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Abstract. We study the problem of augmenting a weighted graph by inserting
edges of bounded total cost while minimizing the diameter ofthe augmented
graph. Our main result is an FPT4-approximation algorithm for the problem.

1 Introduction

We study the problem of minimizing the diameter of a weightedgraph by the inser-
tion of edges of bounded total cost. This problem arises in practical applications [2,
4] such as telecommunications networks, information networks, flight scheduling, pro-
tein interactions, and it has also received considerable attention from the graph theory
community, see for example [1, 7, 13].

We introduce some terminology. LetG = (V,E) be an undirected weighted graph.
Let [V ]2 be the set of all possible edges on the vertex setV . A non-edge of G is an
element of[V ]2 \ E. Theweight of a path inG is the sum of its edge weights. For any
u, v ∈ V , theshortest u-v path in G is the path connectingu andv in G with minimum
weight. The weight of this path is said to be thedistance betweenu andv in G. Finally,
thediameter of G is the largest distance between any two vertices inG. The problem
we study in this paper is formally defined as follows (denote by N the set of natural
numbers including0 and byN∗ the set of natural numbers excluding0).

PROBLEM: Bounded Cost Minimum Diameter Edge Addition (BCMD)
INPUT: An undirected graphG = (V,E), a weight functionw : [V ]2 → N,

a cost functionc : [V ]2 → N∗, and an integerB.
GOAL : A setF of non-edges with

∑

e∈F c(e) ≤ B such that the diameter
of the graphGB = (V,E∪F ) with weight functionw is minimized.
We say thatGB is aB-augmentation of G.

The main result of this paper is a fixed parameter tractable (FPT) 4-approximation
algorithm forBCMD with parameterB. FPT approximation algorithms are surveyed by
Marx [16]. For background on parameterized complexity we refer to [6, 8, 17] and for
background on approximation algorithms to [19].

Several papers in the literature already dealt with theBCMD problem. However,
most of them focused on restricted versions of the problem, namely the one in which
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all costs and all weights are identical [3, 5, 14, 15], and theone in which all the edges
have unit costs and the weights of the non-edges are all identical [2, 4].

TheBCMD problem can be seen as a bicriteria optimization problem where the two
optimization criteria are: (1) the cost of the edges added tothe graph and (2) the diam-
eter of the augmented graph. As is standard in the literature, we say that an algorithm
is an(α, β)-approximation algorithm for theBCMD problem, withα, β ≥ 1, if it com-
putes a setF of non-edges ofG of total cost at mostα · B such that the diameter
of G′ = (V,E ∪ F ) is at mostβ · DB

opt, whereDB
opt is the diameter of an optimal

B-augmentation ofG.
We survey some known results about theBCMD problem. Note that all the algo-

rithms discussed below run in polynomial time.

Unit weights and unit costs. The restriction ofBCMD to unit costs and unit weights
was first shown to be NP-hard in 1987 by Schoone et al. [18]; seealso the paper by Li
et al. [15]. Bilò et al. [2] showed that, as a consequence of the results in [3, 5, 15], there
exists no(c logn, δ < 1 + 1/DB

opt)-approximation algorithm forBCMD if DB
opt ≥ 2,

unless P=NP. For the case in whichDB
opt ≥ 6, they proved a stronger lower bound,

namely that there exists no(c logn, δ < 5
3 −

7−(DB
opt+1) mod 3

3DB
opt

)-approximation algo-

rithm, unless P=NP.
Dodis and Khanna [5] gave an(O(log n), 2+2/DB

opt)-approximation algorithm (see
also [14]). Li et al. [15] showed a(1, 4+2/DB

opt)-approximation algorithm. The analy-
sis of the latter algorithm was later improved by Bilò et al.[2], who showed that it gives
a (1, 2 + 2/DB

opt)-approximation. In the same paper they also gave an(O(log n), 1)-
approximation algorithm.

Unit costs and restricted weights. Some of the results from the unweighted setting
have been extended to a restricted version of the weighted case, namely the one in which
the edges ofG have arbitrary non-negative integer weights, however all the non-edges
of G have cost1 and uniform weightω ≥ 0.

Bilò et al. [2] showed how two of their algorithms can be adapted to this restricted
weighted case. In fact, they gave a(1, 2 + 2ω/DB

opt)-approximation algorithm and a
(2 − 1/B, 2)-approximation algorithm. Similar results were obtained by Demaine and
Zadimoghaddam in [4].

Bilò et al. [2] also showed that, for everyDB
opt ≥ 2ω and for some constantc, there

is no (c logn, δ < 2 − 3ω/DB
opt)-approximation algorithm for this restriction of the

BCMD problem, unless P=NP.

Arbitrary costs and weights. To the best of our knowledge, there is only one theory
paper that has considered the generalBCMD problem. In 1999, Dodis and Khanna [5]
presented anO(n logDB

opt, 1)-approximation algorithm, assuming that all weights are
polynomially bounded. Their result is based on a multicommodity flow formulation of
the problem.

Our results. In this paper we study theBCMD problem with arbitrary integer costs
and weights. Our main result is a(1, 4)-approximation algorithm with running time
O((3BB3 + n + log(Bn))Bn2). We also prove that, consideringB as a parameter, it
is W [2]-hard to compute a(1 + c/B, 3/2− ǫ)-approximation, for any constantsc and
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ǫ > 0. Further, we present polynomial-time((B + 1)2, 3)-, (B, 4)-, and(1, 3B + 2)-
approximation algorithms for the unit-cost restriction oftheBCMD problem.

2 Shortest Paths with Bounded Cost
Let (G = (V,E), w, c, B) be an instance of theBCMD problem and letK denote the
complete graph on the vertex setV . The edges ofK have the same weights and costs
as they have inG (observe that an edgee of K is either an edge or a non-edge ofG).

For any0 ≤ β ≤ B, a path inK is said to be aβ-bounded-cost path if it uses non-
edges ofG of total cost at mostβ. We consider the problem of computing, forevery
integer0 ≤ β ≤ B and for every two verticesu, v ∈ V , aβ-bounded-cost shortest path
connectingu andv, if such a path exists. We call this problem theAll-Pairs B-Shortest
Paths (APSPB) problem. We will prove the following.

Theorem 1. The APSPB problem can be solved in O(Bn3+Bn2 log(Bn)) time using
O(Bn2) space.

In order to prove Theorem 1, we construct a directed graphH = (U, F ) as follows.
First, considerG as a directed graph, i.e., replace every undirected edge{u, v} with
two arcs(u, v) and (v, u) with the same weight and cost as the edge{u, v}. Then,
H = (U, F ) containsB + 1 copies ofG, denoted byG0, . . . , GB. For any0 ≤ i ≤ B,
we denote by(v, i) the copy of vertexv ∈ V in Gi = (Vi, Ei). The arc setF contains
the union ofE′, F ′, andM ′, where

E′ =
⋃

0≤i≤k

Ei,

F ′ =
{

(

(u, i), (v, i+ c({u, v}))
)

: 0 ≤ i ≤ B − c({u, v}), {u, v} ∈ [V ]2 \ E
}

, and

M ′ =
{

(

(u, i), (u, i+ 1)
)

: 0 ≤ i ≤ B − 1, u ∈ V
}

.

For each((u, i), (v, j)) ∈ F ′, the weight and the cost of((u, i), (v, j)) arew({u, v})
andc({u, v}) = j − i, respectively. For each((u, i), (u, i + 1)) ∈ M ′, the weight and
the cost of((u, i), (u, i+ 1)) are0 and1, respectively.

Observation 1 The number of vertices in U is (B + 1)n and the number of arcs in F
is O(Bn2).

We will use directed graphH to efficiently computeβ-bounded-cost shortest paths in
K. This is possible due to the following two lemmata.

Lemma 1. Suppose that there exists a β-bounded-cost path PK in K with weight W
connecting vertices u and v. Then, there exists a directed path PH in H with weight W
connecting vertices (u, 0) and (v, β).

Proof. Consider a pathPK = 〈u = v1, v2, . . . , v = vm〉 in K with weightW . Set
(v1, 0) to be the first vertex ofPH . Suppose that pathPH has been defined until a vertex
(vh, j), corresponding to vertexvh of PK , for some1 ≤ h < m. If edge(vh, vh+1)
of PK is an edge ofG, then let(vh+1, j) be the vertex corresponding tovh+1. If edge
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(vh, vh+1) of PK is a non-edge ofG, then let(vh+1, j + c({vh, vh+1})) be the vertex
corresponding tovh+1. This defines pathPH up to a vertex(v, β′). Assuming that
β′ ≤ β, pathPH terminates with a set of edges with weight0 connecting(v, j) and
(v, j + 1), for everyβ′ ≤ j ≤ β − 1; these edges are inM ′, and hence inH , by
construction. It remains to prove thatβ′ ≤ β and thatPH has weightW . Every edge
(x, y) of PK that is an edge ofG corresponds to an edge((x, a), (y, a)) of H with the
same weight. Moreover, every edge(x, y) of PK that is a non-edge ofG corresponds
to an edge((x, a), (y, b)) of H , with c{x, y} = b − a and with the same weight. By
definition,PK uses non-edges ofG of total cost at mostβ. Hence,β′ ≤ β; also,PH

has weight exactlyW and the lemma follows. �

Lemma 2. Let PH be a shortest directed path connecting two vertices (u, i) and (v, j)
of H , with j ≥ i. Let W be the weight of PH . Then, there exists a (j − i)-bounded-cost
path PK in K with weight W connecting u and v.

Proof. First, we construct a pathP ′
H connecting(u, i) and(v, j) in H such that the

weight ofP ′
H isW and, for each vertexw in K, all the vertices of the form(w, ·) appear

consecutively inP ′
H . Indeed,P ′

H can be obtained fromPH by repeatedly performing
the following operation. Consider any two vertices(w, p) and (w, r) such that there
exists a vertex(z, q) between(w, p) and(w, r) in PH , with z 6= w. Then, replace the
subpathPH(w) of PH between(w, p) and(w, r) with pathP ′

H(w) = 〈(w, p), (w, p +
1), . . . , (w, r)〉. Observe thatP ′

H(w) has weight zero; sincePH is a shortest directed
path inH connecting(u, i) and (v, j), it follows thatPH(w) also has weight zero,
hence the weight ofPH is not altered by the replacement.

Second, we define a pathPK in K as follows. For each maximal sequence of ver-
tices of the form(w, ·) in P ′

H , pathPK contains vertexw. If P ′
H contains two adjacent

vertices(w, p) and(z, q) with w 6= z, thenPK contains edge(w, z). By construction,
PK connectsu andv. Since all the vertices of the form(w, ·) appear consecutively in
P ′
H , it follows thatPK is a path. For every edge(w, z) of PK there is a distinct edge

of P ′
H with the same weight and cost. Since every other edge ofP ′

H has weight zero
and cost one, it follows thatPK has weightW and cost at mostj − i. This proves the
lemma. �

We have the following.

Corollary 1. There is a β-bounded-cost shortest path connecting vertices u and v in K
with weight W if and only if there is a shortest directed path in H connecting vertices
(u, 0) and (v, β) with weight W .

Proof. We prove the necessity. If there is aβ-bounded-cost shortest pathPK con-
necting verticesu andv in K with weightW , then by Lemma 1 there is a directed
pathPH in H connecting vertices(u, 0) and(v, β) with weightW . Suppose, for a con-
tradiction, thatPH is not a shortest directed path connecting(u, 0) and(v, β). Then,
there exists a shortest directed pathP ′

H in H connecting(u, 0) and(v, β) with weight
W ′ < W . By Lemma 2, there exists aβ-bounded-cost pathP ′

K in K with weightW ′

connectingu andv,contradicting the fact thatPK is a β-bounded-cost shortest path
connecting verticesu andv.
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We prove the sufficiency. If there is a shortest directed pathPH in H connecting
vertices(u, 0) and(v, β) with weightW , then by Lemma 2 there exists aβ-bounded-
cost pathPK in K with weightW connectingu andv. Suppose, for a contradiction,
thatPK is not a shortest path. Then, there exists aβ-bounded-cost shortest pathP ′

K in
K with weightW ′ < W connectingu andv. By Lemma 1, there exists a directed path
P ′
H in H connecting vertices(u, 0) and(v, β) with weightW ′, contradicting the fact

thatPH is a shortest directed path connecting vertices(u, 0) and(v, β). �

We are now ready to prove Theorem 1. Consider any vertexu in K. We first mark every
vertex that can be reached from(u, 0) in H with the weight of its shortest path from
(u, 0). By Observation 1,H hasO(Bn) vertices andO(Bn2) edges, hence this can be
done inO(Bn2 + Bn log(Bn)) time [10]. For every0 ≤ β ≤ B and for every vertex
v 6= u, by Corollary 1 the weight of aβ-bounded cost shortest path inK is the same
as the weight of a shortest directed path from(u, 0) to (v, β) in H . Hence, for every
0 ≤ β ≤ B and for every vertexv 6= u, we can determine inO(Bn2 + Bn log(Bn))
total time the weight of aβ-bounded cost shortest path inK connectingu andv. Thus,
for every0 ≤ β ≤ B and for every pair of verticesu andv in K, we can determine in
O(Bn3 + Bn2 log(Bn)) total time the weight of aβ-bounded cost shortest path inK
connectingu andv. This concludes the proof of Theorem 1.

3 Arbitrary Costs and Weights
Our algorithms, as with many afore-mentioned approximation algorithms for theBCMD

problem, use a clustering approach as a first phase to find a setC ofB+1 cluster centers.
The idea of the algorithm is to create a minimum height rootedtreeT with vertex set
U , whereC ⊆ U , by adding a set of edges of total cost at mostB to G. We will prove
that such a tree approximates an optimalB-augmentation.

3.1 Clustering

We start by defining the clustering approach used to generatetheB +1 cluster centers.
Whereas a costly binary search is used in [4] to guess the radius of the clusters, we
adapt the approach of [2] to our more general setting.

For two verticesu, v, we denote bydistG(u, v) the distance betweenu andv in G.
For a vertexu and a set of verticesS, we denote bydistG(u, S) the minimum distance
betweenu and any vertex fromS in G, i.e.,distG(u, S) = minv∈S{distG(u, v)}. For
a set of verticesS, we denote bydistG(S) the minimum distance between any two
distinct vertices fromS in G, i.e.,distG(S) = minu∈S{distG(u, S \ {u})}.

The clustering phase computes a setC = {c1, . . . , cB+1} of B + 1 cluster centers
as follows. Vertexc1 is an arbitrary vertex inV ; for 2 ≤ i ≤ B + 1, vertexci is chosen
so thatdistG(ci, {c1, . . . , ci−1}) is maximized. Ties are broken arbitrarily.

Lemma 3. The clustering phase computes in O(Bn2) time a set C ⊆ V of size B + 1
such that distG(v, C) ≤ DB

opt for every vertex v ∈ V .

Proof. First, note that the above described algorithm can easily beimplemented in
O(Bn2) time usingB iterations of Dijkstra’s algorithm with Fibonacci heaps [10]. Let
cB+2 denote a vertex maximizingdistG(cB+2, C), and denote this distance byR. By
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definition,distG(v, C) ≤ R for everyv ∈ V . To prove the lemma it remains to show
thatR ≤ DB

opt. For the sake of contradiction, assumeDB
opt < R. Then,C ∪ {cB+2} is

a set ofB + 2 vertices with pairwise distance larger thanDB
opt in G. Namely, for every

2 ≤ i ≤ B + 2, we havedistG(ci, {c1, . . . , ci−1}) ≥ distG(cB+2, {c1, . . . , ci−1}) ≥
distG(cB+2, C) = R > DB

opt. We prove the following claim.

Claim 1 Let G′ be a weighted graph and let C′ be a set of vertices in G′ such that
distG′(C′) > D and such that |C′| ≥ 3. Then, for every graph G′′ obtained from G′ by
adding a single non-edge of G′ with non-negative weight, there is a set C′′ ⊂ C′ with
|C′′| = |C′| − 1 and with distG′′(C′′) > D.

Proof. Let (u, v) denote the edge that is added toG′ to obtainG′′. For the sake of
contradiction, assume that there is no vertexw ∈ C′ such thatdistG′′(C′ \ {w}) >
D. That is, every setC′′ ⊂ C′ with |C′′| = |C′| − 1 contains two vertices whose
distance is at mostD. Then, there are four verticesw1, w2, w3, w4 ∈ C such that
distG′′(w1, w2) ≤ D and distG′′(w3, w4) ≤ D (Case 1), or there are three ver-
ticesw1, w2, w3 ∈ C such thatdistG′′(w1, w2) ≤ D, distG′′(w1, w3) ≤ D, and
distG′′(w2, w3) ≤ D (Case 2). Indeed, assume that we are neither in Case 1 nor in Case
2. Construct a graphA whose vertices are those inC′ and such that there is an edge
(wi, wj) if and only if distG′′(wi, wj) ≤ D. Since we are not in Case 1, we have that
A does not contain two non-adjacent edges, hence it is either astar plus an independent
set or a3-cycle plus an independent set. Since we are not in Case 2, it follows thatA is a
star plus an independent set. Hence, there is a vertexw ∈ C′ such that removingw and
its incident edges fromA turnsA into an empty graph. Thus,distG′′(C′ \ {w}) > D,
a contradiction which proves that we are either in Case 1 or inCase 2.

Suppose that we are in Case 1. By assumption, we have thatdistG′′(w1, w2) <
distG′(w1, w2) anddistG′′(w3, w4) < distG′(w3, w4). Hence,(u, v) is an edge of any
shortest pathP1,2 fromw1 tow2 and of any shortest pathP3,4 fromw3 tow4. Assume,
without loss of generality, thatu is encountered beforev when traversingP1,2 starting
at w1 and when traversingP3,4 starting atw3 (otherwise swapw1 andw2 and/orw3

andw4). Therefore, we get

(1A) distG′(w1, u) + distG′(v, w2) ≤ D, and

(1B) distG′(w3, u) + distG′(v, w4) ≤ D.

However, sincedistG′(C′) > D, we have

(1C) distG′(w1, u) + distG′(u,w3) > D, and

(1D) distG′(w2, v) + distG′(v, w4) > D.

DenoteK := distG′(w1, u) + distG′(v, w2) + distG′(w3, u) + distG′(v, w4). In-
equalities (1A) and (1B) giveK ≤ 2D, while inequalities (1C) and (1D) giveK > 2D,
a contradiction.

Suppose that we are in Case 2. Denote byP1,2, P1,3, andP2,3 three paths inG′′

with weight at mostD connectingw1 andw2, connectingw1 andw3, and connecting
w2 andw3, respectively. SincedistG′({w1, w2, w3}) > D, all these paths use edge
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(u, v). Without loss of generality, assumedistG′(w1, u) ≤ distG′(w1, v). Hence, both
P1,2 andP1,3 reachu beforev when traversing such paths starting atw1. Without loss
of generality, assume thatP2,3 reachesu beforev when traversing such path starting at
w2 (otherwise, swapw2 andw3). Therefore, we get

(2A) distG′(w1, u) + distG′(v, w2) ≤ D, and

(2B) distG′(w2, u) + distG′(v, w3) ≤ D.

However, sincedistG′({w1, w2, w3}) > D, we have

(2C) distG′(w2, v) + distG′(v, w3) > D, and

(2D) distG′(w1, u) + distG′(u,w2) > D.

DenoteL := distG′(w1, u) + distG′(v, w2) + distG′(w2, u) + distG′(v, w3). In-
equalities (2A) and (2B) giveL ≤ 2D, while inequalities (2C) and (2D) giveL > 2D,
a contradiction. This concludes the proof of the claim. �

Now, sinceC ∪ {cB+2} is a set ofB + 2 vertices with pairwise distance larger than
DB

opt in G, by iteratively using the claim we have that in anyB-augmentationGB of
G, we have a set ofB + 2− |F | ≥ 2 vertices with pairwise distance greater thanDB

opt,
thus contradicting the definition ofDB

opt. This concludes the proof of the lemma. �

3.2 A minimum height tree

Let C = {c0, . . . , cB} be a set ofB + 1 cluster centers such that theB + 1 clusters
with centers atC and radiusDB

opt cover the vertices ofG. This set can be computed as
described in the previous section.

Definition 1. Let G = (V,E) be a graph together with a weight function w : [V ]2 →
N. Let C ⊆ V and let u be a vertex in V . A Shortest Path Tree of G, C, and u, denoted by
SPT(G,C, u), is a tree T rooted at u, spanningC, whose vertices and edges belong to V
and E, respectively, and such that, for every vertex c ∈ C, it holds dT (u, c) = dG(u, c).

The height of a weighted rooted treeT , which is denoted by~(T ), is the maximum
weight of a path from the root to a leaf.

Definition 2. Let G = (V,E) be a graph together with a weight functionw : [V ]2 → N

and a cost function c : [V ]2 → N∗. Let C ⊆ V , let u be a vertex in V , and let B ≥ 0
be an integer. A Minimum HeightB SPT of G, C, and u, denoted by MHBSPT(G, c, u),
is an SPT(GB, C, u) of minimum height over all B-augmentations GB of G.

LetGB be aB-augmentation ofG with diameterDB
opt.

Lemma 4. The height of a MHBSPT(G,C, u) is at most DB
opt.
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u

x

y

cx

cy

Fig. 1. Illustrating the path defined in the proof of Lemma 5.

Proof. By definition, we have (A)~(MHBSPT(G,C, u)) ≤ ~(SPT(GB , C, u)). Since
GB is aB-augmentation ofG with diameterDB

opt, we have (B)~(SPT(GB , C, u)) ≤

DB
opt. Inequalities (A) and (B) together prove the lemma. �

We now present a relationship between theBCMD problem and the problem of comput-
ing aMHBSPT(G,C, u).

Lemma 5. Let u be any vertex in V and let G′
B be a B-augmentation of G such that

~(SPT(G′
B , C, u)) = ~(MHBSPT(G,C, u)). Then, the diameter of G′

B is at most 4 ·
DB

opt.

Proof. Consider two verticesx andy in V , see Figure 1. Letcx andcy be centers of the
clustersx andy belong to, respectively. Then, we havedistG′

B
(x, y) ≤ distG(x, cx) +

distG′

B
(cx, u)+distG′

B
(u, cy)+distG(cy, y). By Lemma 3,distG(x, cx), distG(cy , y) ≤

DB
opt. Since~(SPT(G′

B, C, u)) = ~(MHBSPT(G,C, u)) and by Lemma 4, it holds
distG′

B
(cx, u), distG′

B
(u, cy) ≤ DB

opt. Hence,distG′

B
(x, y) ≤ 4 ·DB

opt. �

3.3 Constructing a minimum height tree

In this section, we give an algorithm to compute aMHBSPT(G,C, c1).
We introduce some notation and terminology. LetC′ = C \ {c1}. Observe that a

MHBSPT (G,C′, c1) is also aMHBSPT (G,C, c1), given that aMHBSPT (G,C′, c1)
containsc1 as its root. Denote bydjK(u, v) the minimum weight of aj-bounded cost
path connectingu andv in K. For anyu ∈ V , for anyS ⊆ C′, and for any0 ≤ j ≤ B,
let γ(u, S, j) denote the height of aMHjSPT(G,S, u). Hence, the height of aMHBSPT

(G,C′, c1) is γ(c1, C
′, B). The following main lemma gives a dynamic programming

recurrence for computingγ(c1, C′, B).

Lemma 6. For any u ∈ V , any S ⊆ C′, and any 0 ≤ j ≤ B, the following hold: If
|S| = 1, then γ(u, S, j) = djK(u, ci) where S = {ci}. If |S| > 1, then

γ(u, S, j) = min
v∈V
S′(S

j=j1+j2+j3

dj1K(u, v) + max{γ(v, S′, j2), γ(v, S \ S′, j3)}.

Proof. If |S| = {ci}, thenMHjSPT (G, {ci}, u) is a minimum-weight path connecting
u andci and having total cost at mostj. Hence,γ(u, S, j) = djK(u, ci). In particular,
notice that, ifu = ci, thenγ(u, {u}, j) = djK(u, u) = 0.
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u

u′ ∈ S

S \ {u′}

(b) (c) u(a) u

S \ Sa
Sa u′ /∈ S

S \ Sa
Sa

Fig. 2. Illustration for the proof of Lemma 6.

Assume that|S| = m > 1. Denote byT anyMHjSPT(G,S, u). Denote byP (v, w)
the unique path inT connecting two verticesv andw of T . We distinguish three cases,
based on the structure ofT . In Case (a), the degree ofu in T is at least two (see Fig-
ure 2(a)). In Case (b), the degree ofu in T is one and there exists a vertexu′ ∈ S such
that every internal vertex ofP (u, u′) has degree2 in T and does not belong toS (see
Figure 2(b)). Finally, in Case (c), the degree ofu in T is one and there exists a vertex
u′ /∈ S such that every internal vertex ofP (u, u′) has degree2 in T and does not belong
to S, and such that the degree ofu′ is greater than two (see Figure 2(c)).

First, we prove that one of the three cases always applies. Ifthe degree ofu in T is
at least two, then Case (a) applies. Otherwise, the degree ofu is 1. TraverseT from u
until a vertexu′ is found such thatu′ ∈ S or the degree ofu′ is at least3. If u′ ∈ S,
then every internal vertex ofP (u, u′) has degree2 in T and does not belong toS, hence
Case (b) applies. Ifu′ /∈ S, then the degree ofu′ is at least3, and every internal vertex
of P (u, u′) has degree2 in T and does not belong toS, hence Case (c) applies.

We now prove that, in each of the three cases, the recursive computation ofγ(u, S, j)
is correct. That is, we show that the valueγ(u, S, j) computed by the recurrence in the
statement of the lemma is at most~(T ); observe thatγ(u, S, j) cannot be smaller than
~(T ), by the assumption thatT is aMHjSPT(G,S, u).

In Case (a),T is composed of two subtreesMHxSPT(G,Sa, u) andMHySPT(G,S\
Sa, u), only sharing vertexu, with ∅ ( Sa ( S. The height ofT is the maximum of
the heights ofMHxSPT (G,Sa, u) andMHySPT (G,S \ Sa, u); also, the cost ofT is
x + y. By definition, the heights ofMHxSPT (G,Sa, u) and MHySPT (G,S \ Sa, u)
areγ(u, Sa, x) andγ(u, S \ Sa, y)), respectively. Thus, the height ofT is ~(T ) =
max{γ(u, Sa, x), γ(u, S \ Sa, y)}. Such a value is found by the recursive definition of
γ(u, S, j) with v = u, S′ = Sa, j1 = 0, j2 = x, andj3 = y, hence the valueγ(u, S, j)
computed by the recurrence in the statement of the lemma is atmost~(T ).

In Case (b),T is composed of a path fromu to u′ with costx and weightdxK(u, u′),
and of aMHySPT (G,S \ {u′}, u′). The height ofT is the sum ofdxK(u, u′) and the
height ofMHySPT(G,S \{u′}, u′); also the cost ofT isx+y. By definition, the height
of MHySPT (G,S \ {u′}, u′) is γ(u′, S \ {u′}, y). Thus, the height ofT is ~(T ) =
dxK(u, u′) + γ(u′, S \ {u′}, y). Such a value is found by the recursive definition of
γ(u, S, j) with v = u′, S′ = S \ {u′}, j1 = x, j2 = y, andj3 = 0, hence the value
γ(u, S, j) computed by the recurrence in the statement of the lemma is atmost~(T ).
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In Case (c),T is composed of a path fromu to u′ with costx and weightdxK(u, u′),
of a MHySPT (G,Sa, u

′), and of aMHzSPT (G,S \ Sa, u
′) with ∅ ( Sa ( S. The

height ofT is the sum ofdxK(u, u′) and the maximum between the heights ofMHySPT

(G,Sa, u
′) andMHzSPT(G,S\Sa, u

′); also the cost ofT isx+y+z. By definition, the
heights ofMHySPT(G,Sa, u

′) andMHzSPT(G,S\Sa, u
′) areγ(u′, Sa, y) andγ(u′, S\

Sa, z), respectively. Thus, the height ofT is ~(T ) = dxK(u, u′) + max{γ(u′, Sa, y),
γ(u′, S \ Sa, z)}. Such a value is found by the recursive definition ofγ(u, S, j) with
v = u′, S′ = Sa, j1 = x, j2 = y, andj3 = z, hence the valueγ(u, S, j) computed by
the recurrence in the statement of the lemma is at most~(T ).

This concludes the proof of the lemma. �

Lemma 6 yields the following.

Theorem 2. There exists a (1, 4)-approximation algorithm for the BCMD problem with
O((3BB3 + n+ log(Bn))Bn2) running time.

Proof. Given an instance(G,w, c, B) of theBCMD problem, by Theorem 1 we can
determine, for every pair of verticesu, v ∈ V and for every1 ≤ j ≤ B, the minimum
weight of aj-bounded cost path connectingu andv in totalO((n+log(Bn))Bn2) time.
By Lemma 3, a clustering ofG can be computed inO(Bn2) time. Due to Lemma 6,
the problem of computing aMHBSPT(G,C \ {c1}, c1) can be solved by dynamic pro-

gramming over the triples(u, S, j) (there areO
(

B
(

B+1
s

)

n
)

such triples with|S| = s);

the computation of the value for any such triple requires to take a minimum overj32|S|n

values, hence the dynamic programming running time isO
(

nB
∑B

s=0

(

B+1
s

)

B32sn
)

=

O(B43Bn2). Observe that the dynamic programming can be designed in such a way
that a rooted tree with height equal toγ(u, S, j) is computed together with the value of
γ(u, S, j). This is trivially done in the base case; moreover, in the inductive case it only
requires, for eachv ∈ V , eachS′ ( S, and eachj = j1 + j2 + j3, the computation
of a shortest path tree. Finally, by Lemma 5, augmentingG with the non-edges that are
present in aMHBSPT(G,C \ {c1}, c1) yields aB-augmentationGB whose diameter is
at most4 ·DB

opt. �

4 Unit Costs and Arbitrary Weights
For the special case in which each edge has unit cost and arbitrary weight, our tech-
niques lead to several results, that are described in the following. Observe that, in
this case we are allowed to insert inG exactlyk non-edges ofG, wherek = B =
O(n2). We remark that Theorem 2 gives a(1, 4)-approximation algorithm running in
O((3kk3 + n)kn2) time for this special case.

In the following, we denote byC a clustering withk + 1 clusters constructed as
described in Subsection 3.1. We first show a((k + 1)2, 3)-approximation algorithm.

Theorem 3. Given an instance of the BCMD problem with unit costs, there exists a
((k + 1)2, 3)-approximation algorithm with O(kn3) running time.

Proof. For every pair of cluster centersci, cj ∈ C compute a shortest path inK between
ci andcj that contains at mostk non-edges ofG. Add those edges toF and letG′ =
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(V,E ∪ F ). By Theorem 1 and sincek = O(n2), G′ can be constructed inO(kn3)
time. Observe that, for each pair of cluster centers, the algorithm adds at mostk non-
edges ofG to F , thus at mostk(k + 1)2 non-edges in total. We prove that, for every
vi, vj ∈ V , there exists a path inG′ connectingvi andvj whose weight is at most
3 ·Dk

opt. Denote byci andcj the centers of the clustersvi andvj belong to, respectively.
We havedistG′(vi, vj) ≤ distG(vi, ci) + distG′(ci, cj) + distG(cj , vj). By Lemma 3,
distG(vi, ci), distG(vj , cj) ≤ Dk

opt; also, by construction,distG′(ci, cj) ≤ Dk
opt, and

the theorem follows. �

Next, we give a(k, 4)-approximation algorithm.

Theorem 4. Given an instance of the BCMD problem with unit costs, there exists a
(k, 4)-approximation algorithm with O(kn2) running time.

Proof. Pick an arbitrary cluster center, sayc1. For every cluster centercj ∈ C \ {c1},
compute a shortest path betweenc1 and cj in K containing at mostk non-edges of
G. Add those edges toF and letG′ = (V,E ∪ F ). By Corollary 1, a shortest path
betweenc1 andcj in K containing at mostk non-edges ofG corresponds to a short-
est path between(c1, 0) and (cj , k) in digraphH . By Observation 1,H hasO(kn)
vertices andO(kn2) edges. Hence, Dijkstra’s algorithm with Fibonacci heaps [10]
computes all the shortest paths between(c1, 0) and(cj , k), for everycj ∈ C \ {c1},
in total O(kn2) time. Observe that, for each cluster different fromc1, the algorithm
adds at mostk non-edges ofG to F , thus at mostk2 non-edges in total. We prove
that, for everyvi, vj ∈ V , there exists a path inG′ connectingvi and vj whose
weight is at most4 · Dk

opt. Denote byci and cj the centers of the clustersvi and
vj belong to, respectively. We havedistG′(vi, vj) ≤ distG(vi, ci) + distG′(ci, c1) +
distG′(c1, cj) + distG(cj , vj). By Lemma 3,distG(vi, ci), distG(vj , cj) ≤ Dk

opt; by
construction,distG′(ci, c1), distG′(c1, cj) ≤ Dk

opt, and the theorem follows. �

Finally, we present a(1, 3k + 2)-approximation algorithm.

Theorem 5. Given an instance of the BCMD problem with unit costs, there exists a
(1, 3k + 2)-approximation algorithm with O(n2 + k2) running time.

Proof. For every pair of clustersCi andCj , with 1 ≤ i < j ≤ k + 1, let eij be the
edge ofK of minimum weight connecting a vertex inCi with a vertex inCj . We de-
note byF ′ the set of these edges. For a subsetF of F ′, we say thatF spans C if the
graph representing the adjacencies between clusters via the edges ofF is connected.
LetF be a minimum-weight set ofk edges fromF ′ spanningC. LetG′ = (V,E ∪F ).
The setF ′, and hence the graphG′, can be constructed inO(n2 + k2) time as fol-
lows. Consider all the edges ofK and keep, for each pair of clusters, the edge with
smallest weight. This can be done inO(n2) time. Finally, compute inO(k2) time a
minimum spanning tree of the resulting graph [11], that hasO(k) vertices andO(k2)
edges. Observe that the algorithm adds at mostk non-edges ofG to F . We prove
that, for everyvi, vj ∈ V , there exists a path inG′ connectingvi and vj whose
weight is at most(3k + 2)Dk

opt. Denote byPC the (unique) subset ofF connect-
ing the clustersvi andvj belong to. Let(x1, y1), (x2, y2), . . . , (xm, ym) be the edges
of PC in order fromvi to vj . Then,distG′(vi, vj) ≤ distG(vi, x1) + w(x1, y1) +
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distG(y1, x2) + . . . + w(xm, ym) + distG(ym, vj). By Lemma 3,distG(yi, xi+1) ≤
2Dk

opt, anddistG(vi, x1), distG(ym, vj) ≤ Dk
opt. Also,w(xi, yi) ≤ Dk

opt, and the the-
orem follows. �

5 Hardness Results

The main theorem of this section provides a parameterized intractability result for
BCMD with unit weights and unit costs, and some related problems.1 The U-BCMD

problem has as input an unweighted graphG = (V,E) and two integersk andd, and
the question is whether there is a setF ⊆ [V ]2 \ E, with |F | ≤ k, such that the graph
(V,E ∪ F ) has diameter at mostd. The parameter isk. We will show thatU-BCMD

is W [2]-hard. We will also provide refinements to the minimum conditions required
for intractability, namelyU-BCMD remains NP-complete for graphs of diameter three
with target diameter two. We note that although Dodis and Kanna [5] provide an inap-
proximability reduction from SET COVER, they begin with a disconnected graph, and
expand the instance with a series of size-two sets, which does not preserve the size of the
optimal solution, and therefore their reduction cannot be used to show parameterized
complexity lower bounds.

Theorem 6. SET COVER is polynomial-time reducible to U-BCMD. Moreover, the re-
duction is parameter preserving and creates an instance with diameter three and target
diameter two.

Proof. Let (X,S, k) be an instance of SET COVER whereS is the base set andX ⊂
P(S) is the set from which we must pick the set cover ofS with size at mostk. We
construct an instance(G = (V,E), k, d) of U-BCMD as follows.

Letm = |X | · k. The vertex setV is the disjoint union of5 sets:
– a setY corresponding to the setX where for eachx ∈ X we have a vertexy ∈ Y ,
– a setT =

⊎

i∈[m] Ti corresponding toS where, for eachs ∈ S andi ∈ [m], we
have a vertexti ∈ Ti (i.e., we havem copies of a set of vertices corresponding
to S),

– a setU with
(

m

2

)

verticesuij , one for each pair(Ti, Tj) with i 6= j,
– the set{a}, and
– the set{b}.

The edge setE consists of the following edges:
– ab,
– by for each vertexy ∈ Y ,
– buij for each vertexuij ∈ U ,
– yy′ for each pair of verticesy, y′ ∈ Y ,

1 After the publication of the conference version of this paper [9] and after the first submission
of the present journal paper, James Nastos informed us abouta paper whose results overlap
with the intractability results of this paper. Namely, Gao,Hare, and Nastos [12] proved that
theBCMD problem with unit weights and costs isW [2]-hard, for every target diameterd ≥ 2.
Their reduction is from “dominating set” and is similar to the one we present in this paper. We
apologize to the authors of [12] for not being aware of their previous result.
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– uijulp for each pair of verticesuij , ulp ∈ U ,
– yt for each pair of verticesy ∈ Y andt ∈ Ti such that the elements ∈ S corre-

sponding tot is in the setx ∈ X corresponding toy in the SET COVER instance,
and

– tujl for each pair of verticest ∈ Ti andujl ∈ U such thati ∈ {j, l}.

Fig. 3. Sketch of the construction for the SET COVER to U-BCMD reduction. The edge sets rep-
resented in gray are complete, the edge sets represented in light green correspond to the set
membership from the SET COVER instance. The vertex setsY andU are cliques. The vertex sets
Ti are independent sets for alli ∈ [m].

We setd = 2. Note thatk in theU-BCMD instance is the samek as for the SET COVER

instance. The construction is sketched in Figure 3.

Claim 2 For all v, v′ ∈ V \ {a} we have dist(v, v′) ≤ 2.

Proof. The vertices ofU are at distance one from each other. The vertices ofY are
at distance one from each other. Vertexb is at distance1 from the vertices ofY andU .
Therefore the vertices ofU andY are at most distance2 from each other via the path
throughb. Each vertext ∈ T is at distance one from some vertexy ∈ Y . As Y is a
clique,t is at distance at most two from all the vertices inY . Each vertext ∈ T is at
distance one from some vertexu ∈ U . As U is a clique,t is at distance at most two
from all the vertices inU . For each pair of verticesti ∈ Ti andtj ∈ Tj there is a vertex
uij ∈ U such thattiuij ∈ E andtjuij ∈ E. If i = j then any vertexuik ∈ U will
suffice. Thus all the vertices ofT are at most distance 2 from each other and fromb. �

Claim 3 For all v ∈ V we have dist(a, v) ≤ 3. Moreover, dist(a, v) = 3 if and only if
v ∈ T .

Proof. As the distance fromb to all other vertices is at most2, the distance froma
to all other vertices is at most3. Moreover, as the distance fromb to the vertices ofU
andY is one, the distance froma to these vertices is two. Therefore the only vertices at
distance three froma are the vertices ofT . �
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Thus we are concerned only with reducing the distance between a and the vertices of
T .

Claim 4 (X,S, k) is a YES-instance of SET COVER if and only if (G, k, d) is a YES-
instance of U-BCMD.

Proof. Let X ′ ⊆ X be the set cover that witnesses that(X,S, k) is a YES-instance
of SET COVER. Let Y ′ ⊆ Y be the set of vertices that corresponds toX ′. We have
|Y ′| = |X ′| ≤ k. If we add the edgesay for all y ∈ Y ′, thena is at distance at most2
from all verticest ∈ T . As X ′ is a set cover ofS, for eachs ∈ S there is at least one
setx ∈ X ′ such thats ∈ x. Then there is an edge froma to the vertexy corresponding
to x, and by the construction,y is adjacent tot ∈ T if and only if the corresponding
elements is in S, thus we have a patha y  t.

Now, assume(G, k, d) is a YES-instance ofU-BCMD. First consider the case where
all the edges are added betweena and the vertices ofY . Then the setY ′ ⊆ Y of vertices
newly adjacent toa corresponds to a set coverX ′ ⊆ X in the same way as before.

We must demonstrate that we may only (productively) add edges betweena andY .
Observe that any edge in a path froma to a vertexti in T with length at most2 must
havea or ti as an end-vertex. Hence, adding edges between two vertices in {b}∪U ∪Y
does not help decreasing the diameter ofG. Further, we cannot add the edgeab, as it
already exists. Also, any edge(b, ti) can be replaced by edge(a, ti). Edge(ti, tj) is
used in any length-2 path froma to the vertices inT only if (a, ti) or (a, tj) is in the
solution. In the former case,(ti, tj) can be replaced by edge(a, tj), in the latter case
by (a, ti). Hence, we can assume that any solution only uses edges connectinga with
a vertex inY or in U . Each edge froma to a vertexuij ∈ U can only decrease the
distance betweena and the vertices in two setsTi andTj. Thus, as long as|X | > 2
there exists a setTi none of whose adjacent vertices inU is adjacent toa. This implies
that we must add edges froma to a subsetY ′ of Y such thatTi is dominated byY ′.
Hence,Y ′ corresponds to a set cover ofS. �

We note that the reduction is obviously polynomial-time computable, and the parameter
k is preserved. The theorem now follows from the previous claims. �

Corollary 2. U-BCMD is NP-complete even for graphs of diameter three with target
diameter two.

Proof. As it is already known thatU-BCMD is in NP [5], the result forU-BCMD

follows from Theorem 6. �

As SET COVER is W [2]-hard with parameterk, combined with Corollary 2 we also
have the following result.

Corollary 3. U-BCMD is W [2]-hard even for graphs of diameter three with target di-
ameter two.

We note additionally that as the initial graph has diameter3 and the target diameter is2,
it is even NP-hard and W[2]-hard to decide if there is a set ofk new edges that improves
the diameter by one. Furthermore by takinga as source vertex, the results transfer im-
mediately to the single-source version as discussed by Demaine & Zadimoghaddam [4].
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The construction of Theorem 6 can even be extended to give a parameterized inap-
proximability result forU-BCMD.

Theorem 7. It is W [2]-hard to compute a (1 + c
k
, 32 − ε)-approximation for U-BCMD

for any constants c and ε > 0.

Proof. We repeat the construction of Theorem 6, except that we introducec+ 1 copies
of the Y andT components and setk′ = k · (c + 1), wherek′ is the parameter of
U-BCMD. Let Yi with 1 ≤ i ≤ c + 1 be the copies of theY components and letTi,j

with 1 ≤ i ≤ c+ 1 and1 ≤ j ≤ m be the copies of theT components. The edges are
similar to the previous construction; we highlight the differing edges:

– by for all y ∈
⋃

i Yi,
– yy′ for eachy, y′ ∈

⋃

i Yi,
– yt for eachy ∈ Yi andt ∈ Ti,j where the elementx ∈ X corresponding toy is in

the sets ∈ S corresponding tot, and
– tuij for each vertext ∈

⋃

h(Th,i ∪ Th,j) and each vertexuij ∈ U .
Then apart froma, all vertices remain at pairwise distance2, with a at distance3 from
vertices in

⋃

i,j Ti,j. To reduce the diameter to2 we require the addition of edges from
a to vertices of theY components as before, furthermore we require edges to each copy,
otherwise there is someTi,j that remains at distance3 from a.

Thus, if the SET COVER instance has a solution of sizek, then theU-BCMD instance
has a solution of size(c+ 1)k = k′. Conversely, letF be a set of at most(1 + c

k′
)k′ =

k′ + c edges such that the diameter ofG′ = (V,E ∪F ) is at most(32 − ε) · 2. Since the
diameter ofG′ is integral, it is at most 2. Since there arec+ 1 copies ofY , at least one
of them has at mostk′ vertices adjacent toa, giving a set cover of sizek′. �

Acknowledgments

A preliminary version of this paper was presented in [9]. FF acknowledges support from
the Australian Research Council (grant DE140100708). SG acknowledges support from
the Australian Research Council (grant DE120101761). JG acknowledges support from
the Australian Research Council (grant FT100100755). NICTA is funded by the Aus-
tralian Government as represented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Councilthrough the ICT Centre
of Excellence program.

References
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