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Abstract. We study the problem of augmenting a weighted graph by iimgert
edges of bounded total cost while minimizing the diametethef augmented
graph. Our main result is an FRFapproximation algorithm for the problem.

1 Introduction

We study the problem of minimizing the diameter of a weighgealph by the inser-
tion of edges of bounded total cost. This problem arises attpral applications [2,
4] such as telecommunications networks, information ndtadlight scheduling, pro-
tein interactions, and it has also received considerabdat@in from the graph theory
community, see for example [1,7, 13].

We introduce some terminology. Lét= (V, E') be an undirected weighted graph.
Let [V]? be the set of all possible edges on the vertexisefA non-edge of G is an
element of V]2 \ E. Theweight of a path inG is the sum of its edge weights. For any
u,v € V, theshortest u-v pathin G is the path connectingandv in G with minimum
weight. The weight of this path is said to be tfistance between: andv in G. Finally,
thediameter of G is the largest distance between any two verticeS.irThe problem
we study in this paper is formally defined as follows (denoteN\bthe set of natural
numbers including and byN* the set of natural numbers excludifg

PrROBLEM: Bounded Cost Minimum Diameter Edge AdditicsoMD)

INPUT:  Anundirected grapli: = (V, E), a weight functiono : [V]? — N,
a cost functiorr : [V]? — N*, and an integeB.

GOAL:  AsetF of non-edges with) ° .. c(e) < B such that the diameter
of the graptGs = (V, EUF') with weight functionw is minimized.
We say thatG'p is a B-augmentation of G.

The main result of this paper is a fixed parameter tractali¥d B-approximation
algorithm forecmD with paramete3. FPT approximation algorithms are surveyed by
Marx [16]. For background on parameterized complexity werr [6, 8,17] and for
background on approximation algorithms to [19].

Several papers in the literature already dealt with gloe1D problem. However,
most of them focused on restricted versions of the problemmely the one in which
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all costs and all weights are identical [3, 5, 14, 15], anddhe in which all the edges
have unit costs and the weights of the non-edges are allicdéf2, 4].

TheBcMD problem can be seen as a bicriteria optimization problenrevtie two
optimization criteria are: (1) the cost of the edges addeHeqgraph and (2) the diam-
eter of the augmented graph. As is standard in the literatueesay that an algorithm
is an(«, 5)-approximation algorithm for thecmp problem, witha, 5 > 1, if it com-
putes a sef’ of non-edges of of total cost at mosty - B such that the diameter
of G = (V,EUF)is at most3 - D, whereDJ , is the diameter of an optimal
B-augmentation of5.

We survey some known results about #hembp problem. Note that all the algo-
rithms discussed below run in polynomial time.

Unit weights and unit costs. The restriction oBCcMD to unit costs and unit weights
was first shown to be NP-hard in 1987 by Schoone et al. [18]alsethe paper by Li
et al. [15]. Bilo et al. [2] showed that, as a consequencaefésults in [3, 5, 15], there
exists no(clogn,d < 1+ 1/DJ,)-approximation algorithm foscmp if DJ, > 2,

unless P=NP. For the case in Whiﬂﬁ)t > 6, they proved a stronger lower bound,
7—(DZ,4+1) mod 3

557, )-approximation algo-

namely that there exists nelogn, § < % —
rithm, unless P=NP.

Dodis and Khanna [5] gave &0 (logn), 2+2/D£,t)—approximation algorithm (see
also [14]). Li et al. [15] showed &L, 4 + 2/Dit)—approximation algorithm. The analy-
sis of the latter algorithm was later improved by Bilo eff2], who showed that it gives
a (1,2 + 2/D%,)-approximation. In the same paper they also gavé@fiog n), 1)-
approximation algorithm.

Unit costs and restricted weights. Some of the results from the unweighted setting
have been extended to a restricted version of the weighteg namely the one in which
the edges ofs have arbitrary non-negative integer weights, howevehalliton-edges
of G have cosfl and uniform weighto > 0.

Bild et al. [2] showed how two of their algorithms can be atéato this restricted
weighted case. In fact, they gavgh 2 + 2w/Dﬁ,t)—approximation algorithm and a
(2 — 1/B, 2)-approximation algorithm. Similar results were obtaingdCtemaine and
Zadimoghaddam in [4].

Bilo et al. [2] also showed that, for eve ﬁﬁ > 2w and for some constanf there
is no(clogn,d < 2 — 3w/D£7t)-approximation algorithm for this restriction of the
BCMD problem, unless P=NP.

Arbitrary costs and weights. To the best of our knowledge, there is only one theory
paper that has considered the gene@ip problem. In 1999, Dodis and Khanna [5]
presented a®(n log Df’;t, 1)-approximation algorithm, assuming that all weights are
polynomially bounded. Their result is based on a multicorditydflow formulation of
the problem.

Our results. In this paper we study thecmD problem with arbitrary integer costs
and weights. Our main result is (@, 4)-approximation algorithm with running time
O((3BB? + n + log(Bn))Bn?). We also prove that, consideriigas a parameter, it
is W[2]-hard to compute &l + ¢/ B, 3/2 — ¢)-approximation, for any constantsand
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€ > 0. Further, we present polynomial-tinieB + 1)2,3)-, (B, 4)-, and(1,3B + 2)-
approximation algorithms for the unit-cost restrictiortloé BCMD problem.

2 Shortest Paths with Bounded Cost

Let (G = (V, E),w, ¢, B) be an instance of thecMD problem and letx’ denote the
complete graph on the vertex 3ét The edges ofS have the same weights and costs
as they have itz (observe that an edgeof K is either an edge or a non-edge(®y.

For any0 < < B, a path inK is said to be &-bounded-cost path if it uses non-
edges ofG of total cost at mosB. We consider the problem of computing, ferery
integer0 < 8 < B and for every two vertices, v € V, a3-bounded-cost shortest path
connecting: andv, if such a path exists. We call this problem #ié-Pairs B-Shortest
Paths (APSP3) problem. We will prove the following.

Theorem 1. The APSP problemcan be solved in O(Bn? + Bn? log(Bn)) time using
O(Bn?) space.

In order to prove Theorem 1, we construct a directed gilphk- (U, F') as follows.
First, considelGG as a directed graph, i.e., replace every undirected ¢dge} with

two arcs(u,v) and (v, u) with the same weight and cost as the edgev}. Then,
H = (U, F) containsB + 1 copies ofG;, denoted byGy, ...,Gg. Foranyd < i < B,

we denote by, i) the copy of vertex € V in G; = (V;, E;). The arc sef’ contains
the union ofE’, F’, andM’, where

E= | E,

0<i<k
F = {((u,z’), (i + c({u,v}))) : 0< i< B—c({u,v}), {u,v} € [V]2\ E} and
M = {((u,i),(u,i—i— 1)) :0<i<B-1,ue V}.

ForeacH(u, i), (v,7)) € F’,the weightand the cost ¢fu, i), (v, j)) arew({u, v})
andc({u,v}) = j — i, respectively. For eact{u, i), (u,i + 1)) € M’, the weight and
the cost of{ (u, 7), (u,i + 1)) are0 and1, respectively.

Observation 1 The number of verticesin U is (B + 1)n and the number of arcsin F'
isO(Bn?).

We will use directed grapli/ to efficiently compute3-bounded-cost shortest paths in
K. This is possible due to the following two lemmata.

Lemma 1. Suppose that there exists a 5-bounded-cost path Px in K with weight W
connecting vertices w and v. Then, there exists a directed path Py in H with weight 1V
connecting vertices (u, 0) and (v, 3).

Proof. Consider a patPx = (u = v1,v2,...,v = v,,) in K with weight'V. Set
(v1,0) to be the first vertex aPy . Suppose that patRy has been defined until a vertex
(vn, j), corresponding to vertex, of Py, for somel < h < m. If edge(vp, vpi1)
of Pk is an edge of7, then let(v,, 11, j) be the vertex corresponding tg; . If edge
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(v, vn41) Of Pk is a non-edge of7, then let(vy, 41,7 + c({vn,vnt+1})) be the vertex
corresponding tay, 1. This defines pattPy up to a vertex(v, §'). Assuming that
B’ < B, path Py terminates with a set of edges with weightonnecting(v, j) and
(v,j + 1), for everyps’ < j < 8 — 1; these edges are ih/’, and hence ind, by
construction. It remains to prove that < g and thatPy has weightiV. Every edge
(x,y) of P that is an edge off corresponds to an edgér, a), (y, a)) of H with the
same weight. Moreover, every edge y) of Pk that is a non-edge aF corresponds
to an edg€(z, a), (y,b)) of H, with ¢c{z,y} = b — a and with the same weight. By
definition, Px uses non-edges @f of total cost at mosB. Hence,3’ < f; also, Py
has weight exactly}” and the lemma follows. O

Lemma 2. Let Py bea shortest directed path connecting two vertices (u, ) and (v, j)
of H,with j > i. Let W betheweight of P . Then, thereexistsa (j — 7)-bounded-cost
path Pk in K with weight W' connecting « and v.

Proof. First, we construct a patRy;; connectingu, ¢) and(v, j) in H such that the
weight of P7; is W and, for each vertex in K, all the vertices of the forrtw, -) appear
consecutively inPj;. Indeed,Pj; can be obtained fron?; by repeatedly performing
the following operation. Consider any two vertices, p) and (w, r) such that there
exists a verteXz, ¢) between(w, p) and(w, r) in Py, with z # w. Then, replace the
subpathPy (w) of Py betweenw, p) and(w, ) with path Py, (w) = ((w, p), (w,p +
1),...,(w,r)). Observe thaf},;(w) has weight zero; sinc€y is a shortest directed
path in H connecting(u,4) and (v, j), it follows that Py (w) also has weight zero,
hence the weight oPy is not altered by the replacement.

Second, we define a path in K as follows. For each maximal sequence of ver-
tices of the formw, -) in Pj;, pathPg contains vertexv. If P}, contains two adjacent
vertices(w, p) and(z, q) with w # z, then Pk contains edgéw, z). By construction,
Py connects: andw. Since all the vertices of the forifw, -) appear consecutively in
Py, it follows that Pk is a path. For every eddev, z) of Pk there is a distinct edge
of P;; with the same weight and cost. Since every other edge;phas weight zero
and cost one, it follows tha®x has weightl?” and cost at most — . This proves the
lemma. O

We have the following.

Corollary 1. Thereisa -bounded-cost shortest path connecting vertices« and v in K
with weight W if and only if there is a shortest directed path in H connecting vertices
(u,0) and (v, 3) with weight W.

Proof. We prove the necessity. If there isSabounded-cost shortest pakty con-
necting vertices, andv in K with weight W, then by Lemma 1 there is a directed
pathPy in H connecting vertice&u, 0) and(v, ) with weightW. Suppose, for a con-
tradiction, thatPy is not a shortest directed path connectimg0) and (v, 3). Then,
there exists a shortest directed p&th in H connectingu, 0) and(v, 8) with weight
W’ < W. By Lemma 2, there exists/@&bounded-cost patk}; in K with weight TV’
connectingu andwv,contradicting the fact thaPy is a S-bounded-cost shortest path
connecting vertices andwv.
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We prove the sufficiency. If there is a shortest directed gathin H connecting
vertices(u, 0) and(v, ) with weightW, then by Lemma 2 there existssabounded-
cost pathPx in K with weight W connectingu andv. Suppose, for a contradiction,
that P is not a shortest path. Then, there exist&laounded-cost shortest paft}. in
K with weightW’ < W connecting: andv. By Lemma 1, there exists a directed path
Py, in H connecting verticesu, 0) and (v, 5) with weightT¥’, contradicting the fact
that Py is a shortest directed path connecting vertiee®) and(v, 3). O

We are now ready to prove Theorem 1. Consider any vertex<. We first mark every
vertex that can be reached from, 0) in H with the weight of its shortest path from
(u,0). By Observation 1H hasO(Bn) vertices and)(Bn?) edges, hence this can be
done inO(Bn? + Bnlog(Bn)) time [10]. For every) < 3 < B and for every vertex
v # u, by Corollary 1 the weight of @-bounded cost shortest path i is the same
as the weight of a shortest directed path from0) to (v, 3) in H. Hence, for every
0 < B < B and for every vertex # u, we can determine i®)(Bn? + Bnlog(Bn))
total time the weight of @-bounded cost shortest path/ihconnecting: andv. Thus,
for every0 < 5 < B and for every pair of vertices andv in K, we can determine in
O(Bn? + Bn?log(Bn)) total time the weight of a&-bounded cost shortest pathin
connecting: andv. This concludes the proof of Theorem 1.

3 Arbitrary Costs and Weights

Our algorithms, as with many afore-mentioned approxinmegigorithms for thescmbp
problem, use a clustering approach as a first phase to findaafd® + 1 cluster centers.
The idea of the algorithm is to create a minimum height roated?” with vertex set
U, whereC C U, by adding a set of edges of total cost at mBgb G. We will prove
that such a tree approximates an optifBahugmentation.

3.1 Clustering

We start by defining the clustering approach used to genttrafe + 1 cluster centers.
Whereas a costly binary search is used in [4] to guess thagadithe clusters, we
adapt the approach of [2] to our more general setting.

For two vertices., v, we denote bylist: (u, v) the distance betweenandv in G.
For a vertex: and a set of verticeS, we denote bylist (u, .S) the minimum distance
between: and any vertex fron$' in G, i.e.,distg (u, S) = min,ecg{distg(u,v)}. For
a set of verticess, we denote bylists(S) the minimum distance between any two
distinct vertices front in G, i.e.,distg(S) = min,eg{distg(u, S\ {u})}.

The clustering phase computes aGet {ci,...,cp+1} of B + 1 cluster centers
as follows. Vertex:; is an arbitrary vertex ifv’; for 2 < i < B + 1, vertexc; is chosen
so thatdist (¢;, {c1, - .., ci—1}) is maximized. Ties are broken arbitrarily.

Lemma 3. The clustering phase computesin O(Bn?) timeaset C C V of size B + 1

such that dist (v, C') < D, for every vertexv € V.

Proof. First, note that the above described algorithm can easilimptemented in
O(Bn?) time usingB iterations of Dijkstra’s algorithm with Fibonacci heap$®[iLet

¢p+2 denote a vertex maximizindiste (cs42, C), and denote this distance B By
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definition, distg (v, C') < R for everyv € V. To prove the lemma it remains to show
thatR < DJ,. For the sake of contradiction, assug,, < R. Then,C'U {cp 2} is

a set of B + 2 vertices with pairwise distance larger thﬁhﬁ,t in G. Namely, for every
2<i< B+2,we haV&liStG(Ci, {Cl, ceey Cifl}) > diStG(CBJrQ, {Cl, ey Cifl}) >
distg(cpy2,C) = R > Dﬁ,t. We prove the following claim.

Claim 1 Let G’ be a weighted graph and let C’ be a set of vertices in G’ such that
distg/ (C") > D and suchthat |C’| > 3. Then, for every graph G’ obtained from G’ by
adding a single non-edge of G’ with non-negative weight, thereisa set C” C C’ with

|C”] =|C"| — 1 andwith distg (C") > D.

Proof. Let (u, v) denote the edge that is added36to obtainG”. For the sake of
contradiction, assume that there is no vertexc C’ such thatdistg. (C" \ {w}) >
D. That is, every se€” c C' with |C”| = |C’| — 1 contains two vertices whose
distance is at mosD. Then, there are four vertices;, ws, w3, ws € C such that
distgr (w1, w2) < D anddistgr(ws,ws) < D (Case 1), or there are three ver-
ticeswy, we, w3 € C such thatdistgr (wy,ws) < D, distgr(wy,ws) < D, and
distgr (we, w3) < D (Case 2). Indeed, assume that we are neither in Case 1 nosén Ca
2. Construct a graphl whose vertices are those @ and such that there is an edge
(w;, wy) if and only if dister (w;, w;) < D. Since we are not in Case 1, we have that
A does not contain two non-adjacent edges, hence it is eitbtar @lus an independent
set or a3-cycle plus an independent set. Since we are not in Caseoflpivk thatA is a
star plus an independent set. Hence, there is a vertexC’ such that removing and
its incident edges froml turns A into an empty graph. Thudijstg (C’ \ {w}) > D,

a contradiction which proves that we are either in Case 1 Qaise 2.

Suppose that we are in Case 1. By assumption, we havelittat: (wq, w2) <
distgr (w1, we) anddister (w3, wy) < distgr (w3, wy). Hence(u, v) is an edge of any
shortest pattP; » fromw, to w, and of any shortest paif} 4 from ws to w4. Assume,
without loss of generality, that is encountered beforewhen traversing?, » starting
atw; and when traversing’ 4 starting atws (otherwise swapv; andws and/orws
andw,). Therefore, we get

(1A) distgr (w1, u) + dister (v, wa)
(1B) dister (ws, u) + dister (v, wa)

D, and

<
<D.

However, sincelists: (C') > D, we have

(1C) dister (w1, w) + dister (v, ws) > D, and
(1D) diste (we,v) + dister (v, wq) > D.

DenoteK := distG/(wl, u) + distgr (1}, w2) + distgr (wg, U) + dist g (1}, w4). In-
equalities (1A) and (1B) giv& < 2D, while inequalities (1C) and (1D) giv€ > 2D,
a contradiction.

Suppose that we are in Case 2. Denotefhy, P, 3, and P, 3 three paths irG”
with weight at mostD connectingw; andws, connectingu; andws, and connecting
wy andws, respectively. Sincéistg: ({wy, wa,w3}) > D, all these paths use edge
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(u, v). Without loss of generality, assunméste: (w1, u) < distes (w1, v). Hence, both
Py 5 and P, 3 reachu beforev when traversing such paths startinggt Without loss
of generality, assume th#t, 5 reaches: beforev when traversing such path starting at
wo (otherwise, swap, andws). Therefore, we get

(2A) distgr (w1, u) + dister (v, wa)

iy D, and
(ZB) diStG/(U)Q, u) + distG/(v, IU3) D.

<
<

However, sincelistg ({w1, we, ws}) > D, we have

(2C) diste (w2, v) + distg: (v, w3) > D, and
(2D) distgs (wy, u) + distgr (u, we) > D.

Denotel := distg (w1, u) + distg (v, w2) + dister (we, u) + dister (v, w3). In-
equalities (2A) and (2B) givé < 2D, while inequalities (2C) and (2D) give > 2D,
a contradiction. This concludes the proof of the claim. O

Now, sinceC' U {cp42} is a set of B + 2 vertices with pairwise distance larger than
Dﬁ,t in G, by iteratively using the claim we have that in aByaugmentatiorG g of
G, we have a set B + 2 — | F| > 2 vertices with pairwise distance greater thaj,,,
thus contradicting the definition dﬁﬁﬁ. This concludes the proof of the lemma. I

3.2 A minimum height tree

LetC' = {co,...,cp} be a set ofB + 1 cluster centers such that ttie+ 1 clusters
with centers aC’ and radiust;)t cover the vertices ofr. This set can be computed as
described in the previous section.

Definition 1. Let G = (V, E) be a graph together with a weight function w : [V]? —
N.LetC C V andlet u beavertexin V. A Shortest Path Tree of GG, C', and u, denoted by
SPT(G, C, u),isatree T rooted at u, spanning C', whose vertices and edgesbelongto V'
and E, respectively, and such that, for every vertex c € C, itholdsdy(u, ¢) = dg(u, c).

The height of a weighted rooted tre', which is denoted byi(T), is the maximum
weight of a path from the root to a leaf.

Definition 2. Let G = (V, E) beagraph together with aweight functionw : [V]? — N
and a cost functionc : [V]? — N*. Let C C V, letu beavertexin V, and let B > 0
be an integer. A Minimum Heightg SPT of GG, C, and u, denoted by MH g SPT (G, ¢, u),
isan sPT(Gg, C, u) of minimum height over all B-augmentationsG g of G.

Let G be aB-augmentation of7 with diameteer;,t.

Lemma 4. The height of a MHpSPT (G, C,u) isat most DS,



8 Fabrizio Frati, Serge Gaspers, Joachim Gudmundsson, @eNMathieson

u

Fig. 1. lllustrating the path defined in the proof of Lemma 5.

Proof. By definition, we have (AJy(MHSPT(G, C,u)) < h(sPT(Gp,C,u)). Since
G is a B-augmentation ofs with diameterD7,,, we have (B)i(sPT(G s, C, u)) <

DOBpt. Inequalities (A) and (B) together prove the lemma. O

We now present a relationship betweenglaa1d problem and the problem of comput-
ing aMHSPT(G, C, u).

Lemma 5. Let u be any vertex in V' and let G’; be a B-augmentation of G such that
Rh(sPT(G's, C,u)) = A(MHESPT(G, C,u)). Then, the diameter of G5 is at most 4 -
DJ,.
Proof. Consider two vertices andy in V, see Figure 1. Let, andc, be centers of the
clustersr andy belong to, respectively. Then, we halistq, (7, y) < distg(z, ;) +

dister, (cz, u)+dister, (u, ¢y)+distg(cy, y). By Lemma 3diste (, ¢z ), dista(cy, y) <
DJ,. Sinceh(spT(G'z,C,u)) = h(MHpSPT(G,C,u)) and by Lemma 4, it holds

distgy, (cz, u), distg, (u, ¢y) < DJ,. Hencedistqr, (z,y) < 4- DJ,. O

3.3 Constructing a minimum height tree

In this section, we give an algorithm to computeazsPT(G, C, ¢1).

We introduce some notation and terminology. Lét= C \ {c,}. Observe that a
MHpBSPT (G,C", 1) is also aMHBSPT (G, C, c1), given that aMH gSPT (G, C’, ¢1)
containsc; as its root. Denote by’ (u, v) the minimum weight of g-bounded cost
path connecting andv in K. For anyu € V, foranyS C C’, and forany < j < B,
lety(u, S, j) denote the height of ®H,;SPT (G, S, u). Hence, the height of ®H g SPT
(G,C",c1) isy(c1,C', B). The following main lemma gives a dynamic programming
recurrence for computing(ci, C’, B).

Lemma6. Foranyu € V,any S C ¢/, andany 0 < j < B, the following hold: If
|S| =1, then~(u,S,j) = d%(u,c;) where S = {¢;}. If |S| > 1, then

V(U,S,j) = LI%I‘I} dj]é(uvv)+max{7(vvslvj2)v’7(vas\S/vj3)}'
_s'es
J=j1+j2+73
Proof. If |S| = {¢;}, thenMmH,;SPT (G, {¢;}, u) is a minimum-weight path connecting
u ande; and having total cost at mogt Henceyy(u, S, j) = di((u, ¢i). In particular,
notice that, ifu = ¢;, theny(u, {u},j) = d;-{(u, u) = 0.
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Fig. 2. lllustration for the proof of Lemma 6.

Assume thatS| = m > 1. Denote byl anyMH ;SPT(G, S, u). Denote byP (v, w)
the unique path ifl’ connecting two vertices andw of T". We distinguish three cases,
based on the structure @f. In Case (a), the degree afin T' is at least two (see Fig-
ure 2(a)). In Case (b), the degreewin T is one and there exists a verteéxe S such
that every internal vertex aP(u, u’) has degreé@ in T and does not belong t6 (see
Figure 2(b)). Finally, in Case (c), the degreewoih 1" is one and there exists a vertex
u’ ¢ S such that every internal vertex &u, u') has degree in T'and does not belong
to S, and such that the degreedfis greater than two (see Figure 2(c)).

First, we prove that one of the three cases always applitse degree of, in T' is
at least two, then Case (a) applies. Otherwise, the degreésof. Traversel’ from u
until a vertexu’ is found such that” € S or the degree of/ is at leasB. If v’ € S,
then every internal vertex d?(u, v") has degree in T and does not belong t®, hence
Case (b) applies. lf’ ¢ S, then the degree af is at leasB, and every internal vertex
of P(u,u’) has degreé in T and does not belong t8, hence Case (c) applies.

We now prove that, in each of the three cases, the recursmputation ofy(u, S, )
is correct. That is, we show that the vatyg:, S, j) computed by the recurrence in the
statement of the lemma is at md&gfl’); observe that/(u, S, j) cannot be smaller than
R(T), by the assumption thadt is amH;SPT (G, S, u).

In Case (a)]" is composed of two subtre&si, SPT(G, S,, u) andMH,SPT(G, S\
Sa,u), only sharing vertex:,, with ) C S, € S. The height ofl" is the maximum of
the heights oivH,SPT (G, Sy, u) andMH, SPT (G, S \ S,,u); also, the cost of” is
x + y. By definition, the heights ofiH,SPT (G, S,, u) andMH,SPT (G, S \ S,, u)
arey(u, Sq,x) andvy(u, S \ Sq,v)), respectively. Thus, the height @f is A(T) =
max{y(u, Sq, z),v(u, S\ Sa,y)}. Such a value is found by the recursive definition of
v(u, S, j) withv =, S’ = S,, j1 =0, jo = x, andjs = y, hence the value(u, S, j)
computed by the recurrence in the statement of the lemmanissith (7).

In Case (b)7 is composed of a path fromto «” with costz and weigh@y; (u, u’),
and of aMH,SPT (G, S \ {«'},u). The height off" is the sum ofd}, (u,v") and the
height ofmH, SPT(G, S\ {u'}, «’); also the cost of " is = +y. By definition, the height
of MH,SPT (G, S\ {v'},v) isv(v/, S\ {v'},y). Thus, the height of" is (T) =
d%-(u,u') + v(u', S\ {v'},y). Such a value is found by the recursive definition of
~v(u, S, j) withv =/, " = S\ {u'}, j1 =, j» = y, andjz = 0, hence the value
~(u, S, j) computed by the recurrence in the statement of the lemmaniesiti(7').
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In Case (c)I' is composed of a path fromto " with costz and weightly; (u, u’),
of aMH,SPT (G, S,, '), and of aMH.SPT (G, S \ Sa, ') with ® € S, C S. The
height of " is the sum ofi%, (v, v’) and the maximum between the heightsvef, SPT
(G, S,,u') andmH . SPT(G, S\ S,,u'); also the cost of is z+y+ z. By definition, the
heights ofMH ,SPT(G, S, w') andMH ,SPT(G, S\ S,, u') arey(u', Sq, y) andy(u’, S\
Sa, z), respectively. Thus, the height @fis /(T') = d} (u,u’) + max{vy(v/, Sa,y),
~v(u', S\ Sa, z)}. Such a value is found by the recursive definitioméfi, S, j) with
v=u',8 =S, j1 =z j2 =y, andjs = z, hence the value(u, S, j) computed by
the recurrence in the statement of the lemma is at m(@s}.

This concludes the proof of the lemma. O

Lemma 6 yields the following.

Theorem 2. Thereexistsa (1, 4)-approximation algorithmfor the BcMD problemwith
O((38B? + n + log(Bn))Bn?) running time.

Proof. Given an instancéG, w, ¢, B) of theBcMD problem, by Theorem 1 we can
determine, for every pair of verticesv € V and for everyl < j < B, the minimum
weight of aj-bounded cost path connectingndv in total O((n+log(Bn)) Bn?) time.
By Lemma 3, a clustering aff can be computed i (Bn?) time. Due to Lemma 6,
the problem of computing®iH 5SPT(G, C \ {c1}, ¢1) can be solved by dynamic pro-
gramming over the triple@s, S, j) (there areD (B(le)n) such triples with S| = s);
the computation of the value for any such triple requireake . minimum ovef32!5in
values, hence the dynamic programming running tinge (SzB Zf:o (BS“)B32Sn) =
O(B*38n?). Observe that the dynamic programming can be designed m &y
that a rooted tree with height equaltéu, S, j) is computed together with the value of
~(u, S, 7). This is trivially done in the base case; moreover, in theigide case it only
requires, for each € V, eachS’ C S, and eacly = j; + j2 + j3, the computation
of a shortest path tree. Finally, by Lemma 5, augmendingith the non-edges that are

presentin aMH zSPT(G, C'\ {c1}, ¢1) yields aB-augmentatiords 5 whose diameter is

atmostd- DJ . O

4 Unit Costs and Arbitrary Weights

For the special case in which each edge has unit cost andaaybiteight, our tech-
niques lead to several results, that are described in thewfolg. Observe that, in
this case we are allowed to insert ¢h exactly £ non-edges of+, wherek = B =
O(n?). We remark that Theorem 2 giveg & 4)-approximation algorithm running in
O((3%k* + n)kn?) time for this special case.

In the following, we denote by a clustering withk + 1 clusters constructed as
described in Subsection 3.1. We first show(/a+ 1)2, 3)-approximation algorithm.

Theorem 3. Given an instance of the BCMD problem with unit costs, there exists a
((k + 1), 3)-approximation algorithmwith O (kn?*) running time.

Proof. For every pair of cluster centets ¢; € C compute a shortest path it between
¢; andc; that contains at mosgt non-edges ofy. Add those edges t6" and letG’ =
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(V,E U F). By Theorem 1 and since = O(n?), G’ can be constructed i®(kn?)
time. Observe that, for each pair of cluster centers, therdkgn adds at most non-
edges ofG to F, thus at mosk(k + 1)? non-edges in total. We prove that, for every
v;,v; € V, there exists a path i’ connectingv; andv; whose weight is at most
3-D¥ . Denote by:; andc; the centers of the clustersanduv; belong to, respectively.
We haV&liStg/(’Ui, vj) < distg ('Ui, Ci) + dist¢y (Ci, Cj) + distg(cj, vj). By Lemma 3,
dist (vi, ¢;), dista (vs, ¢;) < DE;; also, by constructionliste: (¢;, ¢;) < Dk, and
the theorem follows.

Next, we give &k, 4)-approximation algorithm.

Theorem 4. Given an instance of the BCMD problem with unit costs, there exists a
(k, 4)-approximation algorithmwith O(kn?) running time.

Proof. Pick an arbitrary cluster center, say. For every cluster cente, € C \ {c1},
compute a shortest path betwegnandc; in K containing at moskt non-edges of
G. Add those edges té¢' and letG’ = (V, E U F). By Corollary 1, a shortest path
betweenc; andc; in K containing at mosk non-edges of> corresponds to a short-
est path betweefr;,0) and (c¢;, k) in digraph H. By Observation 1H hasO(kn)
vertices andO(kn?) edges. Hence, Dijkstra’s algorithm with Fibonacci heapd] [1
computes all the shortest paths betw¢en0) and(c;, k), for everyc; € C\ {c1},

in total O(kn?) time. Observe that, for each cluster different frem the algorithm
adds at most: non-edges of7 to F, thus at mos#? non-edges in total. We prove
that, for everyv;,v; € V, there exists a path iG’ connectingv; and v; whose
weight is at most - D’gpt. Denote byc; and ¢; the centers of the clusterts and
v; belong to, respectively. We haviste: (v;,v;) < diste(vs, ¢;) + distar (ci,e1) +
distgr (e, Cj) + distg(cj, vj). By Lemma 3distg(vs, ¢;), distg(vj, Cj) < Dlgpt; by

constructiondistgr (¢;, ¢1), dister (c1, ¢j) < D’gpt, and the theorem follows. O

Finally, we present &1, 3k + 2)-approximation algorithm.

Theorem 5. Given an instance of the BCMD problem with unit costs, there exists a
(1, 3k + 2)-approximation algorithmwith O(n? + k2) running time.

Proof. For every pair of cluster§’; andC;, with 1 < i < j < k + 1, lete;; be the
edge of X' of minimum weight connecting a vertex @; with a vertex inC;. We de-
note by F’ the set of these edges. For a subBeaif F’, we say thatF’ spans C' if the
graph representing the adjacencies between clusterseviadipes off' is connected.
Let F' be a minimum-weight set df edges from¥’ spanning”. LetG' = (V, EU F).
The setF”’, and hence the grapfi’, can be constructed i@(n? + k?) time as fol-
lows. Consider all the edges & and keep, for each pair of clusters, the edge with
smallest weight. This can be done @(n?) time. Finally, compute irO(k?) time a
minimum spanning tree of the resulting graph [11], that ©&&) vertices and)(k?)
edges. Observe that the algorithm adds at niosbn-edges of= to F. We prove
that, for everyv;,v; € V, there exists a path iG’ connectingv; and v; whose
weight is at most(3k + 2)D’gpt. Denote byP- the (unique) subset of’ connect-
ing the clusters; andv; belong to. Let(z1, y1), (z2,92), - - -, (Xm, ym) be the edges
of Pc in order fromuw; to v;. Then,distg: (vi,v;) < distg(vi,z1) + w(z1,y1) +
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distg(y1,z2) + ... + W(Tm, Ym) + distg(Ym, v;). By Lemma 3diste (v, zig1) <

2D% ., anddist (v, 21), dista (yYm, v;) < DE,;. Also,w(z,y;) < Df,;, and the the-
orem follows. O

5 Hardness Results

The main theorem of this section provides a parameterizedcitability result for
BCMD with unit weights and unit costs, and some related probfeffise u-BCcMD
problem has as input an unweighted gra@ph= (V, E') and two integeré andd, and
the question is whether there is a $&tC [V]? \ E, with |F'| < k, such that the graph
(V,E U F) has diameter at most The parameter i&. We will show thatu-scmD

is W[2]-hard. We will also provide refinements to the minimum coodi required
for intractability, namelyu-BcmMD remains NP-complete for graphs of diameter three
with target diameter two. We note that although Dodis andr&g®] provide an inap-
proximability reduction from &1 COVER, they begin with a disconnected graph, and
expand the instance with a series of size-two sets, whichdopreserve the size of the
optimal solution, and therefore their reduction cannot eduto show parameterized
complexity lower bounds.

Theorem 6. SET COVER is polynomial-time reducible to u-BcMD. Moreover, the re-
duction is parameter preserving and creates an instance with diameter three and target
diameter two.

Proof. Let (X, S, k) be an instance of r COVER whereS is the base set anil C
P(S) is the set from which we must pick the set coverSoWwith size at mosk. We
construct an instanaer = (V, E), k, d) of u-BcMD as follows.
Letm = | X| - k. The vertex seV is the disjoint union ob sets:
— asetY corresponding to the séf where for eachr € X we have avertey € Y,
— asetl’ = 4., Ti corresponding t& where, for eacty € S andi € [m], we
have a vertex; € T; (i.e, we havem copies of a set of vertices corresponding
to 5),
— asetlJ with (') verticesu;;, one for each paifT;, T}) with i # j,
— the set{a}, and
— the set{b}.
The edge seF consists of the following edges:
— ab,
— by for each vertey € Y,
— bu,; for each vertexy;; € U,
— yy’ for each pair of verticeg, 3y’ € Y,

! After the publication of the conference version of this pggand after the first submission
of the present journal paper, James Nastos informed us abpaper whose results overlap
with the intractability results of this paper. Namely, Gatare, and Nastos [12] proved that
theBcMD problem with unit weights and costslig [2]-hard, for every target diametér> 2.
Their reduction is from “dominating set” and is similar tetbne we present in this paper. We
apologize to the authors of [12] for not being aware of the@vpus result.
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— u;;uyy for each pair of vertices,;;, uy, € U,

— yt for each pair of verticeg € Y andt € T; such that the elemente S corre-
sponding tat is in the setr € X corresponding tg in the SET COVER instance,
and

— tuy; for each pair of vertices € T; andu;; € U such that € {j,1}.

Fig. 3. Sketch of the construction for thee® COVER to u-BCMD reduction. The edge sets rep-
resented in gray are complete, the edge sets representaghtirgteen correspond to the set
membership from the 8r CoOvER instance. The vertex se¥tsandU are cliques. The vertex sets
T; are independent sets for ale [m].

We setd = 2. Note thatk in theu-BCcMD instance is the sanfeas for the T COVER
instance. The construction is sketched in Figure 3.

Claim 2 For all v,v" € V' \ {a} we havedist(v,v") < 2.

Proof. The vertices ot/ are at distance one from each other. The verticés afe
at distance one from each other. Verteis at distancd from the vertices ot andU.
Therefore the vertices df andY are at most distanczfrom each other via the path
throughb. Each vertex € T is at distance one from some vertgxc Y. AsY is a
clique,t is at distance at most two from all the verticestinEach vertex € 7' is at
distance one from some vertexc U. As U is a clique,t is at distance at most two
from all the vertices ir/. For each pair of verticels € T; andt; € T there is a vertex
u;; € U such thatt;u;; € E andt;u;; € E. If i = j then any vertexy;;, € U will
suffice. Thus all the vertices @f are at most distance 2 from each other and fioml

Claim 3 For all v € V we have dist(a, v) < 3. Moreover, dist(a, v) = 3 if and only if
vel.

Proof. As the distance from to all other vertices is at mo8t the distance from
to all other vertices is at mo8t Moreover, as the distance frobrto the vertices ot/
andY is one, the distance fromto these vertices is two. Therefore the only vertices at
distance three from are the vertices df". O
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Thus we are concerned only with reducing the distance betwesnd the vertices of
T.

Claim4 (X, S,k)isaYEsinstance of SET Coverifandonlyif (G, k,d) isa YES
instance of U-BCMD.

Proof. Let X’ C X be the set cover that witnesses th&t S, k) is a YEs-instance
of SET COVER. LetY’ C Y be the set of vertices that correspondsit We have
|Y'] = |X’| < k. If we add the edgesy for all y € Y’, thena is at distance at mo&t
from all verticest € T. As X' is a set cover o5, for eachs € S there is at least one
setx € X’ such that € x. Then there is an edge fromto the vertex, corresponding
to x, and by the construction, is adjacent ta € T if and only if the corresponding
elements is in S, thus we have a path~~ y ~ t.

Now, assuméG, k, d) is a YES-instance ofu-BCMD. First consider the case where
all the edges are added betweesnd the vertices df . Then the seY”’” C Y of vertices
newly adjacent ta corresponds to a set cov&’ C X in the same way as before.

We must demonstrate that we may only (productively) add tgéveern: andY'.
Observe that any edge in a path franto a vertext; in T' with length at mos® must
havea ort; as an end-vertex. Hence, adding edges between two verti¢gsw U UY
does not help decreasing the diametet:ofFurther, we cannot add the edgle as it
already exists. Also, any eddeg, t;) can be replaced by edde, ¢;). Edge(t;,t;) is
used in any lengtl2-path froma to the vertices il only if (a,t;) or (a,t;) is in the
solution. In the former casé;, ¢;) can be replaced by edde, ¢,), in the latter case
by (a,t;). Hence, we can assume that any solution only uses edgesatimgnewith
a vertex inY or in U. Each edge frona to a vertexu;; € U can only decrease the
distance betweea and the vertices in two sef§ and7}. Thus, as long agX| > 2
there exists a séf; none of whose adjacent verticeslinis adjacent ta. This implies
that we must add edges fromto a subsel”” of Y such thatT; is dominated byy”’.
Hence,Y”’ corresponds to a set cover 8f O

We note that the reduction is obviously polynomial-time poitable, and the parameter
k is preserved. The theorem now follows from the previouswéai O

Corollary 2. u-BcMD is NP-complete even for graphs of diameter three with target
diameter two.

Proof. As it is already known that-BcMD is in NP [5], the result folu-BcmD
follows from Theorem 6. O

As SET COVER is W|[2]-hard with parametek, combined with Corollary 2 we also
have the following result.

Corollary 3. u-BCcMD is W2]-hard even for graphs of diameter three with target di-
ameter two.

We note additionally that as the initial graph has diam&tand the target diameteris
itis even NP-hard and W[2]-hard to decide if there is a sétioéw edges that improves
the diameter by one. Furthermore by takings source vertex, the results transfer im-
mediately to the single-source version as discussed by DeraZzadimoghaddam [4].
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The construction of Theorem 6 can even be extended to givesangterized inap-
proximability result foru-sCMmD.

Theorem 7. It is W[2]-hard to computea (1 + £, 3 — ¢)-approximation for U-BCMD
for any constantsc and € > 0.

Proof. We repeat the construction of Theorem 6, except that wedntrec + 1 copies
of theY andT components and séf = k - (¢ + 1), wherek’ is the parameter of
U-BCMD. LetY; with 1 < ¢ < ¢+ 1 be the copies of th& components and I€f; ;
with1 < i < ¢+ 1andl < j < m be the copies of th& components. The edges are
similar to the previous construction; we highlight the eifhig edges:
- byforally e |, Y,
— yy' foreachy,y’ € |, Vs,
— yt for eachy € Y; andt € T; ; where the element € X corresponding tg is in
the sets € S corresponding te, and
— tu,; for each vertex € (J,, (Th,; U Th ;) and each vertex;; € U.
Then apart fromu, all vertices remain at pairwise distarewith « at distancel from
vertices mU . T; ;. To reduce the diameter fowe require the addition of edges from
a to vertices of th&” components as before, furthermore we require edges to eagh c
otherwise there is sonig ; that remains at distan&from a.
Thus, if the &T CoVvER instance has a solution of sizgthen theu-BCMD instance
has a solution of sizg: + 1)k = k’. Conversely, lef” be a set of at mostl + 5 )k’ =
k" + c edges such that the diameter@f= (V, EU F) is at most(3 — ) - 2. Since the
diameter of’ is integral, it is at most 2. Since there are- 1 copies ofY’, at least one
of them has at modt’' vertices adjacent te, giving a set cover of siz&'. ]
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