Skip to main content
Log in

PTAS for Densest \(k\)-Subgraph in Interval Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given an interval graph and integer \(k\), we consider the problem of finding a subgraph of size \(k\) with a maximum number of induced edges, called densest k -subgraph problem in interval graphs. This problem is NP-hard even for chordal graphs (Perl and Corneil in Discret Appl Math 9(1):27–39, 1984), and there is probably no PTAS for general graphs (Khot and Subhash in SIAM J Comput 36(4):1025–1071, 2006). However, the exact complexity status for interval graphs is a long-standing open problem (Perl and Corneil in Discret Appl Math 9(1):27–39, 1984), and the best known approximation result is a \( 3 \)-approximation algorithm (Liazi et al. in Inf Process Lett 108(1):29–32, 2008). We shed light on the approximation complexity of finding a densest \( k \)-subgraph in interval graphs by presenting a polynomial-time approximation scheme (PTAS), that is, we show that there is an \( (1+\epsilon ) \)-approximation algorithm for any \( \epsilon > 0 \), which is the first such approximation scheme for the densest \( k \)-subgraph problem in an important graph class without any further restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perl, Y., Corneil, D.G.: Clustering and domination in perfect graphs. Discret. Appl. Math. 9(1), 27–39 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Khot, Subhash: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J. Comput. 36(4), 1025–1071 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Liazi, Maria, Milis, Ioannis, Zissimopoulos, Vassilis: A constant approximation algorithm for the densest k-subgraph problem on chordal graphs. Inf. Process. Lett. 108(1), 29–32 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lawler, Eugene L.: Combinatorial Optimization—Networks and Matroids. Holt, Rinehart and Winston, New York (1976)

    MATH  Google Scholar 

  5. Kortsarz, G., Peleg, D.: On choosing a dense subgraph. In Proceedings of the 34th Annual Symposium on Foundations of Computer Science (FOCS’93), pp. 692–701 (1993)

  6. Feige, Uriel, Peleg, David, Kortsarz, Guy: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities: an \( {O}(n^{1/4}) \)-approximation for densest k-subgraph. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC’10), pp. 201–210 (2010)

  8. Asahiro, Yuichi, Iwama, Kazuo, Tamaki, Hisao, Tokuyama, Takeshi: Greedily finding a dense subgraph. J. Algorithms 34(2), 203–221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feige, Uriel, Langberg, Michael: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Arora, Sanjeev, Karger, David R., Karpinski, Marek: Polynomial time approximation schemes for dense instances of np-hard problems. J. Comput. Syst. Sci. 58(1), 193–210 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gröschel, M., Lovász, László, Schrijver, Alexander: Geometric Algorithms and Combinatorial Optimizatio. Springer, New York (1988)

    Book  Google Scholar 

  12. Golumbic, Martin Charles, Trenk, Ann N.: Tolerance Graphs. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  13. Liazi, Maria, Milis, Ioannis, Pascual, Fanny, Zissimopoulos, Vassilis: The densest k-subgraph problem on clique graphs. J. Comb. Optim. 14(4), 465–474 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, D.Z., Fleischer, R., Li, J.: Densest k-subgraph approximation on intersection graphs. In Proceedings of the 8th International Workshop on Approximation and Online Algorithms (WAOA’10), pp. 83–93 (2010)

  15. Backer, Jonathan, Mark Keil, J.: Constant factor approximation algorithms for the densest k-subgraph problem on proper interval graphs and bipartite permutation graphs. Inf. Process. Lett. 110(16), 635–638 (2010)

    Article  MATH  Google Scholar 

  16. Arora, Sanjeev: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22, 463–468 (1975)

  18. Watrigant, R., Bougeret, M., Giroudeau, R.: Approximating the sparsest k-subgraph in chordal graphs. In Proceedings of the 11th Workshop on Approximation and Online Algorithms (WAOA’13) (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Nonner.

Additional information

A preliminary version of this paper has appeared at WADS’11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nonner, T. PTAS for Densest \(k\)-Subgraph in Interval Graphs. Algorithmica 74, 528–539 (2016). https://doi.org/10.1007/s00453-014-9956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9956-7

Keywords

Navigation