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On group feedback vertex set parameterized by the size of thecutset

Marek Cygan∗ Marcin Pilipczuk† Michał Pilipczuk‡

Abstract

We study the parameterized complexity of a robust generalization of the classical FEEDBACK VER-
TEX SET problem, namely the GROUPFEEDBACK VERTEX SET problem; we are given a graphG with
edges labeled with group elements, and the goal is to computethe smallest set of vertices that hits all
cycles ofG that evaluate to a non-null element of the group. This problem generalizes not only FEED-
BACK VERTEX SET, but also SUBSET FEEDBACK VERTEX SET, MULTIWAY CUT and ODD CYCLE

TRANSVERSAL. Completing the results of Guillemot [Discr. Opt. 2011], weprovide a fixed-parameter
algorithm for the parameterization by the size of the cutsetonly. Our algorithm works even if the group
is given as a polynomial-time oracle.

1 Introduction

The parameterized complexity is an approach for tackling NP-hard problems by designing algorithms that
perform well, when the instance is in some sense simple; its difficulty is measured by an integer, called the
parameter, additionally appended to the input. Formally, we say that aproblem isfixed-parameter tractable
(FPT), if it admits an algorithm that given input of lengthn and parameterk, resolves the task in time
f(k)nc, wheref is some computable function andc is a constant independent of the parameter.

The search for fixed-parameter algorithms led to the development of a number of new techniques and
gave valuable insight into structures of many classes of NP-hard problems. Among them, there is a family
of so-calledgraph cutproblems, where the goal is to delete as few as possible edgesor vertices (depending
on the variant) in order to make a graph satisfy a global separation requirement. This class is perhaps best
represented by the classical FEEDBACK VERTEX SET problem (FVS) where, given an undirected graphG,
we seek for a minimum set of vertices that hits all cycles ofG. Another examples are MULTIWAY CUT

(MWC: separate each pair from a given set of terminals in a graph with a minimum cutset) or ODD CYCLE

TRANSVERSAL (OCT: make a graph bipartite by a minimum number of vertex deletions).
The research on the aforementioned problems had a great impact on the development of parameterized

complexity. The long line of research concerning parameterized algorithms for FVS contains [1, 2, 3, 4,
10, 11, 12, 14, 16, 20], leading to an algorithm working in3knO(1) time [7]. The search for a polynomial
kernel for FVS lead to surprising applications of deep combinatorial results such as the Gallai’s theorem
[23], which has also been found useful in designing FPT algorithms [9]. While investigating the graph cut
problems such as MWC, Márx [18] introduced theimportant separatortechnique, which turned out to be
very robust, and is now the key ingredient in parameterized algorithms for various problems such as variants
of FVS [5, 9] or ALMOST 2-SAT [21]. Moreover, the recent developments on MWC show applicability
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of linear programming in parameterized complexity, leading to the fastest currently known algorithms not
only for MWC, but also ALMOST 2-SAT and OCT [8, 19]. Last but not least, the research on the OCT
problem resulted in the introduction of iterative compression, a simple yet powerful technique for designing
parameterized algorithms [22].

Considered problem. In this paper we study a robust generalization of the FVS problem, namely GROUP

FEEDBACK VERTEX SET1. LetΣ be a finite (not necessarily abelian) group, with unit element 1Σ. We use
the multiplicative convention for denoting the group operation.

Definition 1. For a finite groupΣ, a directed graphG = (V,A) and a labeling functionΛ : A → Σ, we call
(G,Λ) aΣ-labeledgraph iff for each arc(u, v) ∈ A we have(v, u) ∈ A andΛ((u, v)) = Λ((v, u))−1.

We somehow abuse the notation and by(G \X,Λ) denote theΣ-labeled graph(G,Λ) with vertices of
X removed, even though formallyΛ has in its domain arcs that do not exist inG \X.

For a pathP = (v1, . . . , vℓ) we denoteΛ(P ) = Λ((v1, v2)) · . . . · Λ((vℓ−1, vℓ)). Similarly, for a cycle
C = (v1, . . . , vℓ, v1) we denoteΛ(C) = Λ((v1, v2)) · . . . · Λ((vℓ−1, vℓ)) · Λ((vℓ, v1)). We call a cycleC a
non-null cycle, iff Λ(C) 6= 1Σ. Observe that if the groupΣ is non-abelian, then it may happen that cyclic
shifts of the same cycle yield different elements of the group; nevertheless, the notion of a non-null cycle is
well-defined, as either all of them are equal to1Σ or none of them.

Lemma 2. Let (x1, . . . , xℓ, x1) be a cycle in aΣ-labeled graph(G,Λ). If Λ((x1, . . . , xℓ, x1)) 6= 1Σ, then
Λ((x2, . . . , xℓ, x1, x2)) 6= 1Σ.

Proof. Let g1 = Λ((x1, x2)) andg2 = Λ((x2, . . . , xℓ, x1)). We have thatg1 · g2 = 1Σ iff g2 · g1 = 1Σ and
the lemma follows.

In the GROUPFEEDBACK VERTEX SET problem we want to hit all non-null cycles in aΣ-labeled graph
using at mostk vertices.

GROUP FEEDBACK VERTEX SET (GFVS) Parameter: k
Input: A Σ-labeled graph(G,Λ) and an integerk.
Question: Does there exist a setX ⊆ V (G) of at mostk vertices, such that there is no non-null cycle in
(G \X,Λ)?

As observed in [13], for a graph excluding a non-null cycle wecan define a consistent labeling.

Definition 3. For aΣ-labeled graph(G,Λ) we call λ : V → Σ a consistent labelingiff for each arc
(u, v) = a ∈ A(G) we haveλ(v) = λ(u) · Λ(a).

Lemma 4 ([13]). AΣ-labeled graph(G,Λ) has a consistent labeling iff it does not contain a non-null cycle.

Note that when analyzing the complexity of the GFVS problem,it is important how the groupΣ is
represented. In [13] it is assumed thatΣ is given via its multiplication table as a part of the input. In this
paper we assume a more general model, where operations inΣ are computed by an oracle in polynomial
time. More precisely, we assume that the oracle can multiplytwo elements, return an inverse of an element,
provide the neutral element1Σ, or check whether two elements are equal.

As noted in [17], GFVS subsumes not only the classical FVS problem, but also OCT (withΣ = Z2)
and MWC (withΣ being an arbitrary group of size not smaller than the number of terminals). We note

1In this paper, we follow the notation of Guillemot [13].
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that if Σ is given in the oracle model, GROUP FEEDBACK VERTEX SET subsumes also EDGE SUBSET

FEEDBACK VERTEX SET, which is equivalent to SUBSET FEEDBACK VERTEX SET [9].

EDGE SUBSET FEEDBACK VERTEX SET (ESFVS) Parameter: k
Input: An undirected graphG, a setS ⊆ E(G) and an integerk.
Question: Does there exist a setX ⊆ V (G) of at mostk vertices, such that inG \X there are no cycles
with at least one edge fromS?

Lemma 5. Given anESFVSinstance(G,S, k), one can in polynomial time construct an equivalentGFVS

instance(G′,Λ, k) with groupΣ = Z
|S|
2 .

Proof. To construct the new GFVS instance, create the graphG′ by replacing each edge ofG with arcs in
both direction, keep the parameterk, takeΣ = Z

|S|
2 and construct aΣ-labelingΛ by setting any|S| linearly

independent values ofΛ((u, v)) for uv ∈ S andΛ((u, v)) = 1Σ for uv /∈ S. Clearly, this construction
can be done in polynomial time and the operations on the groupΣ can be performed by a polynomial-time
oracle.

We note that the GROUPFEEDBACK VERTEX SET problem was also studied from the graph theoretical
point of view, as, in addition to the aforementioned reductions, it also subsumes the setting of Mader’sS-
paths theorem [6, 15]. In particular, Kawarabayashi and Wollan proved the Erdös-Pósa property for non-null
cycles in highly connected graphs, generalizing a list of previous results [15].

The study of parameterized complexity of GFVS was initiatedby Guillemot [13], who presented a
fixed-parameter algorithm for GFVS parameterized by|Σ| + k running in time2 O∗(2O(k log |Σ|)). When
parameterized byk, Guillemot showed a fixed-parameter algorithm for the easier edge-deletion variant of
GFVS, running in timeO∗(2O(k log k)). Very recently, Kratsch and Wahlström presented a randomized
kernelization algorithm that reduces the size of a GFVS instance toO(k2|Σ|) [17].

The main purpose of studying the GFVS problem is to find the common points in the fixed-parameter
algorithms for problems it generalizes. Precisely this approach has been presented by Guillemot in [13],
where at the base of the algorithm lies a subroutine that solves a very general version of MULTIWAY CUT.
When reducing various graph cut problems to GFVS, usually the size of the group depends on the number
of distinguished vertices in the instance, as in Lemma 5. Hence, the usage of the generalO∗(2O(k log |Σ|))
algorithm of Guillemot unfortunately incorporates this parameter in the running time. It appears that by
a more refined combinatorial analysis, usually one can get rid of this dependence; this is the case both in
SUBSET FEEDBACK VERTEX SET [9] and in MULTIWAY CUT [8, 19]. This suggests that the phenomenon
can be, in fact, more general.

Our result and techniques. Our main result is a fixed-parameter algorithm for GFVS parameterized by
the size of the cutset only.

Theorem 6. GROUPFEEDBACK VERTEX SET can be solved inO∗(2O(k log k)) time and polynomial space.

Our algorithm uses a similar approach as described by Kratsch and Wahlström in [17]: in each step of
iterative compression, when we are given a solutionZ of sizek + 1, we guess the values of a consistent
labeling on the vertices ofZ, and reduce the problem to MULTIWAY CUT. However, by a straightforward
application of this approach we obtainO∗(2O(k log |Σ|)) time complexity. To reduce the dependency on|Σ|,

2TheO∗() notation suppresses terms polynomial in the input size.
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we carefully analyze the structure of a solution, provide a few reduction rules in a spirit of the ones used in
the recent algorithm for SUBSET FEEDBACK VERTEX SET [9] and, finally, for each vertex ofZ we reduce
the number of choices for a value of a consistent labeling to polynomial in k. Therefore, the number of
reasonable consistent labelings ofZ is bounded by2O(k log k) and we can afford solving a MULTIWAY CUT

instance for each such labeling.
Note that the bound on the running time of our algorithm matches the currently best known algorithm

for SUBSET FEEDBACK VERTEX SET [9]. Therefore, we obtain the same running time as in [9] by applying
a much more general framework.

In the GROUPFEEDBACK VERTEX SET problem definition in [13] a set of forbidden verticesF ⊆ V (G)
is additionally given as a part of the input. Observe that onecan easily gadget such vertices by replacing
each forbidden vertex by a clique of sizek + 1 labeled with1Σ; therefore, for the sake of simplicity we
assume that all the vertices are allowed.

2 Preliminaries

Notation. We use standard graph notation. For a graphG, by V (G) andE(G) we denote its vertex and
edge sets, respectively. In case of a directed graphG, we denote the arc set ofG by A(G). Forv ∈ V (G),
its neighborhoodNG(v) is defined asNG(v) = {u : uv ∈ E(G)}, andNG[v] = NG(v) ∪ {v} is the closed
neighborhood ofv. We extend this notation to subsets of vertices:NG[X] =

⋃

v∈X NG[v] andNG(X) =
NG[X] \ X. For a setX ⊆ V (G) by G[X] we denote the subgraph ofG induced byX. For a setX of
vertices or edges ofG, by G \X we denote the graph with the vertices or edges ofX removed; in case of
vertex removal, we remove also all the incident edges.

3 Algorithm

In this section we prove Theorem 6. We proceed with a standardapplication of the iterative compression
technique in Section 3.1. In each step of the iterative compression, we solve a COMPRESSIONGROUP

FEEDBACK VERTEX SET problem, where we are given a solutionZ of size a bit too large —k + 1 —
and we are to find a new solution disjoint with it. We first prepare the COMPRESSIONGROUP FEEDBACK

VERTEX SET instance byuntanglingit in Section 3.2, in the same manner as it is done in the kernelization
algorithm of [17]. The main step of the algorithm is done in Section 3.3, where we provide a set of reduction
rules that enable us for each vertexv ∈ Z to limit the number of choices for a value of a consistent labeling
on v to polynomial ink. Finally, we iterate over allO∗(2O(k log k)) remaining labelings ofZ and, for each
labeling, reduce the instance to MULTIWAY CUT (Section 3.4).

3.1 Iterative compression

The first step in the proof of Theorem 6 is a standard techniquein the design of parameterized algorithms,
that is, iterative compression, introduced by Reed et al. [22]. Iterative compassion was also the first step of
the parameterized algorithm for SUBSET FEEDBACK VERTEX SET [9].

We define acompression problem, where the input additionally contains a feasible solutionZ ⊆ V (G),
and we are asked whether there exists a solution of size at most k which is disjoint withZ.

4



COMPRESSIONGROUP FEEDBACK VERTEX SET (C-GFVS) Parameter: k + |Z|
Input: A Σ-labeled graph(G,Λ), an integerk and a setZ ⊆ V (G), such that(G \ Z,Λ) has no non-null
cycle.
Goal: Find a setX ⊆ V (G) \ Z of at mostk vertices, such that there is no non-null cycle in(G \X,Λ) or
return NO, if such a set does not exist.

In Section 3.2 we prove the following lemma providing a parameterized algorithm for COMPRESSION

GROUP FEEDBACK VERTEX SET.

Lemma 7. COMPRESSIONGROUPFEEDBACK VERTEX SET can be solved inO∗(2O(|Z|(log k+log |Z|)) ·2k)
time and polynomial space.

Armed with the aforementioned result, we can easily prove Theorem 6.

Proof of Theorem 6.In the iterative compression approach we start with an emptysolution for an empty
graph, and in each of then steps we add a single vertex both to a feasible solution and tothe graph; we use
Lemma 7 to compress the feasible solution after guessing which vertices of the solution of size at mostk+1
should not be removed.

Formally, for a given instance(G = (V,A),Λ, k) let V = {v1, . . . , vn}. For 0 ≤ i ≤ n define
Vi = {v1, . . . , vi} (in particularV0 = ∅) and letΛi be the functionΛ restricted to the set of arcsAi =
{(u, v) ∈ A : u, v ∈ Vi}. Initially we setX0 = ∅, which is a solution to the graph(G[V0],Λ0). For each
i = 1, . . . , n we setZi = Xi−1 ∪ {vi}, which is a feasible solution to(G[Vi],Λi) of size at mostk + 1. If
|Zi| ≤ k, then we setXi = Zi and continue the inductive process. Otherwise, if|Zi| = k + 1, we guess by
trying all possibilities, a subset of verticesZ ′

i
⊆ Zi that is not removed in a solution of sizek to (G[Vi],Λi)

and use Lemma 7 for the instanceIZ′
i
= (G[Vi \ (Zi \ Z ′

i
)],Λi, k

′ = |Z ′
i
| − 1, Z ′

i
). If for each setZ ′

i
the

algorithm from Lemma 7 returns NO, then there is no solution for (G[Vi],Λi) and, consequently, there is no
solution for(G,Λ). However, if for someZ ′

i
the algorithm from Lemma 7 returns a setX ′

i
of size smaller

than|Z ′
i
|, then we setXi = (Zi \ Z

′
i
) ∪X ′

i
. Since|Xi| = |Zi \ Z

′
i
|+ |X ′

i
| < |Zi| = k + 1, the setXi is a

solution of size at mostk for the instance(Gi,Λi).
Finally, we observe that since(Gn,Λn) = (G,Λ), the setXn is a solution for the initial instance

(G = (V,A),Λ, k) of GROUPFEEDBACK VERTEX SET. The claimed bound on running time follows from
the observation that|Zi| ≤ k + 1 for each of polynomially many steps.

At this point a reader might wonder why we do not add an assumption |Z| ≤ k + 1 to the C-GFVS
problem definition and parameterize the problem solely byk. The reason for this is that in Section 3.3
we will solve the C-GFVS problem recursively, sometimes decreasing the value ofk without decreasing
the size ofZ, and to always work with a feasible instance of the C-GFVS problem we avoid adding the
|Z| ≤ k + 1 assumption to the problem definition.

3.2 Untangling

In order to prove Lemma 7 we use the concept ofuntangling, previously used by Kratsch and Wahlström [17].
We transform an instance of C-GFVS to ensure that each arc(u, v) with both endpoints inV (G) \ Z is
labeled1Σ byΛ.

Definition 8. We call an instance(G = (V,A),Λ, k, Z) of C-GFVSuntangled, iff for each arc(u, v) ∈ A
such thatu, v ∈ V \ Z we haveΛ((u, v)) = 1Σ.

5



Moreover, byuntanglinga labelingΛ around vertexv with a group elementg we mean changing the
labeling toΛ′ : A → Σ, such that for(u, v) = a ∈ A, we have

Λ′(a) =







g · Λ(a) if u = x;
Λ(a) · g−1 if v = x;
Λ(a) otherwise.

Lemma 9. Let (G = (V,A),Λ) be aΣ-labeled graph,x ∈ V be a vertex ofG and letg ∈ Σ be a group
element. For any subset of verticesX ⊆ V the graph(G \X,Λ) contains a non-null cycle iff(G \X,Λ′)
contains a non-null cycle, whereΛ′ is the labelingΛ untangled around the vertexx with a group elementg.

Proof. The lemma follows from the fact that for any cycleC in G we haveΛ(C) = Λ′(C).

In Section 3.3 we prove the following lemma.

Lemma 10. COMPRESSIONGROUP FEEDBACK VERTEX SET for untangled instances can be solved in
O∗(2O(|Z|(log k+log |Z|)) · 2k) time and polynomial space.

Having Lemmata 9 and 10 we can prove Lemma 7.

Proof of Lemma 7.Let (G,Λ, k, Z) be an instance of C-GFVS. Since(G \ Z) has no non-null cycle, by
Lemma 4 there is a consistent labelingλ of (G \ Z,Λ).

LetΛ′ be a result of untanglingΛ around each vertexv ∈ V (G)\Z with λ(v). Note that, by associativity
of Σ, the order in which we untangle subsequent vertices does notmatter. After all the untangling operations,
for an arca = (u, v) ∈ A(G), such thatu, v ∈ V (G) \ Z, we haveΛ′(a) = (λ(u) · Λ(a)) · λ(v)−1 =
λ(v)·λ(v)−1 = 1Σ. Therefore, by Lemma 9 the instance(G,Λ′, k, Z) is an untangled instance of C-GFVS,
which is a YES-instance iff(G,Λ, k, Z) is a YES-instance. Consequently, we can use Lemma 10 and the
claim follows.

3.3 Fixing a labeling onZ

In this section we prove Lemma 10 using the following lemma, which we prove in Section 3.4.

Lemma 11. Let (G,Λ, k, Z) be an untangled instances ofC-GFVS. There is an algorithm which for a
given functionφ : Z → Σ, finds a setX ⊆ V (G) \ Z of size at mostk, such that there exists a consistent
labelingλ : V (G) \X → Σ of (G \X,Λ), whereλ|Z = φ, or checks that such a setX does not exist; the
algorithm works inO∗(2k) time and uses polynomial space.

We could try all(|Σ| + 1)|Z| possible assignmentsφ and use the algorithm from Lemma 11. Unfor-
tunately, since|Σ| is not our parameter we cannot iterate over all such assignments. Therefore, the goal
of this section is to show that after some preprocessing, it is enough to consider only2O(|Z|(log k+log |Z|))

assignmentsφ; together with Lemma 11 this suffices to prove Lemma 10.

Definition 12. Let (G,Λ, k, Z) be an untangled instance of C-GFVS, letz be a vertex inZ and byΣz

denote the setΛ({(z, v) ∈ A(G) : v ∈ V (G) \ Z}).
By a flow graphF (G,Λ, Z, z), we denote the undirected graph(V ′, E′), whereV ′ = (V (G) \Z)∪Σz

andE′ = {uv : (u, v) ∈ A(G[V (G) \ Z])} ∪ {gv : (z, v) ∈ A(G), v ∈ V (G) \ Z,Λ((z, v)) = g}.

6



Less formally, in the flow graph we take the underlying undirected graph ofG[V (G) \ Z] and add a
vertex for each group elementg ∈ Σz, that is a group element for which there exists an arc fromz to
V (G) \ Z labeled withg by Λ. A vertexg ∈ Σz is adjacent to all the vertices ofV (G) \ Z for which there
exists an arc going fromz, labeled withg byΛ.

Lemma 13. Let (G,Λ, k, Z) be an untangled instance ofC-GFVS. LetH be the flow graphF (G,Λ, Z, z)
for somez ∈ Z. If for some vertexv ∈ V (G) \ Z, in H there are at leastk + 2 paths fromv to Σz that are
vertex disjoint apart fromv, thenv belongs to every solution ofC-GFVS.

Proof. Let us assume, thatv is not a part of a solutionX ⊆ V (G) \ Z, where|X| ≤ k. Then there at least
2 out of thek + 2 paths fromv toΣz remain inH \X. These two paths are vertex disjoint apart fromv, so
they correspond to a non-null cycle inG \X, a contradiction.

Definition 14. For an untangled instance(G,Λ, k, Z) of C-GFVS by anexternal pathwe denote any path
P beginning and ending inZ, but with all internal vertices belonging toV (G) \ Z. Moreover, for two
distinct verticesz1, z2 ∈ Z by Σ(z1, z2) we denote the set of all elementsg ∈ Σ, for which there exists an
external pathP from z1 to z2 with Λ(P ) = g.

Lemma 15. Let (G,Λ, k, Z) be an untangled instance ofC-GFVS. If for eachz ∈ Z andv ∈ V (G) \ Z
there are at mostk+1 vertex disjoint paths fromv toΣz in F (G,Λ, Z, z) and for somez1, z2 ∈ Z, z1 6= z2,
we have|Σ(z1, z2)| ≥ k3(k + 1)2 + 2, then there is no solution for(G,Λ, k, Z).

Proof. Let us assume thatX ⊆ V (G) \ Z is a solution for(G,Λ, k, Z). Let P be a set of external paths
from z1 to z2, containing exactly one pathP for eachg ∈ Σ(z1, z2) with Λ(P ) = g. Note that the only arcs
with non-null labels inP are possibly the first and the last arc.

By the pigeon-hole principle, there exists a vertexv ∈ X, which belongs to at leastk2(k + 1)2 + 1
paths inP, since otherwise there would be at least two paths inP disjoint withX, creating a non-null cycle
disjoint with X. This cycle is not necessarily simple; however, if it is non-null, then it contains a simple
non-null subcycle that is also disjoint withX.

Consider a connected componentC of G[V (G) \ Z] to which v belongs. Observe that there exists a
vertexz ∈ {z1, z2} that has at leastk(k + 1) + 1 incident arcs going toC with pairwise different labels in
Λ, since otherwisev would belong to at mostk2(k + 1)2 paths inP.

Let H be the flow graphF (G,Λ, Z, z) and letT ⊆ Σz be the set of labels of arcs going fromz to
C; recall that|T | > k(k + 1). Since there is no non-null cycle in(G \ X,Λ), we infer that inH0 =
H[C ∪ T ] \ (X ∩ C), no two vertices ofT belong to the same connected component. Moreover, asC is
connected inG, for eacht ∈ T there exists a pathPt with endpointsv andt in H[C ∪ T ]. Let wt be the
closest tot vertex fromX on the pathPt. As |X| ≤ k and|T | > k(k + 1), there existsw ∈ X such that
w = wt for at leastk + 2 elementst ∈ T . By the definition of the verticeswt and the fact that there are
no two vertices ofT in the same connected component ofH0, the subpaths ofPt from t to wt for all t with
w = wt are vertex disjoint apart fromw. As there are at leastk + 2 of them, we have a contradiction.

We are now ready to prove Lemma 10 given Lemma 11.

Proof of Lemma 10.If there exists a vertexv, satisfying the properties of Lemma 13, we can assume that it
has to be a part of the solution; therefore, we can remove the vertex from the graph and solve the problem
for decremented parameter value. Hence, we assume that for eachz ∈ Z andv ∈ V (G) \ Z, there are at
mostk + 1 vertex disjoint paths fromv to Σz in F (G,Λ, Z, z). We note that one can compute the number
of such vertex disjoint paths in polynomial time, using a maximum flow algorithm.

7



By Lemma 15, if there is a pair of verticesz1, z2 ∈ Z with |Σ(z1, z2)| ≥ k3(k + 1)2 + 2, we know that
there is no solution. Observe, that one can easily verify thecardinality ofΣ(z1, z2), since the only non-null
label arcs on paths contributing toΣ(z1, z2) are the first and the last one, and we can iterate over all such
arcs and check whether their endpoints are in the same connected component inG[V (G) \ Z]. Clearly, this
can be done in polynomial time.

Knowing that the setsΣ(z1, z2) have sizes bounded by a function ofk, we can enumerate all the reason-
able labelings ofZ. For the sake of analysis letG′ = (Z,E′) be an auxiliary undirected graph, where two
vertices ofZ are adjacent, when they are connected by an external path inG \X, for some fixed solution
X ⊆ V (G) \ Z. LetF be any spanning forest ofG′. SinceF has at most|Z| − 1 edges, we can guessF ,
by trying at most|Z| · |Z|2(|Z|−1) possibilities. Let us assume, that we have guessedF correctly. Observe
that for any two verticesz1, z2 ∈ Z, belonging to two different connected components ofF , there is no path
betweenz1 andz2 in G\X. Therefore, there exists a consistent labeling ofG\X, which labels an arbitrary
fixed vertex from each connected component ofF with 1Σ. For all other vertices ofF we use the fact that if
we have already fixed a valueφ(z1), then for each external path corresponding to an edgez1z2 of F , there
are at mostk3(k + 1)2 + 1 possible values ofφ(z2), sinceφ−1(z1) · φ(z2) ∈ Σ(z1, z2). Hence, we can
exhaustively try2O(|Z|(log k+log |Z|)) labelingsφ of Z, and use Lemma 11 for each of them.

3.4 Reduction to Multiway Cut

In this section, we prove Lemma 11, by a reduction to MULTIWAY CUT. A similar reduction was also used
recently by Kratsch and Wahlström in the kernelization algorithm for GROUP FEEDBACK VERTEX SET

parameterized byk with constant|Σ| [17]. Currently the fastest FPT algorithm for MULTIWAY CUT is due
to Cygan et al. [8], and it solves the problem inO∗(2k) time and polynomial space.

MULTIWAY CUT Parameter: k
Input: An undirected graphG = (V,E), a set of terminalsT ⊆ V , and a positive integerk.
Goal: Find a setX ⊆ V \ T , such that|X| ≤ k and no pair of terminals from the setT is contained in one
connected component of the graphG[V \X], or return NO if such a setX does not exist.

Proof of Lemma 11.Firstly, we check whether the given functionφ satisfiesφ(z2) = φ(z1) · Λ((z1, z2)),
for each arc(z1, z2) ∈ G[Z], since otherwise there is no setX we are looking for.

Given aΣ-labeled graph(G,Λ), a setZ, an integerk, and a functionφ : Z → Σ, we create an
undirected graphG′ = (V,E). As the vertex set, we setV = (V (G) \ Z) ∪ T andT = {g : (u, v) ∈
A(G), u ∈ Z, v ∈ V (G) \Z, φ(u) ·Λ((u, v)) = g}. Note that in the setT there exactly these elements of
Σ, which are potential values of a consistent labeling of(G,Λ) that matchesφ onZ. As the edge set, we set
E = {uv : (u, v) ∈ A(G[V (G)\Z])}∪{gv : (u, v) ∈ A(G), u ∈ Z, v ∈ V (G)\Z, φ(u)·Λ((u, v)) = g}.
We show that(G′, T, k) is a YES-instance of MULTIWAY CUT iff there exists a setX ⊆ V (G) \ Z, such
that there exists a consistent labelingλ of (G \X,Λ) with λ|Z = φ.

Let X be solution for(G′, T, k). We define a consistent labelingλ of (G \ X,Λ). For v ∈ Z we set
λ(v) = φ(v). Forv ∈ (V (G) \Z) \X, if v is reachable from a terminalg ∈ T in G′ \X, we setλ(v) = g.
If v ∈ (V (G) \ Z) \ X is not reachable from any terminal inG′, we setλ(v) = 1Σ. Since each arc in
A(G[V (G) \Z]) is labeled1Σ byΛ, and each vertex inV (G) \Z is reachable from at most one terminal in
G′ \X, λ is a consistent labeling of(G \X,Λ).

Let X ⊆ V (G) \ Z be a set of vertices ofG, |X| ≤ k, such that there is a consistent labelingλ of
(G \ X,Λ), whereλ|Z = φ. By the definition of edges betweenT andV (G) \ Z in G′, each vertex of
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V (G)\Z is reachable from at most one terminal inG′, since otherwiseλ would not be a consistent labeling
of (G \X,λ). Therefore,X is a solution for(G′, T, k).

We can now apply the algorithm for MULTIWAY CUT of [8] to the instance(G′, T, k) in order to con-
clude the proof.

4 Conclusions and open problems

We have shown a relatively simple fixed-parameter algorithmfor GROUPFEEDBACK VERTEX SET running
in timeO∗(2O(k log k)). Our algorithm works even in a robust oracle model, that allows us to generalize the
recent algorithm for SUBSET FEEDBACK VERTEX SET [9] within the same complexity bound.

We would like to note that if we represent group elements by strings consistingg and g−1 for g ∈
Λ(A(G)) (formally, we perform the computations in the free group over generators corresponding to the
arcs of the graph), then after slight modifications of our algorithm we can solve the GROUP FEEDBACK

VERTEX SET problem even for infinite groups for which the word problem, i.e., the problem of checking
whether results of two sequences of multiplications are equal, is polynomial-time solvable. The lengths of
representations of group elements created during the computation can be bounded linearly in the size of the
input graph. Therefore, if a group admits a polynomial-timealgorithm solving the word problem, then we
can use this algorithm as the oracle.

Both our algorithm and the algorithm for SUBSET FEEDBACK VERTEX SET of [9] seems hard to speed
up to time complexityO∗(2O(k)). Can these problems be solved inO∗(2O(k)) time, or can we prove that
such a result would violate Exponential Time Hypothesis?

Acknowledgements.We thank Stefan Kratsch and Magnus Wahlström for inspiringdiscussions on graph
separation problems and for drawing our attention to the GROUPFEEDBACK VERTEX SET problem.
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