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Worst-Case Optimal Tree Layout in External Memory

Erik D. Demaine∗ John Iacono† Stefan Langerman‡

Abstract

Consider laying out a fixed-topology binary tree of N nodes into external memory
with block size B so as to minimize the worst-case number of block memory transfers
required to traverse a path from the root to a node of depth D. We prove that the
optimal number of memory transfers is







Θ

(
D

lg(1+B)

)

when D = O(lgN),

Θ




lgN

lg
(

1+B lgN
D

)



 when D = Ω(lgN) and D = O(B lgN),

Θ

(
D

B

)

when D = Ω(B lgN).

1 Introduction

Trees can have a meaningful topology in the sense that edges carry a specific meaning—such
as letters from an alphabet in a suffix tree or trie—and consequently nodes cannot be freely
rebalanced. Large trees do not fit in memory, so a natural problem is to lay out (store) a
tree on disk in a way that minimizes the cost of a root-to-node traversal.

The external-memory model [AV88] (or I/O model or Disk Access Model) defines a mem-
ory hierarchy of two levels: one level is fast but has limited size, M , and the other level is slow
but has unlimited size. Data can be transferred between the two levels in aligned blocks of
size B, and an algorithm’s performance in this model is the number of suchmemory transfers.
An external-memory algorithm may be parameterized by B and M .
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The general objective in a tree-layout problem is to store the N nodes of a static fixed-
topology tree in a linear array so as to minimize the number of memory transfers incurred
by visiting the nodes in order along a path, starting at the root of the tree and starting from
an empty cache. The specific goal in a tree-layout problem varies depending on the relative
importance of the memory-transfer cost of different root-to-node paths. (It is impossible to
minimize the number of memory transfers along every root-to-node path simultaneously.)

Tree-layout problems have been considered before. Clark and Munro [CM96] give a linear-
time algorithm to find an external-memory tree layout with the minimum worst-case number
of memory transfers along all root-to-leaf paths. Gil and Itai [GI99] give a polynomial-time
algorithm to find an external-memory tree layout with the minimum expected number of
memory transfers along a randomly selected root-to-leaf path, given a fixed independent
probability distribution on the leaves.

Our results. We consider the natural parameterization of the tree-layout problem by the
length D of the root-to-node path, i.e., the maximum depth D of the accessed nodes. We
characterize the worst-case number of memory transfers incurred by a root-to-node path in
a binary tree, over all possible values of these parameters, as







Θ

(

D

lg(1+B)

)

when D = O(lgN),

Θ




lgN

lg
(

1+B lgN

D

)



 when D = Ω(lgN) and D = O(B lgN),

Θ
(
D

B

)

when D = Ω(B lgN).

This characterization consists of an external-memory layout algorithm, and a matching
worst-case lower bound. In particular we show that the optimal cost does not depend on the
cache size M : our layout assumes a cache just big enough to store a single block (M = B),
while the lower bound applies to an arbitrary cache (provided each search operation starts
with an empty cache). The external-memory layout algorithm runs in O(N) time; the same
upper bound trivially also holds on the number of memory transfers. As in previous work,
we do not know how to guarantee a substantially smaller number of memory transfers during
construction, because on input the tree might be scattered throughout memory.

2 Upper Bound

Our layout algorithm consists of two phases. The first phase is simple and achieves the
desired bound for D = O(lgN) without significantly raising the cost for larger D. The
second phase is more complicated, particularly in the analysis, and achieves the desired
bound for D = Ω(lgN). Both phases run in O(N) time.
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2.1 Phase 1

The first part of our layout simply stores the first Θ(lgN) levels according to a B-tree
clustering, as if those levels contained a perfect binary tree. More precisely, the first block
in the layout consists of the ≤ B nodes in the topmost ⌊lg(B + 1)⌋ levels of the binary tree.
Conceptually removing these nodes from the tree leaves O(B) disjoint trees which we lay out
recursively, stopping once the topmost c lgN levels have been laid out, for any fixed c > 0.
All the data in this layout is stored contiguously; no extra space is left should the top levels
not form a complete tree.

This phase defines a layout for a subtree of the tree, which we call the phase-1 tree. The
remaining nodes form a forest of nodes to be laid out in the second phase. We call each tree
of this forest a phase-2 tree.

The number of memory blocks along any root-to-node path within the phase-1 tree, i.e.,
of length D ≤ c lgN , is Θ(D/ lg(B + 1)). More generally, any root-to-node path incurs a
cost of Θ(min{D, lgN}/ lg(B + 1)) within the phase-1 tree, i.e., for the first c lgN nodes.

2.2 Phase 2: Layout Algorithm

The second phase defines a layout for each phase-2 tree, i.e., for each tree of nodes not laid
out during the first phase.

For a node x in the tree, let w(x) be the weight of x, i.e., the number of nodes in
the subtree rooted at node x. Let ℓ(x) and r(x) be the left and right children of node x,
respectively. If x lacks a child, ℓ(x) or r(x) is a null node whose weight is defined to be 0.

For a simpler recursion, we consider a generalized form of the layout problem where the
goal is to lay out the subtree rooted at a node x into blocks such that the block containing
the root of the tree is constrained to have at most A nodes, for some nonnegative integer
A ≤ B, while all other blocks can have up to B nodes. This restriction represents the
situation when B −A nodes have already been placed in the root block (in the caller to the
recursion), so space for only A nodes remains.

Our algorithm chooses a set K(x,A) of nodes to store in the root block by placing the
root x and dividing the remaining A−1 nodes of space among the two children subtrees of x
proportionally according to weight. More precisely, K(x,A) is defined recursively as follows:

K(x,A) =







∅ if A < 1,
{x} ∪K[ℓ(x), (A− 1) · w(ℓ(x))/w(x)]

∪K[r(x), (A− 1) · w(r(x))/w(x)] otherwise.

Because w(x) = 1 + w(ℓ(x)) + w(r(x)), |K(x,A)| ≤ A. Also, for A ≥ 1, K(x,A) always
includes the root node x itself.

At the top level of recursion, the algorithm creates a root block K(r, B), where r is the
root of the phase-2 tree T , as the first block in the layout of that tree T . Then the algorithm
recursively lays out the trees in the forest T −K(r, B), starting with root blocks of K(r′, B)
for each child r′ of a node in K(r, B) that is not in K(r, B).
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2.3 Phase 2: Analysis

Within this analysis, let D2 denote the depth of the path within the phase-2 tree T of the
path under consideration (Θ(lgN) less than the global notion of D). Define the density d(x)
of a node x to be w(x)/w(r) where r is the root of the phase-2 tree T . In other words, the
density of x measures the fraction of the entire tree within the subtree rooted at the node x.
Let Tx denote the subtree rooted at x.

Consider a (downward) root-to-node path x0, x1, . . . , xk where x0 is the root of the tree.
Define di = d(xi) for 0 ≤ i ≤ k, and define qi = di/di−1 for 1 ≤ i ≤ k. Thus di =
d0q1q2 · · · qi = q1q2 · · · qi because d0 = 1. If xk is in the block containing the root x0, then
the number mk of nodes from Txk

that the algorithm places into that block is given by the
recurrence

m0 = B

mk = (mk−1 − 1)qk

which solves to

mk = ((···(((
︸ ︷︷ ︸

k

B − 1)q1 − 1)q2 − 1)q3 · · · − 1)qk−1 − 1)qk

= (Bq1q2 · · · qk)− (q1q2 · · · qk)− (q2q3 · · · qk)− · · · − (qk−1qk)− (qk)

= Bdk − dk −
dk
d1

− · · · −
dk
dk−2

−
dk
dk−1

.

This number is at least 1 precisely when there is room for xk in the block containing the
root x0. Thus, if xk is not in the block containing the root x0, then we must have the
opposite:

Bdk − dk −
dk
d1

− · · · −
dk
dk−2

−
dk
dk−1

< 1,

i.e.,

dk +
dk
d1

+ · · ·+
dk
dk−2

+
dk
dk−1

> Bdk − 1.

Because d0 ≥ d1 ≥ · · · ≥ dk, each term dk/di on the left-hand side is at most 1, so the
left-hand side is at most k. Therefore k > Bdk − 1.

Let costB(N,D2) = cost(N,D2) denote the number of memory blocks of size B visited
along a worst-case root-to-node path of length D2 in a tree of N nodes laid out according
to our algorithm. Certainly cost(N,D2) is nondecreasing in N and D2. Suppose the root-
to-node path visits nodes in the order x0, x1, . . . , xk, . . ., with xk being the first node outside
the block containing the root node. By the analysis above,

cost(N,D2) = cost(Ndk, D2 − k) + 1

≤ cost(Ndk, D2 − dkB + 1) + 1.

This inequality is a recurrence that provides an upper bound on cost(N,D2). The base
cases are cost(1, D2) = 1 and cost(N, 0) = 1. In the remainder of this section, we solve this
recurrence.
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Define xk0 , xk1 , xk2, . . . , xkt to be the first node within each memory block visited along
the root-to-node path. Thus, xkj is the root of the subtree formed by the jth block, so xk0

is the root of the tree, and k1 = k. As before, define dkj = d(xkj ). Now we can expand the
recurrence t times:

cost(N,D2) ≤ cost

(

N
t∏

i=1

dki, D2 − B
t∑

i=1

dki + t

)

+ t.

So the cost(N,D2) recursion terminates when

t∏

i=1

dki ≤
1

N
or

t∑

i=1

dki ≥
D2 + t

B
,

whichever comes first. Because t ≤ D2, the recursion must terminate once

t∏

i=1

dki ≤
1

N
or

t∑

i=1

dki ≥
2D2

B
,

whichever comes first.
Our goal is to find an upper bound on the maximum value of t at which the recursion

could terminate, because t+1 is the number of memory transfers incurred. Define p to be the
average of the dki’s, (dk1 + · · ·+ dkt)/t. In the termination condition, the product

∏t
i=1 dki

is at most
∏t

i=1 p because the product of terms with a fixed sum is maximized when the
terms are equal; and the sum

∑t
i=1 dki is equal to

∑t
i=1 p. Thus, the following termination

condition is satisfied no earlier than the original termination condition:

t∏

i=1

p ≤
1

N
or

t∑

i=1

p ≥
2D2

B
.

Therefore, by obtaining a worst-case upper bound on t with this termination condition, we
also obtain a worst-case upper bound on t with the original termination condition.

Now the cost(N,D2) recursion terminates when

pt ≤
1

N
or tp ≥

2D2

B
,

i.e., when

t ≥
lgN

lg(1/p)
or t ≥

2D2

Bp
,

Thus we obtain the following upper bound on the number of memory transfers along this
path:

t+ 1 ≤ min

{

lgN

lg(1/p)
,
2D2

Bp

}

+ 2.

Maximizing this bound with respect to p gives us an upper bound irrespective of p. The
maximum value is achieved in the limit when either p = 0, p = 1, or the two terms in the min
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are equal. As p → 0, the bound converges to 0, so this is never the maximum. As p → 1, the
bound converges to 2D2/B. The two terms in the min are equal when, by cross-multiplying,

Bp lgN = 2D2 lg(1/p), (1)

i.e.,
1

p
lg

1

p
=

B lgN

2D2

,

or asymptotically

1

p
= Θ





B lgN

D2

lg
(

2+B lgN

D2

)



 . (2)

In this case, the min terms are

Θ




lgN

lg
(

2+B lgN

D2

)



 .

Therefore, the upper bound is

max






O




lgN

lg
(

2+B lgN

D2

)



 ,
D2

B






,

or

O




lgN

lg
(

2+B lgN

D2

) +
D2

B



 .

2.4 Putting It Together

The total number of memory transfers is the sum over the first and second phases. If
D ≤ c lgN , only the first phase plays a role, and the cost is O(D/ lg(B +1)). If D > c lgN ,
the cost is the sum

O




c lgN

lg(B + 1)
+

lgN

lg
(

2+ B lgN

D−c lgN

) +
D − c lgN

B



 ,

which is at most

O




c lgN

lg(B + 1)
+

lgN

lg
(

2+B lgN

D

) +
D

B



 .

Because D = Ω(lgN), the denominator of the second term is at most lg(B + 1), so the first
term is always at most the second term up to constant factors. Thus we focus on the second
and third terms. If D = X lgN , then the second term is O((lgN)/ lg(2 + B/X)) and the
third term is O((X lgN)/B) = O((lgN)/(B/X)). For X = O(B), the second term divides
lgN by Θ(lg(B/X)), while the third term divides lgN by Θ(B/X). Thus the second term
is larger up to constant factors for X = O(B). For X = Ω(B), the second term is O(lgN),
while the third term is O((X/B) lgN), which is larger up to constant factors.

In summary, the first term dominates when D = O(lgN), the second term dominates
when D = Ω(lgN) and D = O(B lgN), and the third term dominates when D = Ω(B lgN).
Therefore we obtain the following overall bound:
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Theorem 1 Given B and a fixed-topology tree on N nodes, we can compute in O(N) time

an external-memory tree layout with block size B in which the number of memory transfers

incurred along a root-to-node path of length D is

O





















D

lg(1+B)
when D = O(lgN)

lgN

lg
(

1+B lgN

D

) when D = Ω(lgN) and D = O(B lgN)

D

B
when D = Ω(B lgN)















.

3 Lower Bound

3.1 Convexity

First we describe a useful structural property that can be assumed without loss of generality
of the worst-case optimal tree layout. A layout is convex if every block contains a (possibly
empty) contiguous subpath of any root-to-node path in the tree. Any convex layout is
insensitive to the cache size M (assuming M ≥ B), because once a root-to-node path leaves
a block, it never returns to that block; thus, the memory-transfer cost equals the number of
distinct blocks along the path.

We prove that there exists a convex worst-case optimal tree layout. Our proof mimics the
analogous result for minimizing the expected cost of a root-to-node path [GI99, Lemma 3.1].

First we need some terminology. Define the contiguity of a node x to be the number of
nodes in the tree that are reachable from x while remaining within the block containing x
(i.e., the size of x’s connected component in the subgraph induced by the block containing x).
Define the contiguity signature of a tree layout to be the sequence of contiguities of the nodes
of the tree in a consistent order that visits ancestors before descendants (e.g., pre-order or
left-to-right breadth-first search).

We claim that the worst-case optimal tree layout with the lexically maximum contiguity
signature is convex. For any root-to-node path x1, x2, . . . , xn, suppose to the contrary that
xi and xj (i < j) are stored in the same block, but xi+1 is not. Then we modify the
layout by swapping xi+1 and xj (moving xi+1 to the same block as xi, and moving xj to
the block previously containing xi+1). This modification can only reduce the set of distinct
blocks visited by any root-to-node path, as xi+1 now always gets visited for free after xi,
and any root-to-node path visiting xj also visits xi+1 so visits the same set of blocks as
before the swap. Therefore the layout remains optimal, while changing the contiguity vector
in two ways. First, we increment the contiguity of xi (and some other nodes). Second,
we decrement the contiguity of xj and reachable nodes in the same block, so they must
all be descendants of xi+1. Thus the new layout has a lexically larger contiguity signature,
contradicting maximality.
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1/p

lg(1/p)

pB

Figure 1: The recursive lower-bound construction: a complete binary tree with 1/p leaves
attached to 1/p paths of length pB, each attached to a recursive construction.

3.2 Construction

Now we proceed to the lower-bound construction. For D ≤ lg(N + 1), the perfectly bal-
anced binary tree on N nodes gives a worst-case lower bound of Ω(D/ lgB) memory trans-
fers [NGV96, Theorem 7]. For all D, any root-to-node path of length D requires at least
D/B memory transfers just to read the D nodes along the path. Thus we are left with
proving a lower bound for the case when D = Ω(lgN) and D = O(B lgN).

The following lower-bound construction essentially mimics the worst-case behavior pre-
dicted in Section 2.3. We choose p to be the solution to Equation 1, i.e., so that it satisfies
Bp lgN = D lg(1/p). Because D = Ω(lgN), this equation implies that

Bp = Ω(lg(1/p)). (3)

The asymptotic solution for 1/p is given by Equation 2:

1

p
= Θ





B lgN

D

lg
(

2+B lgN

D

)



 .

Using this value of p, we build a tree of slightly more than B nodes, as shown in Figure 1,
that partitions the space of nodes into 1/p fractions of p. We repeat this tree construction
recursively in each of the children subtrees, stopping at the height that results in N nodes.

Consider any convex external-memory layout of the tree. Because each tree construction
has more than B nodes, it cannot fit in a block. Thus, every tree construction has at least
one node that is not in the same block as the root. By convexity, for any k ≤ logB N , there
is a root-to-node path that incurs at least k memory transfers by visiting k distinct blocks
in k tree constructions. Such a path has length D = O(k [pB + lg(1/p)]), which is O(kpB),
by Equation 3. Therefore

k = Ω

(

D

pB

)

= Ω




lgN

lg
(

2+B lgN

D

)



 .
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Theorem 2 For any values of N , B, and D, there is a fixed-topology tree on N nodes in

which every external-memory layout with block size B incurs

Ω





















D

lg(1+B)
when D = O(lgN)

lgN

lg
(

1+B lgN

D

) when D = Ω(lgN) and D = O(B lgN)

D

B
when D = Ω(B lgN)















memory transfers along some root-to-node path of length D.

4 Alternate Models

There are several possible variations on the model considered here. We assume that every
traversal follows a root-to-leaf path, following child pointers from one node to the next. In
this model, it does not make sense to store a node in more than one block, because there is
only one way to reach each node, so only one copy could ever be visited. However, if we allow
multiple versions of a pointer that lead to different copies of a node, we could imagine doing
better—indeed, with unlimited space, we can easily achieve O(D/B) search cost by storing
a different tree for every possible leaf. An interesting open problem would be to characterize
the trade-off between space and search cost.

The String B-Tree data structure [FG99] also seeks to support efficient tree operations in
external memory for the purpose of implementing various string operations. The performance
of their structure is identical to our bounds as stated in Theorem 2 in the two extreme
ranges, but outperforms ours slightly in the middle range. This difference comes from a
further difference in model: the string B-tree effectively stores pointers from nodes to deep
descendants, not just children, allowing a traversal to effectively skip some nodes along the
root-to-node path. Our results show that such a change in model is necessary to achieve
their runtime.
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