
ar
X

iv
:0

81
2.

15
95

v1
 [

cs
.D

M
]

 8
 D

ec
 2

00
8

A quasi-polynomial time approximation scheme for Euclidean

capacitated vehicle routing

Aparna Das Claire Mathieu

October 25, 2018

Abstract

In the capacitated vehicle routing problem, introduced by Dantzig and Ramser in 1959, we are given
the locations of n customers and a depot, along with a vehicle of capacity k, and wish to find a minimum
length collection of tours, each starting from the depot and visiting at most k customers, whose union
covers all the customers. We give a quasi-polynomial time approximation scheme for the setting where
the customers and the depot are on the plane, and distances are given by the Euclidean metric.

1 Introduction

In 1959, Dantzig and Ramser introduced the vehicle routing problem (VRP) and gave a linear pro-
gramming based Algorithm whose “calculations may be readily performed by hand or automatic digital
computing machine”[8]. Since its introduction, VRP has been widely studied by researchers in Opera-
tions Research and Computer Science. Several books (see [16], [10] and [9], among others) have been
written on the VRP and it even has its own wikipedia page [19].

VRP is used to describe a class of problems where the objective is to find low cost delivery routes
from depots to customers using a vehicle of limited capacity. When Dantzig and Ramser first introduced
VRP they stated that “no practical applications have been made as yet”[8]. Since that time, applications
of various VRP problems have been identified in numerous industries where transportation costs matter
such as food and beverage distribution, and package and newspaper delivery. Toth and Vigo report on
businesses that saved between 5 % and 20% of total costs by solving VRP problems using computerized
models [16].

The capacitated vehicle routing problem. We study the most basic form of the vehicle routing
problem, the capacitated version (CVRP), where the input is n+ 1 points representing the locations of
n customers and one depot, and a vehicle of capacity k. The objective is to find a collection of tours,
starting at the depot and visiting at most k customers, whose union covers all n customers, such that
the sum of the lengths of the tours is minimized. CVRP is also referred to as the k-tours problem in
the Computer Science literature [1, 4]. We focus on the 2d-Euclidean version of CVRP where customers
and the depot are on the Euclidean plane.

Previous work. Several results are already known about the approximability of CVRP. When the
capacity of the vehicle k is 2, it can be solved in polynomial time using minimum weight matching.
The metric case was shown to be APX-complete for all 3 ≤ k; Asano et al. presented a reduction from
H-matching for k = O(1) and there is a simple reduction from the traveling salesman problem (TSP)
for larger k [5]. Constant factor approximation with performance (1+α) with α being the best constant
factor approximation for TSP, were presented by Haimovich and Rinnooy Kan [11].

The existence of a PTAS for the 2d-Euclidean version remains an active area of research. Extending
[11], Asano et al. presented a PTAS for the case k = O(log n/ log logn) [4]. Arora’s work implies a
PTAS for k = Ω(n) [4].

Our result. We present a quasi-polynomial time approximation scheme for the entire range of k.

1

http://arxiv.org/abs/0812.1595v1

Theorem 1.1. (Main Theorem) Algorithm 1 is a randomized quasi-polynomial time approximation
scheme for the 2d-Euclidean capacitated vehicle routing problem. Given ǫ > 0, it outputs a solution with

expected length (1 +O(ǫ))OPT, in time nlogO(1/ǫ) n. The Algorithm can be derandomized.

Where previous approaches fail. Our approximation scheme uses the divide and conquer approach
that Arora used in designing a PTAS for Euclidean TSP [1]. Like Arora, we “divide” the problem using
a randomized dissection that recursively partitions the region of input points into progressively smaller
squares. We search for a solution that goes back and forth between adjacent squares a limited number
of times and always through a small number of predetermined sites called portals that are placed along
the boundary of squares. It is natural to attempt to extend the TSP structure theorem and show that
there exists a near optimal solution that crosses the boundary of squares a small number of times, and
then use dynamic programming. Unfortunately [2],

“we seem to need a result stating that there is a near-optimum solution which enters or leaves
each area a small number of times. This does not appear to be true. [...] The difficulty lies in
deciding upon a small interface between adjacent squares, since a large number of tours may
cross the edge between them. It seems that the interface has to specify something about each
of them, which uses up too many bits.”

Indeed, to combine solutions in adjacent squares it seems necessary to remember the number of
points covered by tour segments, and that is is too much information to remember.

Overview of our approach. To get around this problem we remember approximately how many
points are on each tour segment. Specifically we round the number of points on each tour segment down
to a multiple (1+ǫ/ logn), which means there are only O(log k) possibilities for the approximate number
of points on each tour segment. This enables us to deal with the difficulties described by Arora: now we
have a small interface between adjacent squares, namely, for every pair of portals and every approximate
number of points, we remember the number of tour segments that have this profile. The quasipolynomial
running time of our dynamic program (DP) follows since the number of profiles is polylogarithmic and
as there are at most n tour segments of each profile.

One challenge with only remembering the approximate number of points per tour segment is that
the tours found by our dynamic program (DP) could now cover a little bit more than k points. To
deal with this issue, whenever a tour of the DP solution covers more than k points we carefully choose
enough points and drop them from the tour to make it feasible. Finally we compute a solution just on
the dropped points using a 3-approximation [11] and prove that it has negligible length compared to
OPT.

In section 2 we present our approximation scheme and prove its correctness under the assumptions
that the DP solution is near optimal (Theorem 2.2, proved in section 4) and that the 3-approximation
solution on the dropped points has length at most O(ǫ)OPT (Theorem 2.5, proved in section 5). Section
3 presents the DP and section 6 the derandomization.

Related Work. Our work builds on the approach that Arora [1] used in designing a PTAS for the
geometric traveling salesman problem. Similar techniques were also presented by Mitchell [13]. Recently
these techniques have been applied to design approximation schemes for several NP-Hard geometric
problems, including the polynomial time approximation schemes for Steiner Forest [6], and K-Median
[12] and quasipolynomial time schemes for Minimum Weight Triangulation [15] and Minimum Latency
problems [3] among others. See [2] for a survey of these techniques and a discussion about generalizing
them to other problems.

2 The Algorithm

An overview of our approximation scheme is given in Algorithm 1. We use a quasipolynomial time DP
to find a near optimal solution, OPTDP , which may include some tours that cover more than k points.
We drop points from each infeasible tour of OPTDP , choosing the points carefully using a randomized
procedure to obtain the set of feasible black tours. A solution on the dropped points, the red tours, is
obtained using a 3-approximation. We output the union of the red and black tours.

2

Algorithm 1 CVRP approximation scheme

Input: n points in R2 and an integer k.

1: Perturb instance, perform random dissection and place portals as described in section 2.1.
2: Use the DP from section 3 to find OPTDP which is defined in subsection 2.2.
3: Trace back in the DP’s history to construct tours and assign types to points using the randomized type

assignment from subsection 2.4.
4: A point is black if has type -1 and red otherwise. Drop all red points from the OPTDP tours.
5: Get a solution for the red points using the 3-approximation Algorithm from subsection 2.3.

Output: the union of the red tours on the red points and the black tours on the black points.

2.1 Preprocessing [1]

Perturbation. Algorithm 1 will work on a perturbed instance. Following Arora’s approach from [1],
we perturb and scale so that all points fit into a square bounding box of side length L = O(n) where L
is a power of 2, and so that all points have integer coordinates and the distance between any two points
is either 0 or at least 4. A solution for the perturbed instance can be extended to the original instance
using additional length O(ǫ)OPT. See appendix A for the details. From this point, OPT will denote
the optimal CVRP solution to the perturbed instance.

Randomized Dissection. Using Arora’s divide and conquer paradigm from [1], we perform a ran-
domized dissection of the input by recursively partitioning the bounding square into 4 smaller squares
of equal size using one horizontal and one vertical dissection line. The recursion stops when the smallest
squares have size 1 × 1. We define levels for the squares and the dissection lines. See appendix A for
the details. The maximum level of any square or line is ℓmax = O(log n). The probability that a line l
becomes a level ℓ dissection line in the randomized dissection is

Pr(level(l) = ℓ) = 2ℓ/L (1)

Portals. As in [1], we place points called portals on the boundary of dissection squares that will be the
entry and exit points for tours. Let m = O(log n/ǫ) and a power of 2. Place 2ℓm portals equidistant
apart on each level ℓ dissection line for all ℓ ≤ ℓmax. Since a level ℓ line forms the boundary of 2ℓ level
ℓ squares there will be at most at 4m portals along the boundary of any dissection square b. As m and
L are powers of 2, portals at lower level squares will also be portals in higher level squares.

Definition 2.1. (Portal respecting and light) A tour is portal respecting if it crosses dissection lines
only at portals. A tour is light if it is portal respecting and crosses each side of a dissection square at
most r = O(1/ǫ) times.

Arora showed that for TSP there exists a near optimal solution which is light.

Theorem 2.1. [1] Let OPT(TSP) denote the optimal solution for an instance of Euclidean TSP and
let D be its randomized dissection. With probability at least 1/2 there exists a salesman tour of length
(1 +O(ǫ))OPT that is light with respect to dissection D.

2.2 The Structure Theorem

We formally define the solution computed by our DP. Recall that remembering the exact number of
points on tour segments may require too many bits. Instead, we define O(log k) thresholds that are
multiples of (1 + ǫ/ logn) in the range [1, k] and round down the number of points on each segment to
its closest threshold. Given a tour segment covering a non-threshold number of points x with t being
the closest threshold value less than x, to ”round” the segment we set the type of exactly x− t points to
indicate they should be dropped from the segment. When two tour segments each covering a threshold
number of points are concatenated, the new segment may have to be ”rounded” again as the sum of two
thresholds do not necessarily add to another threshold. The DP works bottom-up in the dissection tree

3

and may have to ”round” tour segments at each level of the tree. It will mark the points that need to
be dropped at level ℓ by setting their type to ℓ. Points with a type in [0, ℓmax] are dropped from the
final tours.

Definition 2.2. (Thresholds, Types, and Rounded Segments)

• Let τ = log(1+ǫ/ logn)(k/ǫ). We define a sequence of τ + 1 thresholds : t0 = 1, t1 = 1/ǫ, . . . ,

ti = 1/ǫ(1 + ǫ/ logn)i−1, . . . , tτ = k.

• Assume that each point has a type which is an integer in [−1, ℓmax]. We say that a point is active
at level ℓ if its type is strictly less than ℓ.

• Let π = (πi) be a set of tours. For any πi and any dissection square b at level ℓ, a segment is
a connected component of πi ∩ b. A segment is either rounded or unrounded, with the following
property: for each rounded segment s, there is a threshold ti such that s covers exactly ti active
points.

The DP builds tours are allowed to cover more than k points and thus in one sense the DP solves
a relaxed version of CVRP. To ensure that the additional cost of making the DP solution feasible small
compared to OPT, we only round tour segments inside a dissection square when there are many, at least
γ (defined below), segments entering the square in which case the cost of going from the depot to the
dropped points in the square can be charged to OPT. If there are only a few, less than γ per threshold,
tour segments entering the square, we can afford to remember the exact number of points per segment.
The intuition behind the third part of definition 2.3 is to limit the number of points that are marked to
be dropped from each tour.

Definition 2.3. (Relaxed CVRP) A relaxed CVRP is a set of tours such that there exists an assignment
of types to the points with the following properties:

1. Each tour covers the depot, at most k points of type −1, and possibly some points of type > −1.
The union of the tours covers all n points.

2. Let γ = log9 n/ǫ4. In any dissection square b for each threshold value ti (i ≤ τ − 1) there are at
most γ unrounded segments covering between [ti, ti+1) points. The number of rounded segments in
b covering exactly ti points that are active at level(b) is an integer multiple of γ.

3. Let b be a dissection square and let s be a tour segment in b, which has t points that are active at
level(b). Then segment s has at most t(1 + ǫ/ logn) active points at level(b) + 1.

We apply the concept of being light to each tour of the solution individually rather than to the
solution as a whole.

Definition 2.4. Let D be a dissection and let S be a CVRP solution consisting of tours (πi). S is called
i-light if each tour πi is light.

We extend the objective function to include a penalty for tour crossings:

Definition 2.5. (Extended Objective Function) Let π = (πi) be a set of tours. For every level ℓ let
c(πi, ℓ) be the number of times tour πi crosses the boundary of level ℓ squares, and dℓ = L/2ℓ be the
length of a level ℓ square in the dissection. The extended objective function is:

F (π) =
∑

i

length(πi) +
ǫ

log2 n

∑

levelℓ

∑

i

c(πi, ℓ) · dℓ, (2)

Theorem 2.2. (Structure Theorem) In expectation over the shifts of the random dissection, the i-light
and relaxed CVRP solution which minimizes the extended objective function F given in equation 2 has
length (1 +O(ǫ))OPT.

We prove Theorem 2.2 in section 4. Let OPTDP denote the relaxed and i-light CVRP solution that
minimizes the extended objective function F given in equation 2. We present a DP to compute OPTDP

in section 3.

4

2.3 A constant factor approximation [11]

For a solution of the red points we use the constant factor approximation of Haimovich and Rinnooy
Kan which partitions a traveling salesman tour of the points into tours that cover at most k points [11].
Algorithm 2 below is a version of the Algorithm presented by [11] and it is known to be a 3-approximation.

Algorithm 2 TSP Partitioning 3-approximation [11]

Input: n points and the depot in R2 and an integer k.

1: Let π denote a tour of input points and the depot obtained using a 2-approximation of TSP.
2: Choose a point p uniformly at random from π.
3: Go around π starting at p, and every time k points are visited, take a detour to the depot.

Output the resulting set of ⌊n/k⌋+ 1 tours as the CVRP solution.

Theorem 2.3. [11, 4] Let I denote the set of input points, o the depot, and d(i, o) denote the distance
of point i from the depot. Define Rad(I) = 2/k

∑

i∈I d(i, o) and let TSP (I ∪ {o}) denote the length of
the minimal tour of I and o. We have that:

• Rad(I) ≤ OPT,

• TSP (I ∪ {o}) ≤ OPT and

• in expectation Algorithm 2’s solution has length Rad(I) + 2TSP (I ∪ {o}) ≤ 3OPT.

2.4 Assigning Types

The 3-approximation on the red points has small length if the Rad and TSP of the red points have
small value. To ensure this is the case, when selecting y points to drop from segment S, we choose y
such that length(y) ≤ O(ǫ)length(S), and such that average distance of points in y to the depot is only
a O(ǫ) fraction of the average distance of points on segment S to the depot. Section 5 shows that both
conditions hold if y is chosen as follows:

Algorithm 3 Randomized Type Assignment Procedure

Input: A tour segment S from a level ℓ square b containing Sa active points and requiring y active points
to be dropped

1: Select one active point p uniformly at random from Sa

2: Starting at point p, select the next y−1 points from Sa that lie consecutively after p on the segment S;
if the last active point on the segment before b’s boundary is reached without having selected y points,
wrap around and select active points from the other end of the tour segment (after S enters b)

3: Label each of the y chosen points with type ℓ.

2.5 Proof of Theorem 1.1

Lemma 2.4 proves the correctness and running time of a DP that computes OPTDP . See section 3 for
its proof.

Lemma 2.4. (Dynamic Program) Given the set of input points and a randomly shifted dissection, the
dynamic program of Section 3 finds an i-light and relaxed CVRP solution that minimizes the objective

F defined in Equation (2) in time nlogO(1/ǫ) n.

The length of the solution output by Algorithm 1 will be the sum of the lengths of the black tours
and red tours. Since the black tours are obtained by dropping points from the DP solution they have
length at most OPTDP , which by Theorem 2.2 is at most (1+O(ǫ))OPT. Theorem 2.5, which is proved
in section 5, shows that the length of the red tours is O(ǫ)OPT.

5

Theorem 2.5. In expectation over the random shifts of the dissection and the random type assignment
the length of the red tours output by Algorithm 1 is O(ǫ)OPT.

Thus the solution output by Algorithm 1 has total length (1 + O(ǫ))OPT. The DP dominates the
running time. The derandomization of the Algorithm is discussed in section 6.

3 The Dynamic program

This section presents the quasi-polynomial time dynamic program and proves Lemma 2.4. The dynamic
program (DP) finds OPTDP , the relaxed and i-light solution that minimizes the extended objective from
Equation (2).

The DP table. A configuration C of a dissection square b is a list of entries: for each pair of portals
p, q, the configuration has two sublists of entries, one to record information about rounded tour segments
and one to record information about unrounded tour segments:

1. first sublist: (rp,q1 , . . . , rp,qi , . . . rp,qτ), where rp,qi is the number of rounded tour segments that use
portals p and q and cover exactly ti active points

2. second sublist: (up,q
1 , . . . , up,q

j , . . . , up,q
γ·τ), where up,q

j is the number of active points covered by the
j-th unrounded tour segment that uses portals p and q

The DP has a table entry Lb[C] for each dissection square b and each configuration C of b. The table
cell Lb[C] stores the minimum cost (according to objective F as defined in Equation 2) of placing tour
segments in b in a way which is compatible with C and with the relaxed and i-light Definitions 2.3 and
2.4. OPTDP is the minimum table entry over all configurations of the root level square.

Computing the table entries. The table entries are computed in bottom-up order, in the following
manner.

Inductively, let b be a square at level ℓ and let b1, b2, b3, b4 be the children of b at level ℓ + 1. Since
every tour is i-light, a tour segment inside b crosses the boundaries inside b between b1, b2, b3, b4 at most
4r times, and always through portals. Thus the segment is the concatenation of at most 4r + 1 pieces,
where a piece goes from some portal mi to some portal mi+1 in one of the children of b. By the relaxed
definition applied to level ℓ + 1, each piece is either rounded or one of the γτ unrounded tours inside a
child of b. Thus every piece can be described by a tuple (p, q, x), where p, q are portals and x is either one
of the rounded threshold values ti for some i < τ or a number j ≤ τγ indicating it is the j-th unrounded
tour in a child square of b. The profile Φ = (p,m1, n2), (m1,m2, n1), . . . (mv, p

′, nv)(f) of the segment is
the list of those 4r+1 tuples (representing tour segment pieces), plus a flag f which is true iff the segment
is rounded. Consider a profile Φ of b with flag f = 1. Suppose that the concatenation of the pieces
described by Φ contains x active points. Let ti be the threshold value defined by: ti ≤ x < ti(1+ǫ/ logn).
Then the DP counts this segment as having ti active points.

Let D denote the number of possible profiles for a segment in square b. For each profile Φ, let nΦ

denote the number of tour segments in b with profile Φ. An interface vector I = (nΦ)Φ is a list of D
entries. Intuitively the vector I, provides the interface between how tour segments in b are formed by
concatenating the segments of b’s children.

Let C0 be a configuration for square b. The calculation of Lb(C0) is done in a brute force manner by
iterating through all possible values of the interface vector I and all possible combinations of configu-
rations in b’s children, C1, C2, C3, C4. A combination C0, I, C1, C2, C3, C4 is consistent if I describes at
most γ · τ unrounded segment and if gluing C1, C2, C3, C4 according to I yields configuration C0.

The cost of a consistent combination is computed in the following way: The cost of configurations
C1, . . . C4 is stored in lookup tables Lbi(Ci), 1 ≤ i ≤ 4. Let cb denote the total number of tour segments
in b as specified by I (also specified by C0). The value of objective function F , as defined by equation
2 of (C1, C2, C3, C4, I) is the sum of the costs of Ci for child square bi, plus (ǫ/ log

2 n)2cb(I). The value
of Lb(C0) is given by the tuple (C1, C2, C3, C4, I) consistent with C0 with minimum cost.

Analysis of the dynamic program. How many possible configurations are there for a square b?
There are O(log2 n) different pairs of portals (p, q); for each (p, q), there are τ entries rp,qi in the first
sublist and τγ entries up,q

j in the second sublist. Thus a configuration of b is a list of O(τγ log2 n)

6

entries. Each entry (the number of segments rp,qi or number of points up,q
j) is an integer between 0 and

n, thus the total number of configurations for square b is nO(τγ log2 n) = nO(log12 n). As there are O(n2)

dissection squares, the DP table has size nO(log12 n) overall.
How many possible profiles are there for a segment in square b? Φ has a list of O(r) tuples (p, p′, x).

There are O(log2 n) choices of portals p, p′ and O(τγ) choices of x, so there are O(τγ log2 n) possibilities
for each tuple. The flag doubles the number of profiles so there are D = (log12 n)O(r) possible profiles.

As r = O(1/ǫ), D = logO(1/ǫ) n.
How many possible interfaces are there for a square b? At most nD, since each nΦ is in [0, n]. This

means we have only a quasi-polynomial number of possibilities for the interface vector I for square b.
Checking for consistency takes time polynomial in the size of the list of entries in I and Ci.

There are nlogO(1) n possible values for each Ci and nlogO(1/ǫ) n possible values for I. Thus in total it

takes time polynomial in nlogO(1/ǫ) n to run through all combinations of I, C1, C2, C3, C4 and to compute
the lookup table entry at Lb[C0].

Remark. The DP verifies the existence of a type-assignment satisfying definition 2.3 but does not
actually label points with a specific type. It merely records the number of active points that tour
segments it constructs should have. Once the cost of OPTDP solution is found, we can trace through
DP solution’s history, and find a valid type assignment by looking at the decisions made by the DP. In
fact the type assignment can be done during the same time that the tours of OPTDP are constructed.
For example while constructing OPTDP , if we build a tour segment with x active points at level ℓ but
the DP’s history recorded the segment as having t active points, we can choose any x− t active points
from the segment and label them with type ℓ. 1

4 Proof of Structure Theorem

Let OPTL denote the i-light solution of minimum length. In Lemma 4.2 we show that F (OPTDP) ≤
(1 + O(ǫ))OPTL, where F is defined in equation 2. As OPTDP is at most F (OPTDP), we get that
OPTDP ≤ (1 + O(ǫ))OPTL. Then we apply Corollary 4.1, given below, to show that OPTDP ≤
(1 + O(ǫ)OPT) and prove our structure Theorem. Corollary 4.1 is a simple generalization of Arora’s
structure Theorem that shows that OPTL is near optimal.

Corollary 4.1. (Generalization of Arora) In expectation over the random shifts of the dissection,
E[OPTL] ≤ (1 + O(ǫ))OPT

Proof. Let OPTL consist of a set of tour π = π1, . . . πm. Apply Arora’s structure Theorem 2.1 to each
tour, sum, and use linearity of expectation.

Lemma 4.2. In expectation over the random shifted dissection, F (OPTDP) ≤ (1 +O(ǫ))OPTL.

Proof. To start comparing OPTDP and OPTL, we apply Lemma 4.3 to turn OPTL into a solution that
satisfies the relaxed definition 2.3. See appendix B for proof of Lemma 4.3

Lemma 4.3. Let S be a CVRP solution on input I. There exists an assignment of types to points, that
turns S into a solution that satisfies definition 2.3. The tours of S are not modified and the length of S
remains unchanged.

Now OPTDP and OPTL are both i-light and relaxed solutions. As OPTDP also minimizes objective
function F , we have

F (OPTDP) ≤ F (OPTL) = OPTL + (ǫ/ log2 n)
∑

level ℓ

c(πL, ℓ)dℓ

1Labelling any active points on the segment with type l will satisfy the relaxed CVRP definition. But we use the randomized

type assignment procedure 3 to ensure that a solution on these points will have small cost.

7

where πL are the tours of OPTL. Now we only need to show that the last term summing the number of
crossings in OPTL is O(ǫ)OPTL in expectation. Lemma 4.5 allows us to bound the number of crossings
in OPTL in terms of the number of crossings in OPT, and Lemma 4.4 allows us to charge each crossing
to the length of OPT. See appendix C for the proofs.

Lemma 4.4. In expectation over the random dissection, for any level ℓ OPT ≥ O(dℓ)E[(c(π, ℓ)].

Lemma 4.5. For a random dissection at any level ℓ, E[c(πL, ℓ)] ≤ O(log n)E[c(π, ℓ)].

Applying Lemma 4.5 we get,

(ǫ/ log2 n)
∑

level ℓ

E[c(πL, ℓ)] · dℓ ≤ (ǫ/ log2 n)
∑

level ℓ

O(log n · dℓ)E[c(π, ℓ)] (3)

By Lemma 4.4, E[c(π, ℓ)]O(dℓ) is at most OPT and as ℓmax = O(log n), Equation 3 is O(ǫ)OPT.
This proves the Lemma as OPT ≤ OPTL.

5 Proof of Theorem 2.5

Let R denote set of the points marked red by Algorithm 1. By Theorem 2.3, the 3-approximation on R
has cost at most Rad(R) + TSP(R ∪ {o}), where o is the depot. Lemmas 5.1 and 5.2 proves Theorem
2.5 by showing that in expectation both quantities are O(ǫ)OPT.

Lemma 5.1. In expectation over the random type assignment, Rad(R) = O(ǫ)OPT

Lemma 5.2. In expectation over the random dissection and type assignment TSP(R∪{o}) = O(ǫ)OPT

5.1 Properties of the randomized type assignment procedure

We state some properties that will be useful in proving the Lemmas 5.1,5.2. See appendix D for the
proofs.

Let b be a level ℓ square containing points labelled type ℓ by Algorithm 1 and S be a a rounded
tour segment inside b. Let Rs = r1, r2, . . . rd be the interval of points labelled type ℓ on S (|Rs| may be
zero) and Sa = s1, s2, . . . sx be the active points on S prior to rounding segment S. We now list some
Properties of the rounded segment S.

Property 5.3. |Rs| ≤ |Sa| · O(ǫ/ logn)

Property 5.4. A point s ∈ Sa is in Rs with probability |Rs|/|Sa|.
Property 5.5. E[length(Rs)] ≤ length(Sa) · O(ǫ/logn)

5.2 Proof of Lemma 5.1

Proof. Recall that, Rad(R) = 2/k
∑

x∈R d(x, o), where d(x, o) is the distance of point x from the depot.
By Theorem 2.3 Rad(I) ≤ OPT, so it is sufficient to show that Rad(R) ≤ O(ǫ)Rad(I). Fix any
level ℓ of the dissection and let Rℓ be the set of points which were assigned type ℓ. We show that in
expectation Rad(Rℓ) ≤ O(ǫ/ logn)Rad(I). The claim follows by linearity of expectation (over all levels)
since Rad(R) =

∑

level l Rad(Rℓ).

Partition Rℓ according to the tour segment it is from: R1
ℓ ⊂ S1, R

2
ℓ ⊂ S2, . . . R

m
ℓ ⊂ Sm where Rj

ℓ is
the set of red points from tour segment Sj. By definition we have that

Rad(I) ≥ 2

k

m
∑

j=1

∑

x∈Sj

d(o, x) (4)

As Rℓ is picked randomly, and by Properties 5.4 and 5.3, Pr[x ∈ Rj
ℓ] ≤ O(ǫ/ logn), so we get

E[Rad(Rℓ)] =
2

k

m
∑

j=1

∑

x∈Sj

d(o, x) Pr[x ∈ Rj
ℓ] ≤

2

k

m
∑

j

∑

x∈Sj

d(o, x) · O(ǫ/ logn)

8

Combining this with equation 4 we get that E[Rad(Rℓ)] ≤ O(ǫ/ logn)Rad(I).

5.3 Proof of Lemma 5.2

Proof. Let Rℓ be the points labeled type ℓ at level ℓ. We show that E[TSP(Rℓ∪{o})] ≤ O(ǫ/ log n)OPT.
This implies Lemma 5.2 since the tours of {Rℓ∪{o}} from all levels can be pasted together at the depot
to yield a tour of (R ∪ {o}).

Let Bℓ be the squares at level ℓ containing points of Rℓ. We consider the cost of TSP(Rℓ ∪ {o}) in
two parts: the outside and inside costs, where intuitively the outside cost will be the cost to get to the
squares Bℓ from the depot and the inside cost will be the cost of visiting the red points inside the square.
focusing on the outside cost, let C be a set of points containing at least one portal from each square of
Bℓ such that MST (C ∪ {o}) is minimized2. The optimal tour of Rℓ ∪ {O} is at most 2MST (C ∪ {o}),
thus

TSP (Rℓ ∪ {o}) ≤ 2MST (C ∪ {o}) +
∑

b∈Bℓ

inside cost of b (5)

Claims 5.6 and 5.7 prove that the quantities on the right hand side of equation 5 are bothO(ǫ/ logn)OPT,
proving that TSP (Rℓ ∪ {o}) ≤ O(ǫ/ logn).

Claim 5.6. In expectation over the random shifted dissection, E[2MST (C ∪ {o})] ≤ O(ǫ/ logn)OPT.

Proof. We will show that, MST (C ∪ {o}) ≤ O(ǫ/ logn)OPTDP . The claim follows, as OPTDP ≤
(1 +O(ǫ)OPT, by the structure Theorem 2.2.

Consider the fully connected graph G with one vertex for each point in C and one more for the
depot. Define the weight of an edge of G to be the distance between the two vertices connected by that
edge. Consider the following linear program, A with value v on G.

v = min
x

(we · xe) s.t.

{ ∑

e∈δ(S) xe ≥ γ/4r ∀S ⊂ V

xe ≥ 0

As each b ∈ Bℓ contains some points labelled ℓ (i.e at least a group of rounded segments), OPTDP

contains are least γ tour segments crossing into b. Since each tour in OPTDP is i-light, there are at least
γ/4r tours entering b. Thus OPTDP has at least γ/4r edges crossing any cut separating the depot from
a point in C. As v is the minimum cost way to have at least γ/4r edges cross all such cuts, OPTDP ≥ v.

Now consider the linear program A′ below. A′ is the relaxation of the IP for MST. Let v′ be the
value of A′ on graph G.

v′ = min
x

(we · xe) s.t.

{ ∑

e∈δ(S) xe ≥ 1 ∀S ⊂ V

xe ≥ 0

Observe that for any solution x of A, x′ = x · 4r/γ is a solution for A′. As A and A′ have the same
objective, v · 4r/γ = v′. The MST relaxation A′ is known to have integrality gap at most 2 [17], so that
v′ ≥ 2 MST (C ∪ {o}). Thus we have that

OPTDP ≥ v = v′ · (γ/4r) ≥ MST (C ∪ {o}) · (γ/2r)

Thus (2r/γ) ·OPTDP ≥ MST (C ∪ {o}) and as 2r/γ = o(ǫ/ logn), the Claim is proved.

Claim 5.7. In expectation over the random dissection and the random type assignment the total inside
cost at level ℓ is at most O(ǫ/ logn)OPT.

2
C is used only for the analysis and does not need to be found explicitly

9

Proof. The inside cost at level ℓ is the sum of the inside costs of each square b ∈ Bℓ. The contribution of
square b ∈ Bℓ to the inside cost, is the sum the length of the intervals of type ℓ points inside b plus the
cost of connecting these intervals to the boundary of b. In Claim 5.8 we show that, in expectation over
the random type assignment, the sum over all squares in Bℓ of the length of intervals of type ℓ points
is O(ǫ/ logn)OPTDP . The type ℓ intervals inside each b ∈ Bℓ must be connected to each other and to
the boundary of their square. We refer to CC(ℓ) as the total the connection cost at level ℓ. CC(ℓ) is
the sum of the length of the boundaries of each square b ∈ Bℓ plus the cost of connecting the type ℓ
intervals inside each b ∈ Bℓ to the boundary of b. Claim 5.9 shows that CC(ℓ) = O(ǫ/ logn)F (OPTDP).
By Lemma 4.2 and Corollary 4.1 F (OPTDP) ≤ (1 +O(ǫ))OPT in expectation, proving this Claim.

Claim 5.8. In expectation over the random type assignment the length of all intervals of type ℓ is
O(ǫ/ logn)OPTDP .

Proof. Sum the lengths of intervals of type ℓ over all squares in Bℓ squares, use Property 5.5 and linearity.
See appendix D for a detailed proof.

Claim 5.9. The total connection cost for level ℓ is O(ǫ/ logn)F (OPTDP).

Proof. Let CC(ℓ) denote the total connection cost which is the cost of connecting the type ℓ intervals
inside each b ∈ Bℓ to the boundary of the square. Focus on one square b ∈ Bℓ. As OPTDP is relaxed, b
has gb · γ rounded segments for some integer gb > 0. Consider a group of γ rounded segments. Let R′

be a set containing one type ℓ point from each of the γ segments in the group. The cost to connect all
red intervals in the group with the boundary of the square is at most MST (R′) + 5 · dℓ, where dℓ is the
side length of square b. We bound this using the following bound for TSP [11][4]. (See [11] for a proof).

Theorem 5.10. Let U be a set of points in 2d-Euclidean space. Let dmax be the max distance between
any two points of U . Then TSP (U) = O(dmax

√

|U |)
In our context, dmax = dℓ, and U = R′. Since |R′| = γ, |U | = γ. By Theorem 5.10 we have that

MST (R′) + 5 · dℓ = O(dℓ ·
√
γ). This holds for each of the gb groups of rounded segments inside b thus

we have that the total connection cost for b is O(gb · dℓ ·
√
γ).

Let gℓ =
∑

b∈Bℓ
gb, be the total number of groups of rounded segments at level ℓ. The total connection

cost for level ℓ is the sum of the connection costs over all squares b ∈ Bℓ,

CC(ℓ) = O(gℓ · dℓ ·
√
γ) (6)

Each of the gℓ · γ rounded tour segments intersects twice with the boundary of a level ℓ dissection
square, thus: c(πDP , ℓ) ≥ 2gℓγ, with πDP being the tours of OPTDP . Using equation 6,

O (dℓ/
√
γ) · c(πDP , ℓ) ≥ CC(ℓ) (7)

For objective function F , (defined in 2), we have (log2 n/ǫ) · F (OPTDP) ≥ c(πDP , ℓ)dℓ. Substituting it
for c(πDP , ℓ)dℓ in equation 7 we get, O(1/

√
γ)(log2 n/ǫ) · F (OPTDP) ≥ CC(ℓ). As γ = log9 n/ǫ4 this

reduces to O(ǫ/logn) · F (OPTDP) ≥ CC(ℓ), which proves this Claim.

6 Derandomization

Arora’s dissection can be derandomized by trying all choices for the shifts a and b. More efficient
derandomizations are given in Czumaj and Lingas and in Rao and Smith [7, 14]. As for the randomized
type assignment Algorithm 3, to guarantee that the cost of the dropped points is small, when selecting an
interval Y to drop from a segment S, we only need to pick Y such that (1) Rad(Y) ≤ O(ǫ/ logn)Rad(S)
and (2)length(Y) ≤ O(ǫ/ logn)length(S). In Lemma 5.1 and Property 5.5 we prove that these two
conditions hold at the same time, in expectation when Y is chosen by first selecting a point uniformly
from S and then selecting the next |Y | − 1 consecutive points. To derandomize we can test the at most
|S| intervals of length |Y | in S, (each starting from a different point in S), and select any interval that
satisfies these two conditions.

10

References

[1] S. Arora. Polynomial-time approximation schemes for Euclidean TSP and other geometric
problems. JACM, 45(5):753-782, 1998.

[2] S. Arora. Approximation schemes for NP-hard geometric optimization problems: A survey.
Mathematical Programming, 97 (1,2) July 2003.

[3] S. Arora and G. Karakostas. Approximation schemes for minimum latency problems. Pro-
ceedings of the thirty-first annual ACM symposium on Theory of computing. pages 688–693.
1999.

[4] T. Asano, N. Kathoh, H. Tamaki, T. Tokuyama. Covering Points in the plane by CVRP:
towards a polynomial time approximation scheme for general k. STOC 1997.

[5] T. Asano, N. Katoh, H. Tamaki, and T. Tokuyama. Covering points in the plane by ktours:
a polynomial approximation scheme for fixed k. IBM Tokyo Research Laboratory Research
Report RT0162, 1996.

[6] G. Borradaile, P. Klein, and C. Mathieu. A polynomial time approximation scheme for Eu-
clidean Steiner forest. Proceedings of the forty-ninth annual IEEE Symposium on Foundations
of Computer Science. 2008.

[7] A. Czumaj and A. Lingas. A polynomial time approximation scheme for Euclidean minimum
cost k-connectivity. Proceedings of 25th Annual International Cololoquium on Automata,
Languages and Programming, LNCS, Springer Verlag 1998.

[8] Dantzig, G.B.; Ramser, J.H. ”The Truck Dispatching Problem”. Management Science 6 (1):
80-91. (1959).

[9] M.L. Fischer. Vehicle Routing. in Network Routing, Handbooks in Operations Research and
Management Science, 8, Ball, M. O., T. L. Magnanti, C. L. Monma and G. L. Nemhauser
(Eds.), Elsevier Science, Amsterdam, 1-33, 1995.

[10] Golden, Bruce; Raghavan, S.; Wasil, Edward (Eds.) The Vehicle Routing Problem: Latest
Advances and New Challenges. Operations Research/Computer Science Interfaces Series ,
Vol. 43 2008.

[11] M. Haimovich and A.H.G Rinnooy Kan. Bounds and heuristic for capacitated routing prob-
lems. Mathematics of Operations Research, 10(4), 527-542, 1985.

[12] S. Kolliopoulos and S. Rao. A nearly linear-time approximation scheme for the Euclidean
k-media problem. SIAM J. Comput., 37(3):757782, 2007.

[13] J. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-
time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Com-
put., 28(4):12981309, 1999.

[14] S. Rao and W. Smith. Approximating geometrical graphs via ”spanners” and ”banyans”. In
30th STOC, pages 540-550, 1998.

[15] J. Remy and A. Steger. A quasi-polynomial time approximation scheme for minimum weight
triangulation. Proceedings of the 38th ACM Symposium on Theory of Computing, pages 316–
325. 2006.

[16] Paolo Toth , Daniele Vigo. The vehicle routing problem. Society for Industrial and Applied
Mathematics. Philadelphia, PA, 2001.

[17] Approximation Algorithms. Vijay Vazarani. chapter 20.

[18] http://neo.lcc.uma.es/radi-aeb/WebVRP/

[19] http://en.wikipedia.org/wiki/Vehicle routing problem

11

http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://en.wikipedia.org/wiki/Vehicle_routing_problem

A Technical Tools

The Perturbation Define a bounding square as the smallest square whose side length L is a power
of 2 that contains all input points and the depot. Let d denote the maximum distance between any two
input points. Place a grid of granularity dǫ/n inside the bounding square. Move every input point to
the center of the grid square it lies in. Several points may map to the same grid square center and we
will treat these as multiple points which are located at the same location. Finally scale distances by
4n/(ǫd) so that all coordinates become integral and the minimum non-zero distance is least 4.

A solution for the perturbed instance can be extended to a solution for the original instance by taking
detours from the grid centers to the locations of the points. The cost of such detours will be at most
n ·

√
2dǫ/n. As the two farthest points must be visited from the depot we have that 2d ≤ OPT. Thus

the total cost of the detours is ≤ ǫOPT and is negligible compared to OPT. Note also that scaling does
not change the structure of the optimal solution. After scaling the maximum distance between points
is 4n/ǫ which is O(n) for constant ǫ.

Randomized Dissection A dissection of the bounding square is obtained by recursively partition-
ing a square into 4 smaller squares of equal size using one horizontal and one vertical dissection line.
The recursion stops when the smallest squares have size 1× 1. The bounding square has level 0, the 4
squares created by the first dissection have level 1, and since L = O(n) the level of the 1× 1 squares will
be ℓmax = O(log n). The horizontal and vertical dissection lines are also assigned levels. The boundary
of the bounding square has level 0, the 2i−1 horizontal and 2i−1 vertical lines that form level i squares
by partitioning the level i−1 squares are each assigned level i. A randomized dissection of the bounding
square is obtained by randomly choosing integers a, b ∈ [0, L), and shifting the x coordinates of all hor-
izontal dissection lines by a and all vertical dissection lines by b and reducing modulo L. For example
the level 0 horizontal line is moved from L/2 to a+L/2 mod L and the level 0 vertical line is moved to
b + L/2 mod L. The dissection is ”wrapped around” and wrapped around squares are treated as one
region. The probability that a line l becomes a level ℓ dissection line in the randomized dissection is

Pr(level(l) = ℓ) = 2ℓ/L (8)

B Relaxed CVRP

Proof. (Proof of Lemma 4.3) We give an type assignment procedure which initially assigns all points
to type −1 and never sets any point to a type below −1. As S is a valid CVRP solution all tours in
S contain at most k points of type −1 satisfying the first condition of definition 2.3. The procedure
works in a bottom up fashion in the dissection tree from level ℓmax to level 0. At the current level ℓ
consider each dissection square one at a time. For any threshold value ti for i ≤ τ while square b has
at least γ unrounded tour segments, select exactly γ such segments and perform a group-rounding as
follows: Examine each of the γ segments one at a time. If the unrounded tour segment has x active
points with ti < x < ti+1, pick any x − ti of these active points and label them as type ℓ. Perform
as many group-rounding steps as necessary until square b has at most γ ∗ τ unrounded tours. Proceed
similarly to the other squares at level ℓ.

The type assignment procedure does not change the construction of any of the tour in S thus the
cost of S is unchanged. Now we show that definition 2.3 is satisfied. While working at a level ℓ, the
procedure performs group-rounding on each square at level ℓ until the square has at most γ∗τ unrounded
segments. As the group-rounding rounds exactly γ segments together there will always be an integer
multiple of γ rounded segments in each square. Condition (ii) continues to hold while the procedure
works on levels j < ℓ as in those levels the procedure only labels points with type j < ℓ so the number
of active points at level ℓ remains the same. As for the third condition of definition 2.3, note that before
rounding a segment at level ℓ, all points on the segment have type −1 or a type greater than ℓ. Thus
prior to rounding the segment will have x active points at level ℓ and at level ℓ + 1. Let ti ≤ x ≤ ti+1.
To round the segment at ℓ, label x − ti points with type ℓ. This still leaves ti active points at level ℓ
and x active points at level l + 1. As ti(1 + ǫ/ logn) = ti+1 > x, the third condition of definition 2.3 is
satisfied.

12

C Extensions of Arora’s Results to CVRP

Let t(πj , l) denote the number of times a tour πj crosses dissection line l. Arora proved that the
length(πj) ≥ 1

2

∑

line l t(πj , l) [1]. For CVRP as
∑

j πj = OPT, this implies

OPT ≥ 1/2
∑

line l

t(π, l) (9)

With probability 2ℓ+1/L a dissection line l forms the boundary for some level ℓ square 3. For any
level ℓ as E(c(π, ℓ)) =

∑

line l t(π, l) · Pr[l forms a boundary a level ℓ square], we have

E(c(π, ℓ)) =
2ℓ+2

L

∑

line l

t(π, l) (10)

Proof. (Proof of Lemma 4.4) Combine equations 9 and 10 to get E(c(π, ℓ)) ≤ 2ℓ+3

L OPT. The Lemma
follows from the fact that a level ℓ square has side length dℓ = L/2ℓ.

Let π denote the tours of OPT and πL the tours of OPTL. Arora gives a procedure to modify π into
the light tours πL [1]. But the procedure may create new crossings in πL with dissection squares not
present in π. The next claim bounds the number of these new crossings.

Proof. (Proof of Lemma 4.5) To modify π into πL Arora’s procedure does bottom up patching to ensure
that each tour crosses the edges of dissection squares at most O(r) times. The second step is to take
detours (along the sides of squares) to make the tours portal respecting. Both steps, patching and
detouring, can add new crossings to πL which are not present in π. A patching on edge e of square b
adds at most 6 new crossings to each child square inside b with edge e as a boundary and each detour
adds at at most 2 new crossings to each such child square.

As Arora’s procedure works bottom up the patching and detours taken at all levels j > ℓ can add
crossings in πL with level ℓ squares. As there are 2ℓ−j level ℓ squares along the edge of a level j square,
a patching step on the edge of a level j square adds at most 6 · 2ℓ−j new crossings at level ℓ and each
detour along these edges add at most 2 · 2ℓ−j−1 new crossings at level ℓ. Thus we have that,

E[c(πL, ℓ)] ≤ 6
∑

j≤ℓ

2ℓ−j(# patching at level j) + 2
∑

j≤ℓ

2ℓ−j(# detours at level j)

A patching step is performed only when a group of at least O(r) crossings are identified in π, thus an
upper bound on the number of expected patching at level j is E[c(π, j)]/O(r). Since each crossing at
level j can require a detour, we get,

E[c(πL, ℓ)] ≤ 6
∑

j≤ℓ

2ℓ−jE[c(π, j)]

O(r)
+ 2

∑

j≤ℓ

2ℓ−jE[c(π, j)]

Writing out the definitions of E[c(π, j)] using equation 10 we see that for all j ≤ ℓ, E[c(π, j)] =
E[c(π, ℓ)]/2ℓ−j. Substituting this into the above equation simplifies it to,

E[c(πL, ℓ)] ≤ 6
∑

j≤ℓ

E[c(π, ℓ)]

O(r)
+
∑

j≤ℓ

E[c(π, ℓ)]

As ℓ ≤ O(log n), we have that E[c(πL, ℓ)] ≤ O(log n)E[c(π, ℓ)](1 +O(1/r)). This proves the Lemma
as O(1/r) = O(ǫ) is a constant.

3The boundaries of level ℓ squares are formed by lines at levels ≤ ℓ

13

D Properties of the randomized type assignment procedure

Let b be a level ℓ square containing points labelled type ℓ by Algorithm 1 and S be a a rounded tour
segment inside b. Let Rs = r1, r2, . . . rd be the interval of points labelled type ℓ on S (|Rs| may be
zero) and Sa = s1, s2, . . . sx be the active points on S prior to rounding segment S. We now list some
Properties of the rounded segment S.

Proof. (Proof of Property 5.3) In the DP’s history, S has a profile Φ with a flag set to true as S is a
rounded segment. Suppose that after S is concatenated according to Φ it has x active points. Then
the DP counts S as a rounded segment having exactly ti active points for the unique threshold value ti
lying in the interval [x/(1 + ǫ/ logn), x]. To get exactly ti active points on S we would need to set at
most x− ti ≤ x(ǫ/ logn) active points to ℓ. Thus |Rs| ≤ xǫ/ logn while |Sa| = x.

Proof. (Proof of Property 5.4) Each point s ∈ Sa belongs to |Rs| intervals as each interval consists of
|Rs| consecutive points. There are a total of |Sa| different intervals, each starting at a different point in
Sa and Algorithm 3 picks uniformly among them.

Definition D.1. (Length of interval) Let b1, b2 be the points on the boundary of b where S enters and
exits b. Then S visits s1 after entering at b1 and it visits sx before exiting from b2 Let d(u, v) denote the

distance between points u and v. If Rs does not contain both s1 and sx then length(Rs) =
∑d

i d(si, si+1).

Otherwise let re = sx, then re+1 = s1 as Algorithm 3 wraps around and length(Rs) =
∑e−1

i=1 d(si, si+1)+

d(sx, b2) + d(b1, s1) +
∑d

i=e+1 d(ri, ri+1).

Proof. (Proof of Property 5.5) Let b1 and b2 be the points where S enters and exits square b. Define
zx = d(b1, s1) + d(sx, b2) and zi = d(si, si+1), for 1 ≤ i < x. Then the length of Sa is

∑x
i=1 zi and

E[length(Ra)] =

x
∑

i=1

zi Pr[zi is counted inside Rs]

For all i the probability that zi is counted is the probability that si and its consecutive point, si+1,
are both included in Rs. (The consecutive point of sx is s1). A point s ∈ Sa belongs to exactly |Rs|
intervals and the consecutive point of s appears in |Rs|−1 of these intervals. Thus the Pr[zi is counted] =
(|Rs| − 1)/(|Sa|). Applying Property 5.3,

E[length(Rs)] =

x
∑

i=1

zi
|Rs| − 1

|Sa|
= O

(

ǫ

logn

) x
∑

i=1

zi = O

(

ǫ

logn

)

length(Sa)

Proof. (Proof of Claim 5.8) Sum the lengths of intervals of type ℓ over all squares in Bℓ squares, use
Property 5.5 and linearity. Consider a square b ∈ Bℓ and the type ℓ points inside b, Rb . Partition the
points in Rb according to the segments of b they come from: r1 ⊂ s1, r2 ⊂ s2, . . . rm ⊂ sm such that
rj is the set of points labelled type ℓ from tour segment sj . By Property 5.5, in expectation over the
random type-assignment the length of rj is at most O(ǫ/ logn) times the length of sj . By linearity,
∑m

j E[length(rj)] ≤ O(ǫ/ logn)
∑m

j=1 length(sj). Let OPTDP
b denote the projection of OPTDP inside

square b. OPTDP
b ≥ ∑m

j=1 length(sj), and OPTDP is at least the sum of OPTDP
b over all squares b ∈ Bℓ.

This implies that the total length of red intervals at level ℓ is at most O(ǫ/ logn)OPTDP .

14

	Introduction
	The Algorithm
	Preprocessing arora
	The Structure Theorem
	A constant factor approximation hr85
	Assigning Types
	Proof of Theorem ??

	The Dynamic program
	Proof of Structure Theorem
	Proof of Theorem ??
	Properties of the randomized type assignment procedure
	Proof of Lemma ??
	Proof of Lemma ??

	Derandomization
	Technical Tools
	Relaxed CVRP
	Extensions of Arora's Results to CVRP
	Properties of the randomized type assignment procedure

