
ar
X

iv
:1

30
1.

07
45

v2
 [

cs
.D

S]
 1

5
Ja

n
20

13

Matroid and Knapsack Center Problems∗

Danny Z. Chen† Jian Li‡ Hongyu Liang§ Haitao Wang¶

Abstract

In the classic k-center problem, we are given a metric graph, and the objective is to select
k nodes as centers such that the maximum distance from any vertex to its closest center is
minimized. In this paper, we consider two important generalizations of k-center, the matroid
center problem and the knapsack center problem. Both problems are motivated by recent
content distribution network applications. Our contributions can be summarized as follows:

1. We consider the matroid center problem in which the centers are required to form an
independent set of a given matroid. We show this problem is NP-hard even on a line. We
present a 3-approximation algorithm for the problem on general metrics. We also consider
the outlier version of the problem where a given number of vertices can be excluded as
outliers from the solution. We present a 7-approximation for the outlier version.

2. We consider the (multi-)knapsack center problem in which the centers are required to
satisfy one (or more) knapsack constraint(s). It is known that the knapsack center problem
with a single knapsack constraint admits a 3-approximation. However, when there are at
least two knapsack constraints, we show this problem is not approximable at all. To
complement the hardness result, we present a polynomial time algorithm that gives a 3-
approximate solution such that one knapsack constraint is satisfied and the others may be
violated by at most a factor of 1 + ǫ. We also obtain a 3-approximation for the outlier
version that may violate the knapsack constraint by 1 + ǫ.

∗This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300,
2011CBA00301, and the National Natural Science Foundation of China Grant 61033001, 61061130540, 61073174,
61202009. The research of D.Z. Chen was supported in part by NSF under Grants CCF-0916606 and CCF-1217906.

†Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
E-mail: dchen@cse.nd.edu

‡Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China. E-mail: li-
jian83@mail.tsinghua.edu.cn

§Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China. E-mail:
lianghy08@mails.tsinghua.edu.cn

¶Department of Computer Science, Utah State University, Logan, UT 84322, USA. E-mail: haitao.wang@usu.edu

1

http://arxiv.org/abs/1301.0745v2

1 Introduction

The k-center problem is a fundamental facility location problem. In the basic version, we are given
a metric space (V, d) and are asked to locate a set S ⊆ V of at most k vertices as centers and to
assign the other vertices to the centers, so as to minimize the maximum distance from any vertex
to its assigned center, or more formally, to minimize maxv∈V minu∈S d(v, u). In the demand version
of the k-center problem, each vertex v has a positive demand r(v), and our goal is to minimize the
maximum weighted distance from any vertex to the centers, i.e., maxv∈V minu∈S r(v)d(v, u). It is
well known that the k-center problem is NP-hard and admits a polynomial time 2-approximation
even for the demand version [14, 17], and that no polynomial time (2− ǫ)-approximation algorithm
exists unless P = NP [14].

In this paper, we conduct a systematic study on two generalizations of the k-center problem
and their variants. The first one is the matroid center problem, denoted by MatCenter, which is
almost the same as the k-center problem except that, instead of the cardinality constraint on the
set of centers, now the centers are required to form an independent set of a given matroid. A finite
matroid M is a pair (V,I), where V is a finite set (called the ground set) and I is a collection of
subsets of V . Each element in I is called an independent set. Moreover, M = (V,I) satisfies the
following three properties: (1) ∅ ∈ I; (2) if A ⊆ B and B ∈ I, then A ∈ I; (3) for all A,B ∈ I with
|A| > |B|, there exists an element e ∈ A \ B such that B ∪ {e} ∈ I. Following the conventions in
the literature, we assume the matroidM is given by an independence oracle which, given a subset
S ⊆ V , decides whether S ∈ I. For more information about the theory of matroids, see, e.g., [29].

The second problem we study is the knapsack center problem (denoted as KnapCenter), another
generalization of k-center in which the chosen centers are subject to (one or more) knapsack con-
straints. More formally, in KnapCenter, there are m nonnegative weight functions w1, . . . , wm on
V , and m weight budgets B1, . . . ,Bm. Let wi(V

′) :=
∑

v∈V ′ wi(v) for all V
′ ⊆ V . A solution takes

a set of vertices S ⊆ V as centers such that wi(S) ≤ Bi for all 1 ≤ i ≤ m. The objective is still to
minimize the maximum service cost of any vertex in V (the service cost of v equals minc∈S d(v, c),
or minc∈S r(v)d(v, c) in the demand version). In this paper, we are interested only in the case
where the number m of knapsack constraints is a constant. We note that the special case with only
one knapsack constraint was studied in [18] under the name of weighted k-center, which already
generalizes the basic k-center problem.

BothMatCenter and KnapCenter are motivated by important applications in content distribution
networks [16, 22]. In a content distribution network, there are several types of servers and a set
of clients to be connected to the servers. Often there is a budget constraint on the number of
deployed servers of each type [16]. We would like to deploy a set of servers subject to these budget
constraints in order to minimize the maximum service cost of any client. The budget constraints
correspond to finding an independent set in a partition matroid.∗ We can also use a set of knapsack
constraints to capture the budget constraints for all types (we need one knapsack constraint for
each type). Motivated by such applications, Hajiaghayi et al. [16] first studied the red-blue median
problem in which there are two types (red and blue) of facilities, and the goal is to deploy at most
kr red facilities and kb blue facilities so as to minimize the sum of service costs. Subsequently,
Krishnaswamy et al. [22] introduced a more general matroid median problem which seeks to select

∗ Let B1, B2, . . . , Bb be a collection of disjoint subsets of V and di be integers such that 1 ≤ di ≤ |Bi| for all
1 ≤ i ≤ b. We say a set I ⊆ V is independent if |I ∩Bi| ≤ di for 1 ≤ i ≤ b. All such independent sets form a partition
matroid.

2

a set of facilities that is an independent set in a given matroid and the knapsack median problem in
which the set of facilities must satisfy a knapsack constraint. The work mentioned above uses the
sum of service costs as the objective (the k-median objective), while our work aims to minimize the
maximum services cost (the k-center objective), which is another popular objective in the clustering
and network design literature.

1.1 Our Results

For MatCenter, we show the problem is NP-hard to approximate within a factor of 2 − ǫ for any
constant ǫ > 0, even on a line. Note that the k-center problem on a line can be solved exactly in
polynomial time [5]. We present a 3-approximation algorithm for MatCenter on general metrics.
This improves the constant factors implied by the approximation algorithms for matroid median
[22, 3] (see Section 2.2 for details).

Next, we consider the outlier version of MatCenter, denoted as Robust-MatCenter, where one
can exclude at most n − p nodes as outliers. We obtain a 7-approximation for Robust-MatCenter.
Our algorithm is a nontrivial generalization of the greedy algorithm of Charikar et al. [2], which
only works for the outlier version of the basic k-center. However, their algorithm and analysis do
not extend to our problem. In their analysis, if at least p nodes are covered by k disks (with radius
3 times OPT), they have found a set of k centers and obtained a 3-approximation. However, in
our case, we may not be able to open enough centers in the covered region, due to the matroid
constraint. Therefore, we need to search for centers globally. To this end, we carefully construct
two matroids and argue that their intersection provides a desirable answer (the construction is
similar to that for the non-outlier version, but more involved).

We next deal with the KnapCenter problem. We show that for any f > 0, the existence of
an f -approximation algorithm for KnapCenter with more than one knapsack constraint implies
P = NP. This is a sharp contrast with the case with only one knapsack constraint, for which a 3-
approximation exists [18] and is known to be optimal [7]. Given this strong inapproximability result,
it is then natural to ask whether efficient approximation algorithms exist if we are allowed to slightly
violate the constraints. We answer this question affirmatively. We provide a polynomial time
algorithm that, given an instance of KnapCenter with a constant number of knapsack constraints,
finds a 3-approximate solution that is guaranteed to satisfy one constraint and violate each of the
others by at most a factor of 1 + ǫ for any fixed ǫ > 0. This generalizes the result of [18] to the
multi-constraint case. Our algorithm also works for the demand version of the problem.

We then consider the outlier version of the knapsack center problem, which we denote by
Robust-KnapCenter. We present a 3-approximation algorithm for Robust-KnapCenter that violates
the knapsack constraint by a factor of 1 + ǫ for any fixed ǫ > 0. Our algorithm can be regarded as
a “weighted” version of the greedy algorithm of Charikar et al. [2] which only works for the unit-
weight case. However, their charging argument does not apply to the weighted case. We instead
adopt a more involved algebraic approach to prove the performance guarantee. We translate our
algorithm into inequalities involving point sets, and then directly manipulate the inequalities to
establish our desired approximation ratio. The total weight of our chosen centers may exceed the
budget by the maximum weight of any client, which can be turned into a 1+ ǫ multiplicative factor
by the partial enumeration technique. We leave open the question whether there is a constant
factor approximation for Robust-KnapCenter that satisfies the knapsack constraint.

3

1.2 Related Work

For the basic k-center problem, Hochbaum and Shmoys [17, 18] and Gonzalez [14] developed 2-
approximation algorithms, which are the best possible if P 6= NP [14]. The former algorithms are
based on the idea of the threshold method, which originates from [10]. On some special metrics
like the shortest path metrics on trees, k-center (with or without demands) can typically be solved
in polynomial time by dynamic programming. By exploring additional structures of the metrics,
even linear or quasi-linear time algorithms can be obtained; see e.g. [5, 8, 11] and the references
therein. Several generalizations and variations of k-center have also been studied in a variety of
application contexts; see, e.g. [1, 25, 20, 4, 9, 21].

A problem closely related to k-center is the well-known k-median problem, whose objective
is to minimize the sum of service costs of all nodes instead of the maximum one. Hajiaghayi et
al. [16] introduced the red-blue median problem that generalizes k-median, and presented a constant
factor approximation based on local search. Krishnaswamy et al. [22] introduced the more general
matroid median problem and presented a 16-approximation algorithm based on LP rounding, whose
ratio was improved to 9 by Charikar and Li [3] using a more careful rounding scheme. Another
generalization of k-median is the knapsack median problem studied by Kumar [23], which requires
to open a set of centers with a total weight no larger than a specified value. Kumar gave a (large)
constant factor approximation for knapsack median, which was improved by Charikar and Li [3]
to a 34-approximation. Several other classical problems have also been investigated recently under
matroid or knapsack constraints, such as minimum spanning tree [32], maximum matching [15],
and submodular maximization [24, 30].

For the k-center formulation, it is well known that a few distant vertices (outliers) can dis-
proportionately affect the final solution. Such outliers may significantly increase the cost of the
solution, without improving the level of service to the majority of clients. To deal with outliers,
Charikar et al. [2] initiated the study of the robust versions of k-center and other related problems,
in which a certain number of points can be excluded as outliers. They gave a 3-approximation
for robust k-center, and showed that the problem with forbidden centers (i.e., some points cannot
be centers) is inapproximable within 3 − ǫ unless P = NP. For robust k-median, they presented
a bicriteria approximation algorithm that returns a 4(1 + 1/ǫ)-approximate solution in which the
number of excluded outliers may violate the upper bound by a factor of 1 + ǫ. Later, Chen [6]
gave a truly constant factor approximation (with a very large constant) for the robust k-median
problem. McCutchen and Khuller [26] and Zarrabi-Zadeh and Mukhopadhyay [31] considered the
robust k-center problem in a streaming context.

2 The Matroid Center Problem

In this section, we consider the matroid center problem and its outlier version. A useful ingredient
of our algorithms is the (weighted) matroid intersection problem defined as follows. We are given
two matroids M1(V,I1) and M2(V,I2) defined on the same ground set V . Each element v ∈ V
has a weight w(v) ≥ 0. The goal is to find a common independent set S in the two matroids, i.e.,
S ∈ I1 ∩I2, such that the total weight w(S) =

∑

v∈S w(v) is maximized. It is well known that this
problem can be solved in polynomial time (e.g., see [29]).

4

2.1 NP-hardness of Matroid Centers on a Line

In contrast to the basic k-center problem on a line which can be solved in near-linear time [5], we
show that MatCenter is NP-hard even on a line. We actually prove the following stronger theorem.

Theorem 1. It is NP-hard to approximate MatCenter on a line within a factor strictly better than
2, even when the given matroid is a partition matroid.

Proof. In a partition matroid, each element in the ground set is colored using one of the h colors
and we are given h integers b1, b2, . . . , bh. The collection of all independent sets is defined to be all
subsets that contain at most b1 elements of color 1, at most b2 elements of color 2, and so on.

p
1

L
p
1

M p
1

R q
1

L
q
1

M
q
1

R

p
11

1
p
11

M
p
11

2
p
12

3
p
12

M
p
12

4 q
11

1
q
11

M
q
11

2
q
12

3
q
12

M
q
12

4

Gadget for variable x1

Gadget for clause (x̄1 ∧ x2 ∧ x3)

Figure 1: A variable gadget and a clause gadget.

We use the 3SAT problem for the reduction. Without loss of generality, we assume that each
literal (including all variables xi and their negation x̄i) appears exactly four times in the 3DNF.
Given a 3DNF, we create a MatCenter instance as follows. The points appear in groups. Each
group consists of r (r ≥ 3) points with r − 2 points in the middle, one to the left and one to the
right. The left and right points are 1 unit distance away from the midpoints. Different groups are
very far away from each other. Therefore, in order to make the maximum radius at most one, we
need to either select one of the midpoints in each group or select at least the two points not in
the middle. For each variable xi, we create a variable gadget as follows. The gadget consists of 6
groups, each having 3 points:

(piL, p
i
M , piR), (q

i
L, q

i
M , qiR), (p

i1
1 , p

i1
M , pi12), (p

i2
3 , p

i2
M , pi24), (q

i1
1 , qi1M , qi12), (qi23 , qi2M , qi24).

For two points p and q, we use [p, q] to indicate that we assign a new color to p and q. The color
assignment for the gadget is defined by the following pairs:

[piM , qiM], [piL, p
i1
M], [piR, p

i2
M], [qiL, q

i1
M], [qiR, q

i2
M].

We are allowed to choose at most one point as a center from each color class. Points pi11 , p
i1
2 , p

i2
3 , p

i2
4

are called positive portals of xi and points qi11 , qi12 , qi23 , qi24 are called negative portals of xi. See
Figure 1 for an example. For each clause, we create a clause gadget, which is a group of 5 points.
We have 3 points in the middle (co-located at the same place), each corresponding to a literal in the
clause. If the point corresponds to a positive (negative) literal, say xi (or x̄i), the point is paired

5

with one of the positive (negative) portals of xi and we assign the pair a new color. We also require
that at most one point can be chosen as a center in this pair. Each portal can be paired at most
once. Since each literal appears exactly 4 times, we have enough portals for the clause gadgets.
All the left and right points of all clause gadgets have the same color but we are allowed to choose
none of them as centers.

We can show that the optimal radius for the MatCenter instance is 1 if and only if the 3DNF
formula is satisfiable. First, suppose the 3DNF is satisfiable. If xi is TRUE in a truth assign-
ment, then we pick piM , pi1M , pi2M and pi11 , p

i1
2 , p

i2
3 , p

i2
4 as centers. Otherwise, we pick qiM , qi1M , qi2M and

qi11 , qi12 , qi23 , qi24 as centers. It is straightforward to verify the independence property. For each group,
at least one of the midpoints is selected. Thus, the optimal solution is 1. Given the correspondence,
the reverse direction can be proved similarly and we omit it.

2.2 A 3-Approximation for MatCenter

In fact, we can obtain a constant approximation for MatCenter by using the constant approximation
for the matroid median problem [22, 3], which roughly gives a 9-approximation for MatCenter. The
idea is given below.

We say a space V with a distance function d satisfies the (λ, c)-relaxed triangle inequality (TI)
for some λ and c, if d(a0, ac) ≤ λ

∑c
i=1 d(ai−1, ai) for all a0, a1, . . . , ac ∈ V . (Thus a metric

space satisfies the (1, c)-relaxed TI for all c ≥ 1.) By examining the algorithms in [22, 3] for the
matroid median problem, we notice that they can actually give a (µλ)-approximation for matroid
median where µ is some universal constant, if the underlying space satisfies the (λ, c0)-relaxed TI
for some algorithm-dependent c0.

† (Roughly speaking, c0 is the maximum number of times that
the triangle inequality is used for bounding the distance between a client and a facility.) Now,
given an instance of MatCenter with metric space (V, d), we define a new distance function d′ as
d′(a, b) = (d(a, b))p for all a, b ∈ V , where p > 2 is a parameter whose value will be specified later.
By the convexity of the function f(x) = xp when p ≥ 2, for all c ≥ 1 and a0, a1, . . . , ac ∈ V , we
have (

∑c
i=1 d(ai−1, ai)/c)

p ≤
∑c

i=1 d(ai−1, ai)
p/c, and thus

d′(a0, ac) = d(a0, ac)
p ≤ (

c
∑

i=1

d(ai−1, ai))
p

≤ cp−1
c
∑

i=1

d(ai−1, ai)
p = cp−1

c
∑

i=1

d′(ai−1, ai).

Therefore (V, d′) satisfies the (cp−1, c)-relaxed TI for all c ≥ 1. In particular, it satisfies the
(cp−1

0 , c0)-relaxed TI where c0 is the algorithm-dependent parameter mentioned before. We now
solve the matroid median problem on the instance with the new distance function d′. Let OPT

denote the optimal objective value of MatCenter on the original instance. Then it is clear that
the optimal cost of matroid median on the new instance is at most |V | · OPTp. By our previ-
ous observation, the algorithms of [22, 3] give a solution of cost at most µcp−1

0 |V |OPTp. Trans-
forming the distance function back to d, the maximum service cost of any client is at most

†We note that Golovin et al. [13] claimed (without a proof) that, in our notations, most existing approximation
algorithms for k-median achieve an O(λ)-approximation on spaces satisfying (λ, 2)-relaxed TI. By a scrutiny of the
existing k-median algorithms, we are not able to reproduce the same result and the correct approximation ratio
should be roughly O(λc0). However, the results of [13] are not affected in any essential way since this only changes
the constant hidden in the big-oh notation.

6

Algorithm 1: Algorithm for MatCenter on Gi

1 Initially, C ← ∅, and mark all vertices in V as uncovered.
2 while V contains uncovered vertices do

3 Pick an uncovered vertex v. Set B(v)← B(v, d(ei)) and C ← C ∪ {v}.
4 Mark all vertices in B(v, 2d(ei)) as covered.

5 end

6 Define a partition matroidMB = (V,I) with partition {{B(v)}v∈C , V \ ∪v∈CB(v)} (note
that {B(v)}v∈C are disjoint sets by Lemma 1), where I is the set of subsets of V that
contains at most 1 element from every B(v) and 0 element from V \ ∪v∈CB(v).

7 Solve the unweighted (or, unit-weight) matroid intersection problem betweenMB andM to
get an optimal intersection S. If |S| < |C|, then we declare a failure and try the next Gi.
Otherwise, we succeed and return S as the set of centers.

(µcp−1
0 |V |OPTp)1/p = c

1−1/p
0 (µ|V |)1/pOPT. By choosing p = Ω(|V |), this can produce a (c0 + ǫ)-

approximation for MatCenter for any fixed ǫ > 0. Using the algorithm of [3] this roughly gives a
9-approximation.

We next present a 3-approximation for MatCenter, thus improving the ratio derived from the
matroid median algorithms [22, 3]. Also, compared to their LP-based algorithms, ours is simpler,
purely combinatorial, and easy to implement. We begin with the description of our algorithm.
Regard the metric space as a (complete) graph G = (V,E) where each edge {u, v} has length
d(u, v). Let B(v, r) be the set of vertices that are at most r unit distance away from v (it depends
on the underlying graph). Let e1, e2, . . . , e|E| be the edges in a non-decreasing order of their lengths.
We consider each spanning subgraph Gi of G that contains only the first i edges, i.e., Gi = (V,Ei)
where Ei = {e1, . . . , ei}. We run Algorithm 1 on each Gi and take the best solution.

Lemma 1. For any two distinct u, v ∈ C, B(u) and B(v) are disjoint sets.

Proof. Suppose we are working on Gi and there is a node w that is in both B(u) and B(v). Then
we know d(w, u) ≤ d(ei) and d(w, v) ≤ d(ei). Thus, d(u, v) ≤ 2d(ei). But this contradicts with the
fact that the distance between every two nodes in C must be larger than 2d(ei).

Theorem 2. Algorithm 1 produces a 3-approximation for MatCenter.

Proof. Suppose the maximum radius of any cluster in an optimal solution is r∗ and a set of optimal
centers is C∗. Consider the algorithm on Gi with d(ei) = r∗ (r∗ must be the length of some edge).
First we claim that there exists an intersection of M andMB of size |C|. In fact, we show there
is a subset of C∗ that is such an intersection. For each node u, let a(u) be an optimal center in C∗

that is at most d(ei) away from u. Consider the set S∗ = {a(u)}u∈C . Since S∗ is a subset of C∗,
it is an independent set ofM by the definition of matroid. It is also easy to see that a(u) ∈ B(u)
for each u ∈ C. Therefore, S∗ is also independent in MB, which proves our claim. Thus, the
algorithm returns a set S that contains exactly 1 element from each B(v) with v ∈ C. According to
the algorithm, for each v ∈ V there exists u ∈ C that is at most 2d(ei) away, and this u is within
distance d(ei) from the (unique) element in B(u) ∩ S. Thus every node of V is within a distance
3d(ei) = 3r∗ from some center in S.

7

2.3 Dealing with Outliers: Robust-MatCenter

We now consider the outlier version of MatCenter, denoted as Robust-MatCenter, in which an ad-
ditional parameter p is given and the goal is to place centers (which must form an independent
set) such that after excluding at most |V | − p nodes as outliers, the maximum service cost of any
node is minimized. For p = |V |, we have the standard MatCenter. In this section, we present a
7-approximation for Robust-MatCenter.

Our algorithm bears some similarity to the 3-approximation algorithm for robust k-center by
Charikar et al. [2], who also showed that robust k-center with forbidden centers cannot be approx-
imated within 3− ǫ unless P = NP. However, their algorithm for robust k-center does not directly
yield any approximation ratio for the forbidden center version. In fact, robust k-center with for-
bidden centers is a special case of Robust-MatCenter since forbidden centers can be easily captured
by a partition matroid. We briefly describe the algorithm in [2]. Assume we have guessed the right
optimal radius r. For each v ∈ V , call B(v, r) the disk of v and B(v, 3r) the expanded disk of v.
Repeat the following step k times: Pick an uncovered vertex as a center such that its disk covers
the most number of uncovered nodes, then mark all nodes in the corresponding expanded disk as
covered. Using a clever charging argument they showed that at least p nodes can be covered, which
gives a 3-approximation. However, their algorithm and analysis do not extend to our problem in
a straightforward manner. The reason is that even if at least p nodes are covered, we may not be
able to find enough centers in the covered region due to the matroid constraint. In order to remedy
this issue, we need to search for centers in the entire graph, which also necessitates a more careful
charging argument to show that we can cover at least p nodes.

Now we describe our algorithm and prove its performance guarantee. For each 1 ≤ i ≤
(|V |

2

)

,
we run Algorithm 2 on the graph Gi defined as before. We need the following simple lemma.

Lemma 2. M1 is a matroid.

Proof. It is straightforward to verify that the first and second matroid properties hold. We only
need to verify the third property. Suppose A and B are two independent sets ofM1 and |A| > |B|.
We know the set V (A) (resp., V (B)) of vertices that appear in A (resp., B) is an independent
set of M. Since |V (A)| = |A| and |V (B)| = |B|, |V (A)| > |V (B)|. Hence, there is a vertex
v ∈ V (A) \ V (B) such that V (B) ∪ {v} is independent. We add to B the pair in A that involves v
and it is easy to see the resulting set is also independent inM1.

Theorem 3. Algorithm 2 produces a 7-approximation for Robust-MatCenter.

Proof. Assume the maximum radius of any cluster in an optimal solution is r∗ and the set of optimal
centers is C∗. For each v ∈ C∗, let O(v) denote the optimal disk B(v, r∗). As before, we claim that
our algorithm succeeds if d(ei) = r∗. It suffices to show the existence of an intersection ofM1 and
M2 with a weight at least p. We next construct such an intersection S ′ from the optimal center
set C∗. The high level idea is as follows. Let the disk centers in C be v1, v2, . . . , vk (according
to the order that our algorithm chooses them). Note that v1, v2, . . . , vk are the centers chosen by
the greedy procedure in the first part of the algorithm, but not the centers returned at last. We
process these centers one by one. Initially, S ′ is empty. As we process a new center vj , we may
add (v,E(vj)) for some v ∈ C∗ to S ′. Moreover, we charge each newly covered node in any optimal
disk to some nearby node in the expanded disk E(vj). (Note that this is the key difference between
our charging argument and that of [2]; in [2], a node may be charged to some node far away.) We
maintain that all nodes in ∪v∈C∗O(v) covered by ∪jj′=1E(vj′) are charged after processing vj. Thus,

8

Algorithm 2: Algorithm for Robust-MatCenter on Gi

1 Initially, set C ← ∅ and mark all vertices in V as uncovered.
2 while V contains uncovered vertices do

3 Pick an uncovered vertex v such that B(v, d(ei)) covers the most number of uncovered
elements.

4 B(v)← B(v, d(ei)). (B(v) is called the disk of v.)
5 E(v)← B(v, 3d(ei)) \ ∪u∈CE(u). (E(v) is called the expanded disk of v. This definition

ensures that all expanded disks in {E(u)}u∈C are pairwise disjoint.)
6 C ← C ∪ {v}. Mark all vertices in E(v) as covered.

7 end

8 Create a set U of (vertex, expanded disk) pairs, as follows: For each v ∈ V and u ∈ C, if
B(v, d(ei)) ∩ B(u, 3d(ei)) 6= ∅, we add (v,E(u)) to U . The weight w((v,E(u))) of the pair
(v,E(u)) is |E(u)|.

9 Define two matroidsM1 andM2 over U as follows:

• A subset {(vi,E(ui))} is independent inM1 if all vi’s in the subset are
distinct and form an independent set inM.

• A subset {(vi,E(ui))} is independent inM2 if all E(ui)’s in the subset are distinct.
(It is easy to seeM2 is a partition matroid.)

10 Solve the matroid intersection problem betweenM1 andM2 optimally (note that the
independence oracles forM1 andM2 can be easily simulated in polynomial time). Let S be
an optimal intersection. If w(S) < p, then we declare a failure and try the next Gi.
Otherwise, we succeed and return V (S) as the set of centers, where
V (S) = {v | (v,E(u)) ∈ S for some u ∈ C}.

eventually, all nodes covered by the optimal solution (i.e., ∪v∈C∗O(v)) are charged to the expanded
disks selected by our algorithm. We also make sure that each node in any expanded disk in S ′ is
being charged to at most once. Therefore, the weight of S ′ is at least | ∪v∈C∗ O(v)| ≥ p.

Now, we present the details of the construction of S ′. If every node in O(v) for some v ∈ C∗ is
charged, we say O(v) is entirely charged. Consider the step when we process vj ∈ C. We distinguish
the following cases.

1. Suppose there is a node v ∈ C∗ such that O(v) is not entirely charged and O(v) intersects
B(vj). Then add (v,E(vj)) to S ′ (if there are multiple such v’s, we only add one of them).
We charge the newly covered nodes in ∪v∈C∗O(v) (i.e., the nodes in (∪v∈C∗O(v)) ∩ E(vj)) to
themselves (we call this charging rule I). Note that O(v) is entirely charged after this step
since O(v) ⊆ B(vj , 3r

∗).

2. Suppose B(vj) does not intersect O(v) for any v ∈ C∗, but there is some node v ∈ C∗ such that
O(v) is not entirely charged and O(v) ∩ E(vj) 6= ∅. Then we add (v,E(vj)) to S′ and charge
all newly covered nodes in O(v) (i.e., the node in O(v)∩E(vj)) to B(vj) (we call this charging
rule II). Since B(vj) covers the most number of uncovered elements when vj is added, there
are enough vertices in B(vj) to charge. Obviously, O(v) is entirely charged after this step. If
there is some other node u ∈ C∗ such that O(u) is not entirely charged and O(u)∩E(vj) 6= ∅,

9

then we charge each newly covered node (i.e., nodes in O(u) ∩ E(vj)) in O(u) to itself using
rule I.

3. If E(vj) does not intersect with any optimal disk O(v) that is not entirely charged, then we
simply skip this iteration and continue to the next vj .

It is easy to see that all covered nodes in ∪v∈C∗O(v) are charged in the process and each node
is being charged to at most once. Indeed, consider a node u in B(vj). If B(vj) intersects some
O(v), then u may be charged by rule I and, in this case, no further node can be charged to u
again. If B(vj) does not intersect any O(v), then u may be charged by rule II. This also happens
at most once. It is obvious that in this case, no node can be charged to u using rule I. For a node
u ∈ E(vj)\B(vj), it can be charged at most once using rule I. Moreover, by the charging process, all
nodes in ∪v∈C∗O(v) are charged to the nodes in some expanded disks that appear in S ′. Therefore,
the total weight of S is at least p. We can see that each vertex in V (S ′) is also in C∗ and appears
at most one. Therefore, S ′ is independent inM1. Clearly, each E(u) appears in S ′ at most once.
Hence, S ′ is also independent inM2, which proves our claim.

Since S is an optimal intersection, we know the expanded disks in S contain at least p nodes.
By the requirement of M1, we can guarantee that the set of centers forms an independent set in
M. For each (v,E(u)) in S, we can see that every node v′ in E(u) is within a distance 7d(ei)
from v, as follows. Suppose u′ ∈ B(v, d(ei)) ∪ B(u, 3d(ei)) (because B(v, d(ei)) ∪ B(u, 3d(ei)) 6= ∅
for any pair (v,E(u)) ∈ U). By the triangle inequality, d(v′, v) ≤ d(v′, u) + d(u, u′) + d(u′, v) ≤
3d(ei) + 3d(ei) + d(ei) = 7d(ei). This completes the proof of the theorem.

3 The Knapsack Center Problem

In this section, we study the KnapCenter problem and its outlier version. Recall that an input of
KnapCenter consists of a metric space (V, d), m nonnegative weight functions w1, . . . , wm on V ,
and m budgets B1, . . . ,Bm. The goal is to select a set of centers S ⊆ V with wi(S) ≤ Bi for
all 1 ≤ i ≤ m, so as to minimize the maximum service cost of any vertex in V . In the outlier
version of KnapCenter, we are given an additional parameter p ≤ |V |, and the objective is to
minimize costp(S) := minV ′⊆V :|V ′|≥pmaxv∈V ′ mini∈S d(v, i), i.e., the maximum service cost of any
non-outlier node after excluding at most |V | − p nodes as outliers.

3.1 Approximability of KnapCenter

When there is only one knapsack constraint (i.e., m = 1), the problem degenerates to the weighted
k-center problem for which a 3-approximation algorithm exists [18]. However, as we show in
Theorem 4, the situation changes dramatically even if there are only two knapsack constraints.

Theorem 4. For any f > 0, if there is an f -approximation algorithm for KnapCenter with two
knapsack constraints, then P = NP.

Proof. To prove the theorem, we present a reduction from the partition problem, which is well-
known to be NP-hard [12], to the KnapCenter problem with two knapsack constraints. In the
partition problem, we are given a multiset of positive integers S = {s1, s2, . . . , sn}, and the goal
is to decide whether S can be partitioned into two subsets such that the sum of numbers in one
subset equals the sum of numbers in the other subset.

10

Given an instance S = {s1, s2, . . . , sn} of the partition problem, we construct an instance I of
the KnapCenter problem as follows. The set of clients is V = {ai, bi | 1 ≤ i ≤ n}. The distance
metric d is defined as d(ai, bi) = 0 for all 1 ≤ i ≤ n, and d(ai, aj) = d(ai, bj) = d(bi, bj) = 1 for all
i 6= j. It is easy to verify that d is indeed a metric. Every client in V has a unit demand. There are
two weight functions w1 and w2 specified as follows: for each 1 ≤ i ≤ n, w1(ai) = si, w1(bi) = 0,
w2(ai) = 0, and w2(bi) = si. The two corresponding weight budgets are B1 = B2 = T/2, where
T =

∑n
j=1 sj. This finishes the construction of I.

We show that S can be partitioned into two subsets of equal sum if and only if I has a
solution of cost 0. First consider the “if” direction. Assume that I admits a solution of cost 0.
Clearly, for each 1 ≤ i ≤ n, the solution must take at least one of {ai, bi} as a center, and we
assume w.l.o.g. that it takes exactly one of ai and bi (just choosing an arbitrary one if both are
taken). Let I1 be the set of indices i for which ai is taken as a center in the solution. Then
I2 = {1, 2, . . . , n} \ I1 consists of all indices i for which bi is taken by the solution. Considering the
first weight constraint, we have T/2 = B1 ≥

∑

i∈I1
w1(ai) +

∑

i∈I2
w1(bi) =

∑

i∈I1
si. Similarly, by

the second weight constraint, we get T/2 ≥
∑

i∈I2
si. Since

∑

i∈I1
si +

∑

i∈I2
si =

∑n
i=1 si = T , it

holds that
∑

i∈I1
si =

∑

i∈I2
si = T/2. Therefore, S can be partitioned into two subsets of equal

sum.
We next prove the “only if” part. Suppose there exists I1 ⊆ {1, 2, . . . , n} such that

∑

i∈I1
si =

T/2. In the instance I, we take T := {ai | i ∈ I1} ∪ {bj | j ∈ {1, 2, . . . , n} \ I1} as the set
of centers. It only remains to show that T satisfies both the weight constraints, which is easy to
verify:

∑

v∈T w1(v) =
∑

i∈I1
si = T/2 ≤ B1, and

∑

v∈T w2(v) =
∑

j∈{1,2,...,n}\I1
sj = T−

∑

j∈I1
sj =

T/2 ≤ B2. This proves the “only if” direction.
Since the optimal objective value of I is 0, any f -approximate solution is in fact an optimal one.

Hence, if KnapCenter with two constraints and unit demands allows an f -approximation algorithm
for any f > 0, then the partition problem can be solved in polynomial time, which implies P = NP.
The proof of Theorem 4 is thus complete.

It is then natural to ask whether a constant factor approximation can be obtained if the con-
straints can be relaxed slightly. We show in Theorem 5 that this is achievable (even for the demand
version). Before proving the theorem we first present some high-level ideas of our algorithm, shown
as Algorithm 3. The algorithm first guesses the optimal cost OPT, and then chooses a collection
of disjoint disks of radius OPT according to some rules. It can be shown that there exists a set
of centers consisting of exactly one point from each disk that gives a 3-approximate solution and
satisfies all the knapsack constraints. We then reduce the remaining task to another problem called
the group multi-knapsack problem, which will formally be defined in the following proof.

Theorem 5. For any fixed ǫ > 0, there is a 3-approximation algorithm for KnapCenter with a
constant number of knapsack constraints, which is guaranteed to satisfy one constraint and violate
each of the others by at most a factor of 1 + ǫ.

In what follows we prove Theorem 5. We first present our algorithm for KnapCenter in Algo-
rithm 3 that we use to prove Theorem 5. The algorithm works for the more general version where
each vertex v has a demand r(v) and the service cost of v is mini∈S r(v)d(v, i) when taking S as
the set of centers.

Given an instance of the KnapCenter problem, suppose Algorithm 3 correctly guesses the optimal
objective value OPT. (This can be equivalently realized by running the algorithm for all

(

|V |
2

)

possibilities and taking the best solution among all the candidates.) The algorithm greedily finds

11

Algorithm 3: Algorithm for KnapCenter with multiple constraints

1 Guess the optimal objective value OPT.
2 For each client v ∈ V , let B(v)← B(v,OPT) be the disk of v. Let T ← ∅.
3 while there exists i ∈ V such that B(i) ∩ B(j) = ∅ for all j ∈ T do

4 Choose such an i with maximum demand, and let T ← T ∪ {i}.
5 end

6 Create an instance I of the group multi-knapsack problem as
I = ({B(i)}i∈T , {wj ,Bj}1≤j≤m) (recall that m = O(1)), and get a solution S by applying the
algorithm indicated by Lemma 3.

7 return S

a collection of mutually disjoint disks {B(i)}i∈T , and then constructs a set of centers by selecting
exactly one point from each disk using some algorithm for the group multi-knapsack problem, which
we will define later.

Call a set S ⊆ V standard if S consists of exactly one point from each of the disks {B(i)}i∈T .
We first show that there exists a standard set S such that wj(S) ≤ Bj for all 1 ≤ j ≤ m, i.e., S
fulfills all the knapsack constraints. Suppose O ⊆ V is the set of centers opened in some optimal
solution. Then, for each i ∈ T , there exists j ∈ O such that r(i)d(i, j) ≤ OPT, and thus j ∈ B(i).
Hence, we can choose from each B(i) exactly one point that belongs to O, and these points are
distinct because the disks are pairwise disjoint. Let S denote the set of these points. Clearly, S is
a standard and is a subset of O, and thus wj(S) ≤ wj(O) ≤ Bj for all 1 ≤ j ≤ m. This proves the
existence of a standard set that satisfies all the knapsack constraints.

We will reduce the remaining task to another problem called the group multi-knapsack problem,
which we define as follows. Suppose we are given a collection of pairwise disjoint sets {Si}1≤i≤n.
Let S =

⋃n
i=1 Si. For some fixed integer m ≥ 1, there are m nonnegative weight functions defined

on the items of S, which we denote by w1, . . . , wm, and m weight limits B1, . . . ,Bm. A solution is
a subset S ′ ⊆ S that consists of exactly one element from each of the n sets S1, . . . ,Sn. The goal
is find a solution S ′ such that wj(S

′) ≤ Bj for all 1 ≤ j ≤ m, provided that such solution exists.
For our purpose, we require the number of constraints to be a constant. This problem is new to
our knowledge, and may be useful in other applications. By Lemma 3 (which will be presented and
proved later), we can find in polynomial time a solution that satisfies one constraint and violates
each of the others by a small factor.

Now come back to the KnapCenter problem. By Lemma 3, line 6 of Algorithm 3 produces in
polynomial time a standard set S that satisfies one constraint and violates each of the others by
a factor of at most 1 + ǫ. (We notice that, when running Algorithm 3 with an incorrect value of
OPT, there may not exist any standard set, in which case the algorithm may return an empty set.
We shall simply ignore such solutions.)

It now only remains to show that, by designating S as the set of centers, the maximum service
cost of any client is at most 3 · OPT. Suppose S ∩ B(i) = {ti} for each i ∈ T . It suffices to prove
that, for each j ∈ V , there exists i ∈ T such that r(j)d(j, ti) ≤ 3 · OPT. We consider two cases.

1. j ∈ T . Since tj ∈ B(j), we have r(j)d(j, tj) ≤ OPT ≤ 3OPT by the definition of B(j).

2. j 6∈ T . Then B(j) ∩ B(i) 6= ∅ for some i ∈ T , otherwise j should be added to T by the
algorithm. Let Q = {i ∈ T | B(i)∩B(j) 6= ∅}. If r(i) < r(j) for all i ∈ Q, then the algorithm

12

Algorithm 4: Algorithm for Robust-KnapCenter

1 Guess the optimal objective value OPT.
2 For each v ∈ V , let B(v)← B(v,OPT) and E(v)← B(v, 3OPT).
3 S ← ∅; C ← ∅ (the points in C are covered and those in V \ C are uncovered).
4 while w(S) < B and V \ C 6= ∅ do

5 Choose i ∈ V \ S that maximizes |B(i)\C|
w(i) .

6 S ← S ∪ {i}; C ← C ∪ E(i) (i.e., mark all uncovered points in E(i) as covered).

7 end

8 return S

will choose j before choosing all i ∈ Q, which contradicts with the assumption that j 6∈ T .
Thus, there exists i ∈ Q for which r(i) ≥ r(j). Consider this particular i, and choose an
arbitrary i′ ∈ B(i) ∩ B(j). We have

r(j)d(j, ti) ≤ r(j)(d(j, i′) + d(i, i′) + d(i, ti)) (triangle inequality)

≤ r(j)d(j, i′) + r(i)d(i, i′) + r(i)d(i, ti) (because r(i) ≥ r(j))

≤ OPT+ OPT+ OPT (due to the definition of disks)

= 3 ·OPT.

Combining the two cases, we have shown that the service cost with centers in S is at most three
times the optimal cost, which completes the proof.

Finally, we need the following Lemma 3, which is used in the above argument. The group
multi-knapsack problem is similar to the multiple knapsack problem (i.e., the knapsack problem
with multiple resource constraints), and the (standard) technique for the latter can be easily adapted
to solve the group multi-knapsack problem (see, e.g., [28, 19]). Another way to deduce Lemma 3 is
by applying the ǫ-approximate Pareto curve method introduced by Papadimitriou and Yannakakis
[27]. For sake of completeness, we give a proof of Lemma 3 in Appendix A.

Lemma 3. For any fixed ǫ > 0, there is a polynomial time algorithm that, given an instance
of group multi-knapsack for which a solution satisfying all weight constraints exists, constructs in
polynomial time a solution that satisfies one constraint and violates each of the others by at most
a factor of 1 + ǫ.

3.2 Dealing with Outliers: Robust-KnapCenter

We now study Robust-KnapCenter, the outlier version of KnapCenter. Here we consider the case
with one knapsack constraint (with weight function w and budget B) and unit demand. Our main
theorem is as follows.

Theorem 6. There is a 3-approximation algorithm for Robust-KnapCenter that violates the knap-
sack constraint by at most a factor of 1 + ǫ for any fixed ǫ > 0.

We present our algorithm for Robust-KnapCenter as Algorithm 4. We assume that B < w(V),
since otherwise the problem is trivial. We also set A/0 := ∞ for A > 0 and 0/0 := 0, which

13

makes line 5 work even if w(i) = 0. Our algorithm can be regarded as a “weighted” version of
that of Charikar et al. [2], but the analysis is much more involved. We next prove the following
theorem, which can be used together with the partial enumeration technique to yield Theorem 6.
Note that, if all clients have unit weight, Theorem 7 will guarantee a 3-approximate solution S with
w(S) < B + 1, which implies w(S) ≤ B. So it actually gives a 3-approximation without violating
the constraint. Thus, our result generalizes that of Charikar et al. [2].

Theorem 7. Given an input of the Robust-KnapCenter problem, Algorithm 4 returns a set S with
w(S) < B +maxv∈V w(v) such that costp(S) ≤ 3OPT.

Proof. We call B(v) the disk of v and E(v) the expanded disk of v. Assume w.l.o.g. that the
algorithm returns S = {1, 2, . . . , q} where q = |S|, and that the centers are chosen in the order
1, 2, . . . , q. We first observe that B(1), . . . ,B(q) are pairwise disjoint, which can be seen as follows.
By standard use of the triangle inequality, we have B(i) ⊆ E(j) and B(j) ⊆ E(i) for any i, j ∈ V
such that B(i) ∩ B(j) 6= ∅. Therefore, if there exists 1 ≤ i < j ≤ q such that B(j) ∩ B(i) 6= ∅, then
all points in B(j) are marked “covered” when choosing i, and hence choosing j cannot cover any
more point, contradicting with the way in which the centers are chosen (note that the algorithm
terminates when all points have been covered). So the q disks B(1), . . . ,B(q) are pairwise disjoint.

For ease of notation, let B(V ′) :=
⋃

v∈V ′ B(v) and E(V ′) :=
⋃

v∈V ′ E(v) for V ′ ⊆ V . By
the condition of the WHILE loop, w({1, . . . , q − 1}) < B, and thus w(S) < B + w(q) ≤ B +
maxv∈V w(v). It remains to prove costp(S) ≤ 3OPT. Note that this clearly holds if the expanded
disks E(1), . . . ,E(q) together cover at least p points. Thus, it suffices to show that |E(S)| ≥ p. If
w(S) < B, then all points in V are covered by E(S) due to the termination condition of the WHILE
loop, and thus |E(S)| = |V | ≥ p. In the rest of the proof, we deal with the case w(S) ≥ B.

For each v ∈ V , let f(v) be the minimum i ∈ S such that B(v) ∩ B(i) 6= ∅; let f(v) = ∞ if no
such i exists (i.e., if disk B(v) is disjoint from all disks centered in S). Suppose O = {o1, o2, . . . , om}
is an optimal solution, in which the centers are ordered such that f(o1) ≤ · · · ≤ f(om). Since the
optimal solution is also feasible, we have |B(O)| ≥ p. Hence, to prove |E(S)| ≥ p, we only need to
show |E(S)| ≥ |B(O)|. For any sets A and B, we have |A| = |A \B|+ |A ∩B|. Therefore,

|E(S)| − |B(O)|

= (|E(S) \ B(O)|+ |E(S) ∩ B(O)|)− (|B(O) \ E(S)|+ |E(S) ∩ B(O)|)

= |E(S) \ B(O)| − |B(O) \ E(S)|

≥ |B(S) \ B(O)| − |B(O) \ E(S)| (because B(S) ⊆ E(S)). (1)

As B(1), . . . ,B(q) are pairwise disjoint,

|B(S) \ B(O)| = | ∪i∈S (B(i) \ B(O))| =
∑

i∈S

|B(i) \ B(O)|,

and

|B(O) \ E(S)| = | ∪mj=1 (B(oj) \ E(S))| ≤
m
∑

j=1

|B(oj) \ E(S)|.

Thus,

|E(S)| − |B(O)| ≥
∑

i∈S

|B(i) \ B(O)| −
m
∑

j=1

|B(oj) \ E(S)|. (2)

14

1 2
3

E1

E2
E3

o1 o2

o3
o4

o5

o6

Figure 2: An example of the algorithm for Robust-KnapCenter. The algorithm returns S = {1, 2, 3}, and

the optimal solution opens {o1, o2, . . . , o6}. Disks and extended disks are represented by (small) circles

and (large) dashed circles, respectively. In this case, we have f(o1) = f(o2) = 1, f(o3) = f(o4) = 2,

f(o5) = f(o6) =∞, and thus t = 5. Then, R(1) = {1, 2},R(2) = {3, 4}, and R(3) = ∅.

Let t be the unique integer in {1, . . . ,m + 1} such that f(oj) ≤ |S| for all 1 ≤ j ≤ t − 1 and
f(oj) =∞ for all t ≤ j ≤ m. (That is, each disk B(oj) (1 ≤ j ≤ t− 1) intersects with B(i) for some
i ∈ S, while the remaining B(ot), . . . ,B(om) are disjoint from all the disks of points in S. Such t
exists because f(o1) ≤ · · · ≤ f(om). See Figure 2 for an example.) Then, for all 1 ≤ j ≤ t− 1, we
have B(oj) ∩ B(f(oj)) 6= ∅, and thus B(oj) ⊆ E(f(oj)) ⊆ E(S), implying that |B(oj) \ E(S)| = 0 for
all 1 ≤ j ≤ t− 1. Combining with the inequality (2), we have

|E(S)| − |B(O)| ≥
∑

i∈S

|B(i) \ B(O)| −
m
∑

j=t

|B(oj) \ E(S)|. (3)

Hence, it suffices to prove that

∑

i∈S

|B(i) \ B(O)| −
m
∑

j=t

|B(oj) \ E(S)| ≥ 0. (4)

The inequality is trivial when t = m + 1. Thus, we assume in what follows that t ≤ m, i.e.,
B(om) is disjoint from B(1),B(2), . . . ,B(q). Before proving (4), we introduce some notations. For
each i ∈ S, define R(i) := {j | 1 ≤ j ≤ m; f(oj) = i}, and let l(i) := min{j | j ∈ R(i)} and
q(i) := max{j | j ∈ R(i)} be the minimum index and maximum index in R(i), respectively (let
l(i) = q(i) = ∞ if R(i) = ∅). By the definitions of f(·) and t, each R(i) is a set of consecutive
integers (or empty), and {R(i)}i∈S forms a partition of {1, 2, . . . , t− 1}. Also, q(i) = l(i+ 1)− 1 if
l(i+ 1) 6=∞. See Figure 2 for an illustration of the notations.

Consider an arbitrary i ∈ S. For each j such that l(i + 1) ≤ j ≤ t− 1, we know that j ∈ R(i′)
for some i′ > i, i.e., f(oj) = i′ > i, and thus B(oj) ∩ B(i) = ∅. By the definition of t, we also have
B(oj) ∩ B(i) = ∅ for all t ≤ j ≤ m. Therefore,

B(oj) ∩ B(i) = ∅ for all j s.t. min{t, l(i+ 1)} ≤ j ≤ m. (5)

(Here we take the minimum of l(i+ 1) and t because l(i+ 1) may be ∞.)
We next try to lower-bound |B(i) \ B(O)| in order to establish (4). Equality (5) tells us that

B(oj) ∩ B(i) 6= ∅ implies j ∈ R(1) ∪ · · · ∪ R(i). In consequence,

B(i) \ B(O) = B(i) \ ∪mj=1B(oj) = B(i) \ ∪j∈R(1)∪···∪R(i)B(oj). (6)

15

For each j ∈ R(i′) with 1 ≤ i′ ≤ i−1, B(oj)∩B(i
′) 6= ∅, and thus B(oj) ⊆ E(i′) ⊆ E({1, 2, . . . , i−1}).

For convenience, define E<i := E({1, 2, . . . , i− 1}). Then, from (6) we get B(i) \ B(O) ⊇ B(i) \
(E<i ∪

⋃

j∈R(i) B(oj)), and hence

|B(i) \ B(O)| ≥ |B(i) \ (E<i ∪
⋃

j∈R(i)

B(oj))|

= |B(i) \ (E<i ∪
⋃

j∈R(i)

(B(oj) \ E<i))| (because A ∪
⋃

i

Bi = A ∪
⋃

i

(Bi \ A))

= |(B(i) \ E<i) \
⋃

j∈R(i)

(B(oj) \ E<i)| ≥ |B(i) \ E<i| −
∑

j∈R(i)

|B(oj) \ E<i|. (7)

Now consider the particular execution of line 5 in which i is chosen and added to S. Note that
(5) holds for all i ∈ S. Thus, for all 1 ≤ i′ ≤ i− 1 and min{t, l(i′ + 1)} ≤ j ≤ m, B(oj) is disjoint
from B(i′), which in particular implies oj 6∈ B(i′). By considering all i′ ∈ {1, . . . , i− 1} and noting
that l(i) ≥ l(i′ + 1), we have oj 6∈ B({1, 2, . . . , i − 1}) for all min{t, l(i)} ≤ j ≤ m. This further
indicates that {1, 2, . . . , i − 1} ∩ {oj | min{t, l(i)} ≤ j ≤ m} = ∅. Recall that 1, 2, . . . , i − 1 are all
the points added to S before i. Therefore, no point in {oj | min{t, l(i)} ≤ j ≤ m} was chosen
before i. By our way of choosing centers (see line 5), we have

|B(i) \ E<i|

w(i)
≥
|B(oj) \ E<i|

w(oj)
for all j s.t. min{t, l(i)} ≤ j ≤ m. (8)

Hence, for all j ∈ R(i),

|B(oj) \ E<i| ≤
w(oj)

w(i)
|B(i) \ E<i|.

Substituting the above inequality into (7) gives

|B(i) \ B(O)| ≥ |B(i) \ E<i| −
∑

j∈R(i)

w(oj)

w(i)
|B(i) \ E<i|

=

(

1−

∑

j∈R(i)w(oj)

w(i)

)

|B(i) \ E<i|. (9)

By (8) we also have

|B(i) \ E<i| ≥ w(i) · max
t≤j≤m

|B(oj) \ E<i|

w(oj)
≥ w(i) ·

∑m
j=t |B(oj) \ E<i|
∑m

j=tw(oj)
,

where we use the inequality maxj
Aj

Bj
≥

∑
j Aj∑
j Bj

when Bj ≥ 0 for all j. Plugging this inequality into

(9) and noting that E<i ⊆ E(S), we obtain:

|B(i) \ B(O)| ≥

(

1−

∑

j∈R(i) w(oj)

w(i)

)

w(i) ·

∑m
j=t |B(oj) \ E<i|
∑m

j=tw(oj)

=
w(i)−

∑

j∈R(i) w(oj)
∑m

j=tw(oj)
·

m
∑

j=t

|B(oj) \ E<i|

≥
w(i)−

∑

j∈R(i) w(oj)
∑m

j=tw(oj)
·

m
∑

j=t

|B(oj) \ E(S)|. (10)

16

Applying (10) for all i ∈ S and summing the resulting inequalities up, we get

∑

i∈S

|B(i) \ B(O)| ≥

∑

i∈S(w(i) −
∑

j∈R(i)w(oj))
∑m

j=tw(oj)
·

m
∑

j=t

|B(oj) \ E(S)|

=

∑

i∈S w(i) −
∑

i∈S

∑

j∈R(i)w(oj)
∑m

j=tw(oj)
·

m
∑

j=t

|B(oj) \ E(S)|

=
w(S) −

∑t−1
j=1w(oj)

∑m
j=tw(oj)

·
m
∑

j=t

|B(oj) \ E(S)|, (11)

where the last equality holds because {R(i)}i∈S is a partition of {1, 2, . . . , t− 1}.
Recall that we are dealing with the case of w(S) ≥ B. Since O is an optimal solution meeting

the weight constraint, w(O) =
∑m

j=1w(oj) ≤ B ≤ w(S). Therefore, by (11) we have

∑

i∈S

|B(i) \ B(O)| ≥

∑m
j=1w(oj)−

∑t−1
j=1w(oj)

∑m
j=tw(oj)

·
m
∑

j=t

|B(oj) \ E(S)| =
m
∑

j=t

|B(oj) \ E(S)|,

which immediately gives (4). This completes the proof of Theorem 7.

At the end of this section, we prove Theorem 6 using Theorem 7 and the partial enumeration
technique. Fix a parameter ǫ > 0. Given an instance I of Robust-KnapCenter, call a point v ∈ V
heavy if w(v) ≥ ǫ · B. Let O ⊆ V be the set of centers taken by the optimal solution of I (without
violating the knapsack constraint), and H be the set of heavy centers in O. Let OPT denote
the optimum objective value. Clearly, |H| ≤ B/(ǫ · B) = 1/ǫ. We guess the elements of H by
trying all possible cases (at most |V |1/ǫ = |V |O(1) possibilities) and using the best solution. We
then construct a new instance I ′ of Robust-KnapCenter as follows: the metric space is the same
as that of I, the weight function w′ is defined as w′(v) = 0 for v ∈ H and w′(v) = w(v) for
v ∈ V \ H, and the weight budget is B′ = B − w(H). It is easy to see that opening O in I ′ gives
a feasible solution of cost OPT. Note that the maximum weight of any point in I ′ is at most ǫ · B.
Hence, by Theorem 7, we can find in polynomial time a solution S such that cost(S) ≤ 3OPT and
w′(S) < B−w(H)+ǫ·B. We use S as our solution to the original instance I. Then, cost(S) ≤ 3OPT
and w(S) ≤ w′(S) + w(H) < (1 + ǫ)B. The proof is complete.

4 Concluding Remarks and Open Problems

We gave a 3-approximation algorithm for MatCenter and the best known inapproximability bound
is 2−ǫ. For Robust-MatCenter, we give a 7-approximation while the current best known lower bound
is 3 − ǫ due to the hardness of robust k-center with forbidden centers [2]. It would be interesting
to close these gaps. (Note that MatCenter includes as a special case the k-center problem with
forbidden centers, i.e., some points are not allowed to be chosen as centers. It is known that
another generalization of the latter, namely the k-supplier problem, is NP-hard to approximate
within 3 − ǫ [18].) For Robust-KnapCenter, it is interesting to explore whether constant factor
approximation exists while not violating the knapsack constraint. It is also open whether there is
a constant factor approximation for the demand version (even for the unit-weight case). Finally,
extending our results for Robust-KnapCenter to the multi-constraint case seems intriguing and may
require essentially different ideas.

17

References

[1] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D. Thomas, and A. Zhu.
Achieving anonymity via clustering. In PODS, pages 153–162, 2006.

[2] M. Charikar, S. Khuller, D. Mount, and G. Narasimhan. Algorithms for facility location
problems with outliers. In SODA, pages 642–651, 2001.

[3] M. Charikar and S. Li. A dependent LP-rounding approach for the k-median problem. In
ICALP, pages 194–205, 2012.

[4] S. Chechik and D. Peleg. The fault tolerant capacitated k-center problem. In SIROCCO,
pages 13–24, 2012.

[5] D. Chen and H. Wang. Efficient algorithms for the weighted k-center problem on a real line.
In ISAAC, pages 584–593, 2011.

[6] K. Chen. A constant factor approximation algorithm for k-median clustering with outliers. In
SODA, pages 826–835, 2008.

[7] J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Kortsarz, R. Krauthgamer, and J. Naor.
Asymmetric k-center is log∗ n-hard to approximate. J. ACM, 52(4):538–551, 2005.

[8] R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM, 34(1):200–
208, 1987.

[9] M. Cygan, M. Hajiaghayi, and S. Khuller. LP rounding for k-centers with non-uniform hard
capacities. In FOCS, pages 273–282, 2012.

[10] J. Edmonds and D. Fulkerson. Bottleneck extrema. J. Combin. Theory, 8(3):299–306, 1970.

[11] G. Frederickson. Parametric search and locating supply centers in trees. In WADS, pages
299–319, 1991.

[12] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[13] D. Golovin, A. Gupta, A. Kumar, and K. Tangwongsan. All-norms and all-Lp-norms approx-
imation algorithms. In FSTTCS, pages 199–210, 2008.

[14] T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci.,
38:293–306, 1985.

[15] F. Grandoni and R. Zenklusen. Approximation schemes for multi-budgeted independence
systems. In ESA, pages 536–548, 2010.

[16] M. Hajiaghayi, R. Khandekar, and G. Kortsarz. Budgeted red-blue median and its general-
izations. In ESA, pages 314–325, 2011.

[17] D. Hochbaum and D. Shmoys. A best possible heuristic for the k-center problem. Math. Oper.
Res., pages 180–184, 1985.

18

[18] D. Hochbaum and D. Shmoys. A unified approach to approximation algorithms for bottleneck
problems. J. ACM, 33(3):533–550, 1986.

[19] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Verlag, 2004.

[20] S. Khuller, R. Pless, and Y. Sussmann. Fault tolerant k-center problems. Theor. Comput.
Sci., 242(1–2):237–245, 2000.

[21] S. Khuller, B. Saha, and K. K. Sarpatwar. New approximation results for resource replication
problems. In APPROX-RANDOM, volume 7408 of LNCS, pages 218–230. Springer, 2012.

[22] R. Krishnaswamy, A. Kumar, V. Nagarajan, Y. Sabharwal, and B. Saha. The matroid median
problem. In SODA, 2011.

[23] A. Kumar. Constant factor approximation algorithm for the knapsack median problem. In
SODA, pages 824–832, 2012.

[24] J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko. Non-monotone submodular maxi-
mization under matroid and knapsack constraints. In STOC, pages 323–332, 2009.

[25] J. Li, K. Yi, and Q. Zhang. Clustering with diversity. In ICALP, pages 188–200, 2010.

[26] R. McCutchen and S. Khuller. Streaming algorithms for k-center clustering with outliers and
with anonymity. In RANDOM, pages 165–178, 2008.

[27] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and optimal
access of Web sources. In FOCS, pages 86–92, 2000.

[28] D. Pisinger. Algorithms for Knapsack Problems. PhD thesis, Department of Computer Science,
University of Copenhagen, 1995.

[29] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag, Berlin,
2003.

[30] J. Vondrák, C. Chekuri, and R. Zenklusen. Submodular function maximization via the multi-
linear relaxation and contention resolution schemes. In STOC, pages 783–792, 2011.

[31] H. Zarrabi-Zadeh and A. Mukhopadhyay. Streaming 1-center with outliers in high dimensions.
In CCCG, pages 83–86, 2009.

[32] R. Zenklusen. Matroidal degree-bounded minimum spanning trees. In SODA, pages 1512–1521,
2012.

A Proof of Lemma 3

Let I = ({Si}1≤i≤n, {wj ,Bj}1≤j≤m) be an instance of the group multi-knapsack problem, for which
there exists a solution satisfying all the weight constraints; we will call such a solution good. Let
S =

⋃n
i=1 Si and wmax = maxv∈S;1≤j≤mwj(v). When m = 1, we can simply choose from each Si

the element v ∈ Si with the smallest w1(v). In what follows, we assume m ≥ 2. If there exists
1 ≤ j ≤ m such that wmax > Bj, then the element having the weight wmax cannot appear in any

19

good solution, and we will modify the instance by removing it from S. Hence, we also assume that
wmax ≤ Bj for all 1 ≤ j ≤ m.

We apply the scaling technique that has been widely used in the design of PTASs for knapsack-
like problems. Fix ǫ > 0, and define A := ǫ · wmax/n. For each v ∈ S, define

w′
j(v) = ⌊wj(v)/A⌋ for all 1 ≤ j ≤ m− 1, and w′

m(v) = wm(v).

Also define
B′j = min{⌊Bj/A⌋, ⌊n

2/ǫ⌋} for all 1 ≤ j ≤ m− 1, and B′m = Bm.

(The choice of the “special” index m can be arbitrary; it indicates the constraint that we wish to
satisfy.) We have w′

j(v) ∈ {0, 1, . . . ,K} for all 1 ≤ j ≤ m− 1 and v ∈ S, where K = ⌊wmax/A⌋ =
⌊n/ǫ⌋. Create a new instance I ′ = ({Si}1≤i≤n, {w

′
j ,B

′
j}1≤j≤m)). For the original instance I, we

know that there exists a good solution T ⊆ S. Using the inequality ⌊a⌋+ ⌊b⌋ ≤ ⌊a+ b⌋, we obtain
that for each 1 ≤ j ≤ m− 1,

w′
j(T) =

∑

v∈T

⌊wj(v)/A⌋

≤ min{⌊
∑

v∈T

wj(v)/A⌋, n · ⌊n/ǫ⌋}

≤ min{⌊Bj/A⌋, ⌊n
2/ǫ⌋}

= B′j .

Also, w′
m(T) = wm(T) ≤ Bm = B′m. Therefore, T is also a good solution of I ′. For i ∈ {1, 2, . . . , n},

a subset T ⊆ S is called i-standard if T consists of exactly one element from each of the i sets
S1,S2, . . . ,Si. Thus a solution of I ′ is just an n-standard subset, and vice versa. For each
tuple (i, p1, p2, . . . , pm−1) where i ∈ {1, . . . , n} and (∀1 ≤ j ≤ m − 1)pj ∈ {0, 1, . . . ,B

′
j}, let

F (i, p1, p2, . . . , pm−1) denote the minimum possible value of pm for which there exists an i-standard
subset T such that wj(T) ≤ pj for all 1 ≤ j ≤ m, and let T (i, p1, p2, . . . , pm−1) be an (arbitrary)
such i-standard subset. If such pm does not exist, then we let F (i, p1, p2, . . . , pm−1) = ∞ and
T (i, p1, p2, . . . , pm−1) = ∅. Since I

′ admits a good solution, it is easy to see that

F (n,B′1,B
′
2, . . . ,B

′
m−1) ≤ B

′
m.

Our goal is thus to find T (n,B′1, . . . ,B
′
m−1). Note that the number of tuples (i, p1, . . . , pm−1) is at

most n ·
∏m−1

j=1 B
′
j ≤ n(n2/ǫ)m−1 = nO(1), since m and ǫ are both constants.

We now compute all F (i, p1, p2, . . . , pm−1) and find the corresponding i-standard subsets by
dynamic programming. The base case is i = 1. For each tuple (1, p1, p2, . . . , pm−1), let R = {v ∈
S1 | (∀1 ≤ j ≤ m− 1)wj(v) ≤ pj}. If R 6= ∅, then clearly F (1, p1, . . . , pm−1) = minv∈R wm(v), and
we set T (1, p1, . . . , pm−1) to be the vertex v ∈ R that achieves the minimum wm(v). If R = ∅, then
F (1, p1, . . . , pm−1) =∞ and T (1, p1, . . . , pm−1) = ∅.

Next we derive the transition function for computing F (i, p1, p2, . . . , pm−1) for i ≥ 2. We
enumerate all possible v ∈ Si that may belong to T (i, p1, . . . , pm−1). Then, it is easy to see that

F (i, p1, . . . , pm−1) = min
v∈Si

{wm(v) + F (i− 1, p1 − w1(v), p2 − w2(v), . . . , pm−1 − wm−1(v))}.

(We assume F (i′, p′1, . . . , p
′
m−1) =∞ if p′j < 0 for some j.)

20

If F (i, p1, . . . , pm−1) =∞, then we let T (i, p1, . . . , pm−1) = ∅; otherwise, assuming the minimum
value is attained at v ∈ Si, we set

T (i, p1, . . . , pm−1) = {v} ∪ T (i− 1, p1 − w1(v), . . . , pm−1 − wm−1(v)).

In this way, we can correctly compute the values of every F (i, p1, . . . , pm−1) and find the set
T (i, p1, . . . , pm−1) witnessing the value. Since there are only nO(1) tuples and the time spent on
each tuple is polynomial in the number of elements, the computation can be done in polynomial
time.

As argued before, T = T (n,B′1,B
′
2, . . . ,B

′
m−1) is a good solution to I ′, provided that the original

instance I has a good solution. Now we take T as our solution to I. (We note that, if the original
instance I is not guaranteed to have a good solution, then we may have F (n,B′1, . . . ,B

′
m−1) > B

′
m,

in which case we will simply return an empty set. This can happen when Algorithm 3 is executed
with an incorrect value of OPT.) We have wm(T) = w′

m(T) ≤ B′m = Bm. For each 1 ≤ j ≤ m− 1,
w′
j(v) = ⌊wj(v)/A⌋ > wj(v)/A − 1, and thus we have

∑

v∈T

wj(v) ≤
∑

v∈T

(A · w′
j(v) +A) = A ·

∑

v∈T

w′
j(v) + nA

≤ A · B′j + n · ǫ · wmax/n

≤ Bj + ǫ · wmax

≤ (1 + ǫ)Bj (since wmax ≤ Bj).

Therefore, T is a solution of I that satisfies one of the constraints and violates the others by at
most a factor of 1+ ǫ. (It is easy to see that, by modifying the definitions of {w′

j} and {B
′
j}, we can

make any one of the constraints to be the satisfied one.) The proof of Lemma 3 is thus complete.

21

	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 The Matroid Center Problem
	2.1 NP-hardness of Matroid Centers on a Line
	2.2 A 3-Approximation for MatCenter
	2.3 Dealing with Outliers: Robust-MatCenter

	3 The Knapsack Center Problem
	3.1 Approximability of KnapCenter
	

	4 Concluding Remarks and Open Problems
	A Proof of Lemma ??

