
ar
X

iv
:1

30
3.

68
67

v2
 [

cs
.D

S]
 6

 F
eb

 2
01

4

Parameterized algorithms for the 2-clustering problem with

minimum sum and minimum sum of squares objective

functions

Bang Ye Wu∗and Li-Hsuan Chen

Dept. of Computer Science and Information Engineering

National Chung Cheng University, Taiwan

Abstract

In the Min-Sum 2-Clustering problem, we are given a graph and a parameter k, and
the goal is to determine if there exists a 2-partition of the vertex set such that the total
conflict number is at most k, where the conflict number of a vertex is the number of its
non-neighbors in the same cluster and neighbors in the different cluster. The problem is
equivalent to 2-Cluster Editing and 2-Correlation Clustering with an additional
multiplicative factor two in the cost function. In this paper we show an algorithm for
Min-Sum 2-Clustering with time complexity O(n · 2.619r/(1−4r/n) + n3), where n is
the number of vertices and r = k/n. Particularly, the time complexity is O∗(2.619k/n)
for k ∈ o(n2) and polynomial for k ∈ O(n log n), which implies that the problem can be
solved in subexponential time for k ∈ o(n2). We also design a parameterized algorithm
for a variant in which the cost is the sum of the squared conflict-numbers. For k ∈ o(n3),
the algorithm runs in subexponential O(n3 · 5.171θ) time, where θ =

√

k/n.

Key words. parameterized algorithm, kernelization, cluster graph, clustering, graph
modification.

AMS subject classifications. 65W05, 68R10, 68Q25, 05C85, 91C20

1 Introduction

Problem definition and motivation. Clustering is an important concept with applications
in numerous fields, and the problem Cluster Editing, also known as Correlation

Clustering, is a graph theoretic approach to clustering [2, 26]. A cluster graph is a
graph whose every connected component is a clique. Cluster Editing asks for the
minimum number of edge insertions and deletions to modify the input graph into a
cluster graph. One of the studied variants is p-Cluster Editing, in which one is
asked to modify the input graph into exactly p disjoint maximal cliques [26]. In many
applications, graph edges represent the similarities between items (vertices), and one
wants to partition items into clusters such that items in the same cluster are similar
and items in different clusters are dissimilar. Hence, an edited edge can be thought of

∗National Chung Cheng University, ChiaYi, Taiwan 621, R.O.C., E-mail: bangye@cs.ccu.edu.tw

1

http://arxiv.org/abs/1303.6867v2

as a conflict (or disagreement as named in Correlation Clustering) between two
items in the clustering. Let the conflict number of a vertex be the number of edited
edges incident to it. Then, feasible sets of edits of cardinality k correspond one-to-one
to clusterings with total conflict number 2k. That is, Cluster Editing is equivalent
to finding a vertex partition with minimum total conflict number. The transformation
of the problem definition provides us easier ways to define other meaningful objective
functions on the conflict numbers, such as the maximum conflict number and the sum of
squared conflict numbers.

In this paper we focus on 2-clusterings which partition the vertices into two subsets
called clusters. For an input graph G = (V,E) and a 2-partition π = (V1, V2) of V ,
two vertices u and v are in conflict if they are in the same cluster but (u, v) /∈ E or
they are in different clusters but (u, v) ∈ E. Let cπ(v) denote the number of vertices
in conflict with v in π. A 2-clustering problem in general asks for a 2-partition such
that the conflict numbers are as “small” as possible. As in many optimization problems,
there are different ways to define “small” for a set of quantities (or a vector). Possibly
the most frequently used cost functions are min-sum, min-sum of squares, and min-max,
which are equivalent to the 1-norm, 2-norm, and ∞-norm for defining the length of a
vector in linear algebra, respectively. Let h1(π) =

∑

v∈V cπ(v) and h2(π) =
∑

v∈V c2π(v)
be costs of a 2-partition π. The two problems studied in this paper are formally defined
as follows. We focus on their decision versions.

Problem: Min-Sum 2-Clustering

Instance: A graph G = (V,E) and a nonnegative integer k.
Question: Is there a 2-partition π = (V1, V2) of V such that h1(π) ≤ k and
V1, V2 6= ∅?

Following the definition in the literature, we exclude the case that V1 or V2 is empty.
The second problem, namedMin-Square 2-Clustering, is defined similarly except the
cost is defined by h2. Intuitively, while Min-Sum 2-Clustering seeks to minimize the
total conflict number, Min-Square 2-Clustering looks for 2-partitions simultaneously
minimizing the total and the individual conflict numbers because h2(π) =

∑

v∈V c2π(v) =
h21(π)/n + nσ2, where n is the number of vertices and σ2 is the variance of the conflict
numbers.

Previous results. Shamir et al. [26] studied the computational complexities of three
edge modification problems. Cluster Editing asks for the minimum total number
of edge insertions and deletions to modify a graph into a cluster graph, while in Clus-

ter Deletion (respectively, Cluster Completion), only edge deletions (respectively,
insertions) are allowed. They showed that Cluster Editing is NP-hard, Cluster

Deletion is Max SNP-hard, and Cluster Completion is polynomial-time solvable.
They also showed that p-Cluster Deletion is NP-hard for any p > 2 but polynomial-
time solvable for p = 2, and p-Cluster Editing is NP-hard for any p ≥ 2. The
parameterized version of Cluster Editing and variants of it were studied intensively
[3, 4, 8, 10, 11, 18, 19, 20]. A variant with vertex (rather than edge) deletions was con-
sidered in [23], and another variant in which overlapping clusters are allowed was studied
in [13].

Cluster Editing is equivalent to Correlation Clustering on complete signed
graphs. In a signed graph, each edge is labelled by “+” or “-”, representing that the

2

two items are similar or dissimilar; or the two persons like or dislike each other in social
network analysis. For a clustering, a positive edge within a cluster or a negative edge
between clusters is an agreement, and a positive edge across clusters or a negative edge
inside a cluster is a disagreement. The maximization version of the Correlation Clus-

tering problem seeks to maximize the number of agreements, while the minimization
version aims to minimize the number of disagreements. Correlation Clustering on
complete signed graphs was formulated and studied in [2], in which the authors presented
a PTAS for the maximization version and a constant factor approximation algorithm for
the minimization version. In [1], Ailon et al. proposed a simple randomized algorithm
for the minimization version. For the unweighted case, the expected approximation ratio
is three. They also showed that it is a 5-approximation algorithm for the weighted case
with the probability constraints, i.e., it is assumed that w−

ij + w+
ij = 1 for each pair (i, j)

of vertices, where w+
ij and w−

ij are the nonnegative weights of the “+” and “-” edges
between i and j, respectively. If in addition the weights satisfy the triangle inequality
(w−

ik ≤ w−
ij + w−

jk for all vertices i, j, k), then the approximation ratio is two.
For a constant p ≥ 2, p-Correlation Clustering is a variant of Correlation

Clustering such that the vertices are partitioned into exactly p clusters. While the
minimization version of Correlation Clustering on complete signed graphs is APX-
hard [7], Giotis and Guruswami showed that both the minimization and the maximization
versions of p-Correlation Clustering admit PTAS for unweighted complete signed
graphs [17]. 2-Correlation Clustering is also known as Balanced Subgraph

which name comes from the application in social network analysis [21, 22, 27]. Another
related problem studied in the literature is Consensus Clustering [1, 5, 6, 14].

For p-Cluster Editing, a kernel with (p+2)k+p vertices was given by Guo [20]. A
variant such that the conflict number of each vertex must be bounded by a parameter was
studied in [24]. The problem of finding a 2-clustering minimizing the maximum conflict
number is NP-hard [9]. Very recently, Fomin et al. gave a parameterized algorithm with
time complexity O(2O(

√
pk)+n2), where n is the number of vertices [16]. They also showed

a lower bound for the parameterized complexity: For any constant 0 ≤ σ ≤ 1 there exists
a function p(k) ∈ Θ(kσ) such that p-Cluster Editing restricted to instances with
p = p(k) cannot be solved in 2o(

√
pk) ·nO(1) time unless the Exponential Time Hypothesis

fails.

Our contributions. We develop parameterized algorithms for Min-Sum 2-Clustering

and Min-Square 2-Clustering. For Min-Sum 2-Clustering, the algorithm runs
in O(n · φ2r/(1−4r/n) + n3) time, where φ ≈ 1.618 and r = k/n. When k ∈ o(n2), the
time complexity is O(n · 2.619k/n + n3). Our result implies that the problem, as well as
2-Cluster Editing can be solved in subexponential, i.e. O∗(2o(n)), time for k ∈ o(n2),
where the O∗(·) notation ignores factors polynomial in n. In particular it is polynomial-
time solvable for k ∈ O(n log n). We also note that the time complexity is better than
O∗(2O(

√
pk)) recently obtained by Fomin et al. [16] for the special case of p = 2. Even

when k = δn2 with small constant δ, our algorithm improves the brute-force algorithm
significantly. For example, when δ = 0.1, we have that r = k/n = 0.1n, and the time
complexity is O∗(φ2r/(1−4r/n)) ≈ O∗(1.174n), much better than O∗(2n).

For Min-Square 2-Clustering with cost bound k ∈ o(n3), our algorithm runs in

subexponentialO(n3·5.171
√

k/n) time, which also implies that the problem is polynomial-
time solvable for k ∈ O(n log2 n).

3

Both of the algorithms look for a 2-partition and the main steps are sketched as
follows.

1. Guess a vertex that has the smallest conflict number in an optimal 2-partition and
set an initial 2-partition according to its neighborhood.

2. Using kernelization-style rules, determine for most of the vertices whether they
should be swapped to the other cluster, and leave a set of undetermined vertices
of size O(k/n) in the case of Min-Sum 2-Clustering, or O(

√

k/n) in the case of
Min-Square 2-Clustering.

3. Apply a standard branching algorithm to the undetermined vertices.

Organization of the paper. In Section 2 we give some notation and definitions, as well
as some properties used in this paper. The reduction algorithm is in Section 3. In
Sections 4 and 5 we show the algorithms for the two problems, respectively. Finally
some concluding remarks are in Section 6.

2 Preliminaries

An instance of a parameterized problem consists of (I, k), where k is the parameter.
A problem is fixed-parameter tractable (FPT) if it can be solved in time complexity
O(f(k) · q(|I|)), where f is an arbitrary computable function of k and q is a polynomial
in the input size. For more details about parameterized complexity, we refer to the book
of Downey and Fellows [12]. Kernelization is a widely-used technique for parameterized
algorithms. In polynomial time, a kernelization algorithm converts an instance (I, k) to
a reduced instance (I ′, k′), called a kernel such that the answer is not changed, k′ ≤ k
and |I ′| is bounded by a computable function of k.

For two sets S1 and S2, the set difference is denoted by S1 \ S2, and the symmetric
difference is denoted by S1⊖S2 = (S1 \S2)∪ (S2 \S1). For simplicity, S1⊖ v = S1⊖{v}.
Throughout this paper, G = (V,E) is the input graph and n = |V |. For a vertex v, let
NG[v] = {u | (u, v) ∈ E} ∪ {v} denote the closed neighborhood of v in G.

For a vertex set V , a 2-partition of V is an unordered pair π = (V1, V2) of subsets of
V such that V1 ∩V2 = ∅ and V1 ∪V2 = V . The two subsets V1 and V2 are called clusters.
Two vertices u and v are in conflict if they are in the same cluster but (u, v) /∈ E or
they are in different clusters but (u, v) ∈ E. Let Cπ(v) denote the set of vertices in
conflict with v in π and cπ(v) = |Cπ(v)| be the conflict number of v. We assume that
v /∈ Cπ(v) for each vertex v. When there is no confusion, we shall omit the subscript
and simply use c(·) instead of cπ(·). For u, v ∈ V and S ⊆ V , let Cπ(v, S) = Cπ(v) ∩ S,
cπ(v, S) = |Cπ(v, S)|, and cπ(v, u) = cπ(v, {u}). For two vertex subsets S1 and S2, let
cπ(S1, S2) =

∑

v∈S1
cπ(v, S2). Note that cπ(S1, S2) = cπ(S2, S1). When the 2-partition π

is clear from the context, we shall also omit the subscript in cπ(·, ·) and Cπ(·, ·).
A graph G = (V,E) is a 2-cluster graph if it consists of exactly two disjoint max-

imal cliques. In the literature, Min-Sum 2-Clustering is also known as 2-Cluster

Editing. For G = (V,E), a set D ⊆ V × V is a set of edits (to 2-cluster graph) for
G if G′ = (V,E ⊖ D) is a 2-cluster graph. In other words, G can be modified into a
2-cluster graph by inserting D \ E and deleting D ∩ E. Given a graph G and integer
k, 2-Cluster Editing asks if there is a set of edits D for G such that |D| ≤ k. Let

4

E∗(π) =
⋃

i=1,2{(u, v) | u, v ∈ Vi} which is the edge set of the 2-cluster graph. By defi-
nition, if D is a set of edits and π is the corresponding 2-partition, then E ⊖D = E∗(π)
and D =

⋃

v∈V {(v, u) | u ∈ Cπ(v)}. Therefore, finding a set of edits is equivalent to find-
ing the corresponding 2-partition. Furthermore, |D| = (1/2)

∑

v∈V cπ(v). Consequently
Min-Sum 2-Clustering is equivalent to 2-Cluster Editing with an additional mul-
tiplicative factor two in the cost function.

BothMin-Sum 2-Clustering andMin-Square 2-Clustering look for a 2-partition
without empty clusters. The cost functions of the two problems are h1(π) ≡

∑

v cπ(v)
and h2(π) ≡

∑

v c
2
π(v), respectively. Given a graph G and a 2-partition π, computing

Cπ(v) for all v ∈ V , as well as h1(π) and h2(π), can be easily done in O(n2) time by
checking all pairs of vertices.

To flip a vertex v in a 2-partition π = (V1, V2) is to move v to the other cluster, that
is, we change π to π ⊖ v ≡ (V1 ⊖ v, V2 ⊖ v). Flipping a subset S of vertices changes
(V1, V2) to (V1 ⊖ S, V2 ⊖ S). Suppose that π′ = π ⊖ v. Then u ∈ Cπ′(v) if and only if
u /∈ Cπ(v) for all u 6= v. That is, flipping a vertex exchanges its conflicting-relations with
all the other vertices. Furthermore, when flipping a set F , only those conflicting pairs in
F × F̄ change, where F̄ = V \ F . If π′ = π ⊖ F , then

Cπ′(v) =

{

Cπ(v, F) ∪ (F̄ \ Cπ(v, F̄)) if v ∈ F ;
Cπ(v, F̄) ∪ (F \ Cπ(v, F)) if v ∈ F̄ .

(1)

The profit of a flipping set F , denoted by ∆(F), is the decrement of total conflict
number after flipping F , i.e., ∆(F) = h1(π)− h1(π ⊖ F) =

∑

v cπ(v) −
∑

v cπ⊖F (v).

Lemma 1: ∆(F) = 4cπ(F, F̄)− 2|F ||F̄ |.

Proof: By (1), we only need to count the conflict pairs crossing (F, F̄). Since cπ(F, F̄) =
cπ(F̄ , F), we have

∆(F) = 2(cπ(F, F̄)− (|F ||F̄ | − cπ(F, F̄))) = 4cπ(F, F̄)− 2|F ||F̄ |.

Corollary 2 : ∆({v}) = 4cπ(v) − 2(n− 1).

3 Reduction algorithm

We shall solve Min-Sum 2-Clustering and Min-Square 2-Clustering by finding
flipping sets. In this section we propose a reduction algorithm which reduces the search
space of flipping sets, and the reduction will be used in the next two sections.

Definition 1: Let π be a 2-partition of V and K, t be nonnegative integers. A vertex
subset F is a (K, t)-feasible flipping set for π if

∑

v cπ′(v) ≤ K and cπ′(v) ≤ t for any
vertex v ∈ V , where π′ = π ⊖ F . When K and t are clear from the context, we shall
simply say that F is a feasible flipping set.

By definition, an empty set may be a (K, t)-feasible flipping set. The goal of this section
is a reduction algorithm achieving the next lemma.

5

Algorithm 1 : Reduction(G,π0,K, t, f)

Input: a graph G = (V,E), a 2-partition π0, and integers K, t and f .
Output: a 2-partition π, a vertex subset U , and an integer m.

1: initially π = π0;
2: compute cπ(u) for each u and construct U ← {u | cπ(u) ≥ n− t− f};
3: while ∃v ∈ U such that cπ(v) > t+ f do

4: π ← π ⊖ v; ⊲ flipping v
5: remove v from U and update cπ(u) for each u;
6: f ← f − 1 and U ← {u | cπ(u) ≥ n− t− f};
7: if f = 0 then goto step 14;
8: end while

9: if |U | > K
n−t−2f − f then

10: f ← f − 1 and U ← {u | cπ(u) ≥ n− t− f};
11: if f = 0 then goto step 14;
12: goto step 3;
13: end if

14: return (U, π,m = f);

Lemma 3: Let π0 be a 2-partition of V and K, t, f be nonnegative integers satisfying
t+ 2f < n. Given (G,π0,K, t, f), one can in O(n2) time compute a vertex subset U , a
2-partition π, and an integer m such that

(i) m ≤ f ;

(ii) |U | ≤ K/(n − t− 2m)−m or m = 0; and

(iii) if there exists a (K, t)-feasible flipping set for π0 of size at most f , then
there exists a (K, t)-feasible flipping set F ⊆ U for π of size at most m.

The bound f on the size of flipping sets will be called flipping quota. In the remaining
paragraphs of this section, we first describe the reduction algorithm, and then show the
correctness of the reduction rules in Lemmas 4 and 5. The proof of Lemma 3 will be
delayed to the end of this section. The reduction algorithm is based on the following
reduction rules for any 2-partition π and integer f . We omit the parameters (K, t) in
the rules.

R1: If cπ(v) > t+ f , then v must be in any feasible flipping set for π of size
at most f .

R2: If cπ(v) < n − t− f , then v cannot be in any feasible flipping set for π
of size at most f .

R3: If cπ(v) ≤ t + f for all v ∈ V and |U | > K/(n − t − 2f) − f , where
U = {v | cπ(v) ≥ n − t − f}, then there is no feasible flipping set for π
of size exactly f .

Algorithm 1 is the reduction algorithm. We note that the upper bound of |U | in R3 is
for the case of flipping set of size exactly f . When |U | > K/(n − t − 2f) − f , it is still
possible that there is a feasible flipping set of size less than f . Therefore, the algorithm
iteratively decreases f until the bound is satisfied or the flipping quota is zero.

6

Lemma 4: The reduction rules R1 and R2 are correct.

Proof: Since the conflict number of v is decreased by at most one when another vertex
is flipped, if cπ(v) > t + f and v is not flipped, then its conflict number will be larger
than t. So R1 is correct.

For R2, if cπ(v) < n − t − f , then flipping v will change its conflict number to
n − 1 − cπ(v) > t + f − 1, and further flipping f − 1 vertices make the conflict number
at least t+ 1. Therefore R2 is correct.

We now show the upper bound of |U | in rule R3.

Lemma 5: Suppose that t + 2f < n and cπ(v) ≤ t + f for all v ∈ V . If there exists a
(K, t)-feasible flipping set F ⊆ U for π of size f , then |U | ≤ K/(n − t− 2f)− f , where
U = {v | cπ(v) ≥ n− t− f}.
Proof: Let F̄ = V \ F and X = V \ U . We omit the subscript π in the proof. By
Lemma 1,

∑

v∈V
c(v) ≤ K + 4c(F, F̄)− 2f(n− f). (2)

Let Y = U \ F . Since V = Y ∪ F ∪X and Y, F,X are mutually disjoint, we have that
∑

v∈V
c(v) =

∑

v∈Y
c(v) +

∑

v∈F
c(v) +

∑

v∈X
c(v).

For v ∈ F , since c(v) ≥ c(v, F̄),
∑

v∈F
c(v) ≥ c(F, F̄). (3)

Since (X,Y) is a 2-partition of F̄ , we have that

c(X,F) = c(F,X) =
∑

v∈F
c(v,X)

=
∑

v∈F
(c(v, F̄)− c(v, Y))

≥
∑

v∈F
(c(v, F̄)− |Y |)

= c(F, F̄)− f |Y |,

and then
∑

v∈X
c(v) ≥ c(X,F) ≥ c(F, F̄)− f |Y |. (4)

Therefore, by (2), (3) and (4),
∑

v∈Y
c(v) =

∑

v∈V
c(v)−

∑

v∈F
c(v)−

∑

v∈X
c(v)

≤ (K + 4c(F, F̄)− 2f(n− f))− c(F, F̄)− (c(F, F̄)− f |Y |)
= K + 2c(F, F̄)− 2f(n− f) + f |Y |.

7

Since c(v) ≥ n− t− f for any v ∈ Y , we have that

(n− t− f)|Y | ≤
∑

v∈Y
c(v) ≤ K + 2c(F, F̄)− 2f(n− f) + f |Y |,

and then

|Y | ≤ K + 2c(F, F̄)− 2f(n− f)

n− t− 2f
(5)

by the assumption t + 2f < n. Since c(v) ≤ t + f for any v ∈ F , we have that
c(F, F̄) ≤ f(t+ f), and thus

|Y | ≤ K + 2f(t+ f)− 2f(n− f)

n− t− 2f

=
K + 2f(t− n+ 2f)

n− t− 2f
=

K

n− t− 2f
− 2f. (6)

Finally,

|U | = f + |Y | ≤ K

n− t− 2f
− f. (7)

Proof of Lemma 3 : First we show the time complexity. The initial conflict numbers for
all vertices can be computed in O(n2) time. The while-loop is executed at most n times,
and each loop takes O(n) time for finding and flipping a vertex, as well as updating the
conflict numbers and the set U . The total time complexity is therefore O(n2).

The conclusions (i) and (ii) are trivial from the reduction algorithm, and (iii) follows
from the correctnesses of the reduction rules, which are shown in Lemmas 4 and 5. Note
that, by rules R1 and R2, we only need to find the flipping set in U .

4 Minimum total conflict number

In this section we show an algorithm for Min-Sum 2-Clustering, in which the cost
function is defined by h1(π) =

∑

v cπ(v), i.e., the total conflict number. First we show
how to cope with the simple case which will be excluded in the main procedure. A
2-partition (V1, V2) is trivial if V1 or V2 is empty; and is extreme if |V1| = 1 or |V2| = 1.

Lemma 6: Finding an extreme 2-partition π with minimum h1(π) can be done in O(n2)
time.

Proof: The conflict number of any vertex v in the 2-partition (V, ∅) is n− |NG[v]|. By
Corollary 2, if v is a vertex with minimum |NG[v]|, then ({v}, V \ {v}) is an extreme
2-partition with minimum cost h1. That is, we only need to find a vertex with minimum
degree in G.

8

Lemma 7: If π is a 2-partition such that h1(π) ≤ h1(π ⊖ v) for any vertex v, then
cπ(v) ≤ (n − 1)/2 for each v.

Proof: If cπ(v) > (n − 1)/2, then by Corollary 2 the profit of flipping v is 4cπ(v) −
2(n− 1) > 0, and thus flipping v decreases the h1 cost.

Lemma 8: Suppose that the h1 cost of any extreme 2-partition is larger than k. If there
exists a non-trivial and non-extreme 2-partition π with h1(π) ≤ k, then there exists a
(k, t)-feasible flipping set F for π0 of size at most f , where π0 = (NG[s], V \ NG[s]) for
some vertex s, t = (n− 1)/2, and f = k/n.

Proof: Let π be a non-trivial and non-extreme 2-partition with minimum h1(π). Thus,
h1(π) ≤ k and both clusters of π contain at least two vertices. By the minimality of π,
if h1(π⊖ v) < h1(π) for some v, then π⊖ v must be extreme. However, it contradicts to
the assumption that the h1 cost of any extreme 2-partition is larger than k. Therefore
h1(π) ≤ h1(π⊖ v) for any v, and by Lemma 7 we have that cπ(v) ≤ (n− 1)/2 for each v.

By the pigeonhole principle, there exists a vertex s with cπ(s) ≤ h1(π)/n ≤ k/n.
Let F = Cπ(s). By definition, no vertex is in conflict with s in π ⊖ F , i.e., π ⊖ F =
(NG[s], V \ NG[s]) ≡ π0 which is the unique 2-partition with no conflict incident to s.
Therefore, |F | ≤ k/n, and flipping F in π0 yields a 2-partition π such that h1(π) ≤ k
and cπ(v) ≤ (n− 1)/2 for each v. That is, F is a (k, t)-feasible flipping set for π0 of size
at most k/n.

By Lemma 3, we can use the reduction algorithm with K = k, t = (n − 1)/2 and
f = k/n. The assumption t + 2f < n in Lemma 3 is satisfied when k ≤ n2/4. In
fact, the largest value of k we will use in this section is 0.185n2 (Corollary 12). The
reduction algorithm returns (U, π,m), and the remaining work is to search a flipping set
F ⊆ U with h1(π ⊖ F) ≤ k and |F | ≤ m. This work can be done by a simple search-
tree algorithm which picks an arbitrary undetermined vertex v and recursively solves the
problem for two cases: flipping v or not. Algorithm 2 is the proposed algorithm. Note
that we need to try every vertex s as the one in Lemma 8.

A naive implementation of the search-tree algorithm takes O(n2) time for each recur-
sive call, and the time complexity of the search-tree algorithm will be O(n2) multiplied
by the number of recursive calls. Similar to the technique usually used in the design of
fixed-parameter algorithms [25], if the time complexity of each recursive call is a function
in |U | but not in n, then we can reduce the polynomial factor in the total time complex-
ity, which is exactly the case shown in Lemma 10. To this aim, the recursive procedure
is designed in Algorithm 3.

Lemma 9: The procedure Search1 is correct and each recursive call takes O(|U |)
time.

Proof: The correctness of the algorithm follows from the following three simple obser-
vations. First, it explores all subsets of U with size at most m in the worst case. Second,
the total conflict number h1(π) can be computed as cπ(X,X) + 2cπ(U,X) + cπ(U,U),
where X = V \U . Third, when the vertex u is flipped, the two sets of vertices conflicting

9

Algorithm 2 : Min-sum 2-clustering

Input: a graph G = (V,E) and integer k.
Output: determining if existing π with h1(π) ≤ k.

1: if existing an extreme 2-partition with cost at most k then

2: return True;
3: end if

4: for each s ∈ V do

5: π0 ← (NG[s], V \NG[s]);
6: call Reduction(G,π0, k, (n − 1)/2, k/n) to compute (U, π,m);
7: χ← cπ(X,X), where X = V \ U ; ⊲ Preparing for tree-search
8: construct the list L1 of Cπ(v, U) and the list L2 of cπ(v,X) for each v ∈ U ;
9: if Search1(U,m,L2, χ)=True then

10: return True;
11: end if

12: end for

13: return False.

and non-conflicting with u exchange, and therefore the formulas at steps 15 and 16 of
Algorithm 3 are correct.

At each recursive call, there are only O(|U |) data to be updated. The number of
conflicting pairs in U may be up to Θ(|U |2). To avoid copying the conflicting pairs, the
list L1 is stored as a global variable and the modifications are stored in a local variable
L3. When returning from the recursive call with “False”, L1 is recovered. Note that it
is not necessary to recover L1 when the recursive call returns “True”. Since the number
of modifications stored in L3 is upper bounded by O(|U |), the total time complexity for
each recursive call is O(|U |).

The algorithm we show here only returns True or False. In the case that a desired
2-partition needs to be output, we can record the flipped vertex at each recursive call (in
constant time), and the 2-partition can be found by back tracking on the search tree in an
additional O(n) time. Another thing that should be remarked is how to exclude trivial
2-partitions in the search-tree algorithm, which by definition are invalid. Let π = (V1, V2)
be the 2-partition returned by the reduction algorithm at step 6 of Algorithm 2. Recall
that the initial 2-partition is (NG[s], V \NG[s]) for some vertex s. Since the initial conflict
number of s is zero, the reduction algorithm never flips s, and therefore s ∈ V1 \U . Thus,
V2 is the only possible flipping set to result in a trivial 2-partition. A simple way to avoid
returning a trivial 2-partition uses a boolean variable which indicates whether there is a
vertex fixed in V2. When reaching a leaf of the branching tree, it can be easily verified
if it is the invalid flipping set.

Lemma 10: Algorithm 3 runs in O(φ|U |+m) time, where φ = 1+
√
5

2 ≈ 1.618.

Proof: Let T (a, b) denote the time complexity of the search-tree algorithm with |U | = a
and m = b. There are two branches at each non-leaf node of the search-tree. For the
branch that a vertex is removed from U without flipping, |U | is decreased by one and
m is unchanged. For the branch that a vertex is flipped and removed, both |U | and m
are decreased by one. Therefore, for some constant p1, T (a, b) ≤ T (a − 1, b) + T (a −

10

Algorithm 3 Search-tree algorithm for Min-Sum 2-Clustering

Input: a set U of undetermined vertices, a flipping quota m, a list L2 of c(v,X) for each
v ∈ U , and χ = c(X,X), where X = V \ U . In addition, a list L1 of C(v, U) for each
v ∈ U is stored as a global variable.

1: procedure Search1(U,m,L2, χ)
2: if χ > k then return False;
3: if U = ∅ or m = 0 then ⊲ no vertex can be flipped
4: q ← χ+

∑

v∈U (|C(v, U)| + 2c(v,X)); ⊲ total conflict number
5: if q ≤ k then return True else return False;
6: end if

7: pick an arbitrary vertex u ∈ U ;
8: U ′ ← U \ {u}; ⊲ X ′ = V \ U ′

9: modify L1: C(v, U ′)← C(v, U) \ {u},∀v ∈ U ′; record the modifications in L3;
10: χ′ ← χ+ 2cπ(u,X); ⊲ move u to X without flipping
11: construct L′

2 from L2 by c(v,X ′)← c(v,X) + c(v, u),∀v ∈ U ′;
12: if Search1(U ′,m,L′

2, χ
′)=True then

13: return True;
14: end if

15: χ′′ ← χ+ 2(|X| − c(u,X)); ⊲ flip and move u to X
16: construct L′′

2 from L2 by c(v,X ′)← c(v,X) + 1− c(v, u),∀v ∈ U ′;
17: if Search1(U ′,m− 1, L′′

2 , χ
′′)=True then

18: return True;
19: end if

20: recover L1 by undoing the modifications in L3;
21: return False;
22: end procedure

1, b − 1) + p1a for a, b > 0; T (a, 0) ≤ p1a for any a; and T (0, b) ≤ p1. We shall show by
induction that

T (a, b) ≤ p2φ
a+b − p1(a+ 2) (8)

for some constant p2. Then, the time complexity is T (|U |,m) ∈ O(φ|U |+m).
It is easy to see that, for sufficiently large p2, T (0, b) ≤ p1 ≤ p2φ

b−2p1; and T (a, 0) ≤
p1a ≤ p2φ

a−p1(a+2). Suppose by induction hypothesis that (8) holds for T (a−1, b−1)
and T (a− 1, b). Note that φ is the solution of Fibonacci recursion and therefore φi+2 =
φi+1 + φi. For a, b > 0,

T (a, b) ≤ T (a− 1, b) + T (a− 1, b− 1) + p1a

≤ (p2φ
a+b−1 − p1(a+ 1)) + (p2φ

a+b−2 − p1(a+ 1)) + p1a

= p2φ
a+b − p1(a+ 2).

Theorem 11: For k ≤ n2/4, Min-Sum 2-Clustering can be solved inO(n·2.619r/(1−4r/n)+
n3) time, where r = k/n.

11

Proof: A non-trivial 2-partition is either extreme or non-extreme. Algorithm 2 copes
with the case of extreme 2-partitions at step 1 which takes O(n2) time by Lemma 6. If
there is no extreme 2-partition with h1 cost at most k, then Lemma 8 can be applied,
and the non-extreme case is coped by the remaining steps. By (7), the number of
undetermined vertices after reductions is

|U | ≤ K

n− t− 2m
−m =

k

(n+ 1)/2 − 2m
−m ≤ k

n/2− 2m
−m, (9)

where K = k is the required bound of the total conflict number, t = (n− 1)/2, and m is
the returned flipping quota. Since m ≤ k/n, |U |+m ≤ k/(n/2 − 2m) ≤ 2r/(1 − 4r/n).
By Lemma 10, the time complexity of the search-tree algorithm is

O(φ|U |+m) = O(φ2r/(1−4r/n)) ⊂ O(2.619r/(1−4r/n)) (10)

since φ2 = 1 + φ < 2.619. By Lemma 3, the reduction algorithm takes O(n2) time, and
then the total time complexity follows from that the for-loop in Algorithm 2 is executed
n times.

For k ∈ Θ(n2), the time complexity can be expressed as follows, in which the condition
δ ≤ 0.185 is to ensure the result is better than the naive O∗(2n)-time algorithm.

Corollary 12 : For k = δn2 with δ ≤ 0.185, Min-Sum 2-Clustering can be solved in
O(n · 2.619δn/(1−4δ) + n3) time.

When k ∈ o(n2) and n is sufficiently large, we have that r = k/n ∈ o(n), and then
1/(1 − 4r/n) < 1 + ε for any constant ε > 0. The next corollary directly follows from
Theorem 11.

Corollary 13: For k ∈ o(n2), Min-Sum 2-Clustering can be solved in O(n·2.619k/n+
n3) time.

If k ∈ o(n2), then k/n ∈ o(n). Thus, by Corollary 13, Min-Sum 2-Clustering can be
solved in O∗(2o(n)) time, that is, in subexponential time.

Corollary 14 : Min-Sum 2-Clustering can be solved in polynomial time for k ∈
O(n log n).

5 Minimizing the sum of squares

Recall that h2(π) =
∑

v c
2
π(v) is the sum of squared conflict-numbers for a 2-partition

π. Given a graph G and an integer k, Min-Square 2-Clustering determines if there
exists a 2-partition π with h2(π) ≤ k. In this section, we show a parameterized algorithm
for parameter k.

Lemma 15: If h2(π) ≤ k, then
∑

v cπ(v) ≤
√
nk and there exists a vertex s with

cπ(s) ≤
√

k/n.

Proof: By Cauchy-Schwarz inequality,

(

∑

v

cπ(v)

)2

≤
(

n
∑

i=1

12

)(

∑

v

c2π(v)

)

= nh2(π) ≤ nk,

12

and we have that
∑

v cπ(v) ≤
√
nk. The second consequence follows from minv{cπ(v)} ≤

(1/n)
∑

v cπ(v).

Lemma 16: If π is a 2-partition such that h2(π) ≤ h2(π ⊖ v) for any vertex v, then
cπ(v) ≤

√

n(n− 1)/2 for each vertex v.

Proof: Consider π′ = π ⊖ v for any vertex v. First, cπ′(v) = n − 1 − cπ(v). Let
Y (v) = Cπ(v) and Ȳ (v) = V \ Cπ(v) \ {v}. For each u ∈ Y (v), cπ′(u) = cπ(u)− 1; and,
for u ∈ Ȳ (v), cπ′(u) = cπ(u) + 1. Therefore,

h2(π)− h2(π
′)

= c2π(v)− (n− 1− cπ(v))
2 +

∑

u∈Y (v)

(

c2π(u)− (cπ(u)− 1)2
)

+
∑

u∈Ȳ (v)

(

c2π(u)− (cπ(u) + 1)2
)

= 2(n− 1)cπ(v)− (n− 1)2 +
∑

u∈Y (v)

(2cπ(u)− 1)−
∑

u∈Ȳ (v)

(2cπ(u) + 1)

= 2(n− 1)cπ(v)− n(n− 1) + 2
∑

u∈Y (v)

cπ(u)− 2
∑

u∈Ȳ (v)

cπ(u).

Since by the assumption h2(π)− h2(π
′) ≤ 0, we have that

cπ(v) ≤
n

2
+

1

n− 1

∑

u∈Ȳ (v)

cπ(u)−
∑

u∈Y (v)

cπ(u)

 . (11)

Let s = argmaxv{cπ(v)}. By (11),

cπ(s) ≤
n

2
+

1

n− 1

∑

u∈Ȳ (s)

cπ(u)−
∑

u∈Y (s)

cπ(u)

≤ n

2
+

1

n− 1

∑

u∈Ȳ (s)

cπ(u)

≤ n

2
+
|Ȳ (s)| · cπ(s)

n− 1

=
n

2
+

(n− 1− cπ(s))cπ(s)

n− 1
=

n

2
+ cπ(s)−

c2π(s)

n− 1
.

That is, c2π(s) ≤ n(n− 1)/2, and we obtain

cπ(s) ≤
√

n(n− 1)

2
. (12)

Similar to Lemma 8, we have the next corollary from Lemmas 15 and 16. Recall that
a 2-partition is extreme if one of the two clusters is singleton.

13

Algorithm 4 Search-tree algorithm for Min-Square 2-Clustering

Input: a set U of undetermined vertices, a flipping quota m, and a 2-partition π.

procedure Search2(U,m, π)
if U = ∅ or m = 0 then ⊲ no vertex can be flipped

compute h2(π) and return True or False accordingly;
end if

pick an arbitrary vertex u ∈ U ;
if Search2(U \ {u},m, π)=True then ⊲ move u to X without flipping

return True;
else if Search2(U \ {u},m − 1, π ⊖ u)=True then ⊲ flip and move u to X

return True;
else

return False;
end if

end procedure

Corollary 17 : Suppose that the h2 cost of any extreme 2-partition is larger than k. If
there exists a non-trivial and non-extreme 2-partition π with h2(π) ≤ k, then there exists
a (K, t)-feasible flipping set F for π0 of size at most f , where π0 = (NG[s], V \NG[s]) for
some vertex s, K =

√
nk, t =

√

n(n− 1)/2, and f =
√

k/n.

The main steps of the algorithm for Min-Square 2-Clustering are quite similar
to Algorithm 2 in the previous section. First, an extreme 2-partition with minimum cost
h2 can be found in O(n3) time since there are only n extreme 2-partitions. Then, we
can focus on non-extreme 2-partitions. By Corollary 17, we use the reduction algorithm
with the bound of total conflict number K =

√
nk, individual bound t =

√

n(n− 1)/2
and flipping quota f =

√

k/n. The assumption t + 2f < n in Lemma 3 is satisfied
when k ≤ 0.021n3, and the largest value of k we will use in this section is 0.0118n3

(Corollary 19). For the reduced instance U and m, a search-tree algorithm is employed
to check if any desired 2-partition can be resulted from flipping a subset of U with size at
most m. The recursive procedure is shown in Algorithm 4. Unlike Algorithm 3, we did
not find a way to compute the cost h2 with time complexity only depending on |U | but
not on n. Therefore it takes O(n2) time for each recursive call, and the time complexity
of the search-tree algorithm is O(n2) multiplied by the number of recursive calls.

Theorem 18: For k ≤ 0.021n3, Min-Square 2-Clustering can be solved in O(n3 ·
5.171θ/(1−(4+2

√
2)θ/n)), where θ =

√

k/n.

Proof: By the reduction algorithm,

|U | ≤ K

n− t− 2m
−m

=

√
nk

n−
√

n(n− 1)/2 − 2m
−m

≤
√
nk

(1− 1/
√
2)n− 2m

−m

=
(2 +

√
2)θ

1− (4 + 2
√
2)m/n

−m. (13)

14

Let T0(a, b) denote the number of leaf nodes in the search tree explored by the algo-
rithm Search2 with |U | = a and m = b. According to the branching rule,

T0(a, b) ≤
{

T0(a− 1, b) + T0(a− 1, b− 1) if a, b > 0;
1 otherwise.

(14)

Next we show by induction that

T0(a, b) ≤ φa+b. (15)

It is clear that (15) holds when a = 0 or b = 0. Suppose by the induction hypothesis
that it holds for T0(a− 1, b) and T0(a− 1, b− 1). Then, for a, b > 0,

T0(a, b) = T0(a− 1, b) + T0(a− 1, b− 1) ≤ φa+b−1 + φa+b−2 = φa+b

by the identity φ2 = φ+ 1. Since the search tree is binary, the number of recursive calls
is bounded by 2T0(|U |,m) ∈ O(φ|U |+m). By (13), since m ≤

√

k/n = θ,

|U |+m ≤ (2 +
√
2)θ

1− (4 + 2
√
2)m/n

≤ (2 +
√
2)θ

1− (4 + 2
√
2)θ/n

.

Similarly to Algorithm 2, the reduction and the search-tree algorithms are executed
n times. Since each recursive call take O(n2) time, the total time complexity is O(n3 ·
φ|U |+m) ⊂ O(n3 · 5.171θ/(1−(4+2

√
2)θ/n)).

For k ∈ Θ(n3), the time complexity can be expressed as follows, in which the condition
k ≤ 0.0118n3 is to ensure the result is better than the naive O∗(2n)-time algorithm.

Corollary 19 : For k = δ2n3 with δ2 ≤ 0.0118, Min-Square 2-Clustering can be
solved in O(n3 · 5.171δn/(1−(4+2

√
2)δ)).

When k ∈ o(n3) and n is sufficiently large, we have that θ =
√

k/n ∈ o(n), and then
1/(1− (4+ 2

√
2)θ/n) < 1+ ε for any constant ε > 0. The next corollary directly follows

from Theorem 18, which implies that Min-Square 2-Clustering can be solved in
subexponential time for k ∈ o(n3).

Corollary 20 : For k ∈ o(n3), Min-Square 2-Clustering can be solved in O(n3 ·
5.171θ) time, where θ =

√

k/n.

Corollary 21 : For k ∈ O(n log2 n), Min-Square 2-Clustering can be solved in
polynomial time.

6 Concluding remarks

In this paper, we show parameterized algorithms for Min-Sum 2-Clustering and Min-

Square 2-Clustering. The first problem is the same as 2-Cluster Editing in
the literature with an additional multiplicative factor two in the cost function. The

15

proposed algorithms run in subexponential time and significantly improve the brute-
force algorithm when k is relatively small, i.e., k ∈ o(n2) for Min-Sum 2-Clustering

and k ∈ o(n3) for Min-Square 2-Clustering.
The time complexities of the search-tree algorithms are shown by induction in Lemma 10

and Theorem 18. It can be shown that the time complexities of both algorithms are al-
most tight when k is relatively small. We shall show the case of Algorithm 3 with
k ∈ o(n2), and it is similar for Algorithm 4 with k ∈ o(n3). In worst case, the search-tree
algorithm explores all subsets of U with sizes at most m. The number of recursive calls
is lower bounded by

∑m
i=0

(|U |
i

)

. From (9), when k ∈ o(n2) and m = k/n, we have that
m ∈ Θ(|U |). Let m = α|U | for some constant α. By [15, Lemma 3.13],

m
∑

i=0

(|U |
i

)

≥ p|U |−1/2 · 2H(α)|U |,

where p is a constant and H(α) = −α log2 α− (1 − α) log2(1 − α) is the binary entropy
function. When α = φ−2 = (3−

√
5)/2, it can be verified that 2H(α)|U | = φ|U |+m.

The lower bounds for the two problems are interesting open problems. Another
straightforward question is how to generalize the algorithms to the case of more than
two clusters. However, the problem seems to become much more difficult when the
number of clusters is more than two. In fact, by the following simple transformation,
we can show that there is no algorithm solving 3-Cluster Editing in O∗(2k/n) time
unless NP=P, where k and n are the cost bound and the number of vertices. Let (G′, k)
be an instance of the NP-complete 2-Cluster Editing problem. We construct G from
G′ by adding an isolated clique of k + 2 vertices. One can observe that G can be edited
into 3 clusters with cost k if and only if G′ can be edited into 2 clusters with the same
cost. Since n > k, an algorithm solving 3-Cluster Editing in O∗(2k/n) time can also
solve the NP-complete 2-Cluster Editing problem in polynomial time.

acknowledgements

The authors would like to thank the anonymous referees for their helpful comments
which improved the presentation significantly. This work was supported in part by NSC
100-2221-E-194-036-MY3 and NSC 101-2221-E-194-025-MY3 from the National Science
Council, Taiwan.

References

[1] Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Rank-
ing and clustering. Journal of the ACM 55(5), 23:1–23:27 (2008)

[2] Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56,
89–113 (2004)

[3] Böcker, S., Briesemeister, S., Bui, Q., Truss, A.: Going weighted: Parameterized
algorithms for cluster editing. Theoretical Computer Science 410(52), 5467 – 5480
(2009)

[4] Böcker, S., Damaschke, P.: Even faster parameterized cluster deletion and cluster
editing. Information Processing Letters 111(14), 717 – 721 (2011)

16

[5] Bonizzoni, P., Vedova, G.D., Dondi, R.: A PTAS for the minimum consensus clus-
tering problem with a fixed number of clusters. In: Eleventh Italian Conference on
Theoretical Computer Science (2009)

[6] Bonizzoni, P., Vedova, G.D., Dondi, R., Jiang, T.: On the approximation of correla-
tion clustering and consensus clustering. Journal of Computer and System Sciences
74(5), 671 – 696 (2008)

[7] Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
Journal of Computer and System Sciences 71(3), 360 – 383 (2005)

[8] Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences 78(1), 211 – 220 (2012)

[9] Chen, L.H., Chang, M.S., Wang, C.C., Wu, B.Y.: On the min-max 2-cluster editing
problem. Journal of Information Science and Engineering 29, 1109–1120 (2013)

[10] Damaschke, P.: Bounded-degree techniques accelerate some parameterized graph
algorithms. In: J. Chen, F. Fomin (eds.) Parameterized and Exact Computation,
Lecture Notes in Computer Science, vol. 5917, pp. 98–109. Springer Berlin Heidel-
berg (2009)

[11] Damaschke, P.: Fixed-parameter enumerability of cluster editing and related prob-
lems. Theory of Computing Systems 46, 261–283 (2010)

[12] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer-Verlag (1999)

[13] Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-
based data clustering with overlaps. Discrete Optimization 8(1), 2 – 17 (2011)

[14] Filkov, V., Skiena, S.: Integrating microarray data by consensus clustering. Inter-
national Journal on Artificial Intelligence Tools 13(04), 863–880 (2004)

[15] Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)

[16] Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds
for Parameterized Complexity of Cluster Editing. In: N. Portier, T. Wilke (eds.)
30th International Symposium on Theoretical Aspects of Computer Science (STACS
2013), Leibniz International Proceedings in Informatics (LIPIcs), vol. 20, pp. 32–43.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013)

[17] Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters.
Theory of Computing 2(13), 249 – 266 (2006)

[18] Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering:
Fixed-parameter algorithms for clique generation. In: R. Petreschi, G. Persiano,
R. Silvestri (eds.) Algorithms and Complexity, Lecture Notes in Computer Science,
vol. 2653, pp. 108–119. Springer Berlin Heidelberg (2003)

[19] Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica 39, 321–347
(2004)

17

[20] Guo, J.: A more effective linear kernelization for cluster editing. Theoretical Com-
puter Science 410(810), 718 – 726 (2009)

[21] Harary, F.: On the notion of balance of a signed graph. The Michigan Mathematical
Journal 2(2), 143–146 (1953)

[22] Hüffner, F., Betzler, N., Niedermeier, R.: Optimal edge deletions for signed graph
balancing. In: C. Demetrescu (ed.) Experimental Algorithms, Lecture Notes in
Computer Science, vol. 4525, pp. 297–310. Springer Berlin Heidelberg (2007)

[23] Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theory of Computing Systems 47, 196–217 (2010)

[24] Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications.
Discrete Applied Mathematics 160(15), 2259 – 2270 (2012)

[25] Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters 73(34), 125 – 129 (2000)

[26] Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Applied Mathematics 144(12), 173 – 182 (2004)

[27] Wasserman, S., Faust, K.: Social network analysis: Methods and applications, vol. 8.
Cambridge university press (1994)

18

	1 Introduction
	2 Preliminaries
	3 Reduction algorithm
	4 Minimum total conflict number
	5 Minimizing the sum of squares
	6 Concluding remarks

