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Abstract

We present a fully dynamic algorithm for the recognition of proper circular-arc (PCA)
graphs. The allowed operations on the graph involve the insertion and removal of vertices
(together with its incident edges) or edges. Edge operations cost O(logn) time, where
n is the number of vertices of the graph, while vertex operations cost O(logn + d) time,
where d is the degree of the modified vertex. We also show incremental and decremental
algorithms that work in O(1) time per inserted or removed edge. As part of our algorithm,
fully dynamic connectivity and co-connectivity algorithms that work in O(logn) time
per operation are obtained. Also, an O(A) time algorithm for determining if a PCA
representation corresponds to a co-bipartite graph is provided, where A is the maximum
among the degrees of the vertices. When the graph is co-bipartite, a co-bipartition of
each of its co-components is obtained within the same amount of time.

Keywords: dynamic recognition, proper circular-arc graphs, round graphs,
co-connectivity.

1 Introduction

The dynamic graph recognition and representation problem for a class of graphs C, or simply
the dynamic recognition problem for C, is the problem of maintaining a representation of a
dynamically changing graph, while the graph belongs to C. Its input is a graph G together
with the sequence of operations that are to be applied on G. A dynamic recognition algorithm
is composed by the algorithm that builds the initial representation of G and the algorithms
that apply each update on the representation. Other kinds of dynamic graph problems have
been considered, besides the recognition and representation problems (see e.g. [8]).

Dynamic recognition problems are classified according to the effects that the operations
have on the size of G. A recognition problem that allows no updates is called static. The
input of a static problem is G and the output is a representation of G or an error, according
to whether G € C. A recognition problem whose updates only increment the size of G is
called incremental. Similarly, a recognition problem that allows only updates that decrement
the size of G is called decremental. Finally, a recognition problem that allows updates of both
kinds is called fully dynamic.

Dynamic problems are also classified with respect to the structures that can be inserted
or removed. A dynamic problem is wvertex-only if only vertices can be inserted or removed,
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while it is edge-only if only edges can be inserted or removed (sometimes the insertion and/or
removal of isolated vertices is also allowed in an edge-only problem). There are problems in
which other structures, such as cliques, are included or removed (e.g. [19]), but we do not
deal with such problems in this article.

In the last decade, dynamic recognition algorithms for many classes of graphs have been
developed, including, among others, chordal graphs, cographs, directed cographs, distance
hereditary graphs, interval graphs, Pj-sparse graphs, permutation graphs, proper interval
graphs, and split graphs [4, 5, 6, 9, 11, 15, 16, 17, 24, 26, 29].

In this paper we deal with the dynamic recognition problem for proper circular-arc graphs.
A circular-arc model is a family of arcs of some circle. A graph is said to admit a circular-arc
model when its vertices are in a one-to-one correspondence with the arcs of the model in such
a way that two vertices of the graph are adjacent if and only if their corresponding arcs have
nonempty intersection. Those graphs that admit a circular-arc model are called circular-arc
graphs. Proper circular-arc graphs and proper interval graphs form two of the most studied
subclasses of circular-arc graphs. A circular-arc model is proper when none of its arcs is
properly contained in some other arc of the model, while it is interval when its arcs do not
cover the entire circle. A graph is a proper circular-arc (PCA) graph when it admits a proper
circular-arc model, while it is a proper interval (PIG) graph when it admits an interval proper
circular-arc model.

Circular-arc graphs and their subclasses have applications in disciplines as diverse as al-
location problems, archeology, artificial intelligence, biology, computer networks, databases,
economy, genetics, and traffic light scheduling, among others. In particular, Hell et al. [11]
describe an application of dynamic PIG graphs in physical mapping of DNA. Lin and Szwar-
cfiter [22] survey the static recognition problem for several subclasses of circular-arc graphs.

The static recognition problems for both PIG and PCA graphs require O(n +m) time [2,
3,7, 10, 12]. Here and in the remainder of this section, n and m refer to the number of vertices
and edges of the graph, respectively. The first static recognition and representation algorithm
for PCA graphs was given by Deng et al. [7]. As part of their algorithm, Deng et al. developed
a vertex-only incremental algorithm for the recognition of connected PIG graphs that runs
in O(d) time per vertex insertion, where d is the degree of the inserted vertex. Later, Hell
et al. [11] extended this algorithm into a fully dynamic algorithm for the recognition of PIG
graphs that runs in O(d+logn) time per vertex update and in O(logn) time per edge update.
The algorithm by Hell et al. can be restricted to solve only the incremental and decremental
problems in O(d) time per vertex operation and O(1) time per edge operation. Even later,
Ibarra [16] developed an edge-only fully dynamic algorithm for the recognition of PIG graphs
that also runs in O(logn) time per edge modification.

In this article we develop the first fully dynamic, incremental, and decremental recognition
algorithms for PCA graphs. Our algorithms build upon the recognition algorithms of PIG
graphs given by Hell et al. The time complexity of our algorithms equals the time complexity
required by the algorithms by Hell et al. That is, we present:

e a fully dynamic algorithm that runs in O(d + logn) per vertex update and in O(logn)
time per edge update,

e an incremental algorithm that runs in O(d) time per vertex insertion and O(1) time per
edge insertion, and

e a decremental algorithm that runs in O(d) time per vertex removal and O(1) time per



edge removal.

The representation maintained by the algorithm is, strictly speaking, not a proper circular-arc
model of the graph. Neither the representation maintained by Hell et al. for the recognition
of PIG graphs is a proper interval model. Instead, combinatorial structures called straight
representations —for PIG graphs— and round representation —for PCA graphs— are main-
tained (see Section 2.2). It is worth to mention that straight and round representations are
in a one-to-one correspondence with proper interval and proper circular-arc models, respec-
tively. Moreover, if required, straight and round representations can be transformed into
proper interval and proper circular-arc models in O(n) time.

The organization of the article is as follows. In Section 2 we introduce the basic termi-
nology and some required tools. In particular, we define straight and round representations.
Section 3 briefly overviews the algorithms by Deng et al. and by Hell et al. for the recogni-
tion of PIG graphs. These algorithms are important for us because of two reasons. First,
they are invoked by our algorithms when PIG graphs need to be recognized. Second, these
algorithms and ours share some fundamental ideas. In particular, the basic implementation
of round representations, that is common to all our algorithms, is a simple generalization of
the implementation of straight representations that the algorithms by Hell et al. use. Our
implementation of round representations is given in Section 3. The basic algorithms that
manipulate round representations are presented in Section 4. These algorithms try to modify
as little as possible the input round representation. In that sense, they can be considered as
generalizations of the algorithms by Hell et al., even though some of algorithms in Section 4
share no similarities with those in [11]. Section 5 is devoted to co-bipartite PCA graphs.
First we introduce an efficient algorithm for computing all the co-components of the input
graph, and then we develop two methods that can be used to traverse all the round represen-
tations of a PCA graph. As a corollary, we obtain a new proof for a theorem by Huang [13]
that characterizes the structure of round representations. Sections 6 and 7 combine all the
previous tools into the incremental and decremental algorithms, respectively, while Section 8
integrates the incremental and decremental algorithms into a fully dynamic algorithm. As
part of the fully dynamic algorithm, simple connectivity and co-connectivity algorithms for
fully dynamic PCA graphs are derived from the work in [11]. Finally, some further remarks
are given in Section 9.

2 Preliminaries

For a graph G, we use V(G) and E(G) to denote the sets of vertices and edges of G, re-
spectively, while we use n and m to denote |V (G)| and |E(G)|, respectively. We write uv to
represent the edge of G between the pair of adjacent vertices u and v. The neighborhood of
v is the set Ng(v) of all the neighbors of v, and the complement neighborhood of v is the set
Ng(v) of all the non-neighbors of v. For V C V(G), we write Ng(V) = U,y Na(v) and
Ng(V) = Uyer Na(v). The cardinality of Ng(v) is the degree of v and is denoted by dg(v).
The maximum among the degrees of all the vertices is represented by A(G). For k € N,
G is said to be a k-degree graph when A(G) < k. The closed neighborhood of v is the set
N¢[v] = Ng(v) U {v}; if Ng[v] = V(G), then v is a universal vertez. Two vertices v and w
are twins when Ng[v] = Ng[w]. We omit the subscripts from N, N, and d when there is no
ambiguity about G.



The subgraph of G induced by V C V(G), denoted by G[V], is the graph that has V as
vertex set and two vertices of G[V] are adjacent if and only if they are adjacent in G. A
clique is a subset of pairwise adjacent vertices. We also use the term clique to refer to the
corresponding subgraph. An independent set is a set of pairwise non-adjacent vertices. A
semiblock of G is a nonempty set of twin vertices, and a block of G is a maximal semiblock.
A hole is a chordless cycle with at least four vertices.

The complement of G, denoted by G, is the graph that has the same vertices as G and
such that two vertices are adjacent in G if and only if they are not adjacent in G. Graph
G is co-connected when G is connected, and each component of G is called a co-component
of G. The union of two vertex-disjoint graphs G and H is the graph G U H with vertex set
V(G)UV(H) and edge set E(G)UE(H). The join of G and H is the graph G+ H = G U H,
i.e., G+ H is obtained from GU H by inserting all the edges vw, for v € V(G) and w € V(H).

A graph G is bipartite when there is a partition Vi, Vo of V(G) such that both V; and V5
are independent sets. Contrary to the usual definition of a partition, we allow one of the sets
V1 and V5 to be empty. So, the graph with one vertex is bipartite for us. The partition of
V(G) into V1, Vo, denoted by (V1,V5), is called a bipartition of G. When G is bipartite, G is
a co-bipartite graph and each bipartition of G is a co-bipartition of G.

A semiblock family is a family formed by pairwise disjoint nonempty sets of vertices. A
semiblock graph G is a graph whose vertex set is a semiblock family. To avoid confusions, we
refer to V(G) as the semiblock family of G, and to its elements as semiblocks, instead of calling
them the vertex set and vertices of G, respectively. We note, however, that the notation and
terminology of graphs holds for semiblock graphs as well. For instance, we call N(B) to the
family of semiblocks adjacent of B, we say that a semiblock is universal, we refer to a family
of sets B as a clique, etc.

A semiblock graph G with no twins is called a block graph. For block graphs we also
call V(G) a block family and refer to its elements as blocks. The extension of a semiblock
graph G is the graph G with vertex set | JV(G) such that v € B is adjacent to w € W if and
only if B € N[W], for each B,W € V(G). In other words, each set B is transformed into a
semiblock, and the edges between the semiblocks are preserved to its vertices. Observe that
each semiblock of G is also a semiblock of G. Furthermore, G is a block graph if and only if
each block of G is a block of G. Each semiblock graph G whose extension is isomorphic to G
is called a reduction of G. If G is a block graph, then G is the block reduction of G.

2.1 Orderings and ranges

An ordering is a finite set S that is associated with an enumeration z1, ..., z, of its elements.
Elements z1 and z,, are the leftmost and rightmost elements of S, respectively. The reverse of
S, denoted by S7!, is the ordering x,,...,z1. If T =y1,...,ym is an ordering, we denote by
S e T the ordering z1,...,Zn,Y1,---,Ym. We also consider each single element y an ordering,
thus S e y is the ordering x1,...,2z,,y, and y e S is the ordering y, x1, ..., Ty.

In this article we deal with many collections that are of a circular (cyclic) nature, such
as circular lists, circular families, etc. Generally, the objects in a collection are labeled with
some kind of index that identifies the position of the object inside the collection. Unless
otherwise stated, we assume that all the operations on these indices are taken modulo the
length of the collection. Furthermore, we may refer to negative indices and to indices greater
than the length of the collection. In these cases, indices should also be understood modulo
the length of the collection. For instance, the element x,; of the ordering 1, ..., x, is x;,
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Figure 1: A round representation ® and its associated —»¢ relation.

forany 1 <i<n and k € Z.

The above assumption allows us to work with orderings as if they were circular orderings.
We use the standard interval notation applied to orderings, though we call them ranges to
avoid confusions with interval graphs. Let S = z1,...,x, be an ordering. For z;,z; € X,
the range [x;,x;] is defined as the ordering x;, 11, ..., z;—1,x; where, as said before, all the
operations are calculated modulo n. Notice that x; and z; are the leftmost and rightmost
of [z;,z;], respectively. Similarly, the range [z;,z;) is obtained by removing the last element
from [z;,x;], the range (z;, ;] is obtained by removing the first element from [x;,x;], and
(xi, ;) is obtained by removing both the first and last elements from [z;, z;].

The range notation that we use clashes with the usual notation for ordered pairs. Thus,
we write (z,y) to denote the ordered pair (z,y). The unordered pair formed by z and vy is,
as usual, denoted by {z,y}. Also, for the sake of notation, we sometimes write #S to denote
the cardinality of a range S.

2.2 Round graphs

A round representation is a pair ® = (B(®), F?) where B(®) = By,..., By is an ordered
semiblock family, and F? is a mapping from B(®) to B(®) such that F*(B;) € [B;, E¥(Bi11)],
for every B; € B(®). For each B € B(®), the semiblock F*(B) is called the right far neighbor
of B. We use a convenient notation for dealing with the range (B, F.2(B)]. For B,W € B(®),
we write B —¢ W to mean that W € (B, F*(B)]. Similarly, write B —+¢ W to indicate
that W ¢ (B, F2(B)]. As usual, we do not write the subscript and superscript ® when ® is
clear by context. Figure 1 depicts a round representation and its corresponding — relation.

Every round representation ® is associated with several mappings that are useful for the
dynamic algorithms. Let B(®) = By, ..., B,. For B; € B(®), define:

e the right semiblock of B;, denoted by R®(B;), as Bjy1,
e the left semiblock of B;, denoted by L®(B;), as B;_1,

e the left far neighbor of B;, denoted by F;*(B;), as the unique B; € B(®) such that (a)
Bj — Bz or Bj = Bz and (b) Bj—l = Bz or Bj—l — B.

e the right near neighbor of B;, denoted by N2 (B;), as Biy1 if B — B;,1, and as B;
otherwise.

e the left near neighbor of B;, denoted by qu’(Bi), as B;_q if B,_1 — B;, and as B;
otherwise.

e the right unreached semiblock of B;, denoted by U2 (B;), as R®(EF®(B;)), and
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Figure 2: A round graph G and the relation —¢g for some round representation ® of G.

e the left unreached semiblock of B;, denoted by UF(B;), as L*(F*(B;)).

As usual, we omit the superscript ® when & is clear from the context.
The following observation shows equivalent definitions of round representations.

Observation 2.1. The following statements are equivalent for ® = (B(®), F}.).
e ® is a round representation.
e For every By, By, B, € B(®), if By, € (B, B,) and B — By, then By, — B;.
e For every B € B(®), B = F.(Ni(B)) or B— F,(N;(B)).

Through this article, we deal with two types of round representations of interest. A
normal round representation is a round representation ® such that B € [Fj(B), F,.(B)], for
every B € B(®). In other words, ® is normal if either B — W or W —— B, for every pair
B, W € B(®). For the sake of simplicity, from now on, whenever we write that ® is a round
representation, we mean that ® is a normal round representation. A straight representation
is a round representation ® such that F,.(B) = B, for some B € B(®).

A semiblock graph G is a round graph if there exists a round representation ® such that
B(®) is an ordering of V(G) and N[B] = [F;(B), F,-(B)], for every B € V(G). For the round
graph G, we say that G admits the round representation ®, and that ® represents G. A round
graph that admits a straight representation is also called a straight graph. Figure 2 shows a
round graph together with the — relation associated to some of its round representations.

A round graph may admit several round representations. On the other hand, each round
representation represents exactly one round graph. Indeed, the round graph G represented
by ® has B(®) as its semiblock family, while B and W are adjacent if and only if B —¢ W
or W —¢ B. We write G(®) to denote the unique round graph represented by ®.

The concept of induced representation plays a central role in the dynamic algorithms, so
it is better to define it in a constructive manner. Let B = [By, B,] be a range of B(®). The
restriction of F,. to B, denoted by F.|B, is the mapping F' from B to B such that F(B) = F,(B)
if F.(B) € B, while F(B) = B, otherwise. The representation of ® induced by B, denoted
by ®|B, is the pair (B, F,.|B). In other words, ®|B is obtained from ® by keeping only those
blocks inside B, and then adapting F/*. Observe that any B C B(®) can be described with a
sequence of ranges By, ..., By of B(®) such that B;11 C B; and By = B. Thus, the concept
of an induced representation is generalized to B as ®|B = (... (®|B1)|...)|Bk. Also, we write
F\B=F,|(B(®)\B) and ®\ B = ®|(B(®)\ B). That is, F;.\ B and ¢\ B are obtained from
F,. and ® by removing B, respectively.

Observation 2.2. For each B C B(®), G(®|B) = G(?)[B] and G(® \ B) = G(P) \ B.

Hell et al. [11] introduce the concept of a contig (round representations are related to DNA
sequences) to deal with the straight representations of each component. We slightly change



the meaning of a contig to fit better for our purposes. Let ® be a round representation of
a round graph G, and B be a range of B(®). Say that B is a contig range when G[B] is a
component of G. In such case, ®|B is a contig of ® representing G[B]. We also refer to ¢ as a
contig to indicate that G is connected, and as a block contig to indicate that G is also a block
graph. The following is a well know property of round representations.

Observation 2.3. Fvery component of G is represented by a contig.

We classify contigs into linear contigs and circular contigs according to whether the contigs
are straight or not, respectively. Each linear contig has two special semiblocks: the left end
semiblock is the semiblock B such that Fj(B) = B, and the right end semiblock is the
semiblock B such that F,.(B) = B.

Two semiblocks B, W of a round representation ® are indistinguishable when Fj(B) =
E; (W) and F,.(B) = F.(W). Clearly, if B — W, then all the semiblocks in [B, W] are
pairwise indistinguishable in ®. We say that ® is compressed when it contains no pair
of indistinguishable semiblocks. The compression of ® is the round enumeration that is
obtained by iteratively moving the elements of W to B, and then removing W, for some pair
of indistinguishable semiblocks B and W, until ® is compressed. It is not hard to see that B
and W are twins in G(®) when they are indistinguishable in ®. The converse is not true, but
almost. The following lemmas resume the situation.

Lemma 2.4 (e.g. [14]). Two semiblocks of a straight representation ® are twins in G(®P) if
and only if they are indistinguishable in .

Lemma 2.5 (e.g. [21]). Two semiblocks of a round representation ® are twins in G(®) if and
only if they are both universal in G(®) or indistinguishable in .

These lemmas show an important property of round graphs. If at most one universal
semiblock is admitted, then twin semiblocks can be identified as indistinguishable semiblocks.
For any u € Ng, say that a semiblock graph is u-universal when it contains at most u
universal semiblocks. Similarly, say that ® is a u-universal round representation when G(®)
is u-universal. The following is a simple corollary of Lemma 2.5.

Corollary 2.6. Let ® be a round representation. Then, G(®) is a block graph if and only if
® is compressed and 1-universal.

Say that two round representations are equal when one can be obtained from the other by
permuting indistinguishable semiblocks. In other words, two round representations are equal
when their compressions are equal. By definition, if ® and ¥ are equal round representations,
then G(®) and G(V) are isomorphic.

Notice that if ® is a round representation, then ¥ = (B(®)~!, F;?) is also a round rep-
resentation of G(®). Furthermore, ¥ = F*, LY = R®*, RY = L* N = N, NY = N?,
Uy = Ul‘I> and UZ‘I’ = U2. The representation ¥ is the reverse of ®, and we denote it by
®~!. The following theorems show that many round graphs admit only two non-equal round

representations.

Theorem 2.7 ([25]). Connected straight graphs admit at most two straight representations,
one the reverse of the other.

Theorem 2.8 ([14]). Connected and co-connected round graph admit at most two round
representations, one the reverse of the other.
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Figure 3: Complements of the forbidden induced subgraphs for PCA graphs

2.3 Proper circular-arc graphs

For the sake of simplicity, in this paper we use an alternative definition of proper circular-arc
and proper interval graphs. These definitions follow from [7, 14].

For each round representation ®, write G(®) to denote the extension of G(®). A graph is
a proper circular-arc (PCA) graph if it is isomorphic to G(®), for some round representation
®. Clearly, all the reductions of a PCA graph are round graphs. As for round graphs, G(®)
is said to admit ®, while ® represents G(®). When G(®) is a block graph, we also refer to ®
as a round block representation of G(®).

PCA graphs are characterized by a family of minimal forbidden induced subgraphs, as in
Theorem 2.9. There, H* denotes the graph that is obtained from H by inserting an isolated
vertex. Graph Cig‘ is also denoted by Kj 3.

Theorem 2.9 ([30]). A graph is a PCA graph if and only if it does not contain as induced
subgraphs any of the following graphs: C¥ for n > 4, Ca, for n > 3, C3pyq forn > 1, and
the graphs Ss, Ha, Hs, Hy, Hs and S (see Figure 3).

Proper interval graphs are defined as PCA graphs, by replacing round representations
with straight representations. That is, a graph is a proper interval graph (PIG) graph when
it is isomorphic to G(®) for some straight representation ®. PIG graphs are also characterized
by minimal forbidden induced subgraphs.

Theorem 2.10 ([20]). A PCA graph is a PIG graph if and only if it does not contain Cy, for
k>4, and S3 as induced subgraphs.

3 The data structure

In this section we describe the base data structure used by the dynamic algorithms for the
recognition of PCA graphs. Before presenting the data structure for PCA graphs, we give a
brief overview of the data structures used by Deng et al. and Hell et al. for the recognition
of PIG graphs. This overview is important because of two reasons. First, it describes some
of the design issues of these algorithms and how are they solved. Second, our dynamic data
structures are based on those by Hell et al., which are in turn based on the data structure by
Deng et al.

3.1 The DHH and HSS algorithms: an overview

In [7], Deng et al. developed an incremental algorithm, from now on called the DHH algorithm,
for the recognition of connected PIG graphs. The dynamic representation maintained by the



algorithm is a linear block contig ® representing the input graph G. When a new vertex v is
inserted into G, there are two possibilities. If v has some twin in some block of B(®), then v
is inserted into this block and the algorithm halts. Otherwise, a new block has to be created
for v and a new linear block contig ¥ representing G U {v} has to be generated. Recall that
I' =¥\ {v} is a linear contig representing G. Observe that, since B(¥) contains only blocks
of GU {v}, every semiblock of T is equal to either BN N (v) or B\ N(v), for some B € B(®).
So, each block of ® is either a block of I', or the union of two semiblocks of I'. By Lemma 2.4
and Theorem 2.7, I' is rather similar to ® in the sense that I' is obtained from & just by
splitting some blocks into consecutive indistinguishable semiblocks. Then, knowing that ¥
is a block contig representing G U {v}, we obtain that v simultaneously has neighbors and
non-neighbors in at most two blocks of ®, and that these blocks are of the form B U LY(B)
and W U RY(W). Even more, v has to be adjacent to all the vertices in the blocks inside
(B,W). So,

B(®) = (RY(W),LY(B)) e BULY(B) e (B,W)eW URY(W).

Of course, there are other cases in which v has no neighbors in LY(B) or RY(W). The DHH
algorithm finds the blocks BU LY (B) and W U R¥ (W) of ® and the position where {v} is to
be inserted in ®, and it inserts {v} by updating F into F¥.

The implementation of the linear contigs ® used in this algorithm is simple (see Figure 4).
There is doubly-linked list of blocks representing B(®), where each B € B(®) has two near
pointers Ni(B) and N, (B) and two far pointers Fj(B) and F,.(B). These pointers encode the
mappings N;, N, F; and F,., respectively; the overloaded notation is intentional. Also, every
vertex has a pointer to its block. When {v} is inserted as a new block into ®, the blocks
BULY(B) and W U R¥(W) in the above paragraph have to be updated, as well as the far
pointers of all the resulting blocks inside [B, W]. All these operations are done in O(d(v))
time, i.e., O(1) time per edge insertion, which is optimal.

F,

F, F. F,
—Nr—)( — N, —> —N,ﬁ—)V —Nr—)(
Bi_ %, ABo| B3l v {Baf v 155
F 1 Fy ) F
F

Figure 4: Data structure implementing the block contig depicted in Figure 1.

The DHH algorithm was extended by Hell et al. [11] to handle the case in which the
input graph is not connected. In this case, G admits an exponential number of straight block
representations which can be constructed by permuting and reversing the block contigs of
its components. To handle this situation, the vertex-only incremental HSS algorithm keeps
both linear block contigs representing each component, as implied by Theorem 2.7; recall
these contigs are one the reverse of the other. When a new vertex v is inserted, there are two
possibilities. Either N(v) is included in one component G of G, or N(v) intersects exactly



two components GG; and Gz of G. In the former case, v is inserted into the contigs representing
(G1 as in the DHH algorithm. In the latter case, G; and G2 have to be combined into a new
component, and the block contigs representing G; and G2 have to be replaced with the two
linear block contigs representing G7 U G3 U {v}. Let ¥ be a linear block contig representing
G1 UGy U {v}, and B and W be the left and right end blocks in ¥, respectively. Again,
we know that I' = ¥ \ {v} is a linear contig representing of G1 U G3. Even more, F' maps
semiblocks in [B, {v}) to semiblocks in [B, {v}), and semiblocks in ({v}, W] to semiblocks in
({v}, W]. Thus, I'|[B,{v}) and T'|({v}, W] represent one of the components each. Also, v has
neighbors and non-neighbors in at most one block B; of G1, and in at most one block W, of
Go.

A method similar to the DHH algorithm is enough to insert the new block for v once Gy,
Go, B, and W, are known. However, it is not easy to find GG; and G5 if @ is implemented as in
the DHH algorithm. To find G; and G2, the simplest way is to first locate the ranges of blocks
with neighbors of v. For this purpose, N(v) is first traversed and the blocks with neighbors
of v are marked. Then, the contigs are traversed to the right and to the left, starting from
a marked block B. The traversal stops either when a block not marked is found or when all
the blocks in the contig have been traversed. The family of traversed blocks form a range of
blocks, all of which have neighbors of v. In case that two maximal ranges are found, then
G U {v} is a PIG graph only if these ranges fall in different contigs, and each of these ranges
contains at least one of the end blocks. To test if two ranges, both containing at least one end
block, belong to the same contig, an end pointer E®(B) is stored for each block B € B(®).
If B is not an end block, then E® points to NULL; otherwise it points to the other end block
of its contig (see Figure 5). With this new data structure, the HSS algorithm handles the
insertion of a vertex in O(d(v)) time.

Figure 5: Data structure with end pointers for the block contig of Figure 1.

The vertex-only incremental HSS algorithm can be adapted to allow the insertion of edges
as well. Suppose some edge vw is to be inserted into G. We consider here only the case in
which G is connected. Let ® be a linear block contig representing G and suppose v € B and
we W, for B;W € B(®). In G(®), the block B is adjacent to all the blocks in (B, F,.(B)],
while the block W is adjacent to all the blocks in [F;(W),W). For G U {vw} to be a PIG
graph, F,.(B) must be equal to L(W) and F;(W) must be equal to R(B), or vice versa. We
have at least two possibilities for the insertion of the edge. Either v becomes a member of
R(B) or v gets separated from B to form a new block {v} that lies between B and R(B). In
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the latter case, the far pointers of all those blocks referencing B have to be updated so as to
reference {v}.

To update these far pointers to reference the new block {v} in O(1) time, the HSS algo-
rithm uses the technique of nested pointers. For each block B, two self pointers Sl‘I> (B) and
S®(B) that point to B are stored. Every far pointer that was previously referencing B now
references Si (B). Similarly, every far pointer previously referencing B now references Sg (B)
(see Figure 6). To move all the right far pointers referencing B so as to reference {v}, we
only need to exchange the value of S(B) so as to point to S¥ ({v}).

—>-0—>
iSa!
&>
>0—>
iCa!
*~—>
iSa!
!
—>
iCa!

Figure 6: Data structure with self pointers for the block contig of Figure 1. Now, every far
pointer references a self pointer.

Up to this point we have discussed the incremental algorithms for the recognition of PIG
graphs. The decremental algorithms for the removal of vertices and edges are similar to the
incremental ones. However, end pointers have to be removed from the data structures that
implement contigs. This is because when two components result from the removal of a vertex
or an edge, the new end pointers cannot be computed efficiently. On the other hand, without
the end pointers, a vertex v can be removed in O(d(v)) time, while an edge vw can be removed
in O(1) time.

Finally, Hell et al. developed a fully dynamic recognition algorithm in where insertions
and removals of vertices and edges are unrestricted. The algorithm is simply the combination
of the incremental and decremental algorithms that we described above. However, there is
an incompatibility with respect to the use of the end pointers. They are needed by the
incremental algorithm to test whether two blocks belong to the same contig, while they are
harmful for the decremental algorithm. To solve this problem, Hell et al. propose a dynamic
connectivity structure, supporting an operation to test if two blocks belong to the same contig,
that can be queried and updated in O(logn) time per operation on the PIG graph.

Table 3.1 summarizes the time complexities of the HSS algorithms. Each column of
the table indicates the data structure that is implemented by the dynamic algorithm. No
connectivity means that there is no way to test if two blocks belong to the same contig.
End pointers indicates that there is one end pointer for each block of the contig. Finally,
connectivity structure means that there is a dynamic data structure to test if any two blocks
belong to the same contig or not.
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Operation No connectivity | End pointers | Connectivity structure
Vertex insertion not allowed O(d(v)) O(d(v) + logn)
Edge insertion not allowed 0(1) O(logn)
Vertex removal O(d(v)) not allowed O(d(v) +logn)
Edge removal 0(1) not allowed O(logn)

Table 1: Time complexities of the HSS algorithms.

3.2 The base data structure

In the previous section we saw that three different data structures are used by the HSS
algorithms. There is one with end pointers for the incremental algorithm, one with no support
for connectivity queries for the decremental algorithm, and one with a connectivity structure
for the fully dynamic algorithm. We will extend these data structures for our algorithms, so
as to implement general contigs instead of linear contigs. In this section, however, we describe
only the base round representation, which is common to all the algorithms in this article.
The implementation of each contig ® is almost the same as the one used by the HSS
algorithm. The main difference is that near pointers now may represent a circular list instead
of a linear list. That is, the following data is stored to implement ® for each semiblock B € ®:

1. The vertices that compose B.

2. Left and right near pointers, N;*(B) and N (B), referencing the left and right near
neighbors of B, respectively.

3. Left and right self pointers, SP(B) and S2(B), pointing to B.

4. Left and right far pointers, F,*(B) and F(B), referencing the left and right far neigh-
bors of B, respectively.

As usual, we omit the superscript ® when no confusions arise. The overloaded notation
for Ni, N, F; and F,. as both pointers and mappings is intentional. So, depending on the
context, we may write, for instance, F).(B) to mean both a block or a self pointer. Recall that
N;(B) = Fi(B) = B whenever B is the left end semiblock and N, (B) = F,.(B) = B whenever
B is the right end semiblock. Notice that ® is linear if and only if the linked list described
by its near pointers is actually a linear list. Thus, it is trivial to query whether ® is linear or
not, and such a query takes O(1) time. We refer to ® as a base contig to emphasize that @
is a contig implemented with the above data.

Every round representation ® is implemented as a family of base contigs. The order
between the contigs is not important for the recognition algorithm. Thus, ®~! is just imple-
mented as the family {T'~! | T is a contig of ®}. We refer to ® as a base round representation
to emphasize that ® is implemented in this way. Say that ® satisfies the straighiness property
when either ® is straight or G(®) is not straight. Clearly, ® satisfies the straightness property
if and only if all its contigs satisfy the straightness property as well.

Following the ideas by Deng et al. and Hell et al., two round block representations ®, ®~!
satisfying the straightness property are stored to implement a dynamic PCA graph G. The
reason behind the straightness property is that the HSS algorithms can be applied on ® and
®~! whenever G is a PIG graph. Furthermore, as in the HSS algorithms, the implementation
of base contigs is specialized differently for the incremental, decremental, and fully dynamic
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Operation Decremental DS | Incremental DS | Fully-dynamic DS
Vertex insertion not allowed O(d(v)) O(d(v) + logn)
Edge insertion not allowed 0(1) O(logn)
Vertex removal O(d(v)) not allowed O(d(v) +logn)
Edge removal 0(1) not allowed O(logn)

Table 2: Time complexities of the dynamic recognition algorithms for PCA graphs.

problems. For the incremental problem, each base contig is augmented with end pointers
and other data (see Section 6). Similarly, for the decremental algorithms each base contig is
extended with some useful information about co-contigs (see Section 7). Finally, for the fully
dynamic algorithm the implementation of G is extended with a data structure that solves
some connectivity problems (see Section 8). Table 3.2 is a preview of the time complexities
of the algorithms, according to which implementation is used.

4 Basic manipulation of contigs

In this section we design several algorithms that will be used later for implementing the
dynamic operations on the graph. Most of these algorithms are generalizations of those by
Deng et al. and Hell et al. from linear contigs to general (or circular) contigs. Their goal
is to allow the insertion and removal of semiblocks, as well as the insertion and removal of
connections between semiblocks, without changing much of the input contig.

For the removal of a semiblock we are given a compressed contig ¥ and a semiblock W,
and the goal is to build the compression of ® = ¥\ W. The insertion of a semiblock follows
the inverse path. We are given a compressed contig ® and a semiblock W (together with
its family of neighbors) and the goal is to find a compressed contig ¥ that contains W such
that ® = ¥ \ W, whenever possible. It is worth noting that the proposed algorithms do not
require W to belong to B(¥); W could be properly included in some semiblock of B(¥). In
such case, ® is a compressed round representation of G(¥) \ W.

The connection and disconnection of semiblocks have similar definitions. For the dis-
connection, we are given two semiblocks B; and B, of a compressed contig ¥ that are
adjacent in G(¥), and the goal is to compute a compressed round representation ® of
GU)\ {vw | v € B, w € B}, if possible, in such a way that B(®) and B(¥) are al-
most the same orderings. The connection operation is just the inverse of the disconnection;
we are given B; and B, as semiblocks of ®, and V¥ is expected as the output.

In Section 4.1, we present an algorithm for computing ® = ¥\ {W}, with W as input,
without caring about the compression of ¥ or ®. Next, we deal with the inverse operation:
given W and N (W), compute ¥. For these insertion and removal operations, is enough to
solve the case in which U is circular. Nevertheless, the described algorithms can be used to
solve other cases as well. In Section 4.2 we show an algorithm that can be used to transform
any contig into its compression, by compacting consecutive indistinguishable semiblocks. The
inverse operation is also provided, i.e., given one semiblock, separate it into two consecutive
indistinguishable semiblocks. Following, Section 4.3 combines the previous algorithms so as
to remove and insert semiblocks to compressed contigs. For the sake of simplicity, in this
part we restrict ourselves to contigs with few universal semiblocks. Finally, in Section 4.4
we define the pairs of semiblocks that can be disconnected from ¥ and show how to actually
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disconnect these semiblocks. Its inverse operation, namely the connection of semiblocks, is
also discussed.

We remark that the algorithms in this section do not require nor assure the straightness
property. So, for instance, the compressed removal algorithm could generate a circular contig
representing a PIG graph. This ignorance about the straightness property is desired because
it allows the generation of all the possible contigs that represent a graph.

4.1 Removal and insertion of semiblocks

We begin describing the simplest operation on contigs: the removal of a semiblock. Given a
semiblock W of a contig W, the goal is to compute the round representation ® = ¥\ {IWW}.
Algorithm 4.1 is invoked to fulfill this goal.

Algorithm 4.1 Removal of a semiblock.
Input: a semiblock W of a base contig W.
Output: U is transformed into the base ¥\ {IWV}.

1. Set F.(B) = Ni(W) for every B € [F;(W), W) such that F,.(B) = W.
2. Set Fi(B) = N, (W) for every B € (W, F,.(W)] such that Fj(B) =W
3. Remove W from B(V).

For the correctness of Algorithm 4.1, recall how F® and F[I’ are defined. For every
B € B(®), F¥(B) = FY(B) if FY(B) # W, while F*(B) = LY(W) otherwise. Notice that if
FY(B) = W, then (i) W is not the left end semiblock of ¥ and (i) B € [[;(W),W). By (i),
LY(W) = N¥(W), hence Step 1 correctly updates all the right far pointers. An analogous
reasoning on the reverse of ¥ is enough to conclude that Step 2 correctly updates the left far
pointers. Therefore, Algorithm 4.1 is correct. With respect to the time complexity, only the
semiblocks in [FY (W), F¥ (W)] = Ng(w)[W] are traversed.

Thought Algorithm 4.1 is simple, it is not much efficient when the removed semiblock
has large degree in G(¥). Another way to remove a semiblock is by taking advantage of
the self pointers. Observe that by moving S,(W) so as to point to N;(W) we are actually
moving all the right far pointers referencing W so as to reference N;(W). Hence, the first
step of Algorithm 4.1 takes O(1) time with this approach. The inconvenient is that all those
semiblocks that were previously pointing to S, (N;(W)) need to be updated so as to point
to the new self pointer of N;(WW). Algorithm 4.2 implements this new idea. Steps 1 and 2
preemptively restore the far pointers, and then Step 3 emulates the moving of the far pointers
done by Algorithm 4.1.

With respect to the time complexity of Algorithm 4.2, Steps 1 and 2 both take O(n +
u — dgv) (I/V)) time when W is u-universal, as follows from the next lemma applied on both
¥ and U~ .

Lemma 4.1. If ¥ is a u-universal contig and W € B(V), then

#[EL(N(W)), Fy(W)) = O(n + u — dgw)(W)).
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Algorithm 4.2 Removal of a semiblock of large degree.
Input: a semiblock W of a base contig W.
Output: U is transformed into the base ¥\ W.

1. Set F,.(B) := S, (W) for every B € [E;(N,(W)), F;(W)).
2. Set Fi(B) := S,(W) for every B € (F.(W), E.(N,.(W))].
3. Set S (N;(W)) := S,(W) and S;(N,(W)) := S;(W).

4. Remove W from B(V).

Proof. Let B = Fy(Ny(W)), W, = F, (W), W; = E;(W), B = [B;,W;) (see Figure 7), and ¢q be
the number of semiblocks in B\ (W;., W;) . Clearly, |B| < #(W,,W}) +q = n —dguw)(W) +q.
If ¢ > 0, then B\ (W,,W;) = (B;,W,]. Let B € (B;,W;]. Since W — W,., it follows
that W — B, while since B; — N;(W), it follows that B — N;(W). Therefore, B is a
universal semiblock, which implies ¢ < u. ]

W, B
(a) (b)

Figure 7: Configurations of Lemma 4.1: (a) B; € (W,,W;) and (b) B; ¢ (W,,W;). Crossed
lines are used to indicate missing edges.

Combining Algorithms 4.1 and 4.2 with a simple check of the degrees, the following lemma
is obtained.

Lemma 4.2. If V is a u-universal base contig and W € B(V), then the base W\ {W} can
be computed in O(min{dgy)(W),n +u — dgy)(W)) time, when W is given as input.

The insertion of a semiblock is not as straightforward as the removal is. For the sake of
simplicity, we only discuss those insertions on contigs in which the inserted semiblock does
not terminate as an end semiblock. The other types of insertions are quite similar, and were
already discussed in [7, 11]. Let ¥ be a contig in which W is not an end semiblock, and
suppose ® = ¥\ W is also a contig. Also, let B; = F}Y(W) and B, = F.Y(W). Since W is
not an end semiblock, B; # B,, and both B; and B, belong to B(®). We refer to (By, B;) as
receptive in ®, and to ¥ as a W-reception of (By, B,) in ®. Notice that the order between B;
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and B, is important; (By, B,) could be receptive, even when (B, B;) is not. Observe also that
all the W-receptions of (B, B,) represent the same round graph. Indeed, the neighborhood of
W in such round graph is [B;, B,]. Also, it matters not which are the elements of W (as long
as B(®) U {W} is a semiblock family). Therefore, the property of being receptive depends
exclusively on the election of B; and B, and not on ¥ and W.

The contig ¥ is an evidence that (B, B,) is receptive in ®. The goal of the reception
problem is to determine whether a pair (B, B,) is receptive in the absence of such a certificate.
That is, given ® and By, B, € B(®), determine whether (B, B,) is receptive in ®. If so, a
W-reception of (B, B,) is desired. The following lemma exhibits a solution for this problem
(see Figure 8).

Figure 8: Example of a receptive contig (a) and its W-reception (b). A dashed arrow between
B and B’ indicates that either B — B’ or B — B'.

Lemma 4.3. Let ® be a contig, B; # B, be semiblocks of B(®). Then, (By, B,) is receptive
in ® if and only if there exists By, € {F.(B;), Ui(R(By))} such that

(i) Bm € |Bi, B,) and F,(By) € [B, B,], and
(ii) ZfFl(Bl) 7é R(Bm)7 then FT(R(Bm)) g [BlyBT)'

Furthermore, if (By, B,) is receptive in ®, then ¥ = ((By,, By,) @ W, FY) is a W-reception
of (By,By) in ®, for any semiblock W such that B(®) U {W} is a semiblock family, where
FY(W) = B, and, for B € B(®),

FY(B) {Wq} if B € [Br, Bu] and F®(B) = By,
E*(B) otherwise.

Proof. First suppose (B, B,.) is receptive in ® and let ¥ be a W-reception of ®. Note that if W
and RY (W) are indistinguishable, then the contig obtained by changing W and R¥ (W) in W is
also a W-reception of ®. Hence, we can assume that W and RY (W) are not indistinguishable.
By the definition of receptive, ® = U\ W, B, = F¥(W), B, = FY(W), and W € [By, B,]
in U. Let B,, = LY(W). If W = FY(B)), then B,, = F¥(B;). Otherwise, B, —y R¥ (W)
and, since W and R¥ (W) are not indistinguishable, it follows that RY(W) —g RY(B,).
Consequently, since W ——+g RY(B,), we obtain that W = U)Y(RY(B,)), which implies that
By = UP(RY(B,)).

Consider conditions (i) and (ii). By definition, B,, € [By, By), while, since B, —v¢ W
and W —»y RY(B,) = R®(B,), we obtain that F®(B,,) € [By, B:]. Hence, (i) follows.
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Furthermore, since W —y B,, then RY(W) = R®(B,,) —¢ B, while if R*(B,,) —s B,
then By is universal in G(®) and F,*(B;) = R*(B,,). Therefore, (ii) holds as well.

For the converse, we claim that W, as defined in the furthermore part, is a contig. Clearly,
G(¥) is connected because G(®) is connected. Then, we only need to prove that, for every
B € B(®), either B = FY(NY(B)) or B —y FY(NJY(B)). For this, let B € B(¥),
N = N¥(B), and F = FY(N) be such that B # F, and consider the following cases.

Case 1: N = B,,, thus B = W. In this case, since F' # W and (i) holds, it follows that
F € (B, By], thus W —yg F.

Case 2: N =W, thus B = N2?(B,,) and F = B,. In this case, since B # F, we obtain, by
(ii), that B —y F.

Case 3: N € (W, B;). In this case, F' = F?(N) while either B € (W, B;) or B = B;. In
the former case FY(B) = F*(B) and B — g F, thus B —g F. In the latter case,
FY(B) =W thus B —y F.

Case 4: N € [B;, FY(RY(W))). In this case, F = W, while either B € [B, F}Y(RY(W))) or
B = FY(RY(W)). Then, either F¥(B) = F (in the former case) or F,Y(B) = RY(W)
(in the latter case), thus B —y F.

Case 5: N € [F}Y(RY(W)), By,). In this case, F = F*(N) and F,Y(B) = F?(B), thus the
claim follows.

Now, since ¥ is a contig, we obtain that ® = W\ W and, by definition, Fl‘I’(W) = B; and
FY(W) = B,. In other words, ¥ is a W-reception of (B, B,.) in ®, as desired. O

Algorithm 4.3 solves the reception problem. Its inputs are two different semiblocks B;, B,
of a contig ®, and a semiblock W such that B(®) U {W} is a semiblock family. If (B, B;)
is receptive in @, then the output is the W-reception of (B, B;) defined in the furthermore
part of Lemma 4.3. Otherwise, an error message is obtained. Step 2 looks for the semiblock
By, that satisfies conditions (i) and (ii) of Lemma 4.3, while Steps 3—6 build the W-reception
of (By, B;) when ® is receptive.

Discuss the time complexity of Algorithm 4.3. First note that, by Lemma 4.3, either (a)
F,.(B) and F;(B,) are the right and left end semiblocks of ®, respectively, or (b) [B;, B,] has
no end semiblocks, or (¢) (Bj, B,) is not receptive. As a preprocessing, [By, B;] is traversed,
in O(#[By, By]) time, to evaluate if ® satisfies either condition (a) or (b). If ® satisfies
neither condition, the algorithm is halted. Thus, suppose either (a) or (b) holds for ® when
Algorithm 4.3 is invoked. If B, is the right end semiblock, then U;(R(B;)) = B, is not marked
with 1 at Step 1. Thus U;(R(By)) needs not be considered in this case. For the other case,
there are two possibilities according to whether Fj(R(B,)) is an end block or not. In the former
case, Uj(R(B;)) = Ni(F;(N,(B;))). In the latter case, (a) holds, thus U;(R(B,)) = F.(B).
Whichever the case, Uj(R(B,)) is obtainable in O(1) time. Now consider how conditions
(i) and (ii) are evaluated for B, in Step 2 when B, is marked with 1. If B,, is not the right
end semiblock, then R(B,,) = N,(B,,); otherwise (a) holds and R(B,,) = F;(B,). Therefore,
Step 2 takes O(1) time. The remaining steps can be executed in O(#[B;, By]) time with an
standard implementation.

As it happens with the removal of semiblocks, the insertion problem can be solved more
efficiently when the inserted semiblock has large degree in ¥, i.e., when #[By, B,| > #(By, B;).

17



Algorithm 4.3 Insertion of a new semiblock.

Input: Two different semiblocks Bj, B, of a base contig ®, and a semiblock W such that
B(®) U{W} is a semiblock family.

Output: if (B, B,) is receptive in ®, then ® is transformed into the base W-reception of
(By, By) defined in Lemma 4.3. Otherwise, an error message is obtained.

1. Set a 1 mark in all the semiblocks in [Bj, B;) and a 2 mark in B,.

2. Determine whether {F,.(B;),U;(R(B,))} has a semiblock B,, marked with 1 such that: (i)
F,.(By,) is marked and (ii) R(B,,) = Fj(B;) or F.(R(B,,)) is not marked with 1. If false,
then output an error message and halt.

3. Insert W between B,, and R(B,,), updating the near pointers.

4. Set F,.(W) := B, and Fj(W) := B;.

5. Set F,.(B) := W for every B € [By, By,] such that F*(B) = B,,.

6. Set Fi(B) := W for every B € [R(By,), B, such that F;*(B) = R(B,,).

Algorithm 4.4 can be used in this case. This time, the semiblock B, satisfying conditions (i)
and (ii) of Lemma 4.3 is looked for at Step 2. Following, if (Bj, B,) is receptive, Steps 3-6 insert
W between B,, and R(B,,) and update the far pointers undoing the path taken by Algorithm 2
for the removal. That is, first S,(By,) is updated to refer to W so that all the semiblocks
whose right far pointer were referencing B,, now reference W. Analogously, S;(R(By,)) is
updated to refer to W. Finally, the far pointers of the semiblocks inside (Fj(B,), B;) and
(By, F(R(By,))) are corrected so that they do not refer to .

Algorithm 4.4 Insertion of a new semiblock of large degree.

Input: two different semiblocks By, B, of a contig ®, and a semiblock W such that B(®)U{WW}
is a semiblock family.

Output: if (B, B;) is receptive in ®, then @ is transformed into the W-reception of (By, B,)
defined in Lemma 4.3. Otherwise, an error message is obtained.

1. Set a 1 mark in all the semiblocks in (B,, B;) and a 2 mark in B,.

2. Determine whether {F,.(B;),U;(R(B;))} has a semiblock B,, not marked such that: (i)
F,.(By,) is not marked with 1 and (ii) R(B,,) = F;(B;) or F.(R(B,,)) is marked. If false,
then output an error message and halt.

3. Insert W between B, and R(B,,), updating the near pointers.
4. Set S, (W) := S.(Bp) and S;(W) := S;(R(Bn))-

5. Set F,.(B) := By, for every B € [F|(Bn,), B).

6. Set Fi(B) := R(B,,) for every B € (B, F,.(R(Bp,))].
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(a) (b)

Figure 9: (a) A contig ® and (b) the separation ¥ of W into {W;, W,.}. Notice that ® is the
compaction of {W;, W, } in W.

For the implementation of Algorithm 4.4, a preprocessing step is executed to check whether
the input satisfies conditions (a) or (b) as in Algorithm 4.3. Note that [B;, B,] has no end
semiblocks if and only if ® is circular or (B,, B;) has both end semiblocks. Thus, for the pre-
processing step it is enough to traverse (B, B;) in O(#(By, B,)) time. Once the preprocessing
step is concluded, Algorithm 4.4 is invoked. Step 2 takes O(1) time with an implementation
similar to the one discussed for Algorithm 4.3. Hence, all the steps in Algorithm 4.4 take
O(#(By, By)) time.

If #[By, B,] is given together with B; and B, then Algorithms 4.3 and 4.4 can be combined
so as to obtain the following lemma.

Lemma 4.4. Let ® be a base contig, and B; # B, be semiblocks of ®. Then, it takes
O(min{#[By, By|, #(By, Bi)}) time to determine whether (By, By) is receptive in ®, when By,
B,, and #[By, By] are given as input. Furthermore, if (Bj, B,) is receptive, then a base W -
reception W of (By, By) can be obtained in O(min{dgy)(W),n — dgww)(W)}) time, for any
semiblock W such that B(®) U{W?} is a semiblock family.

4.2 Separation and compaction of semiblocks

In rough words, separating a semiblock W means replacing B with two consecutive semiblocks
that partition W. Let ® be a contig, and W; and W, be two disjoint semiblocks such that
W =W, UW,, for some W € B(®). The separation of W into (Wi, W,), see Figure 9, is the
contig U = ((W, L(W)] « W; @ W,,, F¥) such that, for any B € B(¥),

W, if B € {W;,W,} and F>(W) =W
FY(B) = W, if B¢ {W;,W,} and E®(B) =W
" F2(W) if Be{W;,W,}and F2(W) # W

F2?(B) otherwise

Notice that the order of W; and W, is important; the separation of W into (W;, W) is not
the same as the separation of W into (W,,, W;). We say that W is a separation of W in ® to
mean that there exist W;, W, € B(¥) such that ¥ is the separation of W into (W;, W,.). The
next observation follows easily.

Observation 4.5. W; and W, are indistinguishable in the separation of W; U W, into
(Wi, Wy).
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For the sake of simplicity, we extend the definition of separation for the case in which
either W; = () or W,, = (). Define ® to be both the separation of W into (W, () and the
separation of W into (0, W).

The separation of W = W;UW,. into (W;, W,.) can be computed as in Algorithm 4.5. Note
that only W and W, are given as input; W; is simply W \ W,.. Step 2 moves the elements
of W, out of W, so that W gets transformed into W;. Step 4 applies the technique of self
pointers for updating the right far pointers. Observe that any block whose right far pointer
was pointing to W has to be updated so as to point to W,.. Clearly, the most time expensive
step of Algorithm 4.5 is Step 2, which costs O(|W,|) time.

Algorithm 4.5 Separation of a semiblock.
Input: A semiblock W of a base contig ®, and a semiblock W, C B.
Output: @ is transformed into the base separation of W into (W \ W,., W,.).

1. If either W, = () or W, = W, then halt.

2. Move the elements of W, into a new semiblock lying immediately to the right of W.
3. Set Fy(W,) := F;(W) and F,.(W,) := F.(W).

4. Set S, (W) := S, (W), and S, (W) := New.

Observe that, instead of moving the elements of W,. out of W, we could have moved the
elements of W) out of W. This would yield a similar algorithm with temporal cost O(|W;])
instead of O(|W;|). Of course, the input would have been W; instead of W,.. Combining these
algorithms with a simply cardinality check, we obtain the next lemma.

Lemma 4.6. Let ® be a base contig, W € B(®), and W,,, C W. Then, both the separation
of Winto {W\ Wy,, Wi,} and the separation of W into {W,,, W\ Wy, } can be computed in
O (min{|W,|, |[W \ Wp,|}) time when W and Wy, are given as input.

The inverse of the separation is the compaction. Let ® be a contig, and suppose W; € B(®)

is indistinguishable with W,. = N,.(W;). The compaction of (W;,W,) in ®, see Figure 9, is
the contig ¥ = ((W,., W;) e W; U W,., FY) such that, for any B € B(¥),

W,UW, if B=W,UW, and E2(W,) = W,
W,UW, if B# W, UW, and E®(B) = W,
F2(W,) if B=W,UW, and F2(W,) # W,
F?(B)  otherwise.

Observation 4.7. The compaction and the separation are inverse operations. That is, ¥ is
equal to the compaction of (W, W) in the separation of (W, W,.) in ¥, for any W, UW, €
B(¥), while ® is equal to the separation of (W, W,.) of the compaction of (W;,W,) in ®, for
any W, € B(®) that is indistinguishable with W, = N2 (W,.).

As done with the separation, it is convenient to define a robust compaction of (W;, W,.)
that works even when W; and W, are not indistinguishable. With this in mind, define ® to
be the compaction of (Wi, W,.) in ® when W; and W, are not indistinguishable.
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A method for computing the compaction of (W;, W,) is depicted in Algorithm 4.6. Note
that there are two possibilities when W; and W, are indistinguishable, either move the ele-
ments from W; to W, or move the elements from W, to W;. In Algorithm 4.6 we take the
latter possibility (see Step 2). Note that, since W; and W, are indistinguishable, then no
semiblock of ® has neither W, as its right far neighbor. Thus, Step 3 is enough to update all
the right far pointers of the contig.

Algorithm 4.6 Compaction of two consecutive semiblocks
Input: A semiblock W of a base contig .
Output: @ is transformed into the base compaction of (W, N,.(W)) in ®.

1. If W and N, (W) are not indistinguishable, then halt.
2. Move the elements of N, (W) to W.

3. Set S, (W) := S, (N,.(W)).

4. Remove N, (W) from .

The time complexity of Algorithm 4.6 is clearly O(|W,|). The other possibility for com-
puting the compaction, i.e. moving the elements from W; to W,., can be implemented similarly,
and it takes O(|W,|) time. So, we can decide which elements are moved by comparing |W; |
and |[W;|. In such case, the compaction algorithm takes O(min{|W;|,|W;|}). We record this
fact in the next lemma.

Lemma 4.8. If a semiblock W of a base contig ® is given as input, then the compaction of
(W,N,.(W)) in @ can be computed in O(min{|W|, |N,(W)|}) time.

4.3 Compressed insertion and removal of semiblocks

In this part, we consider the compressed removal and compressed insertion of semiblocks. In
its basic form, the goal of the compressed removal operation is to find the compression of
' = U\ W, when a semiblock W € B(¥), for some compressed contig W, is given. In this
section we consider a generalization of this problem in which W is included in some semiblock
of B(¥). Let B € B(¥) be a semiblock of B(¥) and W C B. The compressed removal of W
from W is the contig ® obtained by first separating B into (W, B \ W), then removing W to
obtain I', and finally compressing I'.

Observation 4.9. G(®) = G(V) \ W.
The following lemma shows how do the indistinguishable semiblocks of I" look like.

Lemma 4.10. Let ¥ be a contig, W, B; € B(¥), T = U\ W, and B, = NI'(B)). If B, and
B, are not indistinguishable in ¥ and By and B, are indistinguishable in T, then {By, By} is
equal to either {UY (W), EY(W)}, {EX (W), UY (W)}, or {N¥(W),NY(W)}. Furthermore,
{By, B} # {NY(W), NY (W)} when N[W] contains at most one universal semiblock of G(V).

Proof. Suppose B; and B, are indistinguishable in ', and let W, = NY(W). Because B
and B, are not indistinguishable in U, it follows that either FY (B;) # F.Y(B,) or F¥(B)) #
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ITI‘I’(BT). Assume the former, since a proof for the latter is obtained by applying the same
arguments on W1, Recall that, for any B € B(T'), F! (B) # F,Y(B) only if F¥(B) = W and
FY(B) = W,. Then, we are left with the following two possibilities.

Case 1: FY(B;)) = W and F!'(B;) = W,. In this case, since F\Y(B;) # F.Y(B,), we obtain
that EY(B,) # W, thus FY(B,) = FY'(B,) = F'(B;) = W;. Therefore, the only
possibility is that B; = W; and B, = RY(W). Furthermore, since B, = NI (B;), we
obtain that B, = N,Y(W), which implies that B, and B; are both universal in G(¥)
and belong to N[W].

Case 2: FY(B,) =W and F!(B,) = W,. With arguments similar as those used in Case 1,
we obtain that FY(B;) = F' (B;) = W;. Consequently, since B, = N} (B), it follows
that B, = F}Y(W) and B, = UY(W). Again, if W —y B, then both B, and W are
universal in G(¥), thus the furthermore part follows.

O]

The algorithm for computing the compressed removal of W from W is obtained by simply
composing the algorithms in the previous parts of the section. First separate B into (W, B \
W), then compute I' = ¥\ W, and finally compact the possible pairs of indistinguishable
semiblocks of I'. By Lemma 4.10, the possible pairs of indistinguishable semiblocks are
{UFw), EFW)}, {FX(W),Uf (W)}, and {N] (W), NI (W)}. Observe that we need not
compact F' (W) with UF' (W) (resp. EX (W) with UL (W)) when EF' (W) (resp. EF(W)) is
the left (resp. right) end semiblock. By Lemmas 4.2, 4.6 and 4.8, the following corollary is
obtained.

Lemma 4.11. Let ¥ be a compressed and 1-universal base contig, B € B(V), and W C B.
If W is given as input, then the base compressed removal of W from ¥ can be computed in
time

< min{dgy)(B),n — dg(w)(B)} + min{|F(B)|, [U(B)|} + min{|Fy(B)|, |Ui(B)|}+ )
min{| W[, [B\ W[} '

The compressed insertion of a semiblock is the inverse operation of the compressed re-
moval. We only discuss the compressed insertion for those cases in which the resulting repre-
sentation is a circular contig. The remaining cases follow from [7, 11]. Furthermore, we are
interested only in the case in which the neighborhood of the inserted semiblock contains at
most one universal semiblock. Let ¥ be a compressed circular contig, B € B(¥) with N[B]
containing at most one universal semiblock of G(¥), and W C B. Suppose B; = F¥(B) and
B, = FY(B), and let ® be the compressed removal of W from ¥. Clearly, B; and B, must be
included in semiblocks B, and By of ®, respectively. Furthermore, B, # B} since otherwise
B; and B, would be non-universal twins of G(V¥), contradicting Lemma 2.5. Moreover, since
N|[B] has at most one universal semiblock of G(¥), at most one semiblock of ® in [B,, By is
universal. We refer to (B, B,) as refinable in ®, and to U as a W-refinement of (B, By) in
®. (The terms refinable and refinement were introduced in [11] to refer to similar concepts.)
This definition is similar to the definition of receptive pairs. As with W-receptions, all the W -
refinements of (B, B,) represent the same graph. Indeed, by Lemma 4.10, all the semiblocks
of U\ {B} inside (By, B;) are also semiblocks of ®. Consequently, (Bq, By) U{B;, By} is pre-
cisely the closed neighborhood of W in the round graph represented by the W-refinement of
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(By, By). Also, the elements of W are unimportant to determine whether (B;, B,) is refinable
or not. Therefore, the property of being refinable depends only on the election of (B, By).

Analogous to the reception problem, the refinement problem is to determine whether a
pair is refinable. That is, given ® and the semiblocks B; C B, and B, C By, for different
semiblocks By, By € B(®), determine whether (B;, B,.) is refinable in ®. If so, a W-refinement
of (By, By,) is also desired. Define the (B, B, )-separation of ® as the contig obtained by first
separating B, into (B, \ By, B;) and then separating By, into (B, By\ B,). The following lemma
shows that (Bj, B;) is refinable if and only if (B, B,) is receptive in the (B, B,)-separation
of ®.

Lemma 4.12. Let ® be a compressed contig, and B; C B, and B, C By be semiblocks, for
different B, By € B(®), such that at most one semiblock in [By, By] is universal in G(P).
Then, (By, By) is refinable in ® if and only if (By, By) is receptive in the (By, B,)-separation of
®. Furthermore, if (By, By) is refinable and W is such that B(®)U{W} is a semiblock family,
then any W -reception of (By, By) in the (B, By)-separation of ® is equal to a separation of
the semiblock containing W in a W -refinement of (By, B,) in ®.

Proof. Suppose (By, B;) is refinable in ® and let ¥ be a W-refinement of (B;, B,) in ® where
W C B, for B € B(V). By definition, N[B] has at most one universal semiblock of G(¥),
B, = FY(B), B, = F,Y(B) and ® is the compressed removal W from W. If W # B, then B\W
is a semiblock of ® whose left and right far neighbors are B, = B; and By = B,.. Therefore, ®
is exactly the (Bj, B, )-separation of ®, hence (B, B,) is receptive in the (B, B, )-separation
of ®. On the other hand, if W = B, then, by Lemma 4.10, {B;, L¥(B;)} and {B,, RY(B,)},
are the only possible pairs of indistinguishable semiblocks of ¥ \ W, implying that ¥\ W is
the (B, By)-separation of ®. Therefore, (B, B,) is receptive in the (B, B,)-separation of ®,
because B; = F;Y(W) and B, = EY(W).

For the converse, let I" be the (B, B,)-separation of ®, and suppose (B, B,) is receptive
in I'. Let ¥ be some W-reception of (B, B;) in I, and call B to the block of G(¥) containing
W. If B, # By, then EY(B)) # F¥(B, \ B)), while if B, # By, then F¥(B,) # F¥ (B, \ B,).
Hence, since {By, B, \ B;} and {B,, By \ B,} are the only possible pairs of indistinguishable
semiblocks of T, it follows that ¥ has at most one pair of indistinguishable semiblocks, namely
{N¥(W),W} or {W,NY¥ (W)}, whose union yields B. Even more, N[B] has at most one
universal semiblock of G(¥), because at most one semiblock of ® in [B,, Bp] is universal in
G(®), and no semiblock in (B, B,) is adjacent to W in W. Consequently, as desired, ¥ is a
separation of B in a W-refinement of (B, B,) in ®. O

The algorithm for testing if (B;, B,) is refinable in ®, and obtaining a W-refinement if
so, is also obtained by combining algorithms of the previous parts. First, build the (By, B;)-
separation of ®. Next, check whether (Bj, B;) is receptive in the (B, B, )-separation of ®. If
successful, then a W-reception I' of (By, B,) is obtained. The final step, then, is to compact
(NF(W), W) and (W, NI (W)) to obtain the contig ¥. By Lemma 4.12, ¥ is a W-refinement
of (By, By) in ®. By Lemmas 4.4, 4.6 and 4.8, the time required by this algorithm is as in the
lemma below.

Lemma 4.13. Let ® be a compressed base contig, and B; C B, and B, C By be semiblocks,
for different By, By € B(®), such that at most one semiblock in [Bg, Bp| is universal in G(®).
If B,, By, By, By and #|[B,, By are given as input, then it takes

O (win{#[Ba, Byl, #(By, Ba)} + min{ | Bil,|B, \ Bil} + min{|B,,|By \ B.|})
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time to determine whether (By, By) is refinable in ®. Furthermore, if (B, By) is refinable in
& and W is a semiblock such that B(®)U{W} is a semiblock family, then a base W -refinement
U of (By, B,), in which W C B for B € B(¥), can be obtained in time

( min{dgy)(B),n — dg(w)(B)} + min{| B[, [Ba \ B[} + min{| B[, [By \ Br[}+ )
min{| W[, [B\ W} '

4.4 Disconnection and connection of semiblocks

To end this section, we show two simple algorithms that can be used to insert and remove
edges from a graph, when a contig is provided.

Let ¥ be a contig and B, # By, be semiblocks of B(¥). Say that (B, By) is disconnectable
when By = F,.(B,) and B, = Fj(By). Define I' as the round representation (B(¥), F!') such
that F} (B,) = N¥(By,) and F} (B) = FY(B) for every B € B(¥) \ {B,}. Notice that T is
well defined if and only if (B,, By) is disconnectable. Define the disconnection of (B, By) in
U to be the compression ® of I'; see Figure 10.

compact

L(B,) B, L(B.) B,

R(By) By R(By) By
e
compact

(a) (b)

Figure 10: (a) A contig ¥ with a disconnectable pair (B, By) and (b) the disconnection ® of
(B, Bp) in W. Notice that ¥ is the connection of (B, By) in ®.

Observation 4.14. G(®) = G(¥) \ {vw | v € By, w € Byp}.

The disconnection of semiblocks can be generalized to subsets of semiblocks. Recall that,
for semiblocks B; C B, and B, C By, the (B,, B;)-separation of ¥ is the contig A obtained
by first separating By into (B \ By, B;) and then separating B, into (B, B, \ B;). By the
separation definition, (B, B,) is disconnectable in A if and only if (B,, By) is disconnectable
in ¥. Define the disconnection of (By, By) in ¥ to be the disconnection ® of (B;, B,) in A.
The following lemma generalizes the relation between G(¥) and G(®).

Lemma 4.15. Let ¥ be a contig, and B; C B, and B, C By be semiblocks, for different
B,, By € B(V). If (B, By) is disconnectable and ® is the disconnection of (Bj, By) in ¥,
then G(®) = G(¥) \ {vw | v € B, w € B, }.

The algorithm to obtain the disconnection ® of (B, B;) in a compressed contig ¥, when-
ever (B,, By) is disconnectable, is obtained by composing algorithms of the previous parts.
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For the first step, compute the (B,, Bj)-separation I of ¥. Next, set F\ (B;) = N} (B,) and
FI'(B,) = NF(B,). Finally, just compact the possible indistinguishable semiblocks of T'. To
determine which are the possible indistinguishable semiblocks of I', observe that if B; is not a
right end semiblock, then B; and NE (B;) are not indistinguishable. Indeed, since B, — ¢ B,
it follows that N!'(B;) —r B, while B; —=r B,. Similarly, if B, is not a left end semiblock,
then B, and NlF (By) are not indistinguishable. Consequently, the only possible pairs of in-
distinguishable semiblocks of I are {L'(B;), B;} and {B,, R'(B,)}. Therefore, by Lemmas
4.6 and 4.8, we obtain the following bound on the time required by the algorithm.

Lemma 4.16. Let ¥ be a compressed base contig, and By C B, and B, C By be semiblocks,
for different By, By, € B(V). If (Bg, By) is disconnectable, then the base disconnection of
(B, By) in U, when B,, By, B;, and B, are given as input, can be computed in time

O (min{[Bal, | By} + min{| By[, [ B |} + min{[ By, [N (Ba)[} + min{| By [, [N (Bb)|}) -

The connection operation is the inverse of the disconnection operation. We describe
the connection operation only for semiblocks that belong to the same contig; for the other
case, see [11]. Let ® be a contig and B, # By be semiblocks of B(V). Say that (B, Bp)
is connectable when B, = U,(B,) and B, = U;(By). Let Bj, B, be semiblocks such that
B; C B, and B, C By, and let A be the (B, B,)-separation of ®. Its not hard to see that
(By, B,) is connectable in A. Define I' as the contig (B(A), F'') such that F!(B;) = B, and
F'(B) = FA(B) for every B € B(I') \ {B;}. Notice that T' is well defined if and only if
(By, By) is connectable. Define the connection of (Bj, By) in ® to be the compression ¥ of
I (see Figure 10). Opposite to the disconnection, the connection represents the insertion of
edges to G(P).

Lemma 4.17. Let ® be a contig, and By C B, and B, C By be semiblocks, for different
Ba, By € B(V). If (Bg, Byp) is connectable and V is the connection of (Byj, By) in ®, then
GV)=G@)U{vw|v e B, we B,}.

The algorithm to obtain the connection ¥ of (B, B,) in ®, whenever (B, Bp) is con-
nectable, is rather similar to the disconnection algorithm. For the first step, compute the
(By, B;)-separation I' of ®. Next, set F\ (B;) = B, and F}' (B,) = B;. Finally, just compact
the indistinguishable semiblocks of I'. In this case, the possible pairs of indistinguishable
semiblocks of I' are {B;, N} (B;)} and {N} (B,), B, }. Therefore, by Lemmas 4.6 and 4.8, we
obtain the following corollary.

Lemma 4.18. Let ® be a compressed base contig, and B; C B, and B, C By be semiblocks,
for different B, By € B(V). If (B, Byp) is connectable in ®, then the base connection of
(By, By) in ®, when B, By, Bj, and B, are given as input, can be computed in time

O (min{[Bal, | By} + min{| By[, [ Bi|} + min{[ By, [N-(Ba)[} + min{| B, |, [Ni(Bb)|}) -

5 Co-bipartite round graphs

The incremental algorithm for the recognition of connected PIG graphs by Deng et al. takes
advantage of the fact that every connected PIG graph admits a unique linear block contig, up
to full reversal (Theorem 2.7). For the dynamic recognition of general PIG graphs, Hell et al.
have to deal with each component in a separate way, since the linear block contigs representing
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the components can be permuted to form several straight block representations. For PCA
graphs the situation is similar. Huang [14] proved that every connected and co-connected
round graph admits a unique block contig, up to full reversal (see Theorem 2.8). However,
when G is not co-connected, the round block representation of each co-component can be
split in two ranges that form a co-contig. As it happens with disconnected PIG graphs, these
co-contigs can be permuted so as to form several round block representations of G.

Instead of dealing with the co-components in the data structure, we take a more lazy
approach: we compute the co-components only when they are needed. The advantage of this
approach is that we obtain an efficient algorithm for computing the co-components of any
round graph. The disadvantage is that we have to find the co-components fast. In Section 5.1
we show how to find all the co-contigs in O(A(G(®))) time, when a round representation ®
is given.

The algorithm developed on the first part is not efficient enough for our purposes, when
semiblocks are inserted to the round graph. The inconvenient is that we can only spend
a time proportional to the degree of the inserted semiblock. Furthermore, a representation
could not exist at all. Section 5.2 is devoted to this problem. We show that the inserted
semiblock has large degree when it belongs to a round graph that is not co-connected. Thus,
we can adapt the algorithm in Section 5.1 so that, given ® and the degree of the inserted
semiblock, it either outputs the co-contigs of ®, or it claims that the modified graph is not
round.

Finally, in Section 5.3, we design two algorithms that can be combined so as to traverse
all the round representations of a round graph. The goal of these algorithms is to split a
contig ® into its co-contigs, and to join these co-contigs to obtain contigs whose represented
graphs are isomorphic to G(®).

Throughout the section, a structure characterization of round representations is obtained.
We remark that the characterization in not new, see e.g. [13]. Nevertheless, the algorithmic
approach used to obtain such a characterization is new, as far as our knowledge extends.

5.1 Co-components of round graphs

Let B be a semiblock of a contig ®. The goal of this part is to show how to compute the
co-component G of G(®) that contains B in O(dg(B)) time. The solution to this problem
yields an O(A(G(®))) time algorithm for computing all the co-components of G(®) (encoded
as co-contigs of @, cf. below). The following proposition, that follows from Theorem 2.9, is
essential for our purposes.

Lemma 5.1. If a round graph is not co-connected, then it is co-bipartite.

Algorithm 5.1 outputs the co-component containing B, for any co-bipartite semiblock
graph G. Its correctness follows from the following lemma.

Lemma 5.2. If G is a co-bipartite semiblock graph and X, are the families of Algorithm 5.1
at some step of its execution, thﬁz GlXUY)] is co-connected, XNY =0, and B € X. Moreover,
when Algorithm 5.1 stops, (X, N (X)) is a co-bipartition of a co-component of G and B € X.

Let @ be a round representation. A range [By, B;| of B(®) is a co-contig chunk if [By, B,| C
X for some co-bipartition (X, N'(X)) of a co-component of G(®). The next lemma shows how
do X and Y look like at each step of Algorithm 5.1, when applied to round graphs.
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Algorithm 5.1 Co-bipartition of the co-component containing B.
Input: A co-bipartite semiblock graph G, and B € V(G).
Output: The co-bipartition (X', ) of the co-component of G such that B € X.

1. Set X := {B} and Y := (.
2. Perform the following operations while ) # N (X).
3. Set Y := N (X).

4. Set X := N ().
. Output (X,)).

4

Lemma 5.3. If X = By, B, is a co-contig chunk of a round representation ®, then N'(X) =
(£7(By), Fi(By)).

Proof. Call W, = F,.(B;) and W, = F;(B,). Suppose, to obtain a contradiction, that B; # B,
and B; —+ B,. In this case B, — B because & is a clique of G(®). Hence, B, — B;
for every B € (B,, B;] which implies that B, is universal. This is impossible because B; and
B, belong to the same co-component by definition. Therefore, either B; = B, or B; — B,..
Consequently, B, € [B;, W] which implies that B — B’ for every B € [By, B,| and every
B’ € [B,,W}]. A similar argument can be used to prove that B’ — B for every B € [By, B;|
and every B’ € [W,, Bj]. Then, all the semiblocks in [W,, W] belong to Ng4)[B] for every
B e X, thus N (X) C (W;, W,.).

For the other inclusion, suppose there is some semiblock W € (Wj, W,.) that is adjacent
to all the semiblocks of X in G(®). This implies that B; and B, are not universal in G(®)
since otherwise (W, W,) = 0. Hence, R(W}) is not adjacent to B; and L(W,) is not adjacent
to By, so W # R(W;) and W # L(W,). Consequently, (W;, W) and (W, W,) are nonempty
ranges. In particular, both R(W;) and L(W,.) belong to A/(X), thus there is a path between
R(W;) and L(W;) in G(®). Such path must contain three blocks W7, Ba, W3 such that W is
not adjacent to Ba, Bs is not adjacent to W3, By € X, Wy € (W), W), and Wy € (W, W,.).
By hypothesis, either W — By or Bs — W. The former is impossible because W3 —— Bo,
while the latter is impossible because By — W7. ]

Corollary 5.4. Let ® be a round representation. If G(®) is co-bipartite, then, at each step
of Algorithm 5.1 when applied to G(®), X is a co-contig chunk of ® and ) is either empty
or a co-contig chunk of ®.

Proof. Observe that if X is a co-contig chunk of ®, then A/ (X) is a range of ® by Lemma 5.3.
If N(X) = 0, then X = {B} for some universal semiblock B of G(®); otherwise, N'(X)
is a co-contig chunk of ®. In the latter case, N(NV (X)) # 0 is also a co-contig chunk of
®, by Lemma 5.3. Therefore, since X is a co-contig chunk of & before the main loop of
Algorithm 5.1, we obtain that X and ) are both co-contig chunks of ® after every step of the
main loop of Algorithm 5.1. O

The above corollary allows us to define co-contigs as the analogous of contigs. Let &
be a round representation of a co-bipartite round graph G, and X and ) be two ranges of
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B(®). Say that (X,)) is a co-contig pair of ®, and that X and ) are co-contig ranges of ®,
when (X, )) is a co-bipartition of some co-component of G. When (X, )) is a co-contig pair,
O|(XUY) is a co-contig of @ that is described by (X,Y) and that represents G[XUY]. We also
refer to ® as a co-contig to indicate that G is co-connected. The following corollary shows the
similarity between contigs and co-contigs (see Figure 11). Since we use this corollary almost
as a definition of co-contigs, we will make no references to it.

FT(BZ)
Br Ur(Bl>

B Ui(B,)
L(B)

Figure 11: In a round representation ®, each co-component of G(®) is represented by a co-
contig ®|(X U Y) that is described by a co-contig pair (X,)). A semiblock B of G(®) is a
left co-end semiblock if and only if U, (U,(B)) = B (e.g. B; and U,(B;)) in the figure.

Corollary 5.5 (see also [13]). co-contigs represent Let ® be a round representation. If G(P)
is co-bipartite, then every co-component of G(®) is represented by a co-contig of .

Proof. Let B € B(®), and X and Y be the families of semiblocks obtained by the execution
of Algorithm 5.1 with input G(®) and B. By Lemma 5.2, (X,)) is a co-bipartition of the
co-component G of G(®) that contains B. On the other hand, by Corollary 5.4, both X and
Y are co-contig ranges. Consequently, (X', ) is a co-contig pair describing the co-contig that
represents G. O

If X = [By, B;] is a co-contig range of ®, then B; and B, are the left and right co-end
semiblocks of X, respectively. A co-contig range X has no co-end semiblocks when X = ().
By the corollary above, every B € B(®) belongs to a unique co-contig range of ®. We say
that B is a (left or right) co-end semiblock of ® when B is a (left or right) co-end semiblock
of co-contig range to which it belongs.

By definition, every universal semiblock of G is a left and right co-end semiblock of ®.
Lemma 5.3 can be used to determine if B is a co-end semiblock of ® when B is not uni-
versal in G. Just observe that the co-contig I' containing B is described by a co-contig pair
([B1, By], W, W,]). By Lemma 5.3, [W;,W,] = (F,(By), Fi(B,)), hence W; = U,(B;) and
W, = Ui(B;). Analogously, B; = U,(W;) and B, = Uj(W,), see Figure 11. Consequently, B
is a left co-end semiblock if and only if B = U, (U,(B)), while B is a right co-end block if
and only if B = Uj(Uj(B)). On the other hand, if B = U, (U,(B)), then G(®) is necessarily
co-bipartite, because ([B, F,.(B)], [Ur(B), B)) is a co-bipartiton of G.

Observation 5.6. B is a co-end semiblock if and only if B = U,(U,(B)) or B =U(Uj(B)).

Lemma 5.3 and Corollary 5.4 show how to simulate Algorithm 5.1 when a contig ® is
given. Because O(1) time evaluation of U, and U; is required, and base contigs provide no
means for efficiently evaluating these functions when @ is linear, we divide the implementation
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in two, according to whether ® is circular or linear. When & is circular, Algorithm 5.1 can
be simulated as in Algorithm 5.2. Note that Algorithm 5.2 does not require G(®) to be
co-bipartite for accepting ® as an input. When G(®) is not co-bipartite, then a message
indicating so is obtained. On the other hand, when G(®) is co-bipartite, the algorithm
outputs a co-contig pair (X,)) such that B € X.

Algorithm 5.2 Co-contig containing a semiblock B.

Input: a semiblock B of a circular base contig ®.

Output: the co-contig pair (X,Y) of ® such that B € X if G(®) is co-bipartite. If G(®) is
not co-bipartite, then an error message is obtained.

1. Set X :=[B,B], Y :=10.

2. If U,(B) = F(B) then output (X, ) and halt.

3. Define the function ® that, given a range [B;, B,|, outputs [U,(By), Uj(B;)].

4. Perform the following operations for at most dgq)(B) iterations, while ) # X.
5. Set Y :=X.

6. Set X := ).

7. If X =), then output (X, )); otherwise, output an error message.

Discuss the correctness of Algorithm 5.2. Step 2 checks whether B is universal in G(®);
if so, it outputs the co-contig pair ([B, B],(). Otherwise, let X = [B;, B,] at some point
of the execution, and suppose G(®) is co-bipartite. By invariant, B; is not universal, thus
Uy(B;) # Fi(B;). Then, by Lemma 5.3, Ng¢)(X) = X = [U(B;),Ui(B,)]. Furthermore,
since at least one semiblock is inserted into X at each iteration of the main loop, and the co-
component containing B has at most dg(g)(B) semiblocks, Algorithm 5.2 effectively simulates
Algorithm 5.1 when G(®) is co-bipartite. On the other hand, if X = ) at Step 7, then (X, ))
is a co-contig pair representing ®|(X U Y). Therefore, Algorithm 5.2 halts with the error
message only when G(®) is not co-bipartite. Summing up, Algorithm 5.2 is correct.

For the implementation, co-contig chunks are represented by a pair of pointers, refer-
encing the leftmost and rightmost semiblocks in the range. Of course, the empty range is
implemented with a pair of pointers referencing NULL. Clearly, mappings U, and U; take
O(1) time because ® is circular. On the other hand, the main loop is executed for at most
|X| iterations if G(®) is co-bipartite, while is executed for dg(g)(B) iterations otherwise.

The case in which & is linear can be solved using the following lemma.

Lemma 5.7. Let ® be a linear contig and B € B(®). Then, G(®) is co-bipartite if and
only if By = Fy(Ni(Fi(B))) and B, = F.(N,(F.(B;))) are the left and right end semiblocks
of @, respectively. Furthermore, if G(®) is co-bipartite, then ([By, Fi(By)), (F-(By), By]) and
([B, B],0), for B € [Fi(B;), Fr(By)], are all the co-contig pairs of G(®).

Proof. Let W; and W, be the left and right end semiblock of ®, respectively. Suppose first
that G(®) is co-bipartite. If Ny (F;(W,)) = F(W,) or N.(F.(W;)) = W,, then G(®) is a
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clique and the lemma holds. Otherwise, N;(F;(W,)) — W, and W; —— N,.(F,.(W))), thus
Wi, — Ni(Fi(W;)) and N, (F.(W;)) — W, because G(®) is co-bipartite. Hence, B; = W,
B, = W,, and the furthermore part holds. For the converse, observe that both [By, Fi(B;))
and (Fj(By), B;] are cliques of G(®). O

In any round representation ®, the family of contigs admits an ordering &1, ..., P, such
that B(®) = B(P1)e...eB(P,). The family of co-contigs of ® satisfies an analogous condition.
When G(®) is co-bipartite, an ordering B = (X1, V1), ..., (Xs, Vs) of the co-contig pairs of ®
is said to be natural if B(®) = X, e...0 X;0);,...0Y; (see Figure 12). It is not hard to see
that, among all the round representations of G(®), B is a natural ordering only of ®.

Figure 12: A natural ordering (X1, 1), ..., (X5, Vs) of the co-contigs of a round representation
®. (Only the edges from semiblocks to their near and far neighbors are shown; the former
are gray, the latter are black.) Even though X, A5, and ), are empty co-contigs ranges, they
occupy a well determined location in the ordering, that depends on the locations of Vs, Vs,
and Xy, respectively. Hence, (X1,)1),..., (X5, Vs) is a natural ordering only of ®.

To end this part, Algorithm 5.2 and Lemma 5.7 are combined into Algorithm 5.3, whose
purpose is to determine if a round graph is co-bipartite. The input of Algorithm 5.3 is a
round representation ®, and the output is either a message, if G(®) is not co-bipartite, or a
natural ordering of the co-contig pairs of ®, otherwise.

Recall that the only disconnected co-bipartite graph is the graph formed by the union of
two cliques. So, the only co-bipartite round representation ® that is not a contig has two
contig ranges X and ), each of which is a co-contig range. Steps 1-3 find the co-contig pair
formed by these co-contig ranges. The case in which @ is linear and G(®) is co-bipartite is
solved in Step 4. If the algorithm reaches Step 5, it is because either ® is circular or G(®)
is not co-bipartite. So, Algorithm 5.2 applied on G(®) outputs a co-contig pair if and only if
® is circular and G(®) is co-bipartite. Steps 6-12 are then used to obtain a natural ordering
B = (X1,)h),...,{Xs, Vs) of its co-contig pairs. For this, Step 6 choses a left co-end semiblock
By, and defines (X1, Y1) to be the co-contig pair (X, )) such that B; € X'. Suppose that, after
some iterations of Loop 7-10, (X1,)1),...,(X;, Vi) has already been determined for ¢ > 1.
Moreover, suppose X; # ), and let B, the right co-end block of X;. Clearly, W; = R(B;)
is the left co-end semiblock of some co-contig range X;1x11. Note that k = 0 if and only if
(Ey(By), F-(W;)) = 0. Otherwise, every semiblock in (Fj(B,), F(W})) is universal in G(®).
Thus, for every 1 < j < k, it follows that X;,; = 0 and Y;4; is formed by the j-th semiblock to
the right of Fj(B,). Step 9 is responsible of extending B with (X ;, Viy;), for every 1 < j < k.
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Following, Step 10 adds (Xjix+1, Vitk+1) as a co-contig pair as well. Finally, Step 11 inserts
the co-contig pairs not found by the loop into B. Summing up, Algorithm 5.3 is correct.

Algorithm 5.3 Co-contigs of a round representation ¢

Input: a base round representation .

Output: if G(P) is not co-bipartite, then a message. Otherwise, a natural ordering of the
co-contig pairs of .

1. If ® has at least three contigs, then halt with a message.
2. If ® has two contig ranges X; and X», then:

3. If, for i € {1,2}, Fi(B) and F,(F;(B)) are end semiblocks for some B € X, then
output (X7, As) and halt. Otherwise, output a message and halt.

4. If By := F(N{(F;(B))) and B, := F.(N,(F,(By))) are end semiblocks, for B € B(®),
then output <[Bl7-Fl(B’I’))7[FT(BI))BTD) <X17®>7 SRR) <Xk7®>7 where Xieo ... .0k =
[E(Br)v FT(Bl)]v and halt.

5. Apply Algorithm 5.2 to some semiblock of ®. If Algorithm 5.2 halts in error, then output
a message and halt. Otherwise, a co-contig pair ([B;, By],Y) is obtained.

6. Set B := {([B;, B;],))}.
7. While B, # F.(B)):
8. Apply Algorithm 5.2 to W; = R(B,), to obtain a new co-contig pair ([W;, W;], V).
9. Add (0, 1),...,(D, V) at the end of B, for Yy e...e Yy, = (Fi(B,), F,(W))).
10. Add ([W;, W], ) at the end of B and set B, := W,.
11. Add (0,)1),...,(0,Vx) at the end of B, for )V, e ... e Y, = (Fi(B,), B)).
12. Output B.

Lemma 5.8. If ® is a round representation of a co-bipartite graph, then its family of co-
contigs admits a natural ordering.

With respect to the time complexity of Algorithm 5.3, observe that every step of the
algorithm takes constant time, except for Steps 4, 5, 8, 9, and 11. If ® is a w-universal
contig, then Steps 4, 9, and 11 consume up to O(u) time. On the other hand, Step 5 takes
O(A(G(®))) time, while Step 8 takes O(#[W;, W;]|) time, because it is executed only when
G(®) is co-bipartite. Finally, Loop 7-10 is executed exactly once for each co-contig of ®.

Lemma 5.9. Determining whether a round graph G is co-bipartite takes O(A(G)) time, when
a base round representation ® of G is given. Furthermore, when G is co-bipartite, a natural
ordering of co-contig pairs of ® is obtained in O(A(G)) time.
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Figure 13: Ordering of the semiblocks By, ..., By, Wa,..., W), inside ®. The edges of G(I)
are shown.

5.2 Co-components of incremental round graphs

In this part of the section we deal with the problem of finding all the co-components of a
u-universal round graph G when a semiblock B is to be inserted into G. The key idea is
to prove that, for H = G U {B} to be round, B has to be adjacent to a large number of
semiblocks of G. Even more, B does not have non-neighbors in more than two non-universal
co-components of G. So, a simple modification of Algorithm 5.3 yields an O(dy(B) + u) time
algorithm that, given a round representation ® of G, outputs all the co-contig ranges of ® or
claims that H is not round.

Lemma 5.10. Let B be a semiblock of a round graph H such that H \ {B} is co-bipartite
and not straight, ® be a base contig representing H \ {B}, and T' be a co-contig of ®. If the
main loop of Algorithm 5.2 takes p iterations to stop when applied to a semiblock in B(T),
then p < dgr)(B) + 2.

Proof. The lemma is clearly true for p < 2, so consider p > 2. Let By = B, and B; and W;
(2 <i < p) be the leftmost semiblocks of ranges X and ) prior to the i-th iteration of the
main loop of Algorithm 5.2, respectively. Recall that W; = U2 (B;_1), while B; = U2 (W;), for
2 <i<p. Thus, if B; = B;_1, then W;1 = W; and B;; = B;. The rightmost semiblocks of
X and Y follow a similar invariant. So, we may assume w.l.o.g. that B; # B;_1 for 2 <1i <p,
and thus W; # W;_; for 3 < i < p. Now, since B;_; is not universal in G(®) (2 < i < p),
it follows that B; € (W;, B;—1). Thus, since X is a co-contig chunk at each iteration of
Algorithm 5.2 by Corollary 5.4, it follows that B, — Bj. Therefore, since Wo —= B1, we
obtain that Wy, B,,..., By appear in this order in B(®). Similarly, By, Wp,..., Wy appear
in this order in B(®) (see Figure 13). Summing up, since W; = U®(B;_1) and B; = UZ(W;)
(2 < i <p), we obtain that By, W, By, W3, B3 ..., W, B, induce a path in G(I").

Rename the semiblocks of the above path to By, ..., Bo,_1. By definition, By, B2, B4 and
Bs induce a hole in H, thus B is adjacent to at least one of these semiblocks by Theorem 2.9.
Let a be the minimum such that B, is adjacent to B. If a > 4 then B1, Bs, B, and B induce
a K 3 in H, contradicting Theorem 2.9. Consequently a < 3. If B is adjacent to B; for every
even ¢ > a or for every odd ¢ > a, then the result follows. Hence, suppose that B has two non-
neighbors B; and B;, where j—i > 0is odd and 7 > a. Of all the possible combinations, take 4
and j so that B is adjacent to By, for every i < h < j. By construction, B;, ..., Bj, B is a hole
of H with odd length, thus B, cannot be adjacent to all these semiblocks, by Theorem 2.9.
Consequently, i = a + 1, and h — j is even for every j < h < p such that B}, is not adjacent
to B. Therefore, p < dgr)(B) + 2. O
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Lemma 5.11. If B is a semiblock of a round graph H, then the non-universal semiblocks of
H\ {B} that are not adjacent to B lie in at most two co-components of H \ {B}.

Proof. On the contrary, suppose that there are three non-universal semiblocks By, Bs, B3 that
are not adjacent to B and lie in different co-components of G = H \ {B}. Call B;;3 € V(G)
to a non-neighbor of B; for i € {1,2,3}.

If B is adjacent to By, Bs and Bg, then By, ..., Bg, B induce a subgraph isomorphic to Hs
(see Figure 3) in H. If B is adjacent to B; and not to By, for ¢,j € {4,5,6}, then B;_3, B;, B
and B; induce a K3 in ‘H. Finally, if B is not adjacent to B; and to B;, for 4 <i < j <6,
then B;, Bj, B;_3, B;_3, B induce a Cy4 plus an isolated vertex. Whichever the case, H is not
a round graph by Theorem 2.9. O

These lemmas imply a lower bound for the degree of B in H, as it follows from the next
corollary.

Corollary 5.12. Let B be a semiblock of a round graph H, ® be a base round representation
of H\ B, and s be the number of times that Algorithm 5.2 is invoked when Algorithm 5.3 is
applied to ®. Fori =1,...,s, denote by p; the number of iterations that the main loop of
Algorithm 5.2 requires for the i-th invocation. If ® is u-universal, then

S
s+ pi < u+2dy(B) +4.
i=1

Proof. If ® is not a circular contig or H \ { B} is not co-bipartite, then s = 0 and the corollary
is trivially true. When @ is a circular contig and H \ { B} is co-bipartite, a new co-contig pair
is found each time Algorithm 5.3 invokes Algorithm 5.2. Thus, ® contains at least s co-contigs
I'q,...,Ts that are found by invocations of Algorithm 5.3 (and it contains other co-contigs
not found by these invocations). By relabeling the co-contigs if required, suppose I'1, ..., T,
contain universal semiblocks. Suppose also that B is adjacent in H to all the semiblocks of
L'ut1,...T;, while B is not adjacent to at least one semiblock in each one of I'jq,..., .

By definition, p; = 0 for every 1 < i < wu, while p; < dgr,)(B) for every 1 < i < j.
On the other hand, Lemma 5.10 implies that p; < dg(I';)(B) + 2 for every j < i < s, while
Lemma 5.11 implies that s — j < 2. Therefore

S S

j
S (lp) Sut D dgry(B)+ Y (2dgr,)(B) +2) < u+ 2dy(B) + 4.
i=1 i=u+1 i=j+1

O]

Algorithm 5.4 takes a w-universal round representation ® of H \ {B} and dy(B), and
outputs a natural ordering of the co-contig pairs of ® or claims that H is not a round graph.
The correctness of this algorithm follows from Corollary 5.12, and its time complexity is
O(dy(B) + u). Note that the algorithm requires G(®) to be co-bipartite and that it could
output the co-contig pairs of ® even when H is not round.

Lemma 5.13. Let H be a semiblock graph such that H\ {B} is u-universal and co-bipartite,
B e V(H), and ® be a base round representation of H\ {B}. If ® and dy(B) are given as
mput, then a natural ordering of the co-contig pairs of ®, or a message indicating that H is
not round, is obtained in O(dy(B) + u) time.
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Algorithm 5.4 Co-contigs of an incremental round representation ¢

Input: a base round representation ® of a co-bipartite graph H \ B, and the number dy(B).
Output: either a natural ordering of the co-contig pairs of ®, or a message indicating that
‘H is not round.

1. Set s :==p:=0.

2. Apply Algorithm 5.3 while s + p < 2dy(B) + 4. For each invocation of Algorithm 5.2 add
1 to s if the obtained co-contig has at least two semiblocks. Similarly, for each iteration
of the main loop of Algorithm 5.2 add 1 to p.

3. If s+ p > 2dy(B) + 4, then output an error message; otherwise, output the obtained
co-contig pairs.

Algorithm 5.4 can be applied on ® even when H \ {B} is not co-bipartite. In such case,
Algorithm 5.4 halts in O(dy(B) + u) time claiming that # is not round. If H is known to be
round, such output is wrong, and it can be concluded that H \ { B} is not co-bipartite. Thus,
the following lemma follows as well.

Lemma 5.14. Let H be a round graph, B € V(H), and ® be a u-universal base round
representation of H\ {B}. If ® and dy(B) are given as input, then it takes O(dy(B) + u)
time to determine whether H\{B} is co-bipartite. Furthermore, when H\{B} is co-bipartite,
a natural ordering of the co-contig pairs of ® is obtained.

5.3 Split and join of co-contigs

In this last part we present two algorithms that can be used to traverse all the round repre-
sentations of co-bipartite round graphs. These algorithms are based on the characterization
of co-bipartite round graphs given in Section 5.1, and resemble the work by Huang [13].

Let ® be a round representation of a co-bipartite round graph, and (X1, )1),. .., (Xs, Vs)
be a natural ordering of the co-contigs of ®. For ranges X and ) of B(®), say that (X))
is a co-bipartition pair of ®, and that X and Y are co-bipartition ranges of ®, when X =
Xi,...,X;and Y = );,..., ), for 1 < i,j < s. If (X,)) is a co-bipartition pair, then
®|(XUY) is the representation of ® described by (X,)). Note that, by definition, ®|(X U))
represents a subgraph G of G(®) induced by several of its co-components. In other words,
G(®) =G+ (G(?)\ V(G)). Moreover, (X,)) is a co-bipartition of G.

Suppose ® has a co-bipartition pair (X7, X3) not describing ®, and let I' = ®|(X; U A3)
and A = @\ (X} U X3). Observe that A is also described by a co-bipartition pair inside ®.
To see why, suppose X; # 0 (i € {1,3}) and let B; and B, be its leftmost and rightmost
semiblocks. By definition, B(®) = X; @ X;11 ® X2 @ Xj. 3, where X;1 = (B, F.(B;)] and
Xiys = [F(B,), By). Hence, A = ®|(X; 41 U Xit3) and (X;11, Xiys) is a co-bipartition pair of
® describing A. The split problem consists of transforming ® into (I'; A), when (X;, X3) is
given as input.

Consider how do I'" and A look like inside ®. For this, let Q € {I', A} be described by
the co-bipartition range (X;, Xj12) (1 < i <4), B € &}, and Bli and B! be the leftmost and
rightmost semiblocks of X;. Since (X;, X;12) is a co-bipartition range, either F.*(BY) = F*(BY)
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or F®(B!) € X;, 5. Consequently,

F¥(B) =

{Bz; if F?(B) = F2(B}) W

F?(B) otherwise.

Algorithm 5.5 solves the split problem for the case in which X1, X, X3, and A} are all
nonempty. The other cases are similar, and we omit them for the sake of simplicity.

Algorithm 5.5 Split of a co-bipartition pair

Input: a co-bipartition pair (X;,X3) of a base contig ® such that X1 = [B},B}], X3 =
(B}, B3], (B}, B}), and (B2, B}) are all nonempty.

Output: @ is transformed into ®|(X; U AX3) and @ \ (] U A3).

=

. Let B! := R(B!) and Bi~! := L(B}), for i € {1,3}.

2. For i € {1,2,3,4}, set F,.(B) := Bi*3 for every B € [F(Bit?), B/t1).
3. For i € {1,2,3,4}, simultaneously set S,(B?) := S, (B:1).

4. For i € {1,2,3,4}, set F(B) := B;™ for every B € (B:™3, F,(B]™?)].
5. For i € {1,2,3,4}, simultaneously set S;(B}) := S;(B} ™).

6. Update the near pointers so that, for i € {1,2,3,4}, R(B:) = B,

To discuss the correctness of Algorithm 5.5, let Q € {I', A} be the round representation
described by (X;, Xit2), 1 < i < 4, and consider the effects of Steps 2 and 3 on B € Aj.
To begin, observe that F.(B{) = B! because X;11 # 0. If F*(B) ¢ {Bit!, Bi*?}, then
F(B) = F*(B) by (1), and F,(B) is not changed by Steps 2 and 3. If F?(B) = B*!, then
Step 2 makes no changes to F,.(B), thus Step 3 sets F,.(B) = B!, which is correct by (1).
Finally, if F*(B) = Bi*2, then Step 2 preemptively sets Fy.(B) = Bit3 so that, after Step 3,
F,.(B) references B2 which is also correct by (1). Thus, the update of the right far pointers
is correct. Similar arguments applied on ®~! are enough to conclude that Steps 4-5 correctly
update all the left far pointers. Therefore, Algorithm 5.5 is correct.

With respect to the time complexity of Algorithm 5.5, observe that the semiblocks in
[Fi(B2), B;™) U (Bi*3, F.(B{™?)] are all universal in G(®). That is, the semiblocks up-
dated by Steps 2 and 4 are all universal in G(®). On the other hand, R(B) = N,(B) and
L(B) = Ni(B), for any B € B(®), because ® has to be circular to be admitted as input of Al-
gorithm 5.5. Consequently, Algorithm 5.5 requires O(u) time when it is applied to u-universal
contigs.

Lemma 5.15. Let ® be a u-universal base round representation that has a co-bipartition
pair (X,)) not describing ®. If (X,Y) is given as input, then ® can be transformed into
Ol(XUY) and ©\ (X UY) in O(u) time.

The join problem is the inverse of the split problem. Roughly speaking, the goal of the
join problem is to transform (I', A) back into ®. However, contrary to the split problem, I"
and A can be joined in many ways that yield different representations of G(®).
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Let (X1, X3) be a co-bipartition pair describing I', and (Xa, Xy) be a co-bipartition pair
describing A. For 1 < i < 4, define Wﬁ to be the rightmost semiblock of X; @ X; 1. Note that
Wi is well defined only if X;eX; 11 = (). The (X}, Xa)-join of (I', A) is the round representation
¢ with B(®) = X; e Xy @ X3 @ Xy such that, for B € &; (1 < i < 4), the semiblock F,(B)
is defined as follows. Suppose (X;, Xi12) describes the representation Q € {I', A}, and let B}
and B! be the leftmost and rightmost semiblocks of &;. Then,

| E(B) otherwise.

The join problem consists of computing ® when (X}, X3) and (Xs, Xy) are given as input.
It is not hard to see that ® is indeed a round representation. Furthermore, (X7, A3) and
(Xo, X4) are co-bipartition pairs of ® representing I' and A, respectively. In other words, I’
can be split from ® so as to generate back the pair (I, A). From an algorithmic point of
view, ¢ is computed by reversing the effects that Algorithm 5.5 has when splitting I" from ®.
Hence, the join problem can be solved in O(u) time when I' and A are w-universal.

Lemma 5.16. Let I' and A be u-universal base round representations described by co-
bipartition pairs (X, X) and (),)), respectively. If (X, X) and (},)) are given as input,
then it takes O(u) time to transform I' and A into the (X,Y)-join of (I',A).

As previously mentioned, the (X7, Xs)-join of (I',A) is always a round representation
® of G(I') + G(A). The join operation can be used to obtain different representation of
G(®). Indeed, the (X7, Xy)-join of (I',A) is also a representation of G(®) that needs not
be equal to ®. Similarly, the (Xfl,Xg)—join of (71, A) also represents G(®). Since every
round representation admits a natural ordering by Lemma 5.8, it turns out all the round
representation of G(®) can be obtained by joining the co-contig pairs of ® in different ways.
Let B = (X1, Xs11),...,(Xs, Xos) be a natural ordering of the co-contigs pairs of ®, and
denote Xil = A for 1 < i < 2s. Say that the ordering W = ()1, Vs11),..., (Vs, Vos) is a
natural permutation of B when there is a permutation w of {1,...,2s} and a mapping y from
{1,...,2s} to {—1, 1} such that:

(i) w(s+1i) =s+w(i) and y(s+1i) = s+ y(i) for every 1 <i <'s, and

(i) Vi = Xf}g; for every 1 < i < 2s.

The following characterization follows from Lemma 5.8 and the fact that the join operation
always yields a round representation.

Theorem 5.17 (see also [13]). Let ® be a round representations of a co-bipartite graphs, and
B be a natural ordering of the co-contig pairs of ®. Then, I' is a round representation of
G(®) if and only if some natural permutation of B is also a natural ordering of T'.

The triplet (B, w, y) is referred to as the B-encoding of W. The following lemma shows how
to traverse the round representations of G(®) from &, taking advantage of the B-encodings.

Lemma 5.18. Let ® and I' be u-universal base round representations of a co-bipartite graph,
and B and W be natural orderings of the co-contig pairs of ® and T, respectively. If a
B-encoding of W is given, then (®,®~1) can be transformed into (U,T~1) in O(u|B|) time.
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Proof. Let (B,w,y) be the B-encoding of W, B = (X1, Xsi1),..., (Xs, Xos), and X = X;
(1 <i < 2s). The algorithm is composed by two main steps. The first step is to iteratively
apply Lemma 5.15 on ® and its co-contig pairs so as to obtain the co-contig ®} = ®|(X;UXs4;)
for ¢ = 1,...,s. Similarly, each co-contig <I>l-_1 is obtained by applying Lemma 5.15 on ®~1.
The second step is to to obtain I' by the iterative application of Lemma 5.16, as follows. Let
V, = Xig; and A; = @i((?) for i = 1,...,2s. By definition, W = (Y1, Vsi1), ..., (Vs, Vos),
while A; is the co-contig of " described by (V;, Vsyti). Thus, initially I'; = Ay. The i-th time
Lemma 5.16 is applied, the (V;e...0Y;, Vii1)-join of (I';, Aj11), called T'; 41, is computed. At
the end, I' = T';. Analogously, Lemma 5.16 is applied to join the remaining co-contigs into
T, Just observe that (Y71, V5.1, ..., (7Y, y;jl) is a natural ordering of I'~!.

By Lemmas 5.15 and 5.16, O(us) time is required by this algorithm if w and y are stored
in such a way that, for 1 < i < 2s, w(i) and y(i) take O(1) time. O

Lemma 5.18 can be used to traverse all the round representations of any co-bipartite
round graph. In this article, though, we use it only when a vertex is to be inserted into a
co-connected graph. In such case, only O(1) round representations need to be traversed. The
lemma below shows the traversal algorithm; we emphasize that some round representations
could be traversed several times by this algorithm.

Lemma 5.19. Let H be a co-connected semiblock graph such that H \ {B} is co-bipartite,
B € V(H), and ® be a base round representation of H \ {B}. If ® &' and dy(B) are
given as input, then the family of round representations I',T =% of G(®) can be traversed, or
a message indicating that H is not round can be obtained, in O(dy(B)) time.

Proof. The algorithm is composed by a preprocessing phase and a main loop. The prepro-
cessing phase begins applying Lemma 5.13, with input ® and dy(B), so as to find a natural
ordering B of the co-contigs of ®. Recall that a message indicating that # is not round can be
obtained. In such case, this message is forwarded and the algorithm is halted. On the other
hand, if B is obtained, then the preprocessing phase continues with an evaluation of |B|. By
Lemma 5.11, if [B| > 3, then A is not round. Thus, the algorithm is halted with a message
indicating that H is not round when |B| > 3. When |B| < 3, the preprocessing phase finishes
and the main loop begins. The main loop traverses all the B-encodings while it generates the
round representations of G(®). Suppose (B, w,y) is the next B-encoding to be traversed, and
let W be the natural permutation encoded by (B, w,y). Initially, Lemma 5.18 is applied with
input (B, w,y), ®, and ®~!. As a result, (®, 1) is transformed into round representations
(T, T71) of G(®), that are provided to the invoking procedure for its traversal. When the
invoking procedure asks for a new pair of representations, (I',['~!) is transformed back to
(®,®~!), and then a new B-encoding is processed. For the transformation of (I',I~!) into
(®,®~1), notice that B is the natural permutation of W encoded by (W, w1, yow™!). Thus,
Lemma 5.18 is applied with input (W, w1,y ow™1).

By Lemmas 5.13 and 5.18, taking into account that the main loop is executed only when
|B| = O(1), the above algorithm requires O(dy(B)) time, as desired. O

6 Incremental recognition of proper circular-arc graphs

In this section we describe the algorithms that make up the incremental recognition algorithm
of PCA graphs, namely the insertion of a new vertex (Section 6.1) or a new edge (Section 6.2).
In this section, each contig ® is implemented as an augmented base contig in which:
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e every block B is associated with an end pointer E®(B) such that E®(B) = NULL if B
is not an end block, while E®(B) references the other end block of the contig containing
B otherwise,

e there is a co-bipartite pointer CB® referencing a left co-end block of ®. If G(®) has a
universal block B, then CB® = B, while if G(®) is not co-bipartite, then CB®* = NULL.

As usual, we omit the superscript when no confusions arise. The end pointers are used and
maintained by the HSS algorithm while @ is linear. When @ is circular, the end pointers are
not required (indeed, they are all null). However, they must be maintained in case an edge
insertion yields a linear contig. On the other hand, the co-bipartite pointer is unknown by
the HSS algorithm, and it is required for the insertion of edges. After each modification done
by the HSS algorithm, the co-bipartite pointer needs to be updated. We write that ® is an
incremental contig to emphasize that ® is a base contig augmented with end and co-bipartite
pointers. Similarly, an incremental round representation is a base round representation ®
whose contigs are incremental contigs.

As mentioned in Section 3.2, two incremental round block representations ®, ®~!, both
satisfying the straightness property, are stored to represent an incremental graph G. Recall
that, by the straightness property, either ® is straight or G is not a PIG graph. In the former
case, the HSS algorithms can be applied on ® and &1,

6.1 The impact of a new vertex

To begin this section, we show how to insert a new vertex into a PCA graph. Given a vertex v
of a graph H and two round block representations ® and ®~! of H \ {v}, we ought to update
® and ®~! into round block representations ¥ and W1 of H. In this part we mostly deal
with the case in which W is a circular contig, though ® can be a linear contig, because the
other case is solved, with exception of the co-bipartite pointer, by the HSS algorithm.

Let B be a semiblock of H \ {v}. Say that v is adjacent to B when BN N(v) # ), while
v is co-adjacent to B when B\ N(v) # (. In other words, v is adjacent to B if v has some
neighbor in B, while it is co-adjacent if it has some non-neighbor in B. When v is adjacent
to all the vertices in B, then v is fully adjacent to B. Similarly, when v is adjacent to none
of the vertices in B, then v is not adjacent to B. Observe that v is fully adjacent to B if and
only if v is not co-adjacent to B.

For any contig I" representing H \ {v}, say that v is insertable into I" when v is adjacent
to two semiblocks B, # By of B(I') such that:

(i) v is fully adjacent to all the semiblocks in (B, By),
(ii) v is not adjacent to the semiblocks in (By, B,), and
(iii) (Bo N N(v), B,N N(v)) is refinable in T'.

When v is insertable into I', the {v}-refinement of (B, N N(v), By N N(v)) in T is referred to
as an insertion of v into I'. By definition, ¥ is an insertion of v into I' only if ¥ is circular.
Furthermore, ¥ is the unique insertion of v into I' unless v is a universal vertex of H. The
insertion of a vertex is, in some sense, the inverse of the compressed removal.

Observation 6.1. V¥ s an insertion of v into I' if and only if T" is the compressed removal

of {v} from .
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A proof of the above observation is implicit in the the following lemma, that highlights
the importance of insertable contigs.

Lemma 6.2. Let H be a 0-universal graph that is not PIG, andv € V(H). Then, H is a PCA
graph if and only if H \ {v} admits a block contig T into which v is insertable. Furthermore,
if v is insertable into T", then the insertion of v into I' is a block contig representing H .

Proof. Suppose H is a PCA graph and let B be the block of H that contains v. Since
H is not a PIG graph, it is represented by some circular block contig ¥. Let I' be the
compressed removal of v from W, and B, and By, be the semiblocks of T' containing FY (B)
and Fl‘I’(B), respectively. Observe that I' is 1-universal, thus, by Corollary 2.6, I' is a block
contig representing H \ {v}. On the other hand, by definition, v is adjacent to B, and By, and:
(i) v is fully adjacent to all the blocks in (B, By), (ii) v is adjacent to no block in (B, B,),
and (iii) ¥ is the {v}-refinement of (B, N N(v), B, N N(v)) in I'. That is, v is insertable into
r.

For the converse, observe that the insertion W of v into I' is 0-universal and compressed.
Therefore, by Corollary 2.6, ¥ is a block contig. Moreover, by definition, if B € W is the
block containing v, then N[B] equals the range [B, N N(v), By N N(v)] of ¥. Consequently,
U represents H. O

Algorithm 6.1 can be used to test if v is insertable into I'. Furthermore, if v is insertable,
then I' gets transformed in the insertion of v into I'. Its correctness follows by definition.

Algorithm 6.1 Insertion of an insertable vertex into a contig.

Input: Ng(v) and an incremental contig I' representing a graph H \ {v} such that H is not
PIG.

Output: if v is insertable into I', then I' is updated into the incremental insertion of v into
I'; otherwise, the algorithm halts in error.

1. Let A and F be the families containing the semiblocks adjacent and fully adjacent to v,
respectively.

2. If NV is not a range of B(I"), then halt in error.

3. Let B, and By be the leftmost and rightmost semiblocks in A.
4. If (B, By) € F, then halt in error.

5. Let B, = B, N Ng(v) and B, = B, N Ny (v).

Transform I' into the {v}-refinement of (B, B, ) if possible, and halt in error otherwise.

N

Set E(B) = NULL for every B € B(T').

8. If G(I') is co-bipartite, then let C B! reference a left co-end block of T.

Algorithm 6.1 is implemented in a way rather similar to the HSS algorithm. To compute
N and F, each vertex w € Ny (v) is traversed so as to find the semiblock B containing w. If w
is the first traversed vertex of B, then B is inserted into A, while if all the vertices of B\ {w}
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were already traversed, then B is inserted into F. Thus, Step 1 takes O(dp(v)) time. For
Step 2, select a semiblock in A/ and traverse B(®) to the left until the last semiblock B, in N/
is found. Next, traverse B(®) to the right until the last semiblock By, in NV is found. The range
(Ba, By) must contain all the semiblocks in A to satisfy the condition of Step 2. For Step 4,
we ought to traverse (B, By) so as to find if there is some semiblock outside F. Similarly, for
Step 6, [Bg, Bp) is traversed to determine that it contains at most one universal semiblock. If
not, then, by definition, (B, B,) is not refinable in I'; and the algorithm halts. Otherwise, I'
is tested to be refinable in O(dg(v)) time by invoking Lemma 4.13. The update of the end
pointers in Step 7 is done by examining only O(1) semiblocks of W. Indeed, by Lemma 4.4,
N;(B) and N, (B) are the only possible end semiblocks of W\ {B}. Hence, the only possible end
pointers of ® not referencing NULL at this point correspond to the semiblocks in {N;({v}),
N, ({v}), Ni(Ni({v})),Nr (N, ({v}))} (the end pointers of the last two could be non-null when
either N;(v) and N;(N;({v})) or Ny(v) and N,(N,({v})) were separated). Finally, for Step 8,
just apply Algorithm 5.2 to the semiblock containing v. Summing up, Algorithm 6.1 takes
O(dm(v)) time.

Lemma 6.3. Let H be a non-PIG graph, v € V(H), and T' be an incremental contig repre-
senting H\ {v}. If T is given as input, then it takes O(dg(v)) to determine if v is insertable
into I'. Furthermore, if v is insertable into I', then the incremental insertion of v into I' is
also obtained in O(dg(v)) time.

Lemmas 6.2 and 6.3 reduce the problem of inserting v, when H is O-universal, to the
problem of finding a block contig representing H \ {v} into which v is insertable. The following
lemma discusses how can such block contig be found when H is co-connected.

Lemma 6.4. Let H be a co-connected non-PIG graph, v € V(H), and ® be an incremental
block contig of H \ {v}. If ® &' and Ny(v) are given as input, then it takes O(dg(v))
to determine whether H is a PCA graph. Furthermore, if H is a PCA graph, then two
incremental block contigs U, U~ representing H can be obtained in O(dg(v)) time.

Proof. The algorithm works by traversing all the block contigs I', ! that represent H \ {v}.
For each I, v is queried to be insertable into I', using Lemma 6.3 with input I" and Ny (v). By
definition, v is insertable into I if and only if v is insertable into I'"'. Thus, by Lemma 6.2,
H is PCA if and only if v is insertable into one such I'. Furthermore, the insertions of v into
I' and '~ are one the reverse of the other. Consequently, by Lemma 6.2, the furthermore
part is fulfilled by taking ¥ and ¥~! as the insertions of v in I" and I' ™!, respectively.

Two cases are considered for the traversal of the block contigs I', '~ that represent H\{v}.
First, if H\ {v} is not co-bipartite, then ® and ®~! are the unique block contigs representing
H\ {v}. Thus, ® &' are the only traversed block contigs. On the other hand, if H \ {v}
is co-bipartite, then Lemma 5.19 is applied on ®, ®~! and dy(v). If Lemma 5.19 outputs a
message indicating that H is not PCA, then no contig is traversed and the algorithm halts
indicating that H is not PCA.

Recall that H \ {v} is co-bipartite if and only if CB® # NULL; thus it takes O(1) time
to determine if H \ {v} is co-bipartite. By Lemma 5.19, O(dg(v)) time is required to traverse
all the block contigs representing H \ {v}. Only O(1) block contigs representing H \ {v} are
traversed, and querying whether v is insertable into each block contig takes O(dg(v)) time,
by Lemma 6.3. Therefore, the described algorithm takes O(dg(v)) time. O

The remaining case is when H is not co-connected, which can be solved by observing the
following corollary of Theorem 2.9.
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Corollary 6.5. Let H be a graph that is not co-connected, and H, be the subgraph of H
induced by the co-component containing a given vertex v. Then, H is a PCA graph if and
only if H\ V(H,) and H, are co-bipartite PCA graphs.

Algorithm 6.2 can be used to insert v into the block contigs ®, ®~! representing G. The
algorithm works as follows. First, Steps 1-5 split @ into two round block representations &,
and A so that G(®,)U{v} is the subgraph of H induced by the co-component of H containing
v. Similarly @1 is split into ®;! and A~!. For the sake of simplicity, the algorithm allows
round representations and graphs to be empty. So, for instance, ®, is empty when v is
universal in H, while A is empty when H is co-connected. Second, Step 6 test whether
G(®,) U {v} is a PCA graph. If negative, then H is not a PCA graph, while if affirmative,
then there are two possibilities. If A = (), then H = G(®,) U {v} is already known to be
a PCA graph. Otherwise, by Corollary 6.5, H is PCA if and only if G(®,) is co-bipartite.
Step 8 checks if G(®,) is co-bipartite when A # (). Thus, Algorithm 6.2 correctly determines
that H is PCA. On the other hand, if H is PCA, then ® and ®~! are correctly updated into
U and U1

Algorithm 6.2 Insertion of a vertex v into a block contig.

Input: incremental block contigs ®, ®~! that satisfy the straightness property and represent
a graph H \ {v}, and the set Ny (v).

Output: if H is a PCA graph, then ®, ®~! are updated into incremental block contigs ¥, &1
that satisfy the straightness property and represent H; otherwise, the algorithm halts in error.

1. If v is adjacent to the universal block B of G(®), then:
2. Separate B into (BN N(v), B\ N(v)) in ®.
3. Separate B into (B '\ N(v), BN N(v)) in ®~L.

4. Split ® into ®, and A = @\ B(P,) so that G(P,) U {v} is co-connected and v is universal
in G(A) U {v}.

5. Split @1 into ®; ! and AL

6. Determine if G(®,)U{v} is a PCA graph. If false, then halt in error; otherwise, transform
®, and @, ! into incremental block contigs ¥ and ¥ ~! representing G(®,,)U{v} that satisfy
the straightness property.

7. If B(A) # 0, then:

8. If G(V) is not co-bipartite, then halt in error.

9. Join A into ¥ and A~! into ¥~! keeping the straightness property.
10. Output ¥ and ¥~ 1.

Discuss the implementation and the time complexity of Algorithm 6.2. Accessing the
co-bipartite pointer, the condition of Step 1 takes O(1) time. For Steps 2 and 3, Lemma 4.6
is applied on B and N(v), for both ® and ®~!, thus O(dy(v)) time is consumed. Before
executing Step 4, Lemma 5.13 is applied on ® and d(v). If a message indicating that H is not
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PCA is obtained, then Algorithm 6.2 halts in error; otherwise, a natural ordering of the co-
contig pairs of ® is obtained. Similarly, the co-contig pairs of ®~! are obtained. Then, Step 4
is executed as follows. First, the blocks fully-adjacent to v are traversed so as to compute the
family B = {(X1, 1), ..., (X, Vr)} of co-contig pairs containing blocks co-adjacent to v. Such
traversal requires O(dg(v)) time if it is executed as in Algorithm 6.1. Second, Lemma 5.15
is applied to each of the co-contig pairs of B, to split ® into A and ®; = ®|(X; U );), for
1 <4 < r. Finally, as in the proof of Lemma 5.18, Lemma 5.16 is applied r — 1 times so as
to join ®q,...,®, into ®,. By Lemmas 5.13, 5.15 and 5.16, Step 4 requires O(dg(v)) time.
A similar procedure is applied for Step 5. Let N,(v) be the set of neighbors of v in G(®,).
For Step 6, first it is queried whether G(®,) U {v} is a PIG graph or not. This query takes
O(dg(v)) time, because G(®,) U {v} is a PIG graph if and only if either ®, = 0 or ®, is
straight and the HSS algorithm applied on ®,, ®;! and N,(v) is successful. Then, Step 6
takes one of three paths according to the result of the query. In the first case, G(®,)U{v} is a
PIG graph and ¥ and U~ are obtained as a byproduct of the execution of the HSS algorithm
(the case ®, = () is trivial). Clearly, ¥ and W' satisfy the straightness property, and their
co-bipartite pointers can be updated in O(1) time with Lemma 5.7. The second case applies
when G(®,) U{v} is not PIG and @, is not a contig. In this case, G(®,) U {v} is not a PCA
graph, so neither is H, and the algorithm is halted. The third case is when G(®,) U {v} is
not PIG and ®, is a contig. In this case, Lemma 6.4 is applied on ®,, ®,!, and N,(v). Since
G(®,) U {v} is not PIG, the obtained contigs satisfy the straightness property. Whichever
paht is taken by Algorithm 6.2, Step 6 takes O(dy(v)) time. Step 8 takes O(1) time with
the co-bipartite pointer of ¥. Finally, Step 9 takes O(1) time by executing Lemma 5.16 on
co-bipartition pairs of ¥ and A, and on the corresponding co-bipartition pairs of ¥~! and
A~!. With respect to the straightness property, note that H is a PIG graph only if both ¥
and T are co-contigs. So, it takes O(1) time to decide how their co-contig pairs should by
joined so as to satisfy the straightness property. Summing up, Algorithm 6.2 takes O(dg(v))
time.

Theorem 6.6. The problem of deciding whether an incremental graph is a PCA graph takes
O(1) time per inserted edge, when only the insertion of vertices is allowed.

Theorem 6.6 solves the following problems implicitly posed in [7]. First, can proper
circular-arc graphs be recognized in linear time by an incremental algorithm? Second, such
an incremental algorithm, follows the same ideas as the DHH algorithm?

6.2 The impact of a new edge

In this part we complete the incremental PCA recognition algorithm by showing how to insert
an edge in constant time, whenever possible. That is, given two vertices v, w of a graph G
that admits a round block representation ®, the problem is to transform ®,®! into round
block representations ¥, W~1 of H = G U {vw}. This problem has already been addressed by
the HSS algorithm for the case in which G is disconnected. Let B and W be the blocks of ®
that contain v and w, respectively. For the remaining cases, we prove that H is PCA if only
if either (i) B and W are connectable, or (ii) B and W are almost-connectable, or (iii) one of
v, w is universal in H and G is co-bipartite.

In Section 4 we defined (B,W) to be connectable when their vertices can be connected
without affecting the order of B(®) \ {B,W}. We define (B, W) to be almost-connectable
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when their vertices can be connected after slightly modifying the order of B(®) \ {B, W}.
Co-domino and co-P graphs are required for this definition; see Figure 14.

B By
> b A
|74

(a) (b) (c)

Figure 14: (a) a co-domino graph, (b) a co-P graph, and (¢) —¢ for a round representation
® with G(®) isomorphic to a co-domino graph.

Let ® be a block contig representing a graph G that has two non-adjacent blocks B, W.
Define Gp to be the co-component of G\ {W} that contains B, Gpw = G[V(G,) U W], and
Gw = Gpw \ {B}. Say that (B, W) is almost-connectable when |B| = |W| =1, Gp and Gy
are isomorphic to co-P graphs, and Ggyy is isomorphic to co-domino graph. We claim that
G(®) U {vw} is a PCA graph when (B, W) is almost-connectable. To see why, we show how
to build a connection of (B, W) in ®.

By definition, B is not adjacent to exactly two blocks of ®, namely U;(B) and U,(B).
One of these semiblocks is W. By taking the reverse of @, if required, suppose W = U;(B).
Now, since Gg and Gy are isomorphic to co-P graphs and Ggywy is isomorphic to a co-domino
graph, it follows that U, (B) and F,(B) are indistinguishable in @\ {B}. Hence, changing the
order between U,(B) and F,(B) in ®\ {B}, we obtain a contig I that represents G(®) \ {B}.
Let B, = F*(B), B, = L*(B)), and B, = U®(B;). Since all the non-neighbors of B; in
G(®) belong to Gy, it follows that B,, is a block of Gy. Furthermore, U2 (B) = RY(B,),
thus By, = U} (RY(B,)) because B; and U;(B) are indistinguishable in I" (see Figure 14 (c)).
Hence, RY(B,,) = F'(B;) and we obtain, by Lemma 4.3, that (B, B,) is receptive in T'.
Moreover, if ¥ is the B-reception of (Bj, B,) in I', then ¥ is a block contig representing
G(®) U {vw}. We refer to ¥ as the connection of (B, W) in ®. The connection of (B, W) is
defined analogously when W = U%(B).

By Lemmas 4.2 and 4.3, ¥ can be computed in O(1) time if B and W are given. By
Theorem 2.10, ® is not linear, while ¥ is linear only if all the non-neighbors of W belong to
Gw. Thus, V is linear only if it has exactly six blocks. In such case, the end pointers of ¥ can
be updated in O(1) time. On the other hand, G(®) is co-bipartite by Theorem 2.9 and the
fact that Gp is a co-component of G \ W. Hence, G(¥) is co-bipartite and the co-end block
referenced by CB? is also a co-end block of ¥. That is, the co-bipartite pointer needs not be
updated, so it takes O(1) time to build the incremental connection of (B, W).

Lemma 6.7. Let ® be a incremental block contig, B,W € B(®) be non-adjacent in G(P),
andv € B and w € W. If (B,W) is almost-connectable in ®, then the connection of (B, W)
in ® is a block contig representing G(®) U {vw}. Furthermore, if B and W are given, then
the incremental connection of (B, W) can be computed in O(1) time.

We are now ready to characterize when H = G U {vw} is a PCA graph. Because different
approaches are used, the proof is divided in several cases. We begin considering the case in
which H is a PIG graph.
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Lemma 6.8. Let ® be a block contig, B,W € B(®) be non-adjacent in G(®), and v € B and
we W. If G(®) U{vw} is a PIG graph, then either

(i) both (B,W) and (W, B) are almost-connectable, or
(ii) one of (B,W) and (W, B) is connectable.

Proof. If G(®) is PIG, then (ii) follows [11]. Suppose G(®) is not PIG for the rest of the
proof. Thus, by Theorem 2.10, some family B C B(®) induces a Cig| (|B| > 4) or an S3 in
G(®). Let H = G(®) U {vw} and, for each B’ € B(®), denote by b(B’) any vertex of B,
different from v and w if possible. By Theorem 2.10, {b(B) | B € B} induces neither a Cjp
nor an Ss in H. Hence, B,W € B, B = {v}, and W = {w}.

Suppose, to obtain a contradiction, that B induces an Ss in G(®). That is, B = {Bj, ...,
Bﬁ}, Bl — BQ, B2 — Bg, Bg — Bl, and Bl is not adjacent to Bi+3 in g(fb), for 1 <1 <3
Then, w.l.o.g, B4 = {w} and B; = {v} for i € {1,5}. If i = 5, then v, w,b(B1),b(B2) induce
a Cy in H; otherwise v, w,b(Bs),b(Bs) induce a K; 3 in H. Both contradict Theorem 2.10,
thus B does not induce an S3 in G(®). Hence, B induces a C|z| in G(®).

Let B = {Bi,...Bjg} where B; — B;;; for 1 < i < |B|, and suppose, w.l.o.g., that
By = {v} and Bj = {w} for some 3 < j < k. By definition, both {v,b(B;j11),...,b(Bj-1), w}
and {w,b(Bjt1),...,b(Bi—1),v} induce cycles in H. Therefore, by Theorem 2.10, j = 3 and
|B| = 4. We now prove that if neither (By, B3) nor (Bs, By) are connectable in ®, then (i)
follows. By taking the reverse of @ if required, we are left with only two cases.

Case 1: U,(By) # B3z and Uj(By) # Bs. If U,(B1) — By, then b(U,(B)),b(By), v, b(Bs)
induce a Cy in H, while if By — U;(By), then b(Ba2),b(U;(B1)),b(Bs),v induce a
Cy in H. By Theorem 2.10, neither case can happen. Now, if U.(B1) — Uj(By),
then b(Ur(Bl)), b(Ul(Bl)), b(B4), v, b(BQ) induce a 05 in H, while if Ur(Bl) — Ul(Bl),
then v, w, b(U,(B1)), b(U;(B1)) induce a K 3 in H. Again, both possibilities contradict
Theorem 2.10, thus Case 1 is impossible.

Case 2: U,(B1) # B3 and U,(Bs) # By. As in Case 1, by Theorem 2.10, U,(B;) — By
and U,(Bs) — Bs. Hence, W = BU{U,(B1),U,(B3)} induces a co-domino in G(®).
Suppose there is a block Z not adjacent to some block in W, and consider the following
possibilities for the position of Z in B(®).

Case 2.1: Z € (By,F.(B4)]. In this case, U,(Bs) — Z. By Theorem 2.10, b(Z),
b(B3), b(B3), b(By) do not induce a Cy in H, thus Z — Bs and, in particular,
Z — U,(B1). But then, Z is adjacent to all the blocks of W, a contradiction.

Case 2.2: Z € (F,(By), Fr(Ur(B3))]. In this case, Z — By. If Z — Bs, then b(2),
w, b(By), b(Uy(B3)) induce a Cy in H, while if Z —— Bs, then b(Z), b(B2), w,
b(By), b(U,(Bs)) induce a C5 in H. Hence, by Theorem 2.10, this case cannot
happen.

Case 2.3: Z € (F,(Uy(B3)),B2). In this case, U,(B3) — Z. By Theorem 2.10,
v, b(Z), w, b(Up(Bs)) do not induce a K3 in H, thus Z — Bs. So, since
Z and By are not indistinguishable in ®, we obtain that either F;(Z) # F;(B2)
or F,.(Z) # F.(Bz). The latter is impossible because Case 2.1 is obtained by
replacing Z with F,(Bsy), By with Bs, and By with Bs. For the former case,
observe that Bs and Fj(Z) are not adjacent because By — Bs and U, (Bs) —— Z.
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Then, b(F;(Z)),b(Z), w,b(By) induce a Cy in H, again contradicting Theorem 2.10.
Hence, Case 2.3 is also impossible.

Case 2.4: Z € (Bg, F.(B1)]. Notice that Z —— By because U,(B1) — By. Therefore,
by replacing Bo with Z, we are a case analogous to Case 2.3.

Case 2.5: Z € (F,(B1), Bs). In this case, B; — Z. By Theorem 2.10, v, b(B2), b(Z),
b(B4) do not induce a Cy in H, thus Z — By. Then, since Z and U,(B;) are
not indistinguishable, we obtain that either Fj(U,(B1)) # F;(Z) or F.(U.(B1)) #
F,.(Z). The former is impossible since, replacing Z with F}(U,(B;)) and observing
that Fy(U,(B1)) € (B, F-(B1)), one of the Cases 2.1-2.4 would hold. The latter is
also impossible because Case 2.3 is obtained by replacing Z with F,(Z), By with
Bs, and By with By.

All the remaining cases for the position of Z inside B(®) are analogous to one of the
cases 2.1-2.5; just replace By with B3 and Be with B4. Therefore, such Z does not
exist, which implies that W induces a co-component of G(®) and (i) follows.

O]

Next we deal with the case in which G \ {v} and G \ {w} are both co-connected. The
following lemma, that analyses the positions of v and w after vw is inserted, is required.

Lemma 6.9. Let V¥ be a circular block contig, B,W € B(V) be such that B — W, and
v € B and w € W. If G(¥) \ {vw} is a PCA graph and both G(¥) and G(¥) \ {v} are
co-connected, then FY (B) = W.

Proof. Let H = G(¥). Suppose G = H \ {vw} is a PCA graph and yet F\Y(B) # W. Let ®
be the compressed removal of v from W. Recall that ¥ is the insertion of v into ®, thus ®
has blocks B, # By such that (i) By, € Ny (v) for every By, € (Ba, By), (ii) By N Ny (v) =0
for every By, € (By, B,), and (iii) VU is the {v}-refinement of (B, N Ny (v), By N Ny (v)) in ®.
Therefore, W # B, because B —sy W, while W # B, because W # F¥(B). Thus, since
Ng(v) N W # 0, it follows that W is a block of ® that belongs to (Bg, By). On the other
hand, G(®) is 1-universal and connected, because V¥ is co-connected and circular. Hence, by
Lemma 2.6, ® is a block contig representing G \ {v}. Then, since G \ {v} is co-connected, it
follows, by Theorem 2.8, that ® and ®~! are the unique block contigs representing G \ {v}.
Consequently, by Lemma 6.2, taking into account that G is a PCA graph, there is an insertion
of v into ® that represents G. That is, ® has blocks B, # By such that (i) By, C Ng(v) for
every By, € (Be, By) and (ii) By, N Ng(v) = () for every B, € (B¢, By). Since W & {B,, By},
it follows that B, N Ng(v) # 0 and By, N Ng(v) # 0, thus [Bg, By] € [Be, Byg]. But then,
W C Ng(v), a contradiction. O

The following lemma deals with the case in which both G \ {v} and G \ {w} are co-
connected.

Lemma 6.10. Let ® be a block contig, B,W € B(®) be non-adjacent in G(P), and v € B
andw € W. If G(®)U{vw} is a non-interval PCA graph and both G(®)\ {v} and G(®)\{w}
are co-connected, then either (B, W) or (W, B) is connectable.

Proof. Suppose G(®) U {vw} admits a circular block contig ¥. Since both G(®) \ {v} and
G(®)\{w} are co-connected and G(®)U{vw} is not a PIG graph, it follows that G(®)U{vw}
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is co-connected. Let BY and WY be the blocks of ¥ that contain v and w, respectively, and
suppose, w.l.o.g., that BY —y WY¥. Applying Lemma 6.9 on both ¥ and ¥~!, we obtain
that (BY,WY) is disconnectable. Thus, the disconnection I' of ({v},{w}) in ¥ is a block
contig representing G(®) in which (B, W) is connectable. Consequently, since ® € {I',T~!}
by Theorem 2.8, the result follows. O

For the third case, suppose neither G \ {v} nor G \ {w} are co-connected.

Lemma 6.11. Let ® be a block contig, B,W € B(®) be non-adjacent in G(P), and v € B
and w € W. If GU {vw} is a non-interval PCA graph, G(®) is co-connected and none of
G\ {v} and G\ {w} is co-connected, then either (B, W) or (W, B) is connectable.

Proof. Observe that, since Gg = G(®) \ {B} is not co-connected, then there is some block
B ¢ N(B) that is not in the same co-component of Gg as W. Similarly, there is some block
W ¢ N(W) that is not in the same co-component of Gy = G(®) \ {W} as B. Clearly,
B,W,B,W induce a P, in G(®). Without loss of generality, suppose B —¢ W, thus
W—m?and?—)@ w.

Since B is not universal in G(®), it follows that B ——¢ U;(B). If Uj(B) # W, then
Ui(B) € (W, B), implying that U;(B) ¢ N(W). But then, W, U;(B), and B belong to the
same co-component of Gy, a contradiction. Therefore, U;(B) = W. Applying the same
arguments on ®~!, we obtain that (W, B) is connectable. O

It remains to consider the case in which G \ {v} is co-connected and G \ {w} is not
co-connected. For the sake of simplicity, we divide this case according to whether H is co-
connected (i.e., v is not universal) or not (i.e., v is universal). We considering first the case
H co-connected.

Lemma 6.12. Let ® be a block contig, B,W € B(®) be non-adjacent in G(P), andv € B and
we W. If G(®) U {vw} is a non-interval PCA graph and both G(®) \ {v} and G(®) U {vw}
are co-connected, then either:

(i) (B,W) is almost-connectable, or
(i) one of (B,W) and (W, B) is connectable.

Proof. If G(®) \ {w} is co-connected, then (ii) follows from Lemma 6.10. Consider, then, the
case in which G(®) \ {w} is not co-connected. Notice that W = {w} because G(®) U {vw} is
co-connected. By Lemma 5.1, G(®) \ {w} is co-bipartite, thus B € X" for some co-contig pair
(X,Y) of &\ {W}. Since G(®) U {vw} is co-connected and W = {w}, it follows that ) # 0.
Let W, be the left co-end block of Y and I' = &|(X U Y U {W}). Clearly, G(I') U {vw} is an
induced subgraph of G(®) U {vw}, while, by construction, G(I'), G(I') \ {v}, and G(T") \ {w}
are all co-connected. Then, by Lemmas 6.8 and 6.10, either (a) (B, W) is almost-connectable
inI', or (b) one between (B, W) and (W, B) is connectable in I". In case (a), (B, W) is almost-
connectable in ® because G(I' \ {W}) is the co-component of G(®) \ {W} that contains B.
Suppose, then, that (b) holds. Moreover, by taking the reverse of ® if required, suppose
(B, W) is connectable in T, i.e., U'(B) = W and U} (W) = B. So, W € (B,W,) in both T
and ®. If B is the right co-end block of X, then either W = R®(B) or R®(B) ¢ B(I') and
R®(B) —¢ W;. Whichever the case, (B, W) is connectable in ®. Otherwise, if B is not the
right co-end block of X, then R®(B) = RY(B) because X is a range of B(®). Therefore, since
RY(B) —¢ W, it follows that (B, W) is connectable in ®. O

46



Finally, we consider the case in which G \ {v} is co-connected but H is not.

Lemma 6.13. Let G be a PCA graph and v,w € V(G) be non-adjacent. If G U {vw} is
a non-interval PCA graph that is not co-connected and G \ {v} is co-connected, then v is
universal in G U {vw} and G is co-bipartite.

Proof. Suppose GU{vw} is a PCA graph. Since GU {vw} is not co-connected, it follows that
G\ {v} is co-bipartite by Lemma 5.1. Also, v is universal in GU{vw} and so G is co-bipartite,
because G \ {v} is co-connected. O

Lemmas 6.8-6.13 are summed up as follows.

Lemma 6.14. Let ® be a block contig, B,W € B(®) be non-adjacent in G(P), and v € B
and w € W. Then, G(®) U{vw} is a PCA graph if and only if either:

(i) one of (B,W) or (W, B) is almost-connectable,
(ii) one of (B,W) or (W, B) is connectable, or
(iii) one of {v,w} is universal in G(®) U {vw} and G(P) is co-bipartite.

Proof. Suppose H = G(®)U{vw} is a PCA graph, and let I" be a round block representation of
the co-component of G(®) that contains both B and W. If G(I') is disconnected, then T # ®,
thus G(®) is not co-connected. Consequently, by Lemma 5.1, |B(I")] = 2 and (ii) follows. On
the other hand, if G(I") is connected, then one of (i)—(iii) holds for I' by Lemmas 6.8-6.13.
By definition, if (i) holds for I, then it also holds for ®. On the other hand, if I' satisfies
(iii), then the universal vertex of G(I') U {vw} is also universal in G(®) U {vw} while, by
Lemma 5.1, G(®) is co-bipartite. That is, ® satisfies (iii). Finally, if I" satisfies (ii), then
either I' = ® and (ii) follows, or ® is not co-connected. In the latter case, by Lemma 5.1, T’
is described by a co-contig pair (X,)). Since (X,)) is also a co-contig pair of ®, (ii) holds
for @.

The converse follows from Theorem 2.9 and Lemmas 4.17 and 6.7. O

Algorithm 6.3 transforms the block contig ® representing G into a compressed contig ¥
representing H = G U {vw}, whenever possible. Its correctness follows from Lemma 6.14. In
particular, Steps 3-5 check statement (iii) and transform ® into ¥ when (iii) holds. On the
other hand, Step 6 checks statements (i) and (ii) and transforms ® into ¥. The correctness
of this step follows by Lemmas 4.17 and 6.7.

Consider the time complexity of Algorithm 6.3. If Step 4 is executed, then W = Uj(B) =
U,(B) = {w}, because v is universal in G U {vw}. Consequently, Steps 4 and 5 take O(1)
time, by Lemmas 4.11 and 4.4, respectively. To check if (B, W) is almost-connectable for
Step 6, apply a BFS-traversal on G(®) starting from B and without surpassing W. If more
than 6 blocks are found, then (B, W) is not almost-connectable, thus O(1) time is required for
this check. Finally, the connection of ® in Step 6 takes O(1) time, by Lemmas 4.18 and 6.7.
Therefore, Algorithm 6.3 requires O(1) time.

Clearly, the only possible new universal vertices of H are v and w. Recall CB? references
the universal block of ® prior the execution of Algorithm 6.3, if any. Then, evaluating if v
and w are universal in H, moving v and w into an universal block, and updating C'B so as
to point to this block is doable in O(1) time. That is, the output ¥ of Algorithm 6.3 can
be transformed into a block contig representing H in O(1) time. Observe that ¥ satisfies
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Algorithm 6.3 Insertion of an edge vw into a block contig.

Input: an incremental block contig ®, and two non-adjacent vertices v, w of G(®P).
Output: if G(®) U {vw} is a PCA graph, then ® is updated into a compressed contig ¥ of
G(®) U {vw}; otherwise, the algorithm halts in error.

1. If d(v) < d(w), then swap v and w.

2. Let B and W be the blocks containing v and w, respectively.

3. If v is universal in G(®) U {vw} and G(®) is co-bipartite (i.e. CB # NULL):
4. Transform ® into the compressed removal of v.

5. Build the {v}-reception of {CB, L(CB)} in ® and halt.

6. If (B, W) or (W, B) is either connectable or almost-connectable, then transform @ into the
corresponding connection of {{v},{w}} or {{w},{v}} in ® and halt.

7. Halt in error.

the straightness invariants. If ® is linear and WV is circular, the end pointers of the blocks of
® should be nullified in O(1) time. As it happens after the insertion of a vertex, the only
possible end blocks of @ in this case are B and W.

Lemma 6.15. Let ® be a linear block contig, B,W € B(®) be non-adjacent in G(P), and
veEBandwe W. If G(®) U{vw} is a non-interval PCA graph, then B and W are the end
blocks of ®.

Proof. Since G(®) U {vw} is a non-interval PCA graph, then, by Theorem 2.10, it contains
an induced Ss or Cy that, as in Lemma 6.8, contains both v and w. Then, neither v nor w is
universal in G(®)U{vw}. Therefore, by Lemma 6.14, one of (B, W) or (W, B) is connectable
in ®. Then, since the respective connection of B and W in ¥ is not an interval model, it
follows that B and W are the end blocks of ®. ]

The co-end pointer of the data structure should also be updated for ¥. As discussed
before, C'B has been already updated when v or w is universal, while it needs not be updated
when G(®) is co-bipartite. When W is linear and co-bipartite, the co-bipartite pointer is
updated in O(1) time using Lemma 5.7. In the remaining case, the co-end block can be
updated to reference either B or W as follows.

Lemma 6.16. Let G be a PCA graph that is not co-bipartite, v,w € V(G) be non-adjacent,
and B and W be the blocks of G U {vw} that contain v and w, respectively. If GU{vw} is a

0-universal co-bipartite graph that admits a circular block contig ¥, then one of B and W is
a left co-end block of W.

Proof. Since G is not co-bipartite, it is co-connected by Lemma 5.1. Furthermore, GU{vw} is
also co-connected, because it is co-bipartite. Then, ¥ has exactly two left co-end blocks, say
By and UY(B;). Moreover, ¥ and W~ are the unique block contigs representing G' U {vw},
by Theorem 2.8. On the other hand, by Lemma 6.14, the blocks containing v and w in G
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are connectable in any block contig ® representing GG. Hence, ¥ is the connection of either
({v},{w}) or {w},{v}) in ®. Assume the former, thus (B, W) is disconnectable in ¥ and
® is the disconnection of ({v},{w}) in ¥. If B ¢ {B;,UY(B;)}, then B; and UY(B;) are
included in blocks of B and UP(BP) such that BY = UL(UL(BP)). Therefore, G(®) is
co-bipartite, a contradiction. ]

To solve the incremental recognition problem, ®~! also has to be transformed into W1,
The algorithm discussed above transforms ® into . To transform ®~! into ¥~!, this algo-
rithm cannot be blindly applied because a round representation U* # W~! representing G(¥)
could be obtained. Instead, some careful is required. For instance, if both (B, W) and (W, B)
are connectable or in ®, and ¥ is computed as the connection of (B, W) in Algorithm 6.3,
then ¥~1 has to be taken as the connection of (W, B) in ®~!. Analogously, the {v}-reception
of (L®(CB®),CB?®) has to be build at Step 5 while producing ¥~!. It is not hard to see that
all these decisions for transforming @1 into ¥~! can be applied in O(1) time.

Combining Algorithm 6.3 with the HSS algorithm for the case in which ® is not a contig,
the main theorem of this section is obtained.

Theorem 6.17. The problem of deciding whether an incremental graph is a PCA graph takes
O(1) time per inserted edge.

7 Decremental recognition of proper circular-arc graphs

This section is devoted to the methods that compose the decremental recognition algorithm
of PCA graphs, i.e., the removal of a vertex (Section 7.1) or an edge (Section 7.2). For this
section, each contig ¥ is implemented with an augmented base contig in which:

e cach semiblock B is associated with a co-end pointer CEY(B) such that CEY(B) =
NULL if B is not a co-end semiblock, while CEY(B) references the other co-end semi-
block of the co-contig range containing B otherwise.

As usual, we omit the superscript when no confusions arise. As it happens with the co-
bipartite pointer of the incremental algorithm, the co-end pointers of ¥ are ignored by the
HSS algorithm, and should be restored each time the HSS algorithms are applied on W.

We write that U is a decremental contig to emphasize that ¥ is a base contig augmented
with co-end pointers. Similarly, a decremental round representation is a base round rep-
resentation whose contigs are decremental contigs. For the algorithms in this section, two
decremental round block representations ¥, U~!, both satisfying the straightness property,
are stored to represent a decremental graph H.

7.1 The impact of a removed vertex

In this part we describe an algorithm that transforms a round block representation ¥ of a
graph H into a round block representation ® of H \ {v}, for any given v € V(H). The algo-
rithm is divided in three major phases. The first phase computes a round block representation
® of H \ {v}, without caring about its co-end pointers or the straightness property. Then,
the second and third phases restore the straightness property and update the co-end pointers
of @, respectively. Each of these phase is described below.
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First phase. Let B be the block of ¥ that contains v. This phase is composed by four
steps. First, the universal block U of ¥, if any, is located by traversing [F;(B), F,.(B)].
Let U = () if such an universal block does not exist. Second, the universal block of
G(V) \ (U U {v}), if any, is located as follows. Let W = F.(R(B)). If B = {w} and
F,(L(B)) = W, then W is universal in G(¥)\{v}; otherwise, U contains all the universal
vertices of G(¥) \ {v}. Let W = () in the latter case. Third, Lemma 4.11 is applied on
{v} to obtain the compressed removal ® of v from W. By construction, ® is 2-universal
and either UUW = () or U UW is the universal block of G(®). If W # (), then the forth
step merges U and W by moving the vertices from U into W and then removing U.
After this step, ® is 1-universal and compressed, thus ® is a round block representation
of H\ {v}, by Corollary 2.6. By Lemma 4.11, the third step takes O(dg(v)) time, while
the remaining steps take O(dg(v)) time with an standard implementation.

Second phase. The second phase restores the straightness invariant of ®. If ® is straight or
H \ {v} is not PIG, then ® already satisfies the straightness invariant. So, the second
phase is applied only when @ is circular, and its goal is to determine whether H\{v} is a
PIG graph. If so, then ® should be transformed into a linear block contig representing
H \ {v}. By Theorems 2.8 and 2.10, H \ {v} is a PIG graph only if G(®) contains
a universal block U. Furthermore, by Theorem 4.10 of [21], H \ {v} is a PIG graph
if and only if F,.(L(U)) = U = F;(R(U)). Moreover, by Lemma 4.3, (R(U), L(U)) is
receptive in ®\ U and the U-reception of (R(U), L(U)) in ®\{U} is a linear block contig
representing H \ {v} [21]. The universal block U, if existing, was already computed in
the first phase. Then, this phase checks whether F,.(L(U)) = U = F;(R(U)) and, if
so, it builds the U-reception of (R(U), L(U)) in ® \ {U}. By Lemmas 4.2 and 4.4, this
phase takes O(1) time.

Third phase. The last phase computes the co-end pointers of ®. Note that, by definition,
all the co-end blocks of ¥ are also co-end blocks of ®. Then, for this phase, first
Lemma 5.14 is applied on ® and dg(v). If ® is not co-bipartite, then all the co-end
pointers of ® correctly reference NULL. On the other hand, if ® is co-bipartite, then
a natural ordering of its co-contigs is obtained. Such natural ordering is traversed to
update the co-end pointers that reference an incorrect location. The application of
Lemma 5.14 and the traversal of its output take O(dg(v)) time.

The described algorithm applied on U~ yields the round representation ®~'. Hence, the
main theorem of this section follows.

Theorem 7.1. The problem of deciding whether a decremental graph is a PCA graph takes
O(1) time per removed edge, when only the removal of vertices is allowed.

7.2 The impact of a removed edge

In this part we complete the recognition algorithm for decremental PCA graphs, by showing
how to process the removal of an edge. This time the input is formed by two block contigs
U U1 representing a graph H, and an edge vw € E(H), and the goal is to compute two
round block representations ®, ®~! of H \ {vw}, whenever possible.

In essence, the removal of vw follows the inverse path that would be taken to insert vw
into a representation of H \ {vw}. That is, if B and W are respectively the blocks of H that
contain v and w, then either (i) B and W are almost-disconnectable, (ii) or B is the universal
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block of H, or (iii) B and W are disconnectable in some block contig representing H. It is
important to remark that (iii) needs not be satisfied by ¥ when H does not satisfy (i) and
(ii). However, as we shall see, in such case B and W are co-end blocks of different co-contigs
of U. Thus, ¥, ¥~! can be transformed into block contigs I', T~! representing H such that
(B, W) is disconnectable in I'. The lemma below discusses this transformation.

Lemma 7.2. Let ¥V be a decremental contig, and B and W be co-end blocks of different
co-contigs of W. If W, W~ are given as input, then it takes O(1) time to transform W, ¥—!
into decremental block contigs T',T =% such that (B, W) is disconnectable in T.

Proof. Let (X, X) be the co-contig pair of ¥ such that B € X. The transformation algorithm
has five steps. The first step is to obtain the other co-end block of X by accessing the co-end
pointer of B. Second, the co-end blocks of X are obtained via the mappings U, and U;. For
the third step, ¥ is split into A = ¥|(X U X) and Q = ¥\ (X U X), while ! is split
into A=! and Q~!. The forth step is to exchange A with A=! and X with X!, if required,
so as to make B the left co-end block of X. Similarly, Q and Q7! are exchanged so as to
make W a right co-end block. The final step is to compute I' as the (X, [F}(W), W])-join of
(A, Q) and Tt as the ([W, F,.(W)], X~ 1)-join of (271, A~1). By construction, I' and T~ are
mutually reverse round representations of G(V¥), and (B, W) is disconnectable in I". For the
time complexity, observe that the first and forth step require O(1) time, the second step takes
O(1) time even when ¥ is linear by Lemma 5.7, and the third and final steps take O(1) time
by Lemmas 5.15 and 5.16, respectively. O

Almost-disconnectable blocks are defined as the inverse of almost-connectable blocks. Let
® be a block contig, (B, W) be almost-connectable in ®, and ¥ be the connection of (B, W) in
®. Note that, by definition, B, W are blocks of U. We say that (B, W) is almost-disconnectable
in U and that ® is the disconnection of (B,W) in ®. Suppose W = U?(B), and let I" be
the contig obtained from ¥\ {B} by swapping F}*(B) and U,¥ (B). Since ¥ is the connection
of @, it follows that I' = ® \ {B}. Furthermore, F¥(B) = F*(B), while RY(W) = F*(B).
That is, @ is the B-refinement of (RY(W), F}¥(B)) in . An analogous condition holds when
W =UZ2(B).

By Lemmas 4.2 and 4.3, ® can be computed in O(1) time if B and W are given. Recall
that both G(®) and G(¥) are co-bipartite. Furthermore, G(®) has the same co-components
as G(¥) with the exception that an edge is missing from one of the co-components. Therefore,
® and ¥ share the same co-contig pairs. In other words, the co-end pointers of ® need not
be updated after disconnecting B and W.

Lemma 7.3. Let ¥ be a decremental block contig, B,W € B(¥) be adjacent in G(V), and
v € B andw e W. If (B,W) is almost-disconnectable in ®, then the disconnection of (B, W)
in W is a block contig representing G(V) \ {vw}. Furthermore, if B and W are given, then
the decremental disconnection of (B, W) can be computed in O(1) time.

The following lemma characterizes those block contigs that admit the removal of an edge.

Lemma 7.4. Let U be a block contig, B,W € B(V) be adjacent in G(¥), and v € B and
w € W. Suppose d(v) > d(w). Then, G(¥) \ {vw} is a PCA graph if and only if either:

(i) one of (B,W) and (W, B) is almost-disconnectable,

(ii) one of (B,W) and (W, B) is disconnectable,
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(iii) v is universal in G(¥), W\ {v} # {w} and either (W \ {v,w}, L(W)) or (R(W),W \

{v,w}) is refinable in the compressed removal of {v} from ¥, or

(iv) v is universal in G(¥), W\{v} = {w}, and (R(W), L(W)) is refinable in the compressed
removal of {v} from ¥, or

(v) B and W are co-end blocks of different co-contigs of W.

Proof. Suppose G(¥) \ {vw} admits a round block representation ® and let B®* and W be
the blocks of ® containing v and w, respectively. Then, by Lemma 6.14, either

If (a) holds, then G(¥) is a PIG graph and (ii) follows [11]. The remaining cases are considered
below.

(b) holds. By relabeling v, w, B and W if required, suppose <Bq’, WCI’> is almost-connectable
in ®. Note that B® and W?® are blocks of G(¥), thus B® = B and W® = W.
Let B be the family of blocks that induce the co-component of G(¥) \ W containing
B. Observe that the subgraph of G(V¥) induced by B U {W} is isomorphic to a co-A
graph; see Figure 15 (a). By Theorem 2.8, such induced round graph admits two round
representation, one the reverse of the other; see e.g. Figure 15 (b). Let I' be the contig
obtained from ¥\ {B} by swapping F,Y(B) and U (B). It is not hard to see that
(RY(W), F,¥(B)) is receptive in I', and that its reception is a disconnection of (B, W)
in . That is, (B, W) is almost-disconnectable in W.

(a) (b)

Figure 15: (a) a co-A graph, (b) — g for a round representation ¥ with G(¥) isomorphic to
a co-A graph.

(c) holds. By reversing @ if required, suppose (B®, W?®) is connectable in ®. If B is universal
in ¥, then B is a co-end block of W. Also is W, because (B, W) is disconnectable in the
connection of ({v},{w}) in ®. That is (v) follows. For the rest of this case, suppose B
is not universal in ¥, so neither is W. Let B be the family of blocks that induce the
co-component of G(®) containing B®, T' = ®|B, and A be the connection of ({v}, {w})
in I'. Since B and W are not universal in G(V¥), it follows that B and W are blocks of
A and (B, W) is disconnectable in A. Furthermore, G(A) = G(I') U {vw} is a subgraph
of G(¥) = G(®) U {vw} induced by the vertices of either one or two co-components of
G(V). Consider the following alternatives for G(A).
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Case 1: G(A) is co-connected. By Theorem 2.8, either A = Q or A is a co-contig of
Q, for Q € {¥, U1}, In the former case, (B, W) is disconnectable in 2 and (ii)
follows. In the latter case, A is described by a co-contig pair (X,)). Moreover,
since B(A) # B(Q2), it follows that B(I') # B(®), thus I' is a co-contig of ¢ as
well. Consequently, B® and W? belong to different co-contig ranges of I', which
implies that exactly one of B, W belongs to X', say B € X and W € ). Hence,
since (B, W) are disconnectable in A, it follows that F*(B) € Y and F(W) € X.
Thus, F¥(B) = FA(B) and F)¥(W) = F(W) and (ii) follows.

Case 2: GG(A) is not co-connected. In this case, each co-contig of A is a co-contig of V.
Since G(I") is co-connected, it follows that B and W belong different co-contigs of
A, thus B and W belong to different co-contigs of ¥. On the other hand, since
(B, W) is disconnectable in A and U2(B) belongs to the same co-contig of A as B,
it follows that RM(W) = UA(B). That is, W is a co-end block of A, which implies
that W is a co-end block of ¥. Analogously, B is also a co-end block of W, thus
(v) follows.

(d) holds. If B = W, then w is universal in G(¥), and L¥Y(W) and RY(W) are co-end
blocks. The, either (iii) or (iv) follows according to whether W = {v, w} or not. Suppose
B # W for the rest of this case. Let I" be the co-contig of ® containing W®, and A
be the compressed removal of v from I'. By definition, G(A) is the co-component of
G(®) \ {v} containing w. Since G(®) \ {v} = G(¥) \ {v} and v is universal in G(¥),
it follows that G(A) is a co-component of G(¥). So, by Theorem 2.8, A is a co-contig
of Q, for Q € {¥,¥~1}. On the other hand, since A is the compressed removal of v
from T, it follows that v is insertable into A so as to obtain I'. Then, by Lemma 6.2, we
obtain that either (1) W = {w} and (LA(W), R*(W)) is refinable in A, or (2) W # {w}
and one between (W \ {w}, LA(W)) and (RM(W), W \ {w}) is refinable in A. If W is
not a co-end block of A, then LA(W) = L(W) and R*(W) = R*(W), thus (iii) or (iv)
follows. On the other hand, if W is a co-end block of A, then W is a co-end block of Q2
by definition, thus (v) follows.

The converse follows from Lemmas 4.15, 6.2, 7.2 and 7.3. O

Four phases are applied to transform W, U—! into the decremental round block represen-
tations ®, ! representing H \ {vw}. Let B and W be the blocks of H containing v and w,
respectively. In the first phase, Lemma 7.2 is applied on B and W when B and W are co-end
blocks of different co-contigs. After this phase we can assume that H \ {vw} is PCA if and
only if U, B and W satisfy one of conditions (i)—(iv) of Lemma 7.4. In the second phase,
Algorithm 7.1 is applied twice. First it is applied on ¥ and vw so as to obtain @, and then
it is applied on ™! and vw so as to obtain W1, Observe that, as it happens with the edge
insertion problem, the application of Algorithm 7.1 on ¥~! must mimic the application of
Algorithm 7.1 on W. Finally, the third and forth phases restore the straightness and co-end
pointers, respectively.

The correctness of the above algorithm follows from Lemma 7.4. In particular, Step 3
of Algorithm 7.1 checks statements (i) and (ii) on ¥. Following, statements (iii) and (iv)
are checked by Steps 4-7. If any of (i)—(iv) holds, then VU is accordingly transformed into a
compressed round representation ® of G(¥)\ {vw}. Note that, by definition, ® is 1-universal,
thus, by Corollary 2.6, ® is a round block representation of G(¥) \ {vw}.
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Algorithm 7.1 Removal of an edge vw from a block contig.

Input: a decremental block contig ¥, and an edge vw of G(¥).
Output: if ¥, v and w satisfy one of conditions (i)—(iv) of Lemma 7.4, then ¥ is updated
into a round block representation ® of G(¥) \ {vw}; otherwise, the algorithm halts in error.

1. If d(v) < d(w), then swap v and w.
2. Let B and W be the blocks containing v and w, respectively.

3. If (B,W) or (W, B) is either disconnectable or almost-disconnectable, then transform ¥
into the corresponding disconnection of ({v}, {w}) or ({w},{v}) in ¥ and halt.

4. If v is not universal in G(¥), then halt in error.
5. Transform VU into the compressed removal of v and let W/ = W \ {v, w}.

6. If W' # (), and either (W', L(W)) or (R(W),W’) is refinable, then transform ¥ into the
corresponding {v}-refinement of (W', L(W)) or (R(W),W’) in ¥ and halt.

7. W = ( and (R(W), L(W)) is refinable, then transform ¥ into the {v}-refinement of
(R(W), L(W)) and halt.

8. Halt in error.

Discuss the time complexity of the four phases of the algorithm. To determine if B and
W are co-end blocks of different co-contigs, so as to apply Lemma 7.2 for the first phase,
proceed as follows. First, test whether B and W are co-end blocks of ¥. If so, then compute
the family B formed by the co-end blocks of the co-contig that contains B. As in Lemma 7.2,
B is computed in O(1) time by means of the co-end pointers. If W & B, then Lemma 7.2 is
applied on B and W. By Lemma 7.2 the first phase takes O(1) time.

The implementation of Step 3 of Algorithm 7.1 is the same as the implementation of Step 6
of Algorithm 6.3. Just observe that (B, W) is almost-disconnectable if the co-component of
G(¥) \ {W} containing B is isomorphic to a co-P graph. Thus, O(1) time is required for
Step 3 of Algorithm 7.1. The remaining steps of Algorithm 6.3 take O(1) time by Lemmas
4.11, 4.13, 4.16 and 7.3. Consequently, the second phase also takes O(1) time.

The third phase is equivalent to the second phase of the vertex removal algorithm of
Section 7.1. Thus, O(1) time is required for the third phase.

For the forth phase, consider how do the co-contig pairs of ® look like. For this, let B®
and W?® be the blocks of ® that contain v and w, respectively, B be the family of blocks
that induce the co-component of ® containing B®, and T' = ®|B. Clearly, if G(¥) is not
co-bipartite, then G(®) is neither co-bipartite. Thus, the co-end pointers of ® need not be
updated when G(¥) is not co-bipartite. Suppose, then, that G(V) is co-bipartite. If A is a
co-contig of U that contains neither B nor W, then A is also a co-contig of ®. Therefore,
the only co-end pointers that should be updated correspond to blocks of I'. Let (X, X’) and
(¥,Y) be the co-contig pairs of ¥ that respectively contain B and W, prior to the execution
of Algorithm 7.1. Denote by B; and B, the left and right co-end blocks of X', and by W;, W,.
the left and right co-end blocks of . The structure of I' depends on which of the conditions
of Lemma 7.4 holds.
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(i) holds. This case need not be considered because, as argued before, ® and ¥ has the same
co-contig pairs.

(ii) holds. Suppose, w.l.o.g., that (B, W) is disconnectable in W. Note that, by definition,
B = By if and only if W = W,. If B # By, then, by definition, I" is co-bipartite and
([Bi, By \ {v}], [W; \ {w}, W,]) is a co-contig pair describing I". On the other hand, if
B = By, then there are two possibilities according to whether X = Y or X # Y. If
X =), then there is a path of even length that joins v and w in H, thus H \ {vw} is
not co-bipartite, i.e., I' = ® has no co-end blocks. Finally, if ¥ # ), then (Ve X,V e X)
is a co-contig pair describing I.

(iii) holds. If B = W, then B\ {v,w} is the universal block of ®, if any, while I" is described
by the co-contig pair ([{v}, {v}], {w}, {w}]). If B # W and, w.l.o.g., (W\ {w}, LY(W))
is refinable, then B = B; = B, and X = (), while, by Lemmas 4.3 and 4.12, W; = W and
LY(W) is the right co-end block of Y. Therefore, ([{w}, W,], [B, LY(W)]) is a co-contig
pair describing I'.

(iv) holds. This case is analogous to the previous case.

By the above discussion, only O(1) co-end pointers of I" need to be updated. Furthermore,
the blocks corresponding to such pointers can be obtained in O(1) time. Indeed, either no
co-end pointer needs to be updated or both B and W are co-end blocks of W. In the latter
case, the co-end blocks whose co-end pointers require an update are obtainable with CEY (B),
C’E‘I’(W), and the mappings U; and U,.. Therefore, the whole algorithm takes O(1) time.

Theorem 7.5. The problem of deciding whether a decremental graph is a PCA graph takes
O(1) time per removed edge.

8 Fully dynamic recognition of proper circular-arc graphs

The fully dynamic algorithm for the recognition of PCA graphs is obtained by combining the
incremental and decremental algorithms described in Sections 6 and 7. There is, however,
a major incompatibility between the data structures used by these algorithms: incremental
contigs are equipped with end pointers, while decremental contigs are equipped with co-end
pointers. It is not clear how the end and co-end pointers can coexist in an efficient fully
dynamic algorithm. In their fully dynamic algorithm for the recognition of PIG graph, Hell
et al. discard the end pointers. Instead, each base straight representation is equipped with
a fully dynamic algorithm that solves the recognition and connectivity problems on union
of paths graphs. Our fully dynamic algorithm for the recognition of PCA graphs follows
the same approach. That is, end and co-end pointers are discarded, and each base round
representation is augmented with fully dynamic algorithms that solve the recognition and
connectivity problems on 2-degree graphs. Section 8.1 describes the fully dynamic algorithm
for the recognition and connectivity of 2-degree graphs, while Section 8.2 discusses the fully
dynamic recognition of PCA graphs.

8.1 Fully dynamic connectivity of 2-degree graphs

This part describes a simple fully dynamic algorithm that solves the recognition and connec-
tivity problems for 2-degree graphs (refer to [11] for a similar algorithm that works on union of
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paths graphs). The input of the algorithm is a sequence of operations that involve: inserting
or removing an isolated vertex, inserting or removing an edge, querying if two vertices belong
to the same component, and obtaining the set of vertices of degree 1 that belong to the same
component as a given vertex.

Let G be a 2-degree graph. By definition, each component H of G is either an induced
path or an induced cycle. For the implementation of H, two balanced (e.g. red-black) trees
T and 77!, and a boolean value p are stored. Tree T has the same vertices as H, and these
vertices are stored in such a way that the inorder traversal vy,...,v; of T is a path of H.
Similarly, T~! has the same vertices as H, but its inorder traversal is vj, ..., v;. On the other
hand, p is true if and only if H is a path, i.e., p is true when v; and v; are not adjacent in H.
Finally, GG is stored as a set containing one of the above triples for each of its components.
With this implementation, the insertion and removal of vertices are executed in O(1) time,
while the remaining operations take O(logn) time [1, 28].

8.2 Fully dynamic contigs

In this part we complete the fully dynamic algorithm for the recognition of PCA graphs, by
making the incremental and decremental algorithms compatible.

Let ® be a round block representation. The contigs graph of ® is the graph C'(®) that has
one vertex v(B) for each B € B(®) such that v(B) and v(W) are adjacent in C(®) if and only
if B and W belong to the same contig of ® and are consecutive in B(®). The co-contigs graph
C(®) of ® is defined in a similar manner. There is a vertex w(B) in C(®) for each B € B(®),
while the edges of C'(B) depend on whether G(®) is co-bipartite or not. In the former case,
B and W are adjacent in C(B) if and only if B and W belong to the same co-contig range
and are consecutive in B(®). In the latter case, B and W are adjacent in C'(B) if and only if
B and W are consecutive in G(®). By definition, C(®) and C(®) are 2-degree graphs.

For the fully dynamic recognition, each dynamic PCA graph is implemented with two
base round block representations ®, ®~1, a universal pointer U®, and the graphs C(®) and
C(®) implemented as in Section 8.1. The universal pointer references the universal block of
G(®) if ® is not O-universal, and references NULL otherwise. Also, pointers to v(B) and
w(B) are stored together with B in both ® and ®~!, while pointers to B are stored with
v(B) and w(B) in C(®) and C(®), respectively. Note that, by definition, C'(®) is isomorphic
to C(®~1), and C(®) is isomorphic to C(®~1). Thus, C(®) and C(®) can be regarded as the
contigs and co-contigs graphs of ®~! as well.

The fully dynamic algorithm works while a series of vertex insert, vertex remove, edge
insert, and edge remove operations are executed. For each such operation, the corresponding
algorithms described in Sections 6 and 7 are executed on ® and ®~'. Suppose the following
operation to be executed is a vertex insertion. The vertex insertion algorithm described in
Section 6 makes use of end pointers, which are present in neither ® nor ®~!. Instead, if an
end pointer of B € B(®) needs to be accessed, then a function E? is executed with input B.
The output of E® is NULL if B is not an end block of I', while it is the other end block
of its contig otherwise. That is, E® emulates the behavior of the missing end pointer of B.
Note that B is an end block of ® if and only if B has degree at most 1 in C(®). Thus, E®
requires O(1) queries to C(®). In a similar manner we can implement functions CB® and
CE?® that emulate the corresponding co-bipartite and co-end pointers that are missing in ®.
Just observe that B is a co-end block of ® if it has degree at most 1 in C(®).

Besides accessing end pointers and co-end pointers, the incremental and decremental al-
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gorithms also transform ® by inserting and removing semiblocks, and by changing the order
of its semiblocks. It is not hard to see how to maintain the universal pointer of ®. On the
other hand, each time a near pointer of ® is modified, the contigs and co-contigs graphs may
have to be updated as well. However, each update of a near pointer of ® involves only O(1)
insertion and removal of edges and vertices in C(®) and C(®).

Only O(1) access to the end and co-end pointers and O(1) modifications of the near
pointers are applied by the incremental and decremental algorithms described in Sections
6 and 7. Therefore, by the discussions above, the main theorem of this article follows.

Theorem 8.1. The problem of deciding if a fully dynamic graph G is a PCA graph takes
O(logn) time per inserted or removed edge. Furthermore, the insertion and removal of a
vertexr v take O(dg(v) + logn) time each, while the problems of querying if two vertices of
G belong to the same component or if two vertices belong to the same co-component require
O(logn) time each.

9 Further remarks

In this article we presented an algorithm for the recognition of fully dynamic PCA graphs. The
algorithm is a generalization of the HSS algorithm because it has the same time bounds and
it can answer in O(1) time whether the dynamic graph is in fact a PIG graph. The bottleneck
for the recognition of both PIG and PCA graphs is an algorithm that solves the connectivity
problem on fully dynamic 2-degree graphs. Any improvement on the connectivity algorithm
gets immediately translated to an improvement on the recognition algorithm. Hell et al. [11]
proved that at least O(logn/(loglogn +logb)) amortized time per edge operation is required
to solve the fully dynamic recognition problem of PIG graphs, when the cell probe model of
computation with word-size b is used. Moreover, the connectivity problem on fully dynamic
PIG graphs has the same lower time bound. We conclude, therefore, that the recognition
algorithm presented in this paper in near-optimal.

The recognition algorithm of this article can be generalized so as to recognize another
interesting family of PCA graphs. A locally straight representation is a round representation
® such that ®|[F}(B), F-(B)] is straight, for every B € B(®). A locally straight graph is a
round graph that admits a locally straight representation. Similarly, a graph is a proper Helly
circular-arc (PHCA ) graph if it is isomorphic to G(®) for some locally straight representation
®. PHCA and locally straight graphs were introduced and motivated by Lin et al. in [21],
where a simple characterization in terms of round representations is given. A round repre-
sentation ® is locally straight if and only if F,.(F,.(B)) — B, for every B € B(®). Also, a
theorem analogous to Theorems 2.7 and 2.8 holds for locally straight graphs. That is, every
locally straight graph admits at most two locally straight representations, one the reverse of
the other. These results can be used to extend the recognition algorithm of PCA graphs so
that it can answer if the dynamic graph is PHCA in O(1) time. The details appear in [27].

In this article we did not discuss the certification problem associated with the recognition
of PCA graphs. The goal of a certified algorithm is to provide some piece of evidence showing
that the output of the algorithm is correct. Such an evidence is called a certificate. There are
two kinds of certificates in a recognition problem, namely positive and negative certificates.
The former are given when the output is YES, i.e. when the input graph belongs to the class,
whereas the latter are given when the output is NO, i.e. when the input graph does not belong
to the class. For instance, a certified algorithm for the recognition of PCA graphs could output
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round representations as positive certificates and forbidden induced subgraphs as negative
certificates. Several design issues related to the certification problem are discussed in [23]. The
DHH algorithm always outputs a positive certificate. Kaplan and Nussbaum [18] developed
an O(n+m) time algorithm that finds a negative certificate. Thus, the certification problem
for static graphs is somehow solved. However, the algorithm by Kaplan and Nussbaum is
not able to produce a forbidden induced subgraph of the input graph. We believe that our
algorithm can be extended so as to provide such certification for static graphs in O(n + m)
time. Moreover, we believe that it can even be extended so as to provide such certificates for
incremental graphs in O(1) time per inserted edge. To begin a research in this direction, it
could be useful to consider those places where the incremental recognition algorithm outputs
NO.
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