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Abstract. This paper introduces a new data structure, called simplex tree, to represent
abstract simplicial complexes of any dimension. All faces of the simplicial complex are ex-
plicitly stored in a trie whose nodes are in bijection with the faces of the complex. This data
structure allows to efficiently implement a large range of basic operations on simplicial com-
plexes. We provide theoretical complexity analysis as well as detailed experimental results.
We more specifically study Rips and witness complexes.

This article appeared in Algorithmica 2014 [9]. An extended abstract appeared in the
proceedings of the European Symposium on Algorithms 2012 [8].

1. Introduction

Simplicial complexes are widely used in combinatorial and computational topology, and
have found many applications in topological data analysis and geometric inference. A variety
of simplicial complexes have been defined, for example the Čech complex, the Rips complex
and the witness complex [13, 15]. However, the size of these structures grows very rapidly
with the dimension of the data set, and their use in real applications has been quite limited
so far.

We are aware of only a few works on the design of data structures for general simplicial
complexes. Brisson [10] and Lienhardt [18] have introduced data structures to represent d-
dimensional cell complexes, most notably subdivided manifolds. While those data structures
have nice algebraic properties, they are very redundant and do not scale to large data sets
or high dimensions. Zomorodian [24] has proposed the tidy set, a compact data structure to
simplify a simplicial complex and compute its homology. Since the construction of the tidy
set requires to compute the maximal faces of the simplicial complex, the method is especially
designed for flag complexes. Flag complexes are a special type of simplicial complexes (to be
defined later) whose combinatorial structure can be deduced from its graph. In particular,
maximal faces of a flag complex can be computed without constructing explicitly the whole
complex. In the same spirit, Attali et al. [3] have proposed the skeleton-blockers data struc-
ture. Again, the representation is general but it requires to compute blockers, the simplices
which are not contained in the simplicial complex but whose proper subfaces are. Comput-
ing the blockers is difficult in general and details on the construction are given only for flag
complexes, for which blockers can be easily obtained. As of now, there is no data structure
for general simplicial complexes that scales to dimension and size. The best implementations
have been restricted to flag complexes.

Our approach aims at combining both generality and scalability. We propose a tree repre-
sentation for simplicial complexes. The nodes of the tree are in bijection with the simplices
(of all dimensions) of the simplicial complex. In this way, our data structure, called a simplex
tree, explicitly stores all the simplices of the complex but does not represent explicitly all
the adjacency relations between the simplices, two simplices being adjacent if they share a
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common subface. Storing all the simplices provides generality, and the tree structure of our
representation enables us to implement basic operations on simplicial complexes efficiently, in
particular to retrieve incidence relations, ie to retrieve the faces that contain a given simplex
or are contained in a given simplex.

The paper is organized as follows. In section 2.1, we describe the simplex tree and, in sec-
tion 2.2, we detail the elementary operations on the simplex tree such as adjacency retrieval
and maintainance of the data structure upon elementary modifications of the complex. In
section 3, we describe and analyze the construction of flag complexes, witness complexes and
relaxed witness complexes. An algorithm for inserting new vertices in the witness complex is
also described. Finally, section 4 presents a thorough experimental analysis of the construc-
tion algorithms and compares our implementation with the softwares JPlex and Dionysus.
Additional experiments are provided in appendix A.

1.1. Background.
Simplicial complexes. A simplicial complex is a pair K = (V, S) where V is a finite set whose
elements are called the vertices of K and S is a set of non-empty subsets of V that is required
to satisfy the following two conditions :

(1) p ∈ V ⇒ {p} ∈ S
(2) σ ∈ S, τ ⊆ σ ⇒ τ ∈ S

Each element σ ∈ S is called a simplex or a face of K and, if σ ∈ S has precisely s+1 elements
(s ≥ −1), σ is called an s-simplex and the dimension of σ is s. The dimension of the simplicial
complex K is the largest k such that S contains a k-simplex.

We define the j-skeleton, j ≥ 0, of a simplicial complex K to be the simplicial complex
made of the faces of K of dimension at most j. In particular, the 1-skeleton of K contains
the vertices and the edges of K. The 1-skeleton has the structure of a graph, and we will
equivalently talk about the graph of the simplicial complex.

A subcomplex K′ = (V ′, S′) of the simplicial complex K = (V, S) is a simplicial complex
satisfying V ′ ⊆ V and S′ ⊆ S. In particular, the j-skeleton of a simplicial complex is a
subcomplex.
Faces and cofaces. A face of a simplex σ = {p0, · · · , ps} is a simplex whose vertices form a
subset of {p0, · · · , ps}. A proper face is a face different from σ and the facets of σ are its
proper faces of maximal dimension. A simplex τ ∈ K admitting σ as a face is called a coface
of σ. The subset of simplices consisting of all the cofaces of a simplex σ ∈ K is called the star
of σ.

The link of a simplex σ in a simplicial complex K = (V, S) is defined as the set of faces:

Lk(σ) = {τ ∈ S|σ ∪ τ ∈ S, σ ∩ τ = ∅}
Filtration. A filtration over a simplicial complex K is an ordering of the simplices of K such
that all prefixes in the ordering are subcomplexes of K. In particular, for two simplices τ and
σ in the simplicial complex such that τ ( σ, τ appears before σ in the ordering. Such an
ordering may be given by a real number associated to the simplices of K. The order of the
simplices is simply the order of the real numbers.

2. Simplex Tree

In this section, we introduce a new data structure which can represent any simplicial
complex. This data structure is a trie [5] which explicitly represents all the simplices and
allows efficient implementation of basic operations on simplicial complexes.
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Figure 1. A simplicial complex on 10 vertices and its simplex tree. The
deepest node represents the tetrahedron of the complex. All the positions of a
given label at a given depth are linked in a list, as illustrated in the case of
label 5.

2.1. Simplicial Complex and Trie. Let K = (V, S) be a simplicial complex of dimension
k. The vertices are labeled from 1 to |V | and ordered accordingly.

We can thus associate to each simplex of K a word on the alphabet 1 · · · |V |. Specifically, a
j-simplex of K is uniquely represented as the word of length j+1 consisting of the ordered set
of the labels of its j + 1 vertices. Formally, let simplex σ = {v`0 , · · · , v`j} ∈ S, where v`i ∈ V ,
`i ∈ {1, · · · , |V |} and `0 < · · · < `j . σ is then represented by the word [σ] = [`0, · · · , `j ].
The last label of the word representation of a simplex σ will be called the last label of σ and
denoted by last(σ).

The simplicial complex K can be defined as a collection of words on an alphabet of size
|V |. To compactly represent the set of simplices of K, we store the corresponding words in a
tree satisfying the following properties:

(1) The nodes of the simplex tree are in bijection with the simplices (of all dimensions)
of the complex. The root is associated to the empty face.

(2) Each node of the tree, except the root, stores the label of a vertex. Specifically, a node
associated to a simplex σ 6= ∅ stores the label last(σ).

(3) The vertices whose labels are encountered along a path from the root to a node
associated to a simplex σ, are the vertices of σ. Along such a path, the labels are
sorted by increasing order and each label appears no more than once.

We call this data structure the Simplex Tree of K. It may be seen as a trie [5] on the words
representing the simplices of the complex (Figure 1). The depth of the root is 0 and the depth
of a node is equal to the dimension of the simplex it represents plus one.

In addition, we augment the data structure so as to quickly locate all the instances of a
given label in the tree. Specifically, all the nodes at a same depth j which contain a same
label ` are linked in a circular list Lj(`), as illustrated in Figure 1 for label ` = 5.

The children of the root of the simplex tree are called the top nodes. The top nodes are in
bijection with the elements of V , the vertices of K. Nodes which share the same parent (e.g.
the top nodes) will be called sibling nodes.

We also attach to each set of sibling nodes a pointer to their parent so that we can access
a parent in constant time.

We give a constructive definition of the simplex tree. Starting from an empty tree, we insert
the words representing the simplices of the complex in the following manner. When inserting
the word [σ] = [`0, · · · , `j ] we start from the root, and follow the path containing successively
all labels `0, · · · , `i, where [`0, · · · , `i] denotes the longest prefix of [σ] already stored in the
simplex tree. We then append to the node representing [`0, · · · , `i] a path consisting of the
nodes storing labels `i+1, · · · , `j .
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It is easy to see that the three properties above are satisfied. Hence, if K consists of |K|
simplices (including the empty face), the associated simplex tree contains exactly |K| nodes.

We use dictionaries with size linear in the number of elements they store (like a red-
black tree or a hash table) for searching, inserting and removing elements among a set of
sibling nodes. Consequently these additional structures do not change the asymptotic memory
complexity of the simplex tree. For the top nodes, we simply use an array since the set of
vertices V is known and fixed. Let deg(T ) denote the maximal outdegree of a node, in the
simplex tree T , distinct from the root. Remark that deg(T ) is at most the maximal degree
of a vertex in the graph of the simplicial complex. In the following, we will denote by Dm

the maximal number of operations needed to perform a search, an insertion or a removal in a
dictionary of maximal size deg(T ) (for example, with red-black trees Dm = O(log(deg(T )))
worst-case, with hash-tables Dm = O(1) amortized). Some algorithms, that we describe later,
require to intersect and to merge sets of sibling nodes. In order to compute fast set operations,
we will prefer dictionaries which allow to traverse their elements in sorted order (e.g., red-
black trees). We discuss the value of Dm at the end of this section in the case where the
points have a geometric structure.

We introduce two new notations for the analysis of the complexity of the algorithms. Given
a simplex σ ∈ K, we define Cσ to be the number of cofaces of σ. Note that Cσ only depends on
the combinatorial structure of the simplicial complex K. Let T be the simplex tree associated

to K. Given a label ` and an index j, we define T >j` to be the number of nodes of T at depth
strictly greater than j that store label `. These nodes represent the simplices of dimension

at least j that admit ` as their last label. T >j` depends on the labelling of the vertices and
is bounded by C{v`}, the number of cofaces of the vertex with label `. For example, if ` is

the greatest label, we have T >0
` = C{v`}, and if ` is the smallest label we have T >0

` = 1
independently from the number of cofaces of {v`}.

2.2. Operations on a Simplex Tree. We provide algorithms for:

• Search/Insert/Remove-simplex to search, insert or remove a single simplex, and
Insert/Remove-full-simplex to insert a simplex and its subfaces or remove a
simplex and its cofaces
• Locate-cofaces to locate the cofaces of a simplex
• Locate-facets to locate the facets of a simplex
• Elementary-collapse to proceed to an elementary collapse
• Edge-contraction to proceed to contract an edge

2.2.1. Insertions and Adjacency Retrieval.
Insertions and Removals. Using the previous top-down traversal, we can search and insert a
word of length j in O(jDm) operations.

We can extend this algorithm so as to insert a simplex and all its subfaces in the simplex
tree. Let σ be a simplex we want to insert with all its subfaces. Let [`0, · · · , `j ] be its word
representation. For i from 0 to j we insert, if not already present, a node N`i , storing label `i,
as a child of the root. We recursively call the algorithm on the subtree rooted at N`i for the
insertion of the suffix [`i+1, · · · , `j ]. Since the number of subfaces of a simplex of dimension j

is
∑

i=0···j+1

(
j+1
i

)
= 2j+1, this algorithm takes time O(2jDm).

We can also remove a simplex from the simplex tree. Note that to keep the property of
being a simplicial complex, we need to remove all its cofaces as well. We locate them thanks
to the algorithm described below.
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Figure 2. Facets location of the simplex σ = {2, 3, 4, 5}, starting from the
position of σ in the simplex tree. The nodes representing the facets are colored
in grey.

Locate cofaces. Computing the cofaces of a face is required to retrieve adjacency relations
between faces. In particular, it is useful when traversing the complex or when removing a
face. We also need to compute the cofaces of a face when contracting an edge (described
later) or during the construction of the witness complex, described later in section 3.2.

If τ is represented by the word [`0 · · · `j ], the cofaces of τ are the simplices of K which are
represented by words of the form [?`0 ? `1 ? · · · ? `j?], where ? represents an arbitrary word on
the alphabet, possibly empty.

To locate all the words of the form [?`0 ? `1 ? · · · ? `j?] in the simplex tree, we first find all
the words of the form [?`0 ? `1 ? · · · ? `j ]. Using the lists Li(`j) (i > j), we find all the nodes
at depth at least j + 1 which contain label `j . For each such node N`j , we traverse the tree
upwards from N`j , looking for a word of the form [?`0 ? `1 ? · · · ? `j ]. If the search succeeds,
the simplex represented by N`j in the simplex tree is a coface of τ , as well as all the simplices
represented by the nodes in the subtree rooted at N`j , which have word representation of the
form [?`0 ? `1 ? · · · ? `j?]. Remark that the cofaces of a simplex are represented by a set of
subtrees in the simplex tree. The procedure searches only the roots of these subtrees.

The complexity for searching the cofaces of a simplex σ of dimension j depends on the

number T >jlast(σ) of nodes with label last(σ) and depth at least j + 1. If k is the dimension of

the simplicial complex, traversing the tree upwards takes O(k) time. The complexity of this

procedure is thus O(kT >jlast(σ)).

Locate Facets. Locating the facets of a simplex efficiently is the key point of the incremental
algorithm we use to construct witness complexes in section 3.2.

Given a simplex σ, we want to access the nodes of the simplex tree representing the facets
of σ. If the word representation of σ is [`0, · · · , `j ], the word representations of the facets of

σ are the words [`0, · · · , ̂̀i, · · · , `j ], 0 ≤ i ≤ j, where ̂̀i indicates that `i is omitted. If we
denote, as before, N`i , i = 0, · · · , j the nodes representing the words [`0, · · · , `i], i = 0, · · · , j
respectively, a traversal from the node representing σ up to the root will exactly pass through
the nodes N`i , i = j, · · · , 0. When reaching the node N`i−1

, a search from N`i−1
downwards

for the word [`i+1, · · · , `j ] locates (or proves the absence of) the facet [`0, · · · , ̂̀i, · · · , `j ]. See
Figure 2 for a running example.

This procedure locates all the facets of the j-simplex σ in O(j2Dm) operations.
Experiments. We report on the experimental performance of the facets and cofaces location
algorithms. Figure 3 represents the average time for these operations on a simplex, as a
function of the dimension of the simplex. We use the dataset Bro, consisting of points in
R25, on top of which we build a relaxed witness complex with 300 landmarks and 15, 000
witnesses, and relaxation parameter ρ = 0.15. See section 4 for a detailed description of the
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Figure 3. Repartition of the number of faces per dimension (top) and average
time to compute the facets (left) and the cofaces (right) of a simplex of a given
dimension.

experimental setup. We obtain a 13-dimensional simplicial complex with 140, 000 faces in less
than 3 seconds.

The theoretical complexity for computing the facets of a j-simplex σ is O(j2Dm). As
reported in Figure 3, the average time to search all facets of a j-simplex is well approximated
by a quadratic function of the dimension j (the standard error in the approximation is 2.0%).

A bound on the complexity of computing the cofaces of a j-simplex σ is O(kT >jlast(σ)), where

T >jlast(σ) stands for the number of nodes in the simplex tree that store the label last(σ) and

have depth larger than j + 1. Figure 3 provides experimental results for a random labelling
of the vertices. As can be seen, the time for computing the cofaces of a simplex σ is low,
on average, when the dimension of σ is either small (0 to 2) or big (6 to 13), and higher

for intermediate dimensions (3 to 5). The value T >jlast(σ) in the complexity analysis depends

on both the labelling of the vertices and the number of cofaces of the vertex vlast(σ): these
dependencies make the analysis of the algorithm quite difficult, and we let as an open problem
to fully understand the experimental behavior of the algorithm as observed in Figure 3 (right).

2.2.2. Topology preserving operations. We show how to implement two topology preserving
operations on a simplicial complex represented as a simplex tree. Such simplifications are, in
particular, important in topological data analysis.
Elementary collapse. We say that a simplex σ is collapsible through one of its faces τ if σ is
the only coface of τ , which can be checked by computing the cofaces of τ . Such a pair (τ, σ)
is called a free pair. Removing both faces of a free pair is an elementary collapse.

Since τ has no coface other than σ, either the node representing τ in the simplex tree is a
leaf (and so is the node representing σ), or it has the node representing σ as its unique child.
An elementary collapse of the free pair (τ, σ) consists either in the removal of the two leaves
representing τ and σ, or the removal of the subtree containing exactly two nodes: the node
representing τ and the node representing σ.
Edge contraction. Edge contractions are used in [3] as a tool for homotopy preserving simpli-
fication and in [14] for computing the persistent topology of data points. Let K be a simplicial
complex and let {v`a , v`b} be an edge of K we want to contract. We say that we contract v`b
to v`a meaning that v`b is removed from the complex and the link of v`a is augmented with
the link of v`b . Formally, we define the map f on the set of vertices V which maps v`b to v`a
and acts as the identity function for all other inputs:
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Figure 4. Contraction of vertex 3 to vertex 1 and the associated modifications
of the simplicial complex and of the simplex tree. The nodes which are removed
are marked with a red cross, the subtrees which are moved are colored in blue.

f(u) =

{
v`a if u = v`b
u otherwise

We then extend f to all simplices σ = {v`0 , · · · , v`j} of K with f(σ) = {f(v`0), · · · , f(v`j )}.
The contraction of v`b to v`a is defined as the operation which replaces K = (V, S) by K′ =
(V \ {v`b}, {f(σ)|σ ∈ S)}. K′ is a simplicial complex.

It has been proved in [3] that contracting an edge {v`a , v`b} preserves the homotopy type
of a simplicial complex whenever the link condition is satisfied:

Lk({v`a , v`b}) = Lk({v`a}) ∩ Lk({v`b})
This link condition can be checked using the Locate-cofaces algorithm described above.

Let σ be a simplex of K. We distinguish three cases : 1. σ does not contain v`b and remains
unchanged; 2. σ contains both v`a and v`b , and f(σ) = σ \{v`b}; |f(σ)| = |σ|−1 and f(σ) is a
strict subface of σ; 3. σ contains v`b but not v`a and f(σ) = (σ \ {v`b})∪{v`a}, (|f(σ)| = |σ|).

We describe now how to compute the contraction of v`b to v`a when K is represented as
a simplex tree. We suppose that the edge {v`a , v`b} is in the complex and, without loss of
generality, `a < `b. All the simplices which do not contain v`b remain unchanged and we do
not consider them. If a simplex σ contains both v`a and v`b , it will become σ \ {v`b}, after
edge contraction, which is a simplex already in K. We simply remove σ from the simplex tree.
Finally, if σ contains v`b but not v`a , we need to remove σ from the simplex tree and add the
new simplex (σ \ {v`b}) ∪ {v`a}.

We consider each node N`b with label `b in turn. To do so, we use the lists Lj(`) which link
all nodes cointaining the label ` at depth j. Let σ be the simplex represented by N`b . The
algorithm traverses the tree upwards from N`b and collects the vertices of σ. Let TN`b be the

subtree rooted at N`b . As `a < `b, if σ contains both v`a and v`b , this will be true for all the
simplices whose representative nodes are in TN`b , and, if σ contains only v`b , the same will be

true for all the simplices whose representative nodes are in TN`b . Consequently, if σ contains

both v`a and v`b , we remove the whole subtree TN`b from the simplex tree. Otherwise, σ

contains only v`b , all words represented in TN`b are of the form [σ′] � [σ′′] � [`b] � [σ′′′] and will

be turned into words [σ′] � [`a] � [σ′′] � [σ′′′] after edge contraction. We then have to move the
subtree TN`b (except its root) from position [σ′] � [σ′′] to position [σ′] � [`a] � [σ′′] in the simplex

tree. If a subtree is already rooted at this position, we have to merge TN`b with this subtree

as illustrated in Figure 4. In order to merge the subtree TN`b with the subtree rooted at the

node representing the word [σ′] � [`a] � [σ′′], we can successively insert every node of TN`b in the

corresponding set of sibling nodes, stored in a dictionary. See Figure 4.
We analyze the complexity of contracting an edge {v`a , v`b}. For each node storing the

label `b, we traverse the tree upwards. This takes O(k) time if the simplicial complex has
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dimension k. As there are T >0
`b

such nodes, the total cost is O(kT >0
`b

). We also manipulate
the subtrees rooted at the nodes storing label `b. Specifically, either we remove such a subtree
or we move a subtree by changing its parent node. In the latter case, we have to merge two
subtrees. This is the more costly operation which takes, in the worst case, O(Dm) operations
per node in the subtrees to be merged. As any node in such a subtree represents a coface
of vertex v`b , the total number of nodes in all the subtrees we have to manipulate is at most
C{v`b}, and the manipulation of the subtrees takes O(C{v`b}Dm) time. Consequently, the time

needed to contract the edge {v`a , v`b} is O(kT >0
`b

+ C{v`b}Dm).

Remark on the value of Dm. : Dm appears as a key value in the complexity analysis of
the algorithms. Recall that Dm is the maximal number of operations needed to perform a
search, an insertion or a removal in a dictionary of maximal size deg(T ) in the simplex tree.
We suppose in the following that the dictionaries used are red-black trees, in which case
Dm = O(log(deg(T ))). As mentioned earlier, deg(T ) is bounded by the maximal degree of a
vertex in the graph of the simplicial complex. In the worst-case, if n denotes the number of
vertices of the simplicial complex, we have deg(T ) = O(n), and Dm = O(log(n)). However,
this bound can be improved in the case of simplicial complexes constructed on sparse data
points sampled from a low dimensional manifold, an important case in practical applications.
Let M be a d-manifold with bounded curvature, embedded in RD and assume that the length
of the longest (resp., shortest) edge of the simplicial complex has length at most r (resp., at
least ε). Then, a volume argument shows that the maximal degree of a vertex in the simplicial
complex is Θ((r/ε)d). Hence, when r = O(ε), which is a typical situation when S is an ε-net
of M, the value of Dm is O(d) with a constant depending only on local geometric quantities.

3. Construction of Simplicial Complexes

In this section, we detail how to construct two important types of simplicial complexes, the
flag and the witness complexes, using simplex trees.

3.1. Flag complexes. A flag complex is a simplicial complex whose combinatorial structure
is entirely determined by its 1-skeleton. Specifically, a simplex is in the flag complex if and
only if its vertices form a clique in the graph of the simplicial complex, or, in other terms, if
and only if its vertices are pairwise linked by an edge.
Expansion. Given the 1-skeleton of a flag complex, we call expansion of order k the operation
which reconstructs the k-skeleton of the flag complex. If the 1-skeleton is stored in a simplex
tree, the expansion of order k consists in successively inserting all the simplices of the k-
skeleton into the simplex tree.

Let G = (V,E) be the graph of the simplicial complex, where V is the set of vertices and
E ⊆ V × V is the set of edges. For a vertex v` ∈ V , we denote by

N+(v`) = {`′ ∈ {1, · · · , |V |} | (v`, v`′) ∈ E ∧ `′ > `}
the set of labels of the neighbors of v` in G that are bigger than `. Let N`j be the node in the
tree that stores the label `j and represents the word [`0, · · · , `j ]. The children of N`j store

the labels in N+(v`0) ∩ · · · ∩ N+(v`j ). Indeed, the children of N`j are neighbors in G of the
vertices v`i , 0 ≤ i ≤ j, (by definition of a clique) and must have a bigger label than `0, · · · , `j
(by construction of the simplex tree).

Consequently, the sibling nodes of N`j are exactly the nodes that store the labels in A =

N+(v`0) ∩ · · · ∩ N+(v`j−1
), and the children of N`j are exactly the nodes that store the

labels in A ∩N+(v`j ). See Figure 5.
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Figure 5. Representation of a set of sibling nodes as intersection of neighborhoods.

For every vertex v`, we have an easy access to N+(v`) since N+(v`) is exactly the set of
labels stored in the children of the top node storing label `. We easily deduce an in-depth
expansion algorithm.

The time complexity for the expansion algorithm depends on our ability to fastly compute
intersections of the type A∩N+(v`j ). In all of our experiments on the Rips complex (defined
below) we have observed that the time taken by the expansion algorithm depends linearly on
the size of the output simplicial complex, for a fixed dimension. More details can be found in
section 4 and appendix A.
Rips Complex. Rips complexes are geometric flag complexes which are popular in compu-
tational topology due to their simple construction and their good approximation proper-
ties [4, 12]. Given a set of vertices V in a metric space and a parameter r > 0, the Rips graph
is defined as the graph whose set of vertices is V and two vertices are joined by an edge if
their distance is at most r. The Rips complex is the flag complex defined on top of this graph.
We will use this complex for our experiments on the construction of flag complexes.

3.2. Witness complexes.
The Witness Complex. has been first introduced in [13]. Its definition involves two given sets
of points in a metric space, the set of landmarks L and the set of witnesses W .

Definition 3.1. A witness w ∈W witnesses a simplex σ ⊆ L iff:

∀x ∈ σ and ∀y ∈ L \ σ we have d(w, x) ≤ d(w, y)

For simplicity of exposition, we will suppose that no landmarks are at the exact same
distance to a witness. In this case, a witness w ∈W witnesses a simplex σ ⊆ L iff the vertices
of σ are the |σ| nearest neighbors of w in L. We study later the construction of the relaxed
witness complex, which is a generalization of the witness complex which includes the case
where points are not in general position.

The witness complex Wit(W,L) is the maximal simplicial complex, with vertices in L,
whose faces admit a witness in W . Equivalently, a simplex belongs to the witness complex
if and only if it is witnessed and all its facets belong to the witness complex. A simplex
satisfying this property will be called fully witnessed.
Construction Algorithm. We suppose the sets L and W to be finite and give them labels
{1, · · · , |L|} and {1, · · · , |W |} respectively. We describe how to construct the k-skeleton of
the witness complex, where k may be any integer in {1, · · · , |L| − 1}.

Our construction algorithm is incremental, from lower to higher dimensions. At step j we
insert in the simplex tree the j-dimensional fully witnessed simplices.

During the construction of the k-skeleton of the witness complex, we need to access the
nearest neighbors of the witnesses, in L. To do so, we compute the k+ 1 nearest neighbors of
all the witnesses in a preprocessing phase, and store them in a |W |× (k+1) matrix. Given an
index j ∈ {0, · · · , k} and a witness w ∈W , we can then access in constant time the (j + 1)th
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Figure 6. Third iteration of the witness complex construction. The active
witness w witnesses the tetrahedron {2, 3, 4, 5} and points to the triangle
{2, 4, 5}. (Left) Search for the potential position of the simplex {2, 3, 4, 5}
in the simplex tree. (Right) Facets location for simplex {2, 3, 4, 5}, and update
of the pointer of the active witness w.

nearest neighbor of w. We denote this landmark by swj . We maintain a list of active witnesses,

initialized with W . We insert the vertices of Wit(W,L) in the simplex tree. For each witness
w ∈W we insert a top node storing the label of the nearest neighbor of w in L, if no such node
already exists. w is initially an active witness and we make it point to the node mentionned
above, representing the 0-dimensional simplex w witnesses.

We maintain the following loop invariants:

(1) at the beginning of iteration j, the simplex tree contains the (j − 1)-skeleton of the
witness complex Wit(W,L)

(2) the active witnesses are the elements of W that witness a (j − 1)-simplex of the
complex; each active witness w points to the node representing the (j − 1)-simplex in
the tree it witnesses.

At iteration j ≥ 1, we traverse the list of active witnesses. Let w be an active witness. We
first retrieve the (j + 1)th nearest neighbor swj of w from the nearest neighbors matrix (Step

1). Let σj be the j-simplex witnessed by w and let us decompose the word representing σj
into [σj ] = [σ′] � [swj ] � [σ′′] (“�” denotes the concatenation of words). We then look for the

location in the tree where σj might be inserted (Step 2). To do so, we start at the node Nw

which represents the (j−1)-simplex witnessed by w. Observe that the word associated to the
path from the root to Nw is exactly [σ′] � [σ′′]. We walk |[σ′′]| steps up from Nw, reach the

node representing [σ′] and then search downwards for the word [sjw] � [σ′′] (see Figure 6, left).
The cost of this operation is O(jDm).

If the node representing σj exists, σj has already been inserted; we update the pointer of
w and return. If the simplex tree contains neither this node nor its father, σj is not fully
witnessed because the facet represented by its longest prefix is missing. We consequently
remove w from the set of active witnesses. Lastly, if the node is not in the tree but its father
is, we check whether σj is fully witnessed. To do so, we search for the j + 1 facets of σj in
the simplex tree (Step 3). The cost of this operation is O(j2Dm) using the Locate-facets
algorithm described in section 2.2. If σj is fully witnessed, we insert σj in the simplex tree
and update the pointer of the active witness w. Else, we remove w from the list of active
witnesses (see Figure 6, right).

It is easily seen that the loop invariants are satisfied at the end of iteration j.
Complexity. The cost of accessing a neighbor of a witness using the nearest neighbors matrix
is O(1). We access a neighbor (Step 1) and locate a node in the simplex tree (Step 2) at most
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k|W | times. In total, the cost of Steps 1 and 2 together is O(|W |k2Dm). In Step 3, either we
insert a new node in the simplex tree, which happens exactly |K| times (the number of faces
in the complex), or we remove an active witness, which happens at most |W | times. The total
cost of Step 3 is thus O((|K|+ |W |)k2Dm). In conclusion, constructing the k-skeleton of the
witness complex takes time

O((|K|+ |W |)k2Dm + k|W |) = O((|K|+ |W |)k2Dm).

Landmark Insertion. We present an algorithm to update the simplex tree under landmark
insertions. Adding new vertices in witness complexes is used in [7] for manifold reconstruction.
Given the set of landmarks L, the set of witnesses W and the k-skeleton of the witness complex
Wit(W,L) represented as a simplex tree, we take a new landmark point x and we update the
simplex tree so as to construct the simplex tree associated to Wit(W,L ∪ {x}). We assign to
x the biggest label |L| + 1. We suppose to have at our disposal an oracle that can compute
the subset W x ⊆ W of the witnesses that admit x as one of their k + 1 nearest neighbors.
Computing W x is known as the reverse nearest neighbor search problem, which has been
intensively studied in the past few years [2]. Let w be a witness in W x and suppose x is its
(i+1)th nearest neighbor in L∪{x}, with 0 ≤ i ≤ k. Let σj ⊆ L be the j-dimensional simplex
witnessed by w in L and let σ̃j ⊆ L ∪ {x} be the j-dimensional simplex witnessed by w in
L∪{x}. Consequently, σj = σ̃j for j < i and σj 6= σ̃j for j ≥ i. We equip each node N of the
simplex tree with a counter of witnesses which maintains the number of witnesses that witness
the simplex represented by N . As for the witness complex construction, we consider all nodes
representing simplices witnessed by elements of W x, proceeding by increasing dimensions. For
a witness w ∈ W x and a dimension j ≥ i, we decrement the witness counter of σj and insert
σ̃j if and only if its facets are in the simplex tree. We remark that [σ̃j ] = [σj−1] � [x] because
x has the biggest label of all landmarks. We can thus access in time O(Dm) the position of
the word [σ̃j ] since we have accessed the node representing [σj−1] in the previous iteration of
the algorithm.

If the witness counter of a node is turned down to 0, the simplex σ it represents is not
witnessed anymore, and is consequently not part of Wit(W,L ∪ {x}). We remove the nodes
representing σ and its cofaces from the simplex tree, using Locate-cofaces.
Complexity. The update procedure is a “local” variant of the witness complex construction,
where, by “local”, we mean that we reconstruct only the star of vertex x. Let Cx denote the
number of cofaces of x in Wit(W,L ∪ {x}) (or equivalently the size of its star). The same
analysis as above shows that updating the simplicial complex takes time O((|W x|+Cx)k2Dm),
plus one call to the oracle to compute W x.
Relaxed Witness Complex. Given a relaxation parameter ρ ≥ 0 we define the relaxed witness
complex [13]:

Definition 3.2. A witness w ∈W ρ-witnesses a simplex σ ⊆ L iff:

∀x ∈ σ and ∀y ∈ L \ σ we have d(w, x) ≤ d(w, y) + ρ

The relaxed witness complex Witρ(W,L) with parameter ρ is the maximal simplicial com-
plex, with vertices in L, whose faces admit a ρ-witness in W . For ρ = 0, the relaxed witness
complex is the standard witness complex. The parameter ρ defines a filtration on the witness
complex, which has been used in topological data analysis.

We resort to the same incremental algorithm as above. At each step j, we insert, for
each witness w, the j-dimensional simplices which are ρ-witnessed by w. Differently from the
standard witness complex, there may be more than one j-simplex that is witnessed by a given
witness w ∈ W . Consequently, we do not maintain a pointer from each active witness to the
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Figure 7. Computation of the ρ-witnessed simplices σ of dimension 5. If z3

is the first neighbor of w not in σ, then σ contains {z0, z1, z2} and any 3-uplet
of A3 = {z4, · · · , z8}.

last inserted simplex it witnesses. We use simple top-down insertions from the root of the
simplex tree.

Given a witness w and a dimension j, we generate all the j-dimensional simplices which
are ρ-witnessed by w. For the ease of exposition, we suppose we are given the sorted list of
nearest neighbors of w in L, noted {z0 · · · z|L|−1}, and their distance to w, noted mi = d(w, zi),
with m0 ≤ · · · ≤ m|L|−1, breaking ties arbitrarily. Note that if one wants to construct only
the k-skeleton of the complex, it is sufficient to know the list of neighbors of w that are at
distance at most mk + ρ from w. We preprocess this list of neighbors for all witnesses. For
i ∈ {0, · · · , |L|−1}, we define the set Ai of landmarks z such that mi ≤ d(w, z) ≤ mi+ρ. For
i ≤ j+ 1, w ρ-witnesses all the j-simplices that contain {z0, · · · , zi−1} and a (j+ 1− i)-subset
of Ai, provided |Ai| ≥ j + 1 − i. We see that all j-simplices that are ρ-witnessed by w are
obtained this way, and exactly once, when i ranges from 0 to j + 1.

For all i ∈ {0, · · · , j + 1}, we compute Ai and generate all the simplices which contain
{z0, · · · , zi−1} and a subset of Ai of size (j + 1 − i). In order to easily update Ai when i is
incremented, we maintain two pointers to the list of neighbors, one to zi and the other to the
end of Ai. We check in constant time if Ai contains more than j+ 1− i vertices, and compute
all the subsets of Ai of cardinality j + 1− i accordingly. See Figure 7.
Complexity. Let Rj be the number of j-simplices ρ-witnessed by w. Generating all those
simplices takes O(j + Rj) time. Indeed, for all i from 0 to j + 1, we construct Ai and check
whether Ai contains more than j + 1− i elements. This is done by a simple traversal of the
list of neighbors of w, which takes O(j) time. Then, when Ai contains more than j + 1 − i
elements, we generate all subsets of Ai of size j+1−i in time O(

( |Ai|
j+1−i

)
). As each such subset

leads to a ρ-witnessed simplex, the total cost for generating all those simplices is O(Rj).
We can deduce the complexity of the construction of the relaxed witness complex. Let

R =
∑

w∈W

∑

j=0···k
Rj be the number of ρ-witnessed simplices we try to insert. The construction

of the relaxed witness complex takes O(Rk2Dm) operations. This bound is quite pessimistic
and, in practice, we observed that the construction time is sensitive to the size of the output
complex. Observe that the quantity analogous to R in the case of the standard witness
complex was k|W | and that the complexity was better due to our use of the notion of active
witnesses.

4. Experiments

In this section, we report on the performance of our algorithms on both real and syn-
thetic data, and compare them to existing software. More specifically, we benchmark the
construction of Rips complexes, witness complexes and relaxed witness complexes. Our im-
plementations are in C++. We use the ANN library [21] to compute the 1-skeleton graph
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Data |P| D d r Tg |E| TRips |K| Ttot Ttot/|K|
Bud 49,990 3 2 0.11 1.5 1,275,930 104.5 354,695,000 104.6 3.0 · 10−7

Bro 15,000 25 ? 0.019 0.6 3083 36.5 116,743,000 37.1 3.2 · 10−7

Cy8 6,040 24 2 0.4 0.11 76,657 4.5 13,379,500 4.61 3.4 · 10−7

Kl 90,000 5 2 0.075 0.46 1,120,000 68.1 233,557,000 68.5 2.9 · 10−7

S4 50,000 5 4 0.28 2.2 1,422,490 95.1 275,126,000 97.3 3.6 · 10−7

Data |L| |W | D d ρ Tnn TWitρ |K| Ttot Ttot/|K|
Bud 10,000 49,990 3 2 0.12 1. 729.6 125,669,000 730.6 0.58 · 10−5

Bro 3,000 15,000 25 ? 0.01 9.9 107.6 2,589,860 117.5 4.5 · 10−5

Cy8 800 6,040 24 2 0.23 0.38 161 997,344 161.2 16 · 10−5

Kl 10,000 90,000 5 2 0.11 2.2 572 109,094,000 574.2 0.53 · 10−5

S4 50,000 200,000 5 4 0.06 25.1 296.7 163,455,000 321.8 0.20 · 10−5

Figure 8. Data, timings (in s.) and statistics for the construction of Rips
complexes (TOP) and relaxed witness complexes (BOTTOM). All complexes
are constructed up to embedding dimension.

of the Rips complex, and to compute the lists of nearest neighbors of the witnesses for the
witness complexes. All timings are measured on a Linux machine with 3.00 GHz processor
and 32 GB RAM. For its efficiency and flexibility, we use the map container of the Standard

Template Library [23] for storing sets of sibling nodes, except for the top nodes which are
stored in an array.

We use a variety of both real and synthetic datasets. Bud is a set of points sampled from
the surface of the Stanford Buddha [1] in R3. Bro is a set of 5×5 high-contrast patches derived
from natural images, interpreted as vectors in R25, from the Brown database (with parameter
k = 300 and cut 30%) [11, 17]. Cy8 is a set of points in R24, sampled from the space
of conformations of the cyclo-octane molecule [19], which is the union of two intersecting
surfaces. Kl is a set of points sampled from the surface of the figure eight Klein Bottle
embedded in R5. Finally S4 is a set of points uniformly distributed on the unit 4-sphere in
R5. Datasets are listed in Figure 8 with details on the sets of points P or landmarks L and
witnesses W , their size |P|, |L| and |W |, the ambient dimension D, the intrinsic dimension d
of the object the sample points belong to (if known), the parameter r or ρ, the dimension k
up to which we construct the complexes, the time Tg to construct the Rips graph or the time
Tnn to compute the lists of nearest neighbors of the witnesses, the number of edges |E|, the
time for the construction of the Rips complex TRips or for the construction of the witness

complex TWitρ , the size of the complex |K|, and the total construction time Ttot and average
construction time per face Ttot/|K|.

We test our algorithms on these datasets, and compare their performance with two existing
softwares that are state-of-the-art. We compare our implementation to the JPlex [22] library
and the Dionysus [20] library. The first is a Java package which can be used with Matlab

and provides an implementation of the construction of Rips complexes and witness complexes.
The second is implemented in C++ and provides an implementation of the construction of
Rips complexes. Both libraries are widely used to construct simplicial complexes and to
compute their persistent homology. We also provide an experimental analysis of the memory
performance of our data structure compared to other representations. Unless mentioned
otherwise, all simplicial complexes are computed up to the embedding dimension.
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Figure 9. Statistics and timings for the Rips complex (Left) and the relaxed
witness complex (Right) on S4.

All timings are averaged over 10 independent runs. Timings are provided by the clock

function from the Standard C Library, and zero means that the measured time is below the
resolution of the clock function. Experiments are stopped after one hour of computation,
and data missing on plots means that the computation ran above this time limit.

For readability, we do not report on the performance of each algorithm on each dataset in
this section, but the results presented are a faithful sample of what we have observed on other
datasets. A complete set of experiments is reported in appendix A.

As illustrated in Figure 8, we are able to construct and represent both Rips and relaxed
witness complexes of up to several hundred million faces in high dimensions, on all datasets.
Data structure in JPlex and Dionysus: Both JPlex and Dionysus represent the combi-
natorial structure of a simplicial complex by its Hasse diagram. The Hasse diagram of a
simplicial complex K is the graph whose nodes are in bijection with the simplices (of all
dimensions) of the simplicial complex and where an edge links two nodes representing two
simplices τ and σ iff τ ⊆ σ and dim(σ) = dim(τ) + 1.

JPlex and Dionysus are libraries dedicated to topological data analysis, where only the
construction of simplicial complexes and the computation of the facets of a simplex are nec-
essary.

For a simplicial complex K of dimension k and a simplex σ ∈ K of dimension j, the Hasse
diagram has size Θ(k|K|) and allows to compute Locate-facets(σ) in time O(j), whereas
the simplex tree has size Θ(|K|) and allows to compute Locate-facets(σ) in time O(j2Dm).

4.1. Memory Performance of the Simplex Tree. In order to represent the combinatorial
structure of an arbitrary simplicial complex, one needs to mark all maximal faces. Indeed,
except in some special cases (like in flag complexes where all faces are determined by the
1-skeleton of the complex), one cannot infer the existence of a simplex in a simplicial com-
plex K from the existence of its faces in K. Moreover, the number of maximal simplices of a
k-dimensional simplicial complex is at least |V |/(k+ 1). In the case, considered in this paper,
where the vertices are identified by their labels, a minimal representation of the maximal sim-
plices would then require at least Ω(log |V |) bits per maximal face, for fixed k. The simplex
tree uses O(log |V |) memory bits per face of any dimension. The following experiment com-
pares the memory performance of the simplex tree with the minimal representation described
above, and with the representation of the 1-skeleton.

Figure 9 shows results for both Rips and relaxed witness complexes associated to 10, 000
points from S4 and various values of, respectively, the distance threshold r and the relaxation
parameter ρ. The figure plots the total number of faces |K|, the number of maximal faces
|mF|, the size of the 1-skeleton |G| and the construction times TRips and TWitρ .
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Figure 10. Statistics and timings for the construction of the Rips complex
on (Left) Bud and (Right) Cy8.

As expected, the 1-skeleton is significantly smaller than the two other representations.
However, as explained earlier, a representation of the graph of the simplicial complex is only
well suited for flag complexes.

As shown on the figure, the total number of faces and the number of maximal faces remain
close along the experiment. Interestingly, we catch the topology of S4 when r ≈ 0.4 for the
Rips complex and ρ ≈ 0.08 for the relaxed witness complex. For these “good” values of the
parameters, the total number of faces is not much bigger than the number of maximal faces.
Specifically, the total number of faces of the Rips complex is less than 2.3 times bigger than
the number of maximal faces, and the ratio is less than 2 for the relaxed witness complex.

4.2. Construction of Rips Complexes. We test our algorithm for the construction of Rips
complexes. In Figure 10 we compare the performance of our algorithm with JPlex and with
Dionysus along two directions.

In the first experiment, we build the Rips complex on 49, 000 points from the dataset Bud.
Our construction is at least 36 times faster than JPlex along the experiment, and several
hundred times faster for small values of the parameter r. Moreover, JPlex is not able to
handle the full dataset Bud nor big simplicial complexes due to memory allocation issues,
whereas our method has no such problems. In our experiments, JPlex is not able to compute
complexes of more than 23 million faces (r = 0.07) while the simplex tree construction runs
successfully until r = 0.11, resulting in a complex of 237 million faces. Our construction is at
least 7 times faster than Dionysus along the experiment, and several hundred times faster
for small values of the parameter r.

In the second experiment, we construct the Rips complex on the 6040 points from Cy8,
with threshold r = 0.4, for different dimensions k. Again, our method outperforms JPlex,
by a factor 11 to 14. JPlex cannot compute complexes of dimension higher than 7 because
it is limited by design to simplicial complexes of dimension smaller than 7. Our construction
is 4 to 12 times faster than Dionysus.

The simplex tree and the expansion algorithm we have described are output sensitive. As
shown by our experiments, the construction time using a simplex tree depends linearly on the
size of the output complex. Indeed, when the Rips graphs are dense enough so that the time
for the expansion dominates the full construction, we observe that the average construction
time per face is constant and equal to 3.7×10−7 seconds for the first experiment, and 4.1×10−7

seconds for the second experiment (with standard errors 0.20% and 0.14% respectively).

4.3. Construction of Witness Complexes. We test our algorithms for the construction
of witness complexes and relaxed witness complexes.
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10 20 30

100

102

104

% of landmarks

T
im

e
(s
.)

TSimplexTree TJPlex

103

104

105

S
iz
e

|K|

10,000 20,000 30,000 40,000 50,000
0

500

1,000

|W |

T
im

e
(s
.)

TSimplexTree TJPlex

6,000

8,000

10,000

S
iz
e

|K|

0 2 · 10−2 4 · 10−2

10−1

101

103

ρ

T
im

e
(s
.)

TSimplexTree

104

107

1010

S
iz
e

|K|

2 3 4 5

101

k

T
im

e
(s
.)

TSimplexTree

106

107

S
iz
e

|K|

Figure 11. Statistics and timings for the construction of: (TOP) the witness
complex and (BOTTOM) the relaxed witness complex, on datasets (Left) Bro
and (Right) Kl.

Figure 11 (top) shows the results of two experiments for the full construction of witness
complexes. The first one compares the performance of the simplex tree algorithm and of
JPlex on the dataset Bro consisting of 15, 000 points in dimension R25. Subsets of different
size of landmarks are selected at random among the sample points. Our algorithm is from
several hundred to several thousand times faster than JPlex (from small to big subsets of
landmarks). Moreover, the simplex tree algorithm for the construction of the witness complex
represent less than 1% of the total time spent, when more than 99% of the total time is spent
computing the nearest neighbors of the witnesses.

In the second experiment, we construct the witness complex on 2, 500 landmarks from Kl,
and sets of witnesses of different size. The simplex tree algorithm outperforms JPlex, being
tens of thousands times faster. JPlex runs above the one hour time limit when the simplex
tree algorithm stays under 0.1 second all along the experiment. Moreover, the simplex tree
algorithm spends only about 10% of the time constructing the witness complex, and 90%
computing the nearest neighbors of the witnesses.

Finally we test the full construction of the relaxed witness complex. JPlex does not provide
an implementation of the relaxed witness complex as defined in this paper; consequently, we
were not able to compare the algorithms on the construction of the relaxed witness complex.
We test our algorithms along two directions, as illustrated in Figure 11 (bottom). In the first
experiment, we compute the 5-skeleton of the relaxed witness complex on Bro, with 15, 000
witnesses and 1, 000 landmarks selected randomly, for different values of the parameter ρ. In
the second experiment, we construct the k-skeleton of the relaxed witness complex on Kl with
10, 000 landmarks, 100, 000 witnesses and fixed parameter ρ = 0.07, for various k. We are able
to construct and store complexes of up to 260 million faces. In both cases the construction
time is linear in the size of the output complex, with a contruction time per face equal to
4.9× 10−6 seconds in the first experiment, and 4.0× 10−6 seconds in the second experiment
(with standard errors 1.6% and 6.3% respectively).
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Conclusion

We believe that the simplex tree is the first scalable and truly practical data structure to
represent general simplicial complexes. The simplex tree is very flexible, can represent any
kind of simplicial complexes and allow efficient implementations of all basic operations on
simplicial complexes. Futhermore, since the simplex tree stores all simplices of the simplicial
complex, it has been successfully applied to represent filtrations and to compute persistent
homology [6]. We plan to make our code publicly available and to use it for practical ap-
plications in data analysis and manifold learning. Further developments also include more
compact storage using succinct representations of trees [16].
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Appendix A. Additional Experiments

In this section we provide more experiments on the running time of the algorithms for
constructing Rips complexes and relaxed witness complexes on all datasets. The datasets
used are described in Figure 8.

Bud: r 0.08 0.085 0.090 0.095 0.100 0.105 0.110
TRips 19.4 26.5 35.8 46.7 60.5 77.7 98.7
|K| 69 · 106 94 · 106 127 · 106 167 · 106 217 · 106 280 · 106 355 · 106

Bro: r 0.184 0.186 0.188 0.190 0.192 0.194 0.196
TRips 15.3 18.1 28.2 34.5 40.8 56.2 81.1
|K| 52 · 106 61 · 106 95 · 106 117 · 106 138 · 106 190 · 106 275 · 106

Cy8: r 0.406 0.415 0.424 0.433 0.442 0.451 0.460
TRips 5.7 8.7 13.6 21.4 34.5 57.3 96.6
|K| 17 · 106 27 · 106 42 · 106 67 · 106 108 · 106 180 · 106 305 · 106

Kl: r 0.059 0.062 0.065 0.068 0.071 0.074 0.077
TRips 7.0 11.1 17.8 26.3 38.4 58.3 87.3
|K| 24 · 106 38 · 106 61 · 106 90 · 106 133 · 106 204 · 106 305 · 106

S4: r 0.22 0.23 0.24 0.25 0.26 0.27 0.28
TRips 2.7 4.7 8.5 15.4 28.0 50.9 93.7
|K| 7 · 106 13 · 106 23 · 106 43 · 106 79 · 106 146 · 106 271 · 106

Figure 12. Timings TRips for the construction of the Rips complex on the
data sets and size of the simplicial complexes |K|, for different values of the
parameter r. On all these experiments, the time complexity is linear in the
number of faces. Specifically, the timing per simplex ranges between 2.79 ·10−7

and 3.47 · 10−7 seconds per simplex depending on the dataset, with standard
error at most 0.40%.
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Bud: ρ 0.06 0.07 0.08 0.09 0.10 0.11 0.12
TWitρ 18.3 36.9 71.1 135.8 249.1 440.2 758.6
|K| 7.8 · 106 14 · 106 23 · 106 38 · 106 58 · 106 88 · 106 130 · 106

Bro: ρ 0.0075 0.0080 0.0085 0.0090 0.0095 0.0100 0.0105
TWitρ 4.0 6.1 10.7 16.5 39.3 123.2 530.9
|K| 1.2 · 106 1.5 · 106 1.9 · 106 2.2 · 106 3.1 · 106 4.6 · 106 7.0 · 106

Cy8: ρ 0.194 0.200 0.206 0.212 0.218 0.224 0.230
TWitρ 18.7 33.1 130.2 273.0 512.9 37.2 1411.2
|K| 0.45 · 106 0.66 · 106 0.82 · 106 1.1 · 106 1.7 · 106 2.3 · 106 3.6 · 106

Kl: ρ 0.05 0.06 0.07 0.08 0.09 0.10 0.11
TWitρ 3.2 9.7 24.6 55.3 118.0 261.1 584.5
|K| 0.78 · 106 2.2 · 106 5.2 · 106 11 · 106 23 · 106 49 · 106 109 · 106

S4: ρ 0.03 0.035 0.040 0.045 0.050 0.055 0.060
TWitρ 7.6 14.1 26.4 48.9 89.2 164.6 297.3
|K| 2.8 · 106 5.3 · 106 11 · 106 22 · 106 43 · 106 85 · 106 161 · 106

Figure 13. Timings TWitρ for the construction of the relaxed witness complex
on the data sets and size of the simplicial complexes |K|, for different values
of the parameter ρ. The timings per simplex vary, as the complexity of the
construction algorithm depends also on the number of witnesses. It however
ranges between ≈ 10−6 and ≈ 10−4 seconds per simplex depending on the
number of witnesses compared to the number of simplices of the output.
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