctly decides whether P contains an integer point or whether a (1+ϵ)-scaling of P about its center of gravity is integer free in 2O(n)(1/ϵ 2)n-time and 2O(n)(1/ϵ)n-space with overwhelming probability. Our algorithm proceeds by reducing the approximate IP problem to an approximate Closest Vector Problem (CVP) under a “near-symmetric” norm. Our main technical contribution is an extension of the AKS randomized sieving technique, first developed by Ajtai et al. (Proceedings of 33rd Symposium on the Theory of Computing (STOC), pp. 601–610, 2001) for lattice problems under the 2 norm, to the setting of asymmetric norms. We also present an application of our techniques to exact IP, where we give a nearly optimal algorithmic implementation of the Flatness Theorem, a central ingredient for many IP algorithms. Our results also extend to general convex bodies and lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2

Similar content being viewed by others

Notes

  1. This was originally done for K a polyhedron, though this makes no essential difference.

References

  1. Gomory, R.: An outline of an algorithm for solving integer programs. Bull. Am. Math. Soc. 64(5), 275–278 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hildebrand, R., Köppe, M.: A new Lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity 2O(nlogn) (2010). arXiv:1006.4661

  5. Daniele, M., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations. SIAM J. Comput. 42(3), 1364–1391 (2013). Preliminary version in STOC 2010

    Article  MATH  Google Scholar 

  6. Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via M-ellipsoid coverings. In: Proceedings of 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 580–589 (2011)

    Google Scholar 

  7. Barvinok, A.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kannan, R.: Test sets for integer programs, ∀∃ sentences. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 1, pp. 39–47 (1990)

    Google Scholar 

  9. Eisenbrand, F., Shmonin, G.: Parametric integer programming in fixed dimension. Math. Oper. Res. 33(4), 839–850 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Heinz, S.: Complexity of integer quasiconvex polynomial optimization. J. Complex. 21(4), 543–556 (2005). Festschrift for the 70th Birthday of Arnold Schonhage

    Article  MATH  MathSciNet  Google Scholar 

  11. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of 33rd Symposium on the Theory of Computing (STOC), pp. 601–610 (2001)

    Google Scholar 

  12. Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest lattice vector problem. In: Proceedings of the 17th Conference on Computational Complexity (CCC), pp. 53–57 (2002)

    Google Scholar 

  13. Blömer, J., Naewe, S.: Sampling methods for shortest vectors, closest vectors and successive minima. Theor. Comput. Sci. 410(18), 1648–1665 (2009). Preliminary version in ICALP 2007

    Article  MATH  Google Scholar 

  14. Arvind, V., Joglekar, P.S.: Some sieving algorithms for lattice problems. In: Proceedings of 28th Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 25–36 (2008)

    Google Scholar 

  15. Eisenbrand, F., Hähnle, N., Niemeier, M.: Covering cubes and the closest vector problem. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry (SoCG), pp. 417–423 (2011)

    Chapter  Google Scholar 

  16. Khinchin, A.Y.: A quantitative formulation of Kronecker’s theory of approximation. Izv. Akad. Nauk SSSR 12, 113–122 (1948)

    MATH  MathSciNet  Google Scholar 

  17. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986). Preliminary version in STACS 1985

    Article  MATH  MathSciNet  Google Scholar 

  18. Lagarias, J.C., Lenstra, H.W. Jr., Schnorr, C.-P.: Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10(4), 333–348 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kannan, R., Lovász, L.: Covering minima and lattice point free convex bodies. Ann. Math. 128, 577–602 (1988)

    Article  MATH  Google Scholar 

  20. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296, 625–635 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in R n. II: Application of k-convexity. Discrete Comput. Geom. 16, 305–311 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Banaszczyk, W., Litvak, A., Pajor, A., Szarek, S.: The flatness theorem for nonsymmetric convex bodies via the local theory of Banach spaces. Math. Oper. Res. 24(3), 728–750 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rudelson, M.: Distance between non-symmetric convex bodies and the MM-estimate. Positivity 4(8), 161–178 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Goldreich, O., Micciancio, D., Safra, S., Seifert, J.-P.: Approximating shortest lattice vectors is not harder than approximating closest lattice vectors. Inf. Process. Lett. 71(2), 55–61 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  26. Dyer, M.E., Frieze, A.M., Kannan, R.: A random polynomial time algorithm for approximating the volume of convex bodies. In: Proceedings of the 21st Symposium on the Theory of Computing (STOC), pp. 375–381 (1989)

    Google Scholar 

  27. Milman, V.D., Pajor, A.: Entropy and asymptotic geometry of non-symmetric convex bodies. Adv. Math. 152(2), 314–335 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kannan, R., Lovász, L., Simonovits, M.: Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13, 541–559 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Paouris, G.: Concentration of mass on isotropic convex bodies. C. R. Math. 342(3), 179–182 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Santosh Vempala for useful discussions relating to this problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Dadush.

Appendix

Appendix

1.1 A.1 Preliminaries

Logconcave Functions

A function \(f: \mathbb{R} ^{n} \rightarrow \mathbb{R} _{+}\) is logconcave if for all \(\mathbf{x} , \mathbf{y} \in \mathbb{R} ^{n}\), 0≤α≤1, we have that f(x)α f(y)1−αf(α x+(1−α)y). For a convex body \(K \subseteq \mathbb{R} ^{n}\), the indicator function I K of K is easily seen to be logconcave. A logconcave density \(f: \mathbb{R} ^{n} \rightarrow \mathbb{R} _{+}\) is a logconcave function for which \(\int_{ \mathbb{R} ^{n}} f( \mathbf{x} )d \mathbf{x} = 1\).

A logconcave random variable \(X \in \mathbb{R} ^{n}\) is logconcave if X admits a logconcave density \(f: \mathbb{R} ^{n} \rightarrow \mathbb{R} _{+}\). We note that the uniform distribution over K admits a logconcave density, i.e. \(\pi _{K}( \mathbf{x} ) = \frac{1}{\mathrm{vol}_{n}(K)}I_{K}[ \mathbf{x} ]\) for \(\mathbf{x} \in \mathbb{R} ^{n}\). A classical fact is that for two logconcave random variables \(X,Y \in \mathbb{R} ^{n}\), the sum X+Y is also a logconcave random variable. The random variable X (with density f) is isotropic if \(\operatorname{E}[X] = \int_{ \mathbb{R} ^{n}} \mathbf {x} f( \mathbf{x} )d \mathbf{x} = \mathbf{0} \) (mean zero), and if \(\operatorname{E}[XX^{t}] = (\int_{ \mathbb{R} ^{n}} \mathbf{x} _{i} \mathbf{x} _{j} f( \mathbf{x} )d \mathbf{x} )_{ij} = I_{n}\) (covariance matrix identity), the n×n identity. For any full-dimensional random variable \(X \in \mathbb{R} ^{n}\), there exists an affine transformation \(T: \mathbb{R} ^{n} \rightarrow \mathbb{R} ^{n}\) (unique up to rotations) such that TX is isotropic. A convex body K is isotropic if the uniform distribution over K is isotropic.

We will need the following two theorems in the proof of Lemma 2. The first theorem due to Kannan, Lovász and Simonovits gives sandwiching estimates for isotropic convex bodies.

Theorem 10

(Isotropic Sandwiching [28])

Let \(K \subseteq \mathbb{R} ^{n}\) be an isotropic convex body. Then

$$\sqrt{\frac{n+2}{n}} \cdot B_2^n \subseteq K \subseteq\sqrt{n(n+2)} \cdot B_2^n . $$

The following theorem of Paouris gives strong concentration estimates for logconcave random variables.

Theorem 11

(Measure Concentration [29], Theorem 11)

Let \(X \in \mathbb{R} ^{n}\) be an isotropic logconcave random variable. Then for some absolute constant c>0,

$$\Pr[\|X\| \geq c\sqrt{n}t] \leq e^{-\sqrt{n}t} $$

for all t≥1.

Proof of Lemma 2: Approx. Barycenter

Let X 1,…,X N denote iid uniform samples over \(K \subseteq \mathbb{R} ^{n}\), where \(N = (\frac{2c}{\epsilon } )^{2} n\). We will show that for \(\mathbf{b} = \frac{1}{N} \sum_{i=1}^{n} X_{i}\), that the following holds

$$ \Pr\bigl[\big\|\pm\bigl( \mathbf{b} - \mathbf{b} (K)\bigr)\big\| _{K- \mathbf{b} (K)} > \epsilon \bigr] \leq4^{-n} $$
(18)

Since the above statement is invariant under affine transformations, we may assume K is isotropic, i.e. \(\mathbf{b} (K) = \operatorname{E}[X_{1}] = \mathbf{0} \), the origin, and \(\operatorname{E}[X_{1}X_{1}^{t}] = I_{n}\), the n×n identity. Since K is isotropic, from Theorem 10 we have that \(B_{2}^{n} \subseteq K\). Therefore to show (18) it suffices to prove that Pr[∥b2>ϵ]≤4n. Since the X i ’s are iid isotropic random vectors, we see that \(\operatorname{E}[ \mathbf{b} ] = \frac{1}{N} \sum_{i=1}^{N} \operatorname{E}[X_{i}] = 0\) and

$$\operatorname{E}\bigl[ \mathbf{b} \mathbf{b} ^t \bigr] = \frac{1}{N^2} \sum_{i,j \in[N]} E \bigl[X_iX_j^t\bigr] = \frac{1}{N^2} \sum_{i=1}^n E\bigl[X_iX_i^t \bigr] = \frac{1}{N} I_n $$

Now since the X i s are logconcave, we have that b is also logconcave. Note that the random variable \(\sqrt{N} \mathbf{b} \) is logconcave and isotropic, since \(\operatorname{E}[\sqrt{N} \mathbf {b} (\sqrt{N} \mathbf{b} )^{t}] = N \operatorname {E}[ \mathbf{b} \mathbf{b} ^{t}] = I_{n}\). Therefore, by the concentration inequality of Paouris Theorem 11 we have that

$$\Pr[\| \mathbf{b} \|_2 > \epsilon ] = \Pr[\|\sqrt {N} \mathbf{b} \|_2 > \sqrt{N}\epsilon ] = \Pr[\|\sqrt{N} \mathbf{b} \|_2 > 2c\sqrt{n}] < e^{-2n} < 4^{-n} $$

as claimed. To prove the theorem, we note that when switching the X i ’s from truly uniform to 4n uniform, the above probability changes by at most \(n (\frac{2c}{\epsilon ^{2}} ) 4^{-n}\) by Lemma 1. Therefore the total error probability under 4n-uniform samples is at most 2n as needed. □

Convexity

Proof of Lemma 3: Estimates for norm recentering

We have \(\mathbf{z} \in \mathbb{R} ^{n}\), x,yK satisfying (†) ∥±(xy)∥ Ky α<1. We prove the statements as follows:

  1. 1.

    zy Ky τ⇔(zy)∈τ(Ky)⇔zτK+(1−τ)y as needed.

  2. 2.

    Let τ=∥zx Kx . Then by (1), we have that zτK+(1−τ)x. Now note that

    $$(1-\tau) ( \mathbf{x} - \mathbf{y} ) \subseteq|1-\tau| \alpha(K- \mathbf{y} ) $$

    by assumption (†) and (1). Therefore

    $$\begin{aligned} \mathbf{z} \in\tau K + (1-\tau) \mathbf {x} &= \tau K + (1-\tau) \mathbf{y} + (1-\tau ) ( \mathbf{x} - \mathbf{y} ) \\ &\subseteq\tau K + (1-\tau) \mathbf{y} + \alpha|1-\tau |(K- \mathbf{y} ) \\ &= (\tau+ \alpha|1-\tau|) K + (1-\tau-\alpha|1-\tau|) \mathbf{y} \end{aligned}$$

    Hence by (1), we have that

    $$\| \mathbf{z} - \mathbf{y} \|_{K-y} \leq\tau + \alpha|1-\tau| = \| \mathbf{z} - \mathbf {x} \| _{K- \mathbf{x} } + \alpha|1-\| \mathbf {z} - \mathbf{x} \|_{K- \mathbf{x} }| $$

    as needed.

  3. 3.

    We first show that

    $$\pm( \mathbf{y} - \mathbf{x} ) \in\frac {\alpha}{1-\alpha}(K- \mathbf{x} ) $$

    By (1) and (†) we have that

    $$\begin{aligned} ( \mathbf{x} - \mathbf{y} ) \in\alpha (K- \mathbf{y} ) &\Leftrightarrow( \mathbf {x} - \mathbf{y} ) - \alpha( \mathbf{x} - \mathbf{y} ) \in \alpha(K- \mathbf{y} ) - \alpha( \mathbf {x} - \mathbf{y} ) \\ &\Leftrightarrow(1-\alpha) ( \mathbf{x} - \mathbf{y} ) \in\alpha(K- \mathbf{x} ) \Leftrightarrow( \mathbf{x} - \mathbf{y} ) \in\frac{\alpha}{1-\alpha}(K- \mathbf{x} ) \end{aligned}$$

    as needed. Next since 0≤α≤1, we have that |1−2α|≤1. Therefore by (†) we have that

    $$(1-2\alpha) ( \mathbf{y} - \mathbf{x} ) \in |1-2\alpha| \alpha(K- \mathbf{y} ) \subseteq\alpha(K- \mathbf{y} ) $$

    since 0∈Ky. Now note that

    $$\begin{aligned} &(1-2\alpha) ( \mathbf{y} - \mathbf{x} ) \in \alpha(K- \mathbf{y} )\\ &\quad\Leftrightarrow (1-2\alpha) ( \mathbf{y} - \mathbf{x} ) + \alpha( \mathbf{y} - \mathbf{x} ) \in\alpha (K- \mathbf{y} ) + \alpha( \mathbf {y} - \mathbf{x} ) \\ &\quad\Leftrightarrow(1-\alpha) ( \mathbf{y} - \mathbf{x} ) \in\alpha(K- \mathbf{x} ) \Leftrightarrow( \mathbf{y} - \mathbf{x} ) \in\frac{\alpha}{1-\alpha}(K- \mathbf{x} ) \end{aligned}$$

    as needed.

    Let τ=∥zy Ky . Then by (1), we have that zτK+(1−τ)y. Now note that

    $$\begin{aligned} \mathbf{z} \in\tau K + (1-\tau) \mathbf {y} &= \tau K + (1-\tau) \mathbf{x} + (1-\tau ) ( \mathbf{y} - \mathbf{x} ) \\ &\subseteq\tau K + (1-\tau) \mathbf{x} + \frac{\alpha }{1-\alpha}|1-\tau | (K- \mathbf{x} ) \\ &= \biggl(\tau+ \frac{\alpha}{1-\alpha} |1-\tau|\biggr) K + \biggl(1-\tau- \frac {\alpha}{1-\alpha}|1-\tau|\biggr) \mathbf{x} \end{aligned}$$

    Hence by (1), we have that

    $$\| \mathbf{z} - \mathbf{x} \|_{K- \mathbf{x} } \leq\tau+ \frac{\alpha}{1-\alpha} |1-\tau| = \| \mathbf{z} - \mathbf{y} \| _{K- \mathbf{y} } + \frac{\alpha}{1-\alpha} |1-\| \mathbf{z} - \mathbf{y} \| _{K- \mathbf{y} }| $$

    as needed.

 □

Proof of Corollary 1: Stability of symmetry

We claim that (1−∥x K )(K∩−K)⊆(Kx)∩(xK). Take zK∩−K, then note that

$$\begin{aligned} \| \mathbf{x} + (1-\| \mathbf{x} \| _K) \mathbf{z} \|_K &\leq\| \mathbf{x} \|_K + (1-\| \mathbf{x} \| _K)\| \mathbf{z} \|_K \leq\| \mathbf{x} \|_K + (1- \| \mathbf{x} \|_K)\| \mathbf{z} \|_{K \cap -K} \\ &\leq\| \mathbf{x} \|_K + (1-\| \mathbf{x} \| _K) = 1 \end{aligned}$$

hence x+(1−∥x K )(K∩−K)⊆K⇔(1−∥x K )(K∩−K)⊆Kx. Next note that

$$\begin{aligned} &\|- \mathbf{x} + (1-\| \mathbf{x} \| _K) \mathbf{z} \|_{-K} \\&\quad\leq\|- \mathbf{x} \| _{-K} + (1-\| \mathbf{x} \|_K)\| \mathbf{z} \|_{-K} \leq\| \mathbf{x} \|_K + (1-\| \mathbf{x} \|_K)\| \mathbf{z} \|_{K \cap-K} \\ &\quad\leq\| \mathbf{x} \|_K + (1-\| \mathbf{x} \| _K) = 1 \end{aligned}$$

hence −x+(1−∥x K )(K∩−K)⊆−K⇔(1−∥x K )(K∩−K)⊆xK, as needed. Now we see that

$$\mathrm{vol}_n\bigl((K- \mathbf{x} ) \cap( \mathbf{x} -K)\bigr) \geq\mathrm{vol}_n\bigl((1-\| \mathbf{x} \|_K) (K \cap-K)\bigr) = (1-\| \mathbf{x} \|_K)^n \mathrm{vol}_n(K \cap-K) $$

and so the claim follows from Theorem 7. □

1.2 A.2 Integer Programming

Proof of Lemma 4: Well-Centered Bodies

Clearly for any \(\mathbf{a} _{0}' \in K_{a,b}\) we have that \(K_{a,b} \subseteq \mathbf{a} _{0}' + 2RB_{2}^{n}\), since \(K_{a,b} \subseteq K \subseteq \mathbf{a} _{0} + RB_{2}^{n}\). Therefore the we need only worry that K a,b contains a polynomially sized ball around an easy to compute point in K a,b . Since a,b correspond to m,u in the while loop (lines 6–13 in Algorithm 1), we have that

$$\begin{aligned} b-a \geq\frac{\delta}{2} \quad\quad \langle \mathbf {x} _l, \mathbf{v} \rangle + \frac {3\delta}{16} \leq b \quad\quad a \leq \langle \mathbf{x} _u, \mathbf{v} \rangle - \frac {7\delta}{16}, \end{aligned}$$

where the last inequality follows since \(a+\frac{\delta}{2} \leq b \leq \langle \mathbf{x} _{u}, \mathbf {v} \rangle+\frac{\delta}{16}\). Since \(\mathbf{a} _{0}+rB_{2}^{n} \subseteq K\), by assumption \(\delta\leq\frac{1}{64} r \| \mathbf{v} \| _{2}\), we also have that

$$\mathrm{width}_K( \mathbf{v} ) \geq\mathrm{width}_{ \mathbf{a} _0+rB_2^n}( \mathbf{v} ) = 2r\| \mathbf{v} \|_2 \geq128 \delta $$

From the above, we additionally conclude that

$$\langle \mathbf{x} _l, \mathbf{v} \rangle \leq \langle \mathbf{a} _0, \mathbf{v} \rangle \leq \langle \mathbf{x} _u, \mathbf{v} \rangle \quad\text{and} \quad \langle \mathbf{x} _u, \mathbf{v} \rangle - \langle \mathbf{x} _l, \mathbf{v} \rangle \geq\mathrm{width}_K( \mathbf{v} ) - \frac{\delta}{8} \geq 127 \delta $$

Let I denote the interval [〈x l ,v〉,〈x u ,v〉]∩[a,b]. Combining the above inequalities, it is not hard to check that \(\mathrm{length}(I) \geq\frac{3\delta}{16}\) (corresponding to having b shifted as far to the left as possible). Let I l =[〈x l ,v〉,〈x,a 0〉]∩I and I u =[〈a 0,v〉,〈x u ,v〉]∩I. Since I l and I u partition I, we must have that either \(\mathrm{length}(I_{l}) \geq\frac{3\delta}{32}\) or \(\mathrm{length}(I_{u}) \geq\frac{3\delta}{32}\). Assume we are in the former case (the analysis for the latter case is symmetric). Let c denote the midpoint of I l . Define \(\mathbf{a} _{0}'\) as

$$\mathbf{a} _0' = \frac{ \langle \mathbf{a} _0, \mathbf{v} \rangle-c}{ \langle \mathbf{a} _0- \mathbf{x} _l, \mathbf{v} \rangle} \mathbf{x} _l + \frac{c- \langle \mathbf{x} _l, \mathbf{v} \rangle}{ \langle \mathbf{a} _0- \mathbf{x} _l, \mathbf{v} \rangle} \mathbf{a} _0, $$

where we note that \(\mathbf{a} _{0}'\) can easily be computed in polynomial time. Since \(\mathbf{a} _{0}'\) is a convex combination of x l and a 0, and since \(\langle \mathbf{a} _{0}', \mathbf {v} \rangle = c \in[a,b]\), we have that \(\mathbf{a} _{0}' \in K_{a,b}\). Next by our assumption that \(\mathrm{length}(I_{l}) \geq \frac{3\delta}{32}\), that c is the midpoint of I l , and that ∥x l a 02R, we have that

$$\frac{c- \langle \mathbf{x} _l, \mathbf{v} \rangle}{ \langle \mathbf {a} _0- \mathbf{x} _l, \mathbf{v} \rangle} \geq \frac{3\delta}{64R\| \mathbf{v} \|_2} . $$

Since \(\mathbf{a} _{0} + rB_{2}^{n} \subseteq K\), we get that

$$\begin{aligned} K &\supseteq\frac{ \langle \mathbf{a} _0, \mathbf{v} \rangle-c}{ \langle \mathbf{a} _0- \mathbf{x} _l, \mathbf{v} \rangle} \mathbf{x} _l + \frac{c- \langle \mathbf{x} _l, \mathbf{v} \rangle }{ \langle \mathbf{a} _0- \mathbf {x} _l, \mathbf{v} \rangle} \bigl( \mathbf{a} _0 + rB_2^n\bigr) \\ &= \mathbf{a} _0' + r \frac{c- \langle \mathbf{x} _l, \mathbf{v} \rangle}{ \langle \mathbf{a} _0- \mathbf{x} _l, \mathbf{v} \rangle} B_2^n \supseteq \mathbf{a} _0' + \frac{3 r \delta}{64 R \| \mathbf{v} \|_2} B_2^n \end{aligned}$$

Furthermore, note that

$$\max\biggl\{{ \langle \mathbf{x} , \mathbf {v} \rangle: \mathbf{x} \in \mathbf {a} _0' + \frac{3 r \delta}{64 R \| \mathbf{v} \|_2} B_2^n}\biggr\} = c + \frac{3 r \delta}{64 R} \leq c + \frac{3\delta}{64} \leq b $$

since c is the midpoint of I l ⊆[a,b]. By the symmetric argument, we also have that \(\min\{{ \langle \mathbf {x} , \mathbf{v} \rangle: \mathbf {x} \in \mathbf{a} _{0}' + \frac{3 r \delta}{64 R \| \mathbf{v} \|_{2}} B_{2}^{n}}\} \geq c - \frac{3\delta}{64} \geq a\). Therefore, we have that

$$\mathbf{a} _0' + \frac{3 r \delta}{64 R \| \mathbf{v} \|_2} B_2^n \subseteq K_{a,b} $$

as needed. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dadush, D. A Randomized Sieving Algorithm for Approximate Integer Programming. Algorithmica 70, 208–244 (2014). https://doi.org/10.1007/s00453-013-9834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9834-8

Keywords

Navigation