
A fast parallel algorithm for minimum-cost small
integral flows

Andrzej Lingas1 and Mia Persson2

1 Department of Computer Science, Lund University, 22100 Lund, Sweden.
Andrzej.Lingas@cs.lth.se. Fax +46 46 13 10 21

2 Department of Computer Science, Malmö University, 205 06 Malmö, Sweden.
mia.persson@mah.se

Abstract. We present a new approach to the minimum-cost integral
flow problem for small values of the flow. It reduces the problem to the
tests of simple multi-variable polynomials over a finite field of characteris-
tic two for non-identity with zero. In effect, we show that a minimum-cost
flow of value k in a network with n vertices, a sink and a source, integral
edge capacities and positive integral edge costs polynomially bounded
in n can be found by a randomized PRAM, with errors of exponentially
small probability in n, running in O(k log(kn)+log2(kn)) time and using
2k(kn)O(1) processors. Thus, in particular, for the minimum-cost flow of
value O(logn), we obtain an RNC2 algorithm.

1 Introduction

The maximum network flow problem is a well known fundamental problem in
algorithms and optimization with plenty of important applications [1, 7, 8, 16].
It is known to be P -complete even in its integral version provided that the edge
capacities are exponentially large in the size of the network [13]. The minimum-
cost flow problem is a well known important generalization of the maximum flow
problem [1, 8, 10, 16]. The objective is to compute a maximum flow of minimum
cost in a directed graph where each edge is assigned a cost. For a flow f in a
directed graph (V,E), the cost of f is simply

∑
e∈E f(e)cost(e).

The prospects for designing a fast and processor efficient parallel algorithm,
in particular an NC algorithm [19], for maximum integral flow or minimum-cost
integral flow are small. The fastest known parallel implementations of general
maximum flow and/or minimum-cost flow algorithms achieve solely a moderate
speed up and still run in Ω(nα) time, where α is a positive constant, see [2, 12].

The situation changes when the edge capacities or the supply of flow as well
as edge costs are substantially bounded. For example, if the edge capacities
and edge costs are bounded by a polynomials in n, both problems admit RNC
algorithms. Then, the maximum integer flow problem admits even an RNC2

algorithm [17, 18, 20] while the minimum-cost integer flow problem admits an
RNC3 algorithm [18]. At the heart of the aforementioned RNC solutions is
the randomized method of detecting a perfect matching by randomly testing
Edmonds’ multi-variable polynomials for non-identity with zero [6, 14, 17, 20].

ar
X

iv
:1

21
0.

03
40

v1
 [

cs
.D

C
]

 1
 O

ct
 2

01
2

When the flow supply is relatively small, e.g., logarithmic in the size of the
network or a poly-logarithmic one, then just an NC implementation of the basic
phase in the standard Ford-Fulkerson method [1, 7–9, 16] yields an NC algorithm
(NC3 when the supply is logarithmic) for maximum integer flow that can be
extended to an NC algorithm for minimum-cost integer flow (when edge costs
are polynomially bounded). The number of processors used corresponds to that
required by a shortest path computation.

In this paper, we present a new approach to the minimum-cost integral flow
problem for a small value k of the flow. We directly associate a simple polynomial
over a finite field with the corresponding problem of the existence of k mutually
vertex disjoint paths of bounded total length, connecting two sets of k terminals
in a directed graph. By using the idea of monomial cancellation, the latter prob-
lem reduces to testing the polynomial over a finite field of characteristic two for
non-identity with zero. We combine the DeMillo-Lipton-Schwartz-Zippel lemma
[5, 21] on probabilistic verification of polynomial identities with parallel dynamic
programming to perform the test efficiently in parallel. Additionally, we use the
isolation lemma to construct the minimum-cost flow [17, 20].

In effect, we infer that a minimum-cost flow of value k in a network with n
vertices, a sink and a source, integral edge capacities and positive integral edge
costs polynomially bounded in n can be found by a randomized PRAM, with
errors of exponentially small probability in n, running in O(k log(kn)+log2(kn))
time and using 2k(kn)O(1) processors. Thus, in particular, for the minimum-cost
flow of value O(log n), we obtain an RNC2 algorithm.

Related work. For the RNC algorithms for the related problem of minimum-
cost perfect matching see [14, 17, 20]. For the comparison of time and substantial
processor complexities of prior RNC algorithms for the minimum-cost flow see
page 7 in [18]. The fastest of the reported algorithms is not an RNC2 one even
when the flow supply and thus the edge capacities are logarithmic in the size of
the network. The idea of associating a polynomial over a finite field to the sought
structure has been already used by Edmonds to detect matching [6] and then in
several papers presenting RNC algorithms for perfect matching construction [14,
17, 20]. It appears in several recent papers that also exploit the idea of monomial
cancellation [3, 4, 15, 22].

Organization. In the next section, we comment briefly on the basic notation
and the model of parallel computation used in the paper. In Section 3, we derive
our fast randomized parallel method for detecting the existence of k mutually
vertex disjoint paths of bounded total length connecting two sets of k terminals
in a directed graph. In Section 4, we generalize the method to include edge
costs which enables us to replace the total length bound with the total cost one.
In section 5, we show a straightforward reduction of the minimum-cost integer
flow problem parametrized by the flow value to the corresponding disjoint paths
problem which enables us to derive our main result on detecting minimum-cost
small flows in parallel.

2 Terminology

For a natural number n, we let [n] denote the set of natural numbers in the
interval [1, n]. The cardinality of a set A will be denoted by |A|.

We assume the standard definitions of flow and flow value in a network
(directed graph) with integral edge capacities, a distinguished source vertex s
and a distinguished sink vertex t (e.g., see [7]) .

For the definitions of parallel random access machines (PRAM), the classes
NC and RNC and the corresponding notions of NC and RNC algorithms, the
reader is referred to [19].

The characteristic of a ring or a field is the minimum number of 1 in a sum
that yields 0. A finite field with q elements is often denoted by Fq.

3 Connecting vertex-disjoint paths

It is well known that the maximum integral network flow problem with bounded
edge capacities corresponds to a disjoint path problem (cf. [7]). In Section 5, we
provide an efficient parallel reduction of the minimum-cost integral flow problem
parametrized by the flow value to a parametrized disjoint path problem. This
section is devoted to a derivation of a fast randomized parallel method for the
decision version of the parametrized path problem.

Let L = (V,E) be a network in a form of a directed graph with n vertices,
among them a distinguished set X = {x1, ..., xk} of k source vertices and a
disjoint distinguished set Y = {y1, ..., yk} of k sink vertices.

A walk in L is a sequence of vertices v1, v2, ..., vl of L such that for j =
1, ..., l−1, (vj , vj+1) ∈ E, v1 is in X, v2, ..., vl−1 are in V \(X∪Y), vl is in Y. The
length of the walk is l−1. In other words, a walk is just a (not necessarily simple)
path starting from a vertex in X, having intermediate vertices in V \ (X ∪ Y),
and ending at a vertex in Y.

A proper set S of walks in L is a set W of k walks of total length ≤ k(n− 1),
each with a distinct start vertex in X and a distinct end vertex in Y.

A signature of a proper set S of walks is the pair (i, j) that is smallest in
lexicographic order such that the two walks that start at xi and xj respectively
intersect, and the first intersection vertex of these two walks is the first intersec-
tion vertex of the walk starting from xi with any walk in S.

Note that walks in S are pairwise vertex disjoint iff the signature of S is not
defined.

We define the transformation φ on S as follows. If S has the signature (i, j)
then φ switches the suffix of the walk starting at xi with that of the walk starting
at xj at the first intersection vertex of these two walks. See Fig. 1. Otherwise,
if the signature of S is not defined then φ is an identity on S.

Observe that if the signature of S is defined then φ(S) has the same signature
as S and φ(S) 6= S. The first observation is immediate. To show the second one
it is sufficient to note that φ(S) = S holds iff φ transforms the two walks which

Fig. 1. An example of a proper set S of walks and the companion proper set φ(S) of
walks.

yield the signature of S onto themselves. The latter is however impossible since
they have different start vertices and different end vertices. Note also that the
walks in φ(S) have the same total length as those in S.

It follows that φ is an involution on sets of proper walks of total length l,
i.e., φ(φ(S)) = S holds for any proper set S of walks of total length l.

For the network L and l ∈ [k(n−1)], let FL,l be the family of all proper sets of
k walks of total length ≤ l in L. Assign a distinct variable xe to each edge e in L.
For a walk W ∈ FL,l, let MW be the monomial, where xe has multiplicity equal
to the number of occurrences of e in W. Next, let QL,l denote the polynomial∑
S∈FL,l

∏
W∈SMW .

Lemma 1. For the network L and l ∈ [k(n − 1)], there is a proper set of k
mutually vertex-disjoint walks of total length ≤ l in L iff QL,l is not identical to
zero over a field of characteristic two.

Proof. FL,l can be partitioned into the family F 1
L,l of sets S of walks such that

φ(S) = S and the family F 2
L,l of sets S of walks such that φ(S) 6= S. The

polynomial
∑
S∈F 2

L,l

∏
W∈SMW is identical to zero over a field of characteris-

tic two since for each S ∈ F 2
L the monomials

∏
W∈SMW and

∏
W∈φ(S)MW

contain equal multiplicities of the same variables and φ(φ(S)) = S so S and
φ(S) can be paired. On the other hand, since each set S of walks in F 1

L,l consist
of mutually vertex-disjoint walks, the monomials

∏
W∈SMW in the polynomial∑

S∈F 1
L,l

∏
W∈SMW are in one-to one correspondence with S and thus are unique

provided that the walks in S are simple paths. Now, it is sufficient to observe that
mutually vertex-disjoint walks can be always trivially pruned to corresponding
mutually vertex-disjoint simple paths.

ut

To warm up, we prove the following lemma on sequential evaluation of QL.

Lemma 2. QL,l can be evaluated for a given assignment of values over a field
F2O(logn) of characteristic two in O(k3n4 + 2kk4n3) time.

Proof. For B ⊂ Y, l ∈ [(n − 1)|B|], we consider the family Wl(B) of all sets S
consisting of |B| walks connecting |B| distinct sources in {x1, ..., x|B|} with the
|B| distinct sinks in B so that the total length of the walks is exactly l. Next,
we define the polynomial Qp(B) as

∑
S∈Wl(B)

∏
W∈SMW . Note that QL,l =∑l

p=kQp(Y) and l ≤ nk.
On the other hand, for p ∈ [k(n− 1)], x ∈ X and z ∈ V \X, we consider the

set Wp(x, z) of walks of length p in L that start at x and end at z. Let Qp(x, z)
be the polynomial

∑
W∈Wp(x,z)

MW .
We have the following recurrence for a nonempty subset B of Y and p ∈

[|B|(n− 1)] :

Qp(B) =
∑
y∈B

∑
q∈[|B|(n−1)−|B|+1]

Qp−q(B \ {y})Qq(x|B|, y).

Next, we have also the following recurrence for x ∈ X, z ∈ V \ X, and
q ∈ [k(n− 1)] :

Qq(x, z) =
∑

u∈V \(X∪Y)&(u,z)∈E

Qq−1(x, u)x(u,z).

We have also Q1(x, z) = x(x,z) if (x, z) ∈ E, and otherwise Q1(x, z) = 0. Con-
sequently, we can evaluate all the polynomials Qq(x, z) by the second recurrence
in O(k2n3) time.

Now, by using the first recurrence and setting Qp(∅) to 1 in the field, we can
evaluate all the polynomials Qp(B) in the increasing order of the cardinalities
of B in O(2kk3n2) time.

By QL,l =
∑l
p=kQp(Y) and l ≤ nk, we conclude that QL,l can be evaluated

in O(k3n4 + 2kk4n3) time.
ut

We can partially parallelize the sequential evaluation of QL,l in order to
obtain the following lemma.

Lemma 3. QL,l can be evaluated for a given assignment of values over a field
F2O(logn) of characteristic two in O(k log n + log2 n) time by a CREW PRAM
using O(k2n5 + 2kk4n3) processors.

Proof. We generalize the definition of the set Wq(x, z) and the corresponding
polynomial Qq(x, z) to include arbitrary start vertex x ∈ V \ Y , requiring z ∈
V \ X as previously. Then, we can evaluate Qq(x, z) =

∑
W∈Wl(x,z)

MW for

x ∈ V \ Y and z ∈ V \X, for q ∈ [k(n− 1)] by the following standard doubling
recurrence for q ≥ 2 :

Qq(x, z) =
∑

y∈V \(X∪Y)

Qdq/2e(x, y)Qbq/2c(y, z)

At the bottom of the recursion, we have Q1(x, z) = x(x,z) if (x, z) ∈ E,
otherwise Q1(x, z) = 0. It follows that all Qq(x, z) for x ∈ V \Y , z ∈ V \X, and
q ∈ [k(n − 1)] can be evaluated in a bottom-up manner in O(log2 n) time by a
CREW PRAM using O(kn4) processors.

Recall the first recurrence from the proof of Lemma 2. When the polynomials
Qq(xi, yj) for xi ∈ X and yi ∈ Y are evaluated, we can evaluate in turn the
polynomials Qp(B), where B ⊂ Y, p ∈ [|B|(n− 1)] in k phases in the increasing
order of the cardinalities of B by this recurrence. It can be done in O(k(log k +
log n)) = O(k log n) time by a CREW PRAM using 2kk3n2 processors.

By QL,l =
∑l
p=kQp(Y), l ≤ nk, and k ≤ n, we conclude that QL,l can be

evaluated in O(k log n+log2 n) time by a CREW PRAM using O(k2n5+2kk4n3)
processors.

ut

The following lemma on polynomial identities verification has been shown
independently by DeMillo and Lipton, Schwartz, and Zippel.

Lemma 4. [5, 21] Let Q(x1, x2, ..., xm) be a nonzero polynomial of degree d over
a field of size r. Then, for f1, f2, ...,fm chosen independently and uniformly at
random from the field, the probability that Q(f1, f2, ..., fm) is not equal to zero
is at least 1− d

r .

Note that the polynomial QL,l is of degree l not larger than k(n−1) ≤ n2. We
can use Lemma 4 with a field F2c logn of characteristic two to obtain a randomized
test of the polynomial QL,l for not being identical to zero with one side errors.
For sufficiently large constant c, the one side errors are of probability not larger
than a constant smaller than 1. By performing O(n) such independent tests, the
probability of one side errors can be decreased to exponentially small in n one.

By Lemma 3, the series of the tests can be performed in O(k log n+ log2 n)
time by a PRAM using O(k2n6 + 2kk4n4) processors. By Lemma 1, these tests
verify if there is a proper set of mutually vertex-disjoint walks of total length
≤ l in the network L. The latter in turn is equivalent to the existence of k
mutually vertex-disjoint paths of total length ≤ l connecting X with Y in L by
the definition of a proper set of walks in L. Hence, observing that each walk can
be trivially pruned to a simple directed path with the same endpoints, we obtain
our main result.

Theorem 1. The problem of whether or not there is a set of k mutually vertex-
disjoint simple directed paths of total length ≤ l connecting X with Y in the
network L can be decided by a randomized CREW PRAM, with one-sided errors
of exponentially small probability in n, running in O(k log n + log2 n) time and
using O(k2n6 + 2kk4n4) processors.

4 Vertex-disjoint connecting paths of bounded cost

In this section, we shall consider a more general situation where there are a
positive integer C and a cost function c assigning to each of the m edges e in

the network L a cost c(e) ∈ [C]. The cost of a walk or a path is simply the sum
of the costs of the edges forming it (the cost of an edge is counted the number
of times it appears on the walk or path). We would like to detect a proper set
of k walks in L that achieves the minimum cost.

For this reason, we consider the following generalization of the polynomial
QL,l. For U ∈ [mC], let HL,U be the set of all proper sets of walks in the
edge-costed network L that have total cost not greater than U. Next, for a walk
W in L, as previously, let MW be the monomial which is the product of xe
over the occurrences of edges e on W. The polynomial CQL,U is defined by∑
S∈HL,U

∏
W∈SMW .

By using the proof method of Lemma 1, we obtain the following counterpart
of this lemma for CQL,U .

Lemma 5. For the edge-costed network L, there is a proper set of k mutually
vertex-disjoint walks of total cost ≤ U in L iff CQL,U is not identical to zero
over a field of characteristic two.

Next, we obtain the following counterpart of Lemma 3 for CQL,U .

Lemma 6. CQL,U can be evaluated for a given assignment f of values over a
field F2O(logn) of characteristic two in O(k log(Cn)+log2(Cn)) time by a PRAM
using O(k2C5n10 + 2kk4C3n6) processors.

Proof. The proof reduces to that of Lemma 3. We replace each directed edge e
of cost c(e) ∈ [C] in the network L by a directed path of length c(e) introducing
c(1) − 1 additional vertices. With each edge on such a path, we associate a
variable. We assign f(xe) to the variable associated with the first edge on the
path replacing e, and just 1 of the field to the variables associated with the
remaining edges on the path.

The resulting network L′ is of size O(Cn2). Let HL′,U be the family of all
proper sets of k walks of total cost ≤ U in the network L′. We can evaluate
the polynomial QL′,U =

∑
S∈HL′,U

∏
W∈SMW in parallel analogously as QL,l in

the proof of Lemma 3. It remains to observe that the value of CQL,U under the
assignment f is equal to that of QL′,U under the aforementioned assignment. ut

Now, we are ready to derive our main result in this section.

Theorem 2. The minimum cost of a set of k mutually vertex-disjoint simple
directed paths connecting X with Y in the network L with edge costs in [C] can
be computed by a randomized CREW PRAM, with errors of exponentially small
probability in n, running in O(k log(Cn)+log2(Cn)) time and using O(k2C6n13+
2kk4C4n9) processors.

Proof. The minimum cost of the sought set of vertex-disjoint paths is in [Cn2].
Hence, by Lemma 5, it is sufficient to test the polynomials CQL,U for non-
identity with zero for all U ∈ [Cn2] in parallel. By applying Lemmata 4 and 6 in
a manner analogous to the proof of Theorem 1, we conclude that it can be done
by a randomized CREW PRAM, with one-sided errors of exponentially small in
n probability, running in O(k log(Cn) + log2(Cn)) time and using
O(Cn2 × n× (k2C5n10 + 2kk4C3n6)) processors. ut

5 Finding vertex-disjoint connecting paths

A straightforward approach of extending our randomized parallel method for
deciding if there is a proper set of k mutually vertex-disjoint walks (of a bounded
total cost) between two sets of vertices of cardinality k to include the finding
variant could be roughly as follows. In parallel, for each k-tuple of respective
neighbors of the k start vertices in X, replace the set of start vertices by the
k-tuple and apply our method recursively to the resulting network. If the test is
positive, the first edges on the walks are known, and we can iterate the method.
The problem with this approach is that its recursive depth is proportional to the
maximum length of a walk in the resulting set of mutually vertex-disjoint walks
between X and Y.

Also, it is not clear how one could implement a straightforward divide-and-
conquer approach of guessing intermediate vertices in order to find a set of k
mutually-vertex disjoint walks of a given cost efficiently in parallel.

We need more advanced methods to obtain a very fast parallelization of the
finding variant. We shall modify the edge cost in the network L in order to use
the so called isolation lemma in a manner analogous to the RNC method of
finding a perfect matching given in [20].

Lemma 7. (The isolation lemma [20]). Let F be a family of subsets of a set
with q elements and let r be a non-negative integer. Suppose that each element s
of the set is independently assigned a weight w(s) uniformly at random from [r],
and the weight of a subset S in F is defined as w(S) =

∑
x∈S w(x). Then, the

probability that there is a unique set in F of minimum weight is at least 1− q
r .

Corollary 1. For each of the m edges e in the network L, modify its cost c(e) to
c′(e) = c(e)rm+w(e), where the weight w(e) is drawn uniformly at random from
[r]. Then, the probability that there is a unique minimum-cost set of mutually
vertex-disjoint paths connecting X with Y in the edge weighted network L is at
least 1− m

r .

Proof. To use the isolation lemma, let the underlying set to consist of all edges in
the network L. Next, note that a set of mutually vertex-disjoint paths connecting
X with Y achieving a minimum cost consists of simple paths and thus it can
be identified with the set of edges on the paths. Let P be the family of all sets
of mutually vertex-disjoint simple paths connecting X with Y in the network
L. By the setting of new costs c′(e), solely those sets in P that achieved the
minimum cost, say D, under the original costs c(e) can achieve a minimum cost
under the new costs c′(e). So, we can set F to the aforementioned sub-family
of P , and define the weight of a set of k paths in F as the sum of the weights
w(e) of the edges e on the paths in this set in order to use the isolation lemma.
By the isolation lemma, there is a unique set S in F that achieves the minimum
weight w(S) with the probability at least 1− m

r . The corollary follows since each
set S in F has the cost c′(S) equal to D + w(S). ut

Throughout the rest of this section, we shall assume that each of the m edges
e in the network L is assigned the cost c′(e) as in Corollary 1 and that r ∈ [nO(1)].

Suppose that we know the minimum cost of a set of k mutually vertex-disjoint
paths connecting X with Y in the network L with the edge costs indicated, and
such a minimum-cost set is unique. Then, it is sufficient to show that we can test
quickly in parallel if the network L with an arbitrary edge removed still contains
a set of k mutually vertex-disjoint paths connecting X with Y that achieves the
minimum cost. By performing the test for each edge of L in parallel, we can
determine the set of edges forming the unique minimum-cost set of k mutually
vertex-disjoint paths connecting X with Y .

To carry out these tests, we need to generalize the polynomial CQL,U to a
polynomial CPL,e,U , where e is an edge in L and U is a cost constraint from
[mr(mC + 1)] = [CnO(1)]. Let HL,e,U be the family of all proper sets of k walks
in the network L with the edge e removed that have total at most U. (In the
total cost of a set of walks, we count the cost of an edge the number of times
equal to the sum of the multiplicities of the edge in the walks.)

As in the definition of QL,l assign a distinct variable xe to each edge e in L,
and for a walk W ∈ HL,e,W , let MW be the monomial, where xe has multiplicity
equal to the number of occurrences of e in W. The polynomial CPL,e,U is defined
by

∑
S∈HL,e,W

∏
W∈SMW .

By using the proof method of Lemma 1, we obtain the following counterpart
of this lemma for CPL,e,U .

Lemma 8. For the edge-costed network L with m edges, edge e, and U ∈
[CnO(1)], there is a proper set of k mutually vertex-disjoint walks of total cost
≤ U in the network L with the edge e removed iff CPL,e,U is not identical to
zero over a field of characteristic two.

Next, we obtain the counterpart of Lemma 3 for CPL,e,U following the proof
of Lemma 6.

Lemma 9. CPL,e,U can be evaluated for a given assignment of values over a
field F2O(logn) of characteristic two in O(k log(Cn)+log2(Cn)) time by a PRAM
using 2k(kCn)O(1) processors.

Now, we are ready to derive our main result in this section.

Theorem 3. There is a randomized PRAM returning almost certainly (i.e.,
with probability at least 1− 1

nα , where α ≥ 1) a minimum-cost set of k mutually
vertex-disjoint paths connecting X with Y in the network L with the original
edge costs in [C] (iff such a set exists) in O(k log(Cn) + log2(Cn)) time using
2k(kCn)O(1) processors.

Proof. We set r to, say, n2m, and specify the new edge costs c′(e) in the network
L drawing the weights w(e) uniformly at random from [r] as in Corollary 1. Next,
for each U ∈ [mr(mC+1)] = [CnO(1)], we proceed in parallel as follows. For each
edge e of the network L, we test the polynomial CPL,e,U for the non-identity
with zero by using Lemma 4 and Lemma 9 (we can perform a linear in n number
of such tests in parallel in order to decrease the probability of the one-sided error

to an exponentially small one). Next, we verify if the edges that passed the test
positively yield a set of k mutually vertex-disjoint paths connecting X with Y .
For example, it can be done by checking for each endpoint of the edges outside
X ∪ Y if it is shared by exactly two of the edges, and then computing and
examining the transitive closure of the graph induced by the edges (see [19]). If
so, we save the resulting set of paths of total (new) cost ≤ U. By Corollary 1,
there is a U ∈ [CnO(1)] for which the above procedure will find such a set of
paths that achieves the minimum (original) cost with probability at least 1− 1

n .
ut

6 Minimum-cost logarithmic integral flow is in RNC2

The following lemma is a straightforward generalization of a folklore reduction
of maximum integral flow to a corresponding disjoint connecting path problem
(for instance cf. [7]) to include minimum-cost integral flow. We shall call a flow
proper, if it ships each flow unit along a simple path from the source to the sink.

Lemma 10. The problem of whether or not there is a proper integral flow of
value k and cost D from a distinguished source vertex s to a distinguished sink
vertex t in a directed network with n vertices. integral edge capacities and edge
costs in [C] can be (many-one) reduced to that of whether or not there is set of k
mutually vertex-disjoint simple directed paths of total cost D∗, where bD

∗

kn c = D,
connecting two distinguished sets of k vertices in a directed network on O(kn2)
vertices in O(log k + log n) time by a CREW PRAM using O(kn2 + k2n) pro-
cessors.

Proof. Let K = (V,E) be the directed network with integral edge capacities,
edges costs in [C] and the distinguished source vertex s and sink vertex t. Since
we are interested in a flow of value k, we can assume w.l.o.g that all edge capac-
ities do not exceed k.

We form a directed network K∗ on the basis of the network K as follows.
Let v ∈ V. Next, let Ein(v) be the set of edges in K incoming into v, and

let Eout(v) be the set of edges in K leaving v. For each e ∈ Ein(v) and i ∈
[capacity(e)], we create the vertex vin(e, i). Analogously, for each e′ ∈ Eout(v)
and i′ ∈ [capacity(e′)], we create the vertex vout(e

′, i′). Furthermore, we direct
an edge from each vertex vin(e, i) to each vertex vout(e

′, i′). To each such an
edge, we assign the cost 1. Also, for each edge e = (v, w) of K, we direct an edge
from vout(e, i) to win(e, i) for i ∈ [capacity(e)]. To each such an edge, we assign
the cost c(e)kn. See Fig. 2. Let X ′ be the set of vertices of the form sout(...),
and let Y ′ denote the set of vertices of the form tin(...). Create an additional
set X of k vertices and from each vertex in X direct an edge to each vertex in
X ′. Symmetrically, create another additional set Y of k vertices and from each
vertex in Y ′ direct an edge to each vertex in Y.

It is easy to observe that there is a proper integral flow of value k and cost
D from s to t in the network K iff there is a set of k mutually vertex-disjoint

Fig. 2. An example of a vertex of the network K and the corresponding part of the
network K∗.

simple paths of total cost D∗ connecting X with Y in the network K∗, such that
bD
∗

kn c = D.
Now it is sufficient to note that the construction of K∗, X and Y on the

basis of K easily implemented by a CREW PRAM in O(log k + log n)-time
using O(kn2 + k2n) processors, where n is the number of vertices in K. ut

By combining Theorem 1 with Lemma 10, we obtain our first main result.

Theorem 4. The minimum cost of a flow of value k in a network with n ver-
tices, a sink and a source, integral edge capacities and positive integral edge
costs in [C] can be found by a randomized PRAM, with errors of exponentially
small probability in n, running in O(k log(Ckn) + log2(Ckn) time and using
2k(kCn)O(1) processors.

By combining in turn Theorem 3 with the finding variant of Lemma 10 using
exactly the same reduction, we obtain our second main result.

Theorem 5. There is a randomized PRAM algorithm returning almost cer-
tainly a minimum-cost flow of value k (iff a flow of value k exists) in a network
with n vertices, a sink and a source, integral edge capacities and edge costs in
[nO(1)], in O(k log(kn) + log2(kn)) time using 2k(kn)O(1) processors.

Corollary 2. The problem of finding a minimum-cost flow of value O(log n)
in a network with n vertices, a sink and a source, and integral edge capacities
bounded polynomially in n admits an RNC2 algorithm.

7 Final remarks

We have resented a new approach to the minimum-cost integral flow problem.
In particular, it yields an RNC2 algorithm when the flow supply is (at most)
logarithmic in the size of the network.

All our results can be extended to include undirected networks by a straight-
forward reduction.

References

1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Inc., 1993.

2. R.J. Anderson and J.C. Setubal. On the Parallel Implementation of Goldberg’s
Maximum Flow Algorithm. Proc. Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pp. 168-177, 1992.

3. A. Björklund. Determinant sums for undirected Hamiltonicity. Proc. 51th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 173-182, 2010.

4. A. Björklund, T. Husfeldt and N. Taslaman. Shortest Cycle Through Specified
Elements. Proc. Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2012.

5. R.A. DeMillo and R.J. Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters 7, pp. 193-195, 1978.

6. J. Edmonds. Systems of distinct representatives and linear algebra. J. Res. Nat.
Bur. Standards Sect. Vol. 71B, No. 4, pp. 241-245, 1967.

7. S. Even. Graph Algorithms. Computer Science Press Inc. 1979.
8. J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency

for network flow problems. Journal of the ACM 19(2), pp. 248264, 1972.
9. L.R. Ford jr. and D.R. Fulkerson. Maximal flow through a network. Can. J. Math

8, pp. 399-404.
10. D.R. Fulkerson. An out-of-Kilter method for minimal cost flow problems. SIAM

J. Appl. Math. 9, pp. 18-27.
11. Z. Galil and V. Pan. Improved processor bounds for algebraic and combinatorial

problems in RNC. Proc. 26th IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 490-495, 1985.

12. A. Goldberg. Parallel Algorithms for Network Flow Problems. In Synthesis of
Parallel Algorithms, editor J.H. Reif., Morgan-Kauffman, 1993.

13. L.M. Goldschlager, R.A. Shaw and J. Staples. The Maximum Flow Problem is Log
Space Complete for P. Theoretical Computer Science 21(1), pp. 105-111, 1982.

14. R. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in
random NC. Combinatorica 6(1), pp. 35-48, 1986.

15. I. Koutis. Faster algebraic algorithms for path and packing problems. Proc.
35th Annual International Colloquium on Automata, Languages and Program-
ming (ICALP), Lecture Notes in Computer Science 5555, pp. 653-664, 2009.

16. E.L. Lawler. Combinatorial optimization: Networks and matroids. Holt, Rinehart
and Winston, New York, NY.

17. K. Mulmuley, U.V. Vazirani and V.V. Vazirani. Matching is as Easy as Matrix
Inversion. Combinatorica 7(1), pp. 105-113, 1987.

18. J.B. Orlin and C. Stein. Parallel Algorithms for the Assignment and Minimum-
Cost Flow Problems. Operations Research Letters, 14, pp. 181-186, 1993.

19. J.H. Reif (editor). Synthesis of Parallel Algorithms. Morgan-Kauffman, 1993.
20. V.V. Vazirani. Parallel Graph Matching. In Synthesis of Parallel Algorithms,

editor J.H. Reif., Morgan-Kauffman, 1993.
21. J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-

ties. Journal of the ACM 27(4), pp. 701-717, 1980.
22. R. Williams. Finding paths of length k in O∗(2k). Information Processing Letters

109, pp. 301-338, 2009.

