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Abstract. We considerk-Facility Location games, wheren strategic agents report their locations on the
real line, and a mechanism maps them tok facilities. Each agent seeks to minimize his connection cost,
given by a nonnegative increasing function of his distance to the nearest facility. Departing from previous
work, that mostly considers the identity cost function, we are interested in mechanisms without payments
that are (group) strategyproof for any given cost function,and achieve a good approximation ratio for the
social cost and/or the maximum cost of the agents.
We present a randomized mechanism, called EQUAL COST, which is group strategyproof and achieves a
bounded approximation ratio for allk andn, for any given concave cost function. The approximation ratio
is at most2 for MAX COST and at mostn for SOCIAL COST. To the best of our knowledge, this is the first
mechanism with a bounded approximation ratio for instanceswith k ≥ 3 facilities and any number of agents.
Our result implies an interesting separation between deterministic mechanisms, whose approximation ratio
for MAX COST jumps from2 to unbounded whenk increases from2 to 3, and randomized mechanisms,
whose approximation ratio remains at most2 for all k. On the negative side, we exclude the possibility
of a mechanism with the properties of EQUAL COST for strictly convex cost functions. We also present
a randomized mechanism, called PICK THE LOSER, which applies to instances withk facilities and only
n = k + 1 agents. For any given concave cost function, PICK THE LOSERis strongly group strategyproof
and achieves an approximation ratio of2 for SOCIAL COST.
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1 Introduction

We considerk-Facility Location games, wherek facilities are placed on the real line based on the
preferences ofn strategic agents. Such problems are motivated by natural scenarios in Social Choice,
where the government plans to build a fixed number of public facilities in an area (see e.g., [12]). The
choice of the locations is based on the preferences of local people, oragents. Each agent reports his
ideal location, and the government applies a (deterministic or randomized)mechanismthat maps the
agents’ preferences tok facility locations.

The agents evaluate the outcome of the mechanism according to their connection cost, given by
a nonnegative increasing functionc(d) of the distanced of their ideal location to the nearest facility.
Agents seek to minimize their connection cost, and may misreport their ideal locations in an attempt of
manipulating the mechanism. Therefore, the mechanism should bestrategyproof, i.e., should ensure
that no agent can benefit from misreporting his location, or even group strategyproof, i.e., should
ensure that for any coalition of agents misreporting their locations, at least one of them does not
benefit. The government’s goal is to minimize an objective function of the agents’ connection cost.
Most prominent among them are the objective of SOCIAL COST, which considers the total cost of
the agents, and the objective of MAX COST, which considers the maximum cost of an agent. So, in
addition to (group) strategyproofness, the mechanism should either optimize or achieve a reasonable
approximation to the designated objective function, thus ensuring that the outcome is socially efficient.

Previous Work. The numerous applications and the elegance of the model haveattracted a signifi-
cant volume of research on the problem. In Social Choice, theemphasis has been on characterizing
the class of (group) strategyproof mechanisms for locatinga single facility if the agents’ preferences
aresingle-peaked. Roughly speaking, an agent has single-peaked preferencesif he has an ideal loca-
tion (or peak), and consistently prefers less the locations farther fromit. However, the strength of his
preference for locations closer to his peak is not explicitly quantified by any function of the distance.
For general single-peaked preferences, a classical resultof Moulin [13] shows that the class of deter-
ministic strategyproof mechanisms for locating a single facility on the line coincides with the class
of generalized median mechanisms (see also the surveys of Barberá [2] and Sprumont [18], and [14,
Chapter 10]). Schummer and Vohra [17] extended this characterization to tree metrics, and proved
that for non-tree metrics, any onto strategyproof mechanism must be a dictatorship. More recently,
Dokow et al. [3] obtained similar characterizations for locating a single facility on the discrete line
and on the discrete circle.

Adopting an optimization viewpoint to Facility Location games, Procaccia and Tennenholtz [16]
introduced the framework ofapproximate mechanism design without money. The basic idea is to
consider game-theoretic versions of optimization problems, such ask-Facility Location, where effi-
ciency is quantified by an objective function (instead of efficiency related properties, such as onto,
non-dictatorship, and Pareto-efficiency, typically studied in Social Choice). Then, any reasonable ap-
proximation to the optimal solution can be regarded as a socially desirable outcome, and one seeks
to determine the best approximation ratio achievable by strategyproof mechanisms. As for the prefer-
ences of the agents, with respect to which strategyproofness is defined, this line of research adopted
the standard definition of Facility Location problems from Operations Research (see e.g., [11]). Thus,
it implicitly abandoned the setting of general single-peaked preferences, in favor of the more restricted
(and technically easier to handle) case where the agents’ cost is given by a linear functionc(d) = αd
of their distanced to the nearest facility. Translated into this framework, the results of [13,17] imply
a deterministic strategyproof mechanism that minimizes the SOCIAL COST for 1-Facility Location
on the line and in tree metrics. On the negative side, the impossibility result of [17] implies that the
best approximation ratio achievable for the objective of SOCIAL COST by deterministic strategyproof
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MAX COST

k = 1 k = 2 2 < k < n− 1 k = n− 1

Deterministic 2 [16] 2 [16] ∞ [6] ∞ [6]
Randomized 1.5 [16] [1.5, 5/3] [16] [1.5, 2] [here] 1.5 [4]

SOCIAL COST

k = 1 k = 2 2 < k < n− 1 k = n− 1

Deterministic 1 [13] n− 2 [6], [16] ∞ [6] ∞ [6]
Randomized 1 [13] [1.045, 4] [10], [9] [1.045,n] [here] [1.045, 2] [here]

Fig. 1. Summary of known results on the approximability ofk-Facility Location on the line (with linear cost functions)for
the objectives of MAX COST and SOCIAL COST. In each cell, we have either the precise approximation ratio (if known)
or the interval determined by the best known lower and upper bounds. In cells with two references, the first is for the
lower bound and the second for the upper bound. We note that the lower bound on the approximation ratio of deterministic
mechanisms fork ≥ 3 is only shown for anonymous mechanisms. The randomized upper bounds proven in this work are
shown in bold and hold for any concave cost function.

mechanisms for 1-Facility Location in general metrics isn − 1. However, the explicit quantification
of agents’ preferences now allows for randomized mechanisms that are strategyproof with respect to
the agents’ expected cost (a.k.a. incentive compatible in expectation, see e.g., [14, Section 9.5.6]) and
may achieve better approximation ratios.

Since [16], there has been a considerable interest in quantifying the best approximation ratio
achievable by strategyproof mechanisms fork-Facility Location on the line and in general metric
spaces. As a result, the approximability ofk-Facility Location (with linear cost functions) by deter-
ministic and randomized strategyproof mechanisms has become well understood in many interesting
cases (see also Fig. 1). The main message is that deterministic strategyproof mechanisms can only
achieve a bounded approximation ratio if we have at most2 facilities [16,6]. On the other hand, ran-
domized mechanisms achieve better approximation ratios for 2-Facility Location, and also a bounded
approximation ratio if we havek ≥ 2 facilities and onlyn = k+1 agents [4]. Notably, such instances
are known to be hard for deterministic mechanisms. In particular, the inapproximability ofk-Facility
Location by anonymous deterministic strategyproof mechanisms, for allk ≥ 3, was proved in [6] for
instances with onlyn = k + 1 agents.

Motivation and Contribution. Our work is motivated by two natural questions related to approximate
mechanism design without money fork-Facility Location. The first question is about the approxima-
bility of k-Facility Location by randomized strategyproof mechanisms for instances with any number
of facilities and any number of agents. Prior to this work, wehave only known randomized mecha-
nisms with a bounded3 approximation ratio if we have either at most 3 facilities ork facilities and
only n = k + 1 agents. Most importantly, all the randomized upper bounds in Fig. 1 are achieved
by mechanisms that balance between strategyproofness and efficiency using different approaches (see
e.g., [16,9,4]).

The second question is whether the restriction to linear cost functions is a necessary price to pay
for adopting the elegant optimization framework of Procaccia and Tennenholtz [16] and aiming at
a reasonable approximation ratio. In fact, we can imagine a few natural scenarios where the agents’
cost is best described by a convex or a concave non-decreasing cost functionc(d) of their distanced
to the nearest facility. For example, a convex cost functioncaptures the fact that the growth rate of

3 The approximation ratio of a mechanism fork-Facility Location is bounded if it is a function ofn andk. We highlight
that this property is essentially objective-independent,since any mechanism with a bounded approximation ratio for e.g.,
MAX COST also has a bounded approximation for SOCIAL COST and for the objective of minimizing theLp norm of
the agents’ costs, for anyp ≥ 1, and vice versa.
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the people’s disutility from commuting increases with the distance (e.g., in addition to cost and time
considerations, people get more and more tired if they commute over long distances). On the other
hand, a concave cost function captures the fact that the growth rate of the traveling time decreases
with the distance (e.g., people walk over short distances, bike over medium distances, drive over long
distances, and take a plane over really long ones). To a certain extent, a setting where the agents’ cost
function is not fixed, but is given as part of the input, would be closer to the setting of general single-
peaked preferences in Social Choice. Then, a mechanism should be strategyproof, or even group
strategyproof, for any given cost functionc, just as generalized median mechanisms are strategyproof
for any collection of single-peaked preferences, while theapproximation ratio may also depend on
some quantitative properties (e.g., the derivative) ofc. Notably, this holds for the class of percentile
mechanisms [19], which decide on the facility locations based on the ordering of the agents on the
line, are group strategyproof, and include the optimal (wrt. the approximation ratio for linear cost
functions) deterministic mechanisms for1 and2-Facility Location on the line. However, percentile
mechanisms have an unbounded approximation ratio for allk ≥ 3. In contrast, the strategyproofness
of known randomized mechanisms crucially depends on the linearity of the cost function (see e.g.,
[16, Mechanism 1] which is not strategyproof e.g., forc(d) =

√
d).

In this work, we make significant progress in both research directions above. Our main technical
contribution consists of two randomized mechanisms, called EQUAL COST and PICK THE LOSER,
that are group strategyproof and achieve a bounded approximation ratio for any number of facilities
and any given concave cost function.

EQUAL COST, presented in Section 3, applies to instances with any number of facilitiesk and any
number of agentsn, and is the first (group) strategyproof mechanism with a bounded approximation
ratio for all k andn. Its approximation ratio is at most2 for MAX COST and at mostn for SOCIAL

COST, for all concave cost functionsc. Combined with the lower bound of [16] for the objective of
MAX COST, this implies that the best approximation ratio achievableby randomized mechanisms for
k-Facility Location on the line and is at least1.5 and at most2, for all k and for all concave cost
functions. Moreover, we obtain an interesting separation between deterministic mechanisms, whose
approximation ratio for MAX COST jumps from2 to unbounded whenk increases from2 to 3, and
randomized mechanisms, whose approximation ratio remainsa small constant for allk.

From a technical viewpoint, EQUAL COST works by equalizing the expected cost of all agents.
The mechanism first covers the agents’ locations withk disjoint intervals of lengthℓ, whereℓ is chosen
so thatc(ℓ) is at most twice the optimal maximum cost of an agent. Then, taking the cost function
c into account, it computes a random variableX in [0, ℓ], so that all locationsx ∈ [0, ℓ] have the
same expected cost, underc, if x is connected to a facility distributed in[0, ℓ] according toX. Finally,
EQUAL COST places a facility in each interval according to the random variableX so that all agents
have an expected cost equal to the expectation ofc(X).

The key technical claim in the analysis of EQUAL COST is that if the cost functionc is concave
and piecewise linear, a random variableX with the desired properties exists and can be computed
efficiently as the solution to a homogeneous system of linearequations (Lemma 3.2). This claim can
be generalized to any continuous concave function, but the technical details have to do with techniques
for the solution of integral equations and are beyond the scope of this work. We show that EQUAL

COST is (resp. strongly) group strategyproof for any given (resp. strictly) concave cost functionc, and
that the agents’ expected cost is at most the maximum cost of an agent in the optimal solution for
the objective of MAX COST (Lemma 3.5). In addition to implying the approximation guarantees, the
upper bound on the expected cost of the agents indicates thatthe facility allocation of EQUAL COST

is fair in expectation, and does not unnecessarily increasethe agents’ disutility.
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To demonstrate the natural behavior of EQUAL COST for typical cost functions, we derive the
exact form of the random variableX for three important cases: linear cost functions, piecewise linear
cost functions with two pieces, and exponential cost functions of the formc(d) = 1−e−λd (Section 4).
Moreover, we show how to implement EQUAL COST if the agents and the facilities should lie in a
bounded interval (Section 5). This implies that EQUAL COST can be applied to instances where the
agents lie on a circle metric, with the same approximation guarantees, but rather surprisingly, with
group strategyproofness carrying over only if the number offacilities is even.

On the negative side, we exclude the possibility of a mechanism with the properties of EQUAL

COST for strictly convex cost functions (Section 5.2). Specifically, we show that the expected cost of
the agents in the same interval cannot be equalized if the cost functionc is strictly convex. Moreover,
employing an exponential cost function, we show (Lemma 5.2)that there does not exist a randomized
strategyproof mechanism with a bounded approximation ratio for any given convex cost function (note
that the approximation ratio here may also depend on the costfunction).

In Section 6, we focus on the simpler and elegant setting where we havek facilities and only
n = k + 1 agents. This setting was motivated and studied in [4], and deserves special attention
not only because such instances are among the hardest ones for deterministic mechanisms (see e.g.,
[6, Theorem 7.1]), but also because they make EQUAL COST perform poorly for the objective of
SOCIAL COST. We present the PICK THE LOSERmechanism that allocates facilities to all but a single
agent, designated as the loser. The probability distribution according to which the loser is chosen is
motivated by the probability distribution used by [8] for scheduling on selfish unrelated machines.
Our key technical contribution here is to show that PICK THE LOSER is strongly group strategyproof
for any given concave cost function (Lemma 6.1). We also showthat PICK THE LOSER achieves
an approximation ratio of2 for the objective of SOCIAL COST. Thus, we significantly improve on
the previously best known approximation ratio ofn/2 achieved by the INVERSELY PROPORTIONAL

mechanism of [4] for this class of instances. Moreover, the small approximation ratio of PICK THE

LOSERnicely complements the poor performance of EQUAL COST for such instances.

Other Related Work. For the objective of MAX COST, Alon et al. [1] almost completely character-
ized the approximation ratios achievable by randomized anddeterministic mechanisms for 1-Facility
Location in general metrics and rings. For the objective of SOCIAL COST, Nissim et al. [15] and Fo-
takis and Tzamos [7] considered imposing randomized mechanisms that achieve an additive approx-
imation ofo(n) and an approximation ratio of4k for k-Facility Location on the line and in general
metric spaces, respectively. For1-Facility Location on the line and the objective of minimizing theL2

norm of the agents’ distances to the facility, Feldman and Wilf [5] proved that the best approximation
ratio is1.5 for randomized and2 for deterministic mechanisms. Moreover, they presented a class of
randomized mechanisms that includes all known strategyproof mechanisms for 1-Facility Location on
the line.

2 Notation, Definitions, and Preliminaries

For a random variableX, we letIE[X] denote theexpectationof X. For an eventE in a sample space,
we letIPr[E] denote the probability thatE occurs.

Instances.We considerk-Facility Location withk ≥ 1 facilities andn ≥ k + 1 agents on the real
line. We letN = {1, . . . , n} be the set of agents. Each agenti ∈ N resides at a locationxi ∈ IR,
which is i’s private information. Aninstanceis a tuple(x, c), wherex = (x1, . . . , xn) ∈ IRn is the
agents’ locations profile andc : IR≥0 7→ IR≥0 is a cost function that gives the connection cost of each
agent. The cost functionc is public knowledgeand the same for all agents. Normalizingc, we assume
thatc(0) = 0. If the cost functionc is clear from the context, we let an instance simply consist of x.
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For ann-tuplex = (x1, . . . , xn) ∈ IRn, we letx−i = (x1, . . . , xi−1, xi+1, . . . , xn) bex without
xi. For a non-empty setS of indices, we letxS = (xi)i∈S andx−S = (xi)i 6∈S . We write(x−i, a) to
denote the tuplex with a in place ofxi, (x−{i,j}, a, b) to denote the tuplex with a in place ofxi and
b in place ofxj , and so on.

Mechanisms.A deterministic mechanismF for k-Facility Location maps an instance(x, c) to ak-
tuple (y1, . . . , yk) ∈ IRk, y1 ≤ · · · ≤ yk, of facility locations. We letF (x, c) (or simply F (x),
wheneverc is clear from the context) denote the outcome ofF for instance(x, c), and letFj(x, c)
denoteyj, i.e., thej-th smallest coordinate inF (x, c). We writey ∈ F (x, c) to denote thatF (x, c)
has a facility at locationy. A randomized mechanismF maps an instance(x, c) to a probability
distribution overk-tuples(y1, . . . , yk) ∈ IRk.

Connection Cost, Social Cost, Maximum Cost.Given ak-tuple y = (y1, . . . , yk), y1 ≤ · · · ≤
yk, of facility locations, the connection cost of agenti with respect toy, denotedcost(xi,y), is
cost(xi,y) = c(min1≤j≤k |xi − yj|). Given a deterministic mechanismF and an instance(x, c), we
let cost(xi, F (x, c)) (or simply,cost(xi, F (x)), if c is clear from the context) denote the connection
cost of agenti with respect to the outcome ofF (x, c). If F is a randomized mechanism, the expected
connection cost of agenti is

cost(xi, F (x, c)) = IEy∼F (x,c)[cost(xi,y)]

The MAX COST of a deterministic mechanismF for an instance(x, c) is

MC[F (x, c)] = maxi∈N cost(xi, F (x, c))

The expected MAX COST of a randomized mechanismF for an instance(x, c) is

MC[F (x, c)] = IEy∼F (x,c)[maxi∈N cost(xi,y)]

The optimal MAX COST, denotedMC∗(x, c), isMC∗(x, c) = min
y∈IRk maxi∈N cost(xi,y).

The (resp. expected) SOCIAL COST of a deterministic (resp. randomized) mechanismF for
an instance(x, c) is SC[F (x, c)] =

∑n
i=1 cost(xi, F (x, c)). The optimal SOCIAL COST, denoted

SC∗(x, c), is SC∗(x, c) = min
y∈IRk

∑n
i=1 cost(xi,y).

Approximation Ratio. A (randomized) mechanismF for k-Facility Location achieves anapproxi-
mation ratioof ρ ≥ 1 for a class of cost functionsC and the objective of MAX COST (resp. SOCIAL

COST), if for all cost functionsc ∈ C and all location profilesx, MC[F (x, c)] ≤ ρMC∗(x, c) (resp.
SC[F (x, c)] ≤ ρSC∗(x, c) ).

Strategyproofness and Group Strategyproofness.A mechanismF is strategyprooffor a class of
cost functionsC if no agent can benefit from misreporting his location. Formally, F is strategyproof
if for all cost functionsc ∈ C, all location profilesx, any agenti, and all locationsy,

cost(xi, F (x, c)) ≤ cost(xi, F ((x−i, y), c)) .

A mechanismF is (weakly)group strategyprooffor a class of cost functionsC if for any coalition
of agents misreporting their locations, at least one of themdoes not benefit. Formally,F is (weakly)
group strategyproofif for all cost functionsc ∈ C, all location profilesx, any non-empty coalitionS,
and all location profilesyS for S, there exists some agenti ∈ S such that

cost(xi, F (x, c)) ≤ cost(xi, F ((x−S ,yS), c)) .
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A mechanismF is strongly group strategyprooffor a class of cost functionsC if there is no
coalitionS of agents misreporting their locations where at least one agent inS benefits and the other
agents inS do not lose from the deviation. Formally,F is strongly group strategyproof if for all cost
functionsc ∈ C and all location profilesx, there do not exist a non-empty coalitionS and a location
profileyS for S, such that for alli ∈ S,

cost(xi, F (x, c)) ≥ cost(xi, F ((x−S ,yS), c)) ,

and there exists some agentj ∈ S with

cost(xi, F (x, c)) > cost(xi, F ((x−S ,yS), c)) .

3 The EQUAL-COST Mechanism

In this section, we present and analyze the EQUAL COST mechanism. At the conceptual level, EQUAL

COST, or EC, in short, works by equalizing the expected cost of all agents. Given an instance(x, c)
of k-Facility Location on the line,EC works as follows:

Step 1 It computes an optimal covering of all agent locations withk disjoint intervals[αi, αi+ ℓ] that
minimizes the interval lengthℓ (wlog., we assume thatαi < αi+1).

Step 2 It constructs a random variableX(ℓ) ∈ [0, ℓ] such that all locationsx ∈ [0, ℓ] have the same
the expected connection costIE[c(|x−X|)].

Step 3 For every interval[αi, αi + ℓ], EC places a facility atαi +X, if i is odd, or atαi + ℓ−X, if
i is even.

We proceed to establish the main properties ofEC, summarized by the following theorem. For the
proof, we examine, in the following sections, each step of the mechanism separately.

Theorem 3.1. For the class of all concave cost functions,EQUAL COST is group strategyproof and
achieves an approximation ratio of2 for the objective ofMAX COST, and an approximation ratio of
n for the objective ofSOCIAL COST. Moreover, for every instance (x, c), with c concave, and every
agenti, cost(xi,EC(x, c)) ≤ MC∗(x, c).

3.1 Step 1: Partitioning the Instance in Intervals

We can compute the minimum feasible interval lengthℓ by checking all possible candidate values.
The value ofℓ is equal to the distancexj − xi for some agent locationsxj ≤ xi. So, there are at
mostn2/2 candidate values forℓ. For each candidate valueℓ′, we can check feasibility and compute
a covering of all locations inx with intervals of lengthℓ′ as follows:

While there are uncovered agents, find the leftmost uncovered agenti, and create a new inter-
val [xi, xi + ℓ′].

The above algorithm computes the minimum number of intervals of lengthℓ′ to coverx. If this
number is at mostk, we setℓ = ℓ′. We can also speed up the algorithm by binary search over the
space of candidate values.

We observe that the partitioning into intervals of lengthℓ is closely related to the optimal maxi-
mum costMC∗(x, c). In fact, an optimal solution can be obtained by placing a facility at the midpoint
of each interval. Thus, the cost of the optimal solution isMC∗(x, c) = c(ℓ/2).
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3.2 Step 2: Constructing the Random Variable

We next show that for any given cost functionc, we can construct a family of random variables
X(ℓ) ∈ [0, ℓ] such the expected cost of every point in[0, ℓ] is the same. For convenience, we denote
this cost asC(ℓ). We note thatC(ℓ) = IE[c(|X(ℓ) − x|)], for all x ∈ [0, ℓ]. In particular, forx = 0,
we getC(ℓ) = IE[c(X(ℓ))].

We assume that the cost functionc is piecewise-linear with pieces of length1 and growth rates
λ0, λ1, . . . , λi, . . ., whereλi is the growth rate in the interval[i, i−1). For alli, λi > 0 andλi ≥ λi+1,
becausec is strictly increasing and concave. Our result applies to general concave functions either by
discretizing appropriately, or by solving a continuous analog of the homogeneous linear system below
through an integral equation. The technical details are related to the solution of integral equations and
are beyond the scope of this work.

The supportS of the random variableX(ℓ) is every pointi andℓ − i, for integeri = 0, . . . , ⌊ℓ⌋.
We note that ifℓ is an integer, we have only|S| = ℓ + 1 points in the support, instead of|S| =
2(⌊ℓ⌋+1) points in general. The crucial observation is that the derivative of the expected cost function
in every interval between consecutive points in the supportmust be0. So, to compute the probability
pj assigned to each pointj in the support ofX(ℓ), we write a set of|S| − 1 linear equations and
|S| unknowns (the probabilitypj of each pointj in the support) requiring that the derivative of the
expected cost function in each interval is0. So, we get the homogeneous linear systemΛp = 0. If ℓ
is an integer, the matrixΛ is:

Λ =











λ0 −λ0 −λ1 . . . −λℓ−1

λ1 λ0 −λ0 . . . −λℓ−2
...

...
...

...
...

λℓ−1 λℓ−2 λℓ−3 . . . −λ0











Namely, the elements of the matrixΛ areΛi,j = λi−j , if i ≥ j, andΛi,j = λj−i−1, if i < j, for
all i = 0, . . . , ℓ − 1 andj = 0, . . . , ℓ, whereλκ denotes the growth rate of the piecewise-linear cost
functionc at the support pointκ.

If ℓ is not an integer, the elements of the matrixΛ areΛi,j = λ⌊(i−j)/2⌋, if i ≥ j, andΛi,j =
λ⌊(j−i−1)/2⌋, if i < j, for all i = 0, . . . , 2⌊ℓ⌋ andj = 0, . . . , 2⌊ℓ⌋ + 1. Thus,

Λ =











λ0 −λ0 −λ0 −λ1 −λ1 −λ2 −λ2 . . . −λ⌊ℓ⌋−1 −λ⌊ℓ⌋−1 −λ⌊ℓ⌋

λ0 λ0 −λ0 −λ0 −λ1 −λ1 −λ2 −λ2 . . . −λ⌊ℓ⌋−1 −λ⌊ℓ⌋−1
...

...
...

...
...

...
...

...
...

...
...

λ⌊ℓ⌋ λ⌊ℓ⌋−1 λ⌊ℓ⌋−1 . . . . . . . . . λ1 λ1 λ0 λ0 −λ0











We now show that in both cases there is a unique symmetric probability distribution that satisfies
the system of equations. For this purpose, we use the two lemmas below. The first lemma is about a
class of diagonally dominant matrices. It shows that we can bring any such matrix in a triangular form
by performing Gaussian elimination, such that all diagonalelements are positive and all off-diagonal
elements are less than or equal to0.

Lemma 3.1. Let A be aq × n, q ≤ n matrix so thatAi,i > 0, for all i = 1, . . . , q, Ai,j ≤ 0, for
all i 6= j, and

∑q
i=1Ai,j > 0, for all j = 1, . . . , q. Then, by performing elementary row operations

(Gaussian elimination) onA, we can get a row-echelon formA′ whereA′
i,i > 0, for all i = 1, . . . , q,

A′
i,j = 0, for all i > j, andA′

i,j ≤ 0, for all i < j.
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Proof. We use induction onq. The base case, whereq = 1, is already in the desired form. Assuming
that the lemma holds forq ≥ 1, we show that it holds forq + 1.

We have thatA =

(

a u
T

v B

)

, with a > 0 and all elements ofu andv non-positive. With a single

step of Gaussian elimination, we get

(

a u
T

0 B − v×u
T

a

)

. To conclude the induction step, we show that

the submatrixB′ = B − v×u
T

a satisfies the properties of the lemma. Since all elements ofv × u
T

are non-negative, we still haveB′
i,j ≤ 0, for all i 6= j. So, we need to show that

∑q
i=1B

′
i,j > 0, for

all columnsj = 1, . . . , q, which also implies thatB′
i,i > 0, for all i = 1, . . . , q. For any columnj, we

have that:

q
∑

i=1

B′
i,j =

q
∑

i=1

(Bi,j − viuj/a) =

q
∑

i=1

Bi,j − uj

a

q
∑

i=1

vi > −uj − uj

a (−a) = 0 .

For the last inequality, we use thatuj ≤ 0, and the hypothesis that
∑q+1

i=1 Ai,j > 0, which implies that
a+

∑q
i=1 vi > 0 and thatuj +

∑q
i=1Bi,j > 0. ⊓⊔

The next lemma shows that for the special class of matricesΛ arising in our case, there is a solution
to the homogeneous linear systemΛp = 0 that defines a probability distribution.

Lemma 3.2. LetA be an×(n+1)matrix defined asAi,j = ai−j , wherea−n, . . . , an−1 is a sequence
of positive numbers such thatam−1 = −a−m, for all m ≥ −n, andam−1 ≥ am for all m ≥ 1. Then,
the systemAp = 0 has a symmetric solution withpj = pn−j,

∑

pj = 1, andpj ≥ 0. Moreover, there
is a unique symmetric solutionp that satisfies these conditions.

Proof. We letdm = am−1 − am ≥ 0, for m ≥ 1. Then, the matrixA can be written as:











a0 −a0 −a1 . . . −an−1

a1 a0 −a0 . . . −an−2
...

...
...

...
...

an−1 . . . . . . . . . −a0











=











a0 −a0 −a0 + d1 . . . −a0 +
∑n−1

m=1 dm
a0 − d1 a0 −a0 . . . −a0 +

∑n−2
m=1 dm

...
...

...
...

...
a0 −

∑n−1
m=1 dm . . . . . . . . . −a0











Taking the difference of every pair ofA’s consecutive rows, we obtain the(n−1)×(n+1) matrix

A′ =















−d1 2a0 −d1 . . . −dn−1

−d2 −d1 2a0 . . . −dn−2
...

...
...

...
...

−dn−2 −dn−3 . . . −d1 −d2
−dn−1 −dn−2 . . . 2a0 −d1















To establish the lemma, we first use Lemma 3.1 and show that (i)the nullspace ofA′ contains a unique
symmetric probability vectorp, and then show that (ii) the particular vectorp is also in the nullspace
of A.

As for claim (i), we first show that each coordinatepj of any vectorp in the nullspace ofA′

can be expressed as a non-negative linear combination of thecoordinatesp0 andpn. Formally, we
show that for any coordinatepj of any solutionp of A′

p = 0, there existπj, ρj ≥ 0, such that
pj = πjp0 + ρjpn. To this end, we consider the(n − 1) × (n + 1) matrix A′′, which is obtained
from A′ by moving the first column ofA′ to the end. We observe thatA′′ satisfies the conditions of

8



Lemma 3.1, since
∑n−1

m=1 dm = a0−an−1 < a0, and thus2a0−2
∑n−1

m=1 dm > 0. Hence, by applying
Gaussian elimination toA′′, we get a(n−1)× (n+1) matrixG in a row-echelon form withGi,i > 0,
for all i, Gi,j = 0, for all i > j, andGi,j ≤ 0, for all i < j. Moreover, the nullspace ofA′ essentially
consists of the solutionsx to the homogenous linear systemGx = 0. More precisely, any solutionx
of Gx = 0 corresponds to a solutionp of A′

p = 0, wherep0 = xn, p1 = x0, . . . ,pn = xn−1, and
vice versa.

Due to the special form ofG, we can find all solutionsx of Gx = 0 by assigning values to the
free variablesxn−1 andxn and performing backwards substitution so that we uniquely determine the
values of the variablesx0, . . . , xn−2. Furthermore, due to the special form ofG, this procedure results
in expressing each variablexj as a non-negative linear combination ofxn−1 andxn. Specifically, we
can calculatexj, for all j = n− 2, . . . , 0, from the equation

∑n
i=0Gj,ixi = 0. Solving forxj , we get

xj = −∑n
i=j+1Gj,ixi/Gj,j , sinceGj,j > 0 andGj,i = 0, for all j > i. Moreover, all coefficients

−Gj,i/Gj,j are non-negative becauseGj,i ≤ 0, for all j < i, andGj,j > 0. By induction, if everyxj′ ,
j′ > j, is a non-negative linear combination ofxn−1 andxn, the same holds forxj. Therefore, any
coordinatexj of any solutionx to Gx = 0 can be expressed as a non-negative linear combination of
the free variablesxn−1 andxn. Due to the aforementioned correspondence between the solutionsp
of A′

p = 0 and the solutionsx of Gx = 0, we obtain that for any coordinatepj of any solutionp to
A′

p = 0, there existπj, ρj ≥ 0, such thatpj = πjp0 + ρjpn.
Hence, the nullspace ofA′ is spanned by the vectorsp1 andp2 determined by setting the free

variablesp0 andpn to (1, 0) and to(0, 1), respectively. By the discussion above, all the coordinates of
p
1 andp2 are non-negative. To conclude the proof of claim (i), we observe that due to the symmetry

of the homogeneous linear systemA′
p = 0, we have thatp1

j = p
2
n−j, for all j = 0, . . . , n. Therefore,

there is unique symmetric vector in the nullspace ofA′ with L1 norm equal to1, namely the vector
p = (p1 + p

2)/|p1 + p
2|1.

We proceed to show claim (ii), namely that the unique symmetric probability vectorp in the
nullspace ofA′ is also in the nullspace ofA. To this end, we define then× n matrix

M =















1 0 0 . . . 1
−1 1 0 . . . 0
...

...
...

...
...

0 . . . −1 1 0
0 . . . 0 −1 1















We observe that the determinant ofM is equal to2, and thusM is non-singular. Therefore, the linear
systemAp = 0 is equivalent to the linear systemMAp = 0. So, we letA1 andAn be the first and
the last row ofA, and further observe thatMA is an × (n + 1) matrix with its first row equal to
A1+An and its remaining rows in one-to-one correspondence to the rows ofA′. Sincep is the unique
symmetric probability vector satisfyingA′

p = 0, we only need to show that(A1 +An)p = 0, which
follows immediately from the symmetry ofp. This completes the proof of claim (ii) and the proof of
the lemma. ⊓⊔

For everyℓ, the homogeneous linear systemΛp = 0 satisfies the conditions of Lemma 3.2. Hence,
there exists a unique symmetric probability distributionp such that the expected costIE[c(|X(ℓ)−x|)]
is the same for every locationx ∈ [0, ℓ]. Next, we think of this unique symmetric solutionp as a
function ofℓ, and establish a nice continuity property of it.

To this end, we fix an integerm ≥ 0, and show that the random variableX(ℓ) converges in
probability to the random variableX(m), asℓ → m+. We observe that the linear system determining
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p is the same for allℓ ∈ (m,m + 1). So, we letpmi be the probability assigned to each integer point
i, 0 ≤ i ≤ m. By symmetry, the probability assigned to each pointℓ − i, 0 ≤ i ≤ m, is alsopmi .
The limit limℓ→m+ X(ℓ) = X̄ is a random variable distributed according to a probabilitydistribution
that assigns probabilitypmi + pmm−i to each integer pointi, 0 ≤ i ≤ m. Since the distribution is
symmetric and achieves the same expected cost for all pointsx ∈ [0,m], it is, by Lemma 3.2, the
unique distribution with these properties. Therefore, we have thatX(m) = X̄. By the same argument,
we can show that the random variableX(ℓ) converges in probability to the random variableX(m+1),
asℓ → (m+ 1)−.

By the continuity property above, the expected costC(ℓ) = IE [c (X(ℓ))] at each locationx ∈
[0, ℓ] is a continuous function ofℓ. Moreover, the discussion above implies that for allℓ ∈ [m,m+1),
C(ℓ) =

∑m
i=0 p

m
i (c(i) + c(ℓ − i)). Using these properties, we now show thatC(ℓ) is an increasing

function ofℓ.

Lemma 3.3. The expected costC(ℓ) is an increasing function of the interval lengthℓ.

Proof. SinceC is continuous, we only need to show thatC is increasing in each interval[m,m+ 1),
wherem ≥ 0 is any integer. To this end, we letℓ ∈ [m,m + 1), and consider anyℓ′ ∈ (ℓ,m + 1).
Then, we have that:

C(ℓ) = E [c(X(ℓ))] =

m
∑

i=0

pmi (c(i) + c(ℓ− i)) <

m
∑

i=0

pmi (c(i) + c(ℓ′ − i)) = C(ℓ′) ,

where the inequality holds becauseℓ′ > ℓ and the cost functionc is increasing. ⊓⊔

3.3 Step 3: Establishing Group Strategyproofness

We next prove that the random facility placement, in Step 3 ofEQUAL COST, is group strategyproof.
The correlation of the facility placement, in Step 3, ensures that if an agentj is located aty, his closest
facility is always the one assigned to his closest interval.To justify this, let us consider any samplex
of the random variableX. We recall that the facilities are placed atα1+x, α2+ ℓ−x, α3+x, . . .. Let
us assume thatαi + ℓ− x ≤ y ≤ αi+1 + x. Then, the distance ofy toαi + ℓ− x is y− (αi + ℓ− x),
while the distance ofy to αi+1 + x is αi+1 + x− y. Hence, agentj prefers the facility at intervali if
and only ify − (αi + ℓ) < αi+1 − y, i.e., the right endpoint of intervali is closer toy than the left
endpoint of intervali+ 1.

To show that EQUAL COST is group strategyproof, we consider a coalition of agentsS that deviate
to improve their cost. Let the original interval length, with respect to the true agents’ locations, beℓ,
and let the new interval length, after the deviation, beℓ′. We now consider the two possible outcomes
when the agents misreport their locations:

Case whereℓ′ ≥ ℓ. Let i be any agent. Ifi’s true location is covered by some interval of the new
covering,i incurs an expected cost ofC(ℓ′) ≥ C(ℓ). Otherwise, agenti incurs an expected cost no
less thanC(ℓ′), which is greater thanC(ℓ).

Case whereℓ′ < ℓ. We consider the distance of any agent to the nearest midpointof an interval. The
locations of the truthful agents inN \S are covered by some interval of the new covering. Hence, their
distance to the nearest midpoint of some interval is at mostℓ′/2. On the other hand, if we consider
the true locations of all agents and any feasible covering ofthem with k intervals, there is some
agent whose distance to the midpoint of the interval covering him is at leastℓ/2. Therefore, there is
an agenti whose distanced to the nearest midpoint of some interval in the new covering (after the
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deviation) is at leastℓ/2. Hence, agenti must be in the deviating coalitionS, and his true location
must not be covered by the intervals of the new covering. In this case, Lemma 3.4 below implies that
the expected cost of agenti after the deviation, which isIE[c(d− ℓ′/2+X(ℓ′))], is at least as large as
IE[c(X(2d))] = C(2d) ≥ C(ℓ). This implies that EQUAL COST is group strategyproof.

Lemma 3.4. For all a, a′, b, with 0 ≤ a < a′ ≤ b, it holds that

IE[c(b− a+X(2a))] ≥ IE[c(b − a′ +X(2a′))]

Moreover, the inequality is strict, if the functionc is strictly concave.

Proof. Letm ≥ 0 be any integer. We only need to show that the lemma holds for all a, a′ ∈ [m2 ,
m+1
2 ),

with 0 ≤ a < a′ ≤ b. For all sucha, a′, b, we have that:

IE[c(b− a+X(2a))] =
m
∑

i=0

pmi (c(b− a+ i) + c(b+ a− i))

≥
m
∑

i=0

pmi (c(b− a′ + i) + c(b+ a′ − i)) = IE[c(b− a′ +X(2a′))]

where the inequality holds becausea < a′ and c is concave. In fact, the inequality is strict ifc is
strictly concave. ⊓⊔

3.4 Approximation Ratio

In this section, we analyze the approximation ratio of EQUAL COST.

Lemma 3.5. For any concave cost functionc, any locations profilex, and any agenti, it holds that
cost(xi,EC(x, c)) ≤ MC∗(x, c).

Proof. We let ℓ be the minimum interval length in Step 1 of EQUAL COST, and letm = ⌊ℓ⌋. We
recall thatMC∗(x, c) = c(ℓ/2). Moreover, we have that:

C(ℓ) =

m
∑

i=0

pmi (c(i) + c(ℓ− i)) ≤
m
∑

i=0

2pmi c(ℓ/2) = c(ℓ/2)

where the inequality follows from the concavity of the cost functionc. ⊓⊔

Lemma 3.6. For every concave cost functionc, EQUAL COST has an approximation ratio of at most
2 for the objective ofMAX COST.

Proof. Let (x, c) be any instance with a concave cost functionc, and letℓ be the minimum interval
length in Step 1 of EQUAL COST. In EC(x, c), every agenti has a facility at distance at mostℓ to xi.
On the other hand,MC∗(x, c) = c(ℓ/2). Therefore, the approximation ratio is at most:

c(ℓ)

c(ℓ/2)
=

c(ℓ) + c(0)

c(ℓ/2)
≤ 2c(ℓ/2)

c(ℓ/2)
= 2 ,

where we use thatc(0) = 0, by normalization, and the concavity ofc. ⊓⊔

Lemma 3.7. For every concave cost functionc, EQUAL COST has an approximation ratio of at most
n for the objective ofSOCIAL COST.
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Proof. For every locations profilex, MC∗(x, c) ≤ SC∗(x, c). Then,

SC(x, c) =
∑

i∈N

cost(xi,EC(x, c)) ≤ nMC∗(x, c) ≤ n SC∗(x, c) ,

where the inequality follows from Lemma 3.5. ⊓⊔

4 Applications

In this section, we consider three typical examples of concave cost functions, and derive closed form
solutions for the corresponding random variablesX(ℓ).

Linear Functions.The literature mostly focuses on linear cost functionsc(d) = λd, where the agents’
cost is proportional to their distance to the nearest facility. In this case,X(ℓ) has a nice closed form:
it is either0 with probability1/2 or ℓ with probability1/2. Then, the expected connection cost of any
locationx ∈ [0, ℓ] is:

c(x)/2 + c(ℓ− x)/2 = λx/2 + λ(ℓ− x)/2 = 2λℓ/2 ,

which does not depend onx.

Two-Piece Piecewise Linear Functions.For someλ1 > λ2 > 0, let the cost functionc be:

c(d) =

{

λ1d for d ≤ 1
λ2d+ (λ1 − λ2) for d > 1

To achieve the same expected cost at all locations, we findℓ, let m = ⌊ℓ⌋, and compute the
probability distribution ofX(ℓ) by solving the following linear system:











λ1 −λ1 −λ1 −λ2 −λ2 −λ2 −λ2 . . . −λ2 −λ2 −λ2

λ1 λ1 −λ1 −λ1 −λ2 −λ2 −λ2 −λ2 . . . −λ2 −λ2
...

...
...

...
...

...
...

...
...

...
...

λ2 λ2 λ2 . . . . . . . . . λ2 λ2 λ1 λ1 −λ1

































pm0
pmm
pm1
pmm−1

...
pmm
pm0























= 0

Taking the difference between every two consecutive rows, as in Lemma 3.2, we find that:

pmi =
λ1 − λ2

2λ1
(pmi−1 + pmi+1) for all integersi 0 ≤ i ≤ m,

where we definepmi = 0, for all integersi 6∈ [0,m]. Then, the solution of the recurrence is:

pmi =
ρm+1−i
1 + ρm+1−i

2

2
∑m+1

j=1

(

ρj1 + ρj2

)

where ρ1 =
λ1 +

√

λ2
1 − (λ1 − λ2)2

λ1 − λ2
and ρ2 =

λ1 −
√

λ2
1 − (λ1 − λ2)2

λ1 − λ2
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Exponential Functions.A concave cost function that results in a continuous probability distribution
X(ℓ) is the exponential functionc(d) = 1 − e−λd. Then,X(ℓ) is 0, with probability 1

ℓλ+2 , ℓ, with

probability 1
ℓλ+2 , and uniform in(0, ℓ), with probability ℓλ

ℓλ+2 .

We let X(ℓ) be 0, with probability 1
ℓλ+2 , ℓ, with probability 1

ℓλ+2 , and uniform in(0, ℓ), with

probability ℓλ
ℓλ+2 . We next show that the expected connection cost of any location x ∈ [0, ℓ] does not

depend onx. In particular, the expected connection cost of any location x is:

1

ℓλ+ 2
c(x) +

1

ℓλ+ 2
c(ℓ− x) +

ℓλ

ℓλ+ 2

∫ ℓ

0

1

ℓ
c(|t− x|)dt =

c(x) + c(ℓ− x)

ℓλ+ 2
+

λ

ℓλ+ 2

∫ x

0
c(x− t)ℓt+

λ

ℓλ+ 2

∫ ℓ

x
c(t− x)dt =

2− e−λx − e−λ(ℓ−x)

ℓλ+ 2
+

λ

ℓλ+ 2

(∫ x

0
1− e−λ(x−t)dt+

∫ ℓ

x
1− e−λ(t−x)dt

)

=

2− e−λx − e−λ(ℓ−x)

ℓλ+ 2
+

λ

ℓλ+ 2

(

ℓ−
∫ x

0
e−λ(x−t)dt+

∫ ℓ

x
e−λ(t−x)dt

)

=

2− e−λx − e−λ(ℓ−x)

ℓλ+ 2
+

λ

ℓλ+ 2

(

ℓ− 1− e−λx

λ
− 1− e−λ(ℓ−x)

λ

)

=
ℓλ

ℓλ+ 2

which does not depend onx.

5 Extensions and Limitations

5.1 EQUAL COST in Bounded Intervals

Our results about the properties of EQUAL COST apply to the real line(−∞,∞) and to the half-line
[0,∞). If the metric space is a bounded interval[0, L], it could be that in the construction of the
covering, in Step 1, the last interval does not fit entirely in[0, L]. The following lemma shows that
even in this case, we can adjust the covering with disjoint intervals of the same length, computed in
Step 1, so that all intervals fit in[0, L].

Lemma 5.1. Given a locations profilex in [0, L], there is an optimal covering ofx with k disjoint
intervals of the same (minimum) length that all lie entirelyin [0, L].

Proof. We consider a covering ofx with k disjoint intervals of the same minimum lengthℓ, computed
as in Section 3.1. As in Step 1 of EQUAL COST, we number the intervals from left to right, and let the
i-th interval be[αi, αi+ℓ]. Since all the locations ofx lie in [0, L], we obtain thatℓ ≤ L/k. Moreover,
by construction, we have thatαi ≥ 0, for all 1 ≤ i ≤ k. However, it could beαi + ℓ > L for some
intervali. In this case, we construct a new covering using the intervals [α′

i, α
′
i+ℓ], i = 1, . . . , k, where

α′
i = min{αi, L− (k+1− i)ℓ}. To show that this is indeed an admissible covering ofx, we observe

that:

(i) All intervals lie entirely in[0, L]: For everyi, α′
i ≥ 0, sinceαi ≥ 0, andL − (k + 1 − i)ℓ ≥ 0,

becauseℓ ≤ L/k. Furthermore,α′
i + ℓ ≤ L− (k + 1− i)ℓ+ ℓ ≤ L− (k − i)ℓ ≤ L.
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(ii) All intervals are disjoint: For any two consecutive intervalsi andi+ 1, we have that:

α′
i+1 − α′

i = min{αi+1, L− (k + 1− i− 1)ℓ} −min{αi, L− (k + 1− i)ℓ}
≥ min{αi + ℓ, L− (k + 1− i− 1)ℓ} −min{αi, L− (k + 1− i)ℓ}
= ℓ+min{αi, L− (k + 1− i)ℓ} −min{αi, L− (k + 1− i)ℓ}
= ℓ

(iii) The intervals cover all locations ofx: Let us consider a locationx ∈ [αi, αi + ℓ]. If α′
i = αi, x

is covered since the interval does not change. Otherwise,α′
i = L − (k + 1 − i)ℓ. Thus, the interval

[α′
i, L] has a length ofL− α′

i = (k + 1− i)ℓ, and consists ofk + 1− i disjoint intervals of lengthℓ.
Therefore, the intervals[α′

j , α
′
j + ℓ], for j ≥ i, entirely cover the interval[α′

i, L] ⊃ [αi, L], and thus,
they also cover the locationx. ⊓⊔

Lemma 5.1 implies that if the agents lie on a circle, we can also cover their locations with disjoint
intervals of the same minimum lengthℓ. Then, we can apply Steps 2 and 3 to the resulting intervals
on the circle. But rather surprisingly, EQUAL COST is guaranteed to be strategyproof fork-Facility
Location on the circle only ifk is even. Otherwise, some agents in the first interval may prefer the
facility placed in the last interval, which violates the property that each agent always prefers the facility
in his own interval.

5.2 Convex Cost Functions

The approach of EQUAL COST does not apply to strictly convex functionsc, because it is no longer
possible to equalize the expected cost of all agents. To see this, let us consider the interval[0, ℓ], and
the expected cost of two agents, one located at0 and the other atℓ. SinceIE[c(X)] + IE[c(ℓ−X)] >
IE[2c(ℓ/2)] = 2c(ℓ/2), by the strict convexity ofc, at least one of them incurs an expected cost greater
thanc(ℓ/2). However, a third agent located atℓ/2 incurs an expected cost no greater thanc(ℓ/2), since
his distance to the facility is at mostℓ/2. Moreover, we can show that:

Lemma 5.2. There is no randomized strategyproof mechanism that achieves a bounded approxima-
tion ratio for the class of all convex functions.

Proof. We recall that the property of a bounded approximation ratiois objective-independent. So,
we next focus on the objective of MAX COST. For the proof, we consider the convex cost function
c(d) = ed and instances with2 agents and a single facility. For sake of contradiction, we assume that
there exists a randomized strategyproof mechanism that achieves an approximation ratio ofr for such
instances. Next, we letX denote the random variable that determines where the mechanism places
the facility.

We first consider an instancex = (x1, x2), with x2 > x1, If the facility is placed at location
t ≤ (x1+x2)/2, agent2 incurs the maximum cost equal toex2−t. If the facility is placed att > (x1+
x2)/2, agent1 incurs the maximum cost equal toet−x1 . In both cases, the maximum cost is equal to
e(x2−x1)/2+|t−(x1+x2)/2|, and the expectation of the maximum cost isIE[e(x2−x1)/2+|X−(x1+x2)/2|] ≤
re(x2−x1)/2, which implies thatIE[e|X−(x1+x2)/2|] ≤ r.

Let us now consider the probabilitiespl = IPr[X ≤ x1+x2

2 ] andpr = IPr[X ≥ x1+x2

2 ]. Since
pl + pr ≥ 1, one of them is at least1/2. Wlog., let us assume thatpl ≥ 1/2, which implies that agent
2 incurs an expected cost of at least1

2e
(x2−x1)/2.

Next, we consider an instancex′ = (x′1, x
′
2), with x′1 = x1 andx′2 = 2x2 − x1. By the choice

of x′, IE[e|X−(x′

1+x′

2)/2|] = IE[e|X−(x1+2x2−x1)/2|] = IE[e|X−x2|]. Working as before, we obtain that
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IE[e|X−(x′

1+x′

2)/2|] = IE[e|X−x2|] ≤ r, due to the approximation ratio of the mechanism. Moreover,
IE[e|X−x2|] is the expected cost of an agent located atx2, and due to strategyproofness, is no less than
the expected cost of agent2 in instancex. Otherwise agent2 would have an incentive to reportx′2,
instead ofx2. Therefore,IE[e|X−x2|] ≥ 1

2e
(x2−x1)/2. Combining the upper and the lower bound on

IE[e|X−x2|], we obtain thate(x2−x1)/2 ≤ 2r. This leads to a contradiction if we consider an instance
x with x2 − x1 > 2 ln(2r). ⊓⊔

5.3 Other Cost Functions

EQUAL COST can also apply to some other (non-convex) cost functions, for which the expected cost
of all agents can be equalized. A notable such example is a cost function cr(d) which is0, if d < r,
and1 otherwise. Thus,cr correspond to agents that only care about getting a facilitywithin a radiusr
from their location. In this case, one could apply EQUAL COST as follows: First, we find a covering
of the agent locations with intervals of lengthℓ, as in Step 1. Then ifℓ ≤ 2r, we place a facility at the
midpoint of each interval. Otherwise, we do not place any facilities (and let each agent incur a cost of
1). This clearly satisfies the equal cost property since the cost incurred by all agents is either0 or 1.
The mechanism is optimal for the objective of MAX COST because every agent incurs a cost of0, if
the optimal solution satisfies all agents, and a cost of1, otherwise. On the other hand, the mechanism
is n approximate for the objective of SOCIAL COST, since in case where the optimal solution satisfies
all but one agents, resulting in a social cost of1, the mechanism does not place any facilities, and
incurs a social cost ofn.

6 The PICK THE LOSERMechanism

EQUAL COSTperforms well for the objective of MAX COST, but may perform poorly for the objective
of SOCIAL COST. An extreme case is when we havek facilities and onlyn = k + 1 agents. Then,
there are many facilities, and one could easily satisfy all but one agents. Nevertheless, EQUAL COST

causes all agents to incur a high cost (equal to the min-max cost for linear cost functions).
In certain cases, this might not be acceptable, and one needsto find a more efficient mechanism.

In this section, we present a mechanism that, for instances with only n = k + 1 agents, selects the
loser, i.e., the agent not allocated a facility at his location, in a group strategyproof way. We also show
that this mechanism is quite efficient for the SOCIAL COST objective, which for such instances, is
equal to the cost of the loser.

Given an instance(x, c) of k-Facility Location on the line with onlyn = k + 1 agents, the
PICK-THE-LOSERmechanism, ofPtL in short, works as follows:

Step 1 It numbers the agents according to their reported locationssuch thatxi < xi+1, and letsE
andO be the sets of even and odd numbered agents, respectively. For every odd-numbered agent
i ∈ O, PtL places a facility atxi.

Step 2 For each even numbered agenti, PtL samples a numbersi uniformly in (0, 1), and computes
i’s current costκi = minj 6=i c(|xj − xi|) andi’s scaled cost̂κi = κi/si.

Step 3 PtL finds the agent with the smallest scaled cost, and declares him theloser. Then,PtL places
facilities at the locations of all other agents.

In the following, we first show that PICK THE LOSER is strategyproof (Lemma 6.1). Then, in
Section 6.2, we use strategyproofness, and deal with the case where a coalition of agents may deviate,
thus establishing that the mechanism is strongly group strategyproof. Finally, in Section 6.3, we prove
the mechanism’s approximation guarantee. Thus, we obtain:
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Theorem 6.1. For the class of all concave cost functions,PICK THE LOSER is strongly group strate-
gyproof and achieves an approximation ratio of2 for theSOCIAL COST objective.

For the proof, we assume wlog. that the agent locations are all distinct. Otherwise, we allocate a
facility to all distinct locations, thus being trivially both optimal and group strategyproof. We letqi(x)
denote the probability that agenti is designated as a loser. We have thatqi(x) = 0 for all odd numbered
agents inx. For an even numbered agenti, we can compute this probability by the following thought
experiment: With all the samplessj ∈ (0, 1) fixed, agenti is selected if for allj ∈ E, κ̂j ≥ κ̂i,
or equivalently ifsj ≤ siκj/κi. This happens with probability

∏

j∈E\{i}min{1, siκj/κi}. Setting
t = si/κi and taking the expectation over all different values oft, we have that

qi(x) = κi

∫ 1/κi

0

∏

j∈E\{i}

min{1, κjt}dt

6.1 Strategyproofness

The following lemma implies that PICK THE LOSER is strategyproof for the class of all concave cost
functions. Next, in Section 6.2, we use this property, to establish that PICK THE LOSER is strongly
group strategyproof for the class of all concave cost functions.

Lemma 6.1. Let(x, c) be any instance with a concave cost functionc and onlyn = k+1 agents occu-
pyingn distinct locations. Then, for every agenti and every locationx′i 6= xi, cost(xi,PtL(x, c)) <
cost(xi,PtL((x−i, x

′
i), c)).

Proof. For convenience, we letx′ = (x−i, x
′
i). We also recall that by normalizingc, we assume that

c(0) = 0. If agenti is an odd numbered agent, he strictly prefersx overx′, because inx, there is a
facility at xi and agenti incurs0 cost, while inx′i, there is no facility atxi, and thus agenti incurs a
positive cost.

If i is an even numbered agent, we letδ = minj 6=i{|xi − xj|} andδ′ = minj 6=i{|x′i − xj|} denote
the minimum distance of the reported location ofi to the location of another agent. In the instancex,
if agent i is not allocated a facility atxi, he incurs a cost ofc(δ). Otherwise, agenti incurs0 cost.
Sinceδ > 0 and the cost function in increasingc, we have thatc(δ) > 0. We next consider three
different cases, and show that in each case, agenti prefersx to x

′.

Case wherex′i 6∈ (xi − δ, xi + δ). Then, inx′, agenti incurs an expected cost of at leastc(δ), while
in x, he incurs an expected cost less thanc(δ), since he is allocated a facility atxi with positive
probability.

Case wherex′i ∈ (xi − δ, xi + δ) and δ′ ≤ δ. In this case, the probabilityqi(x′) that agenti is not
allocated a facility atx′i, in instancex′, is greater than or equal toqi(x). This holds becausei’s cost
in x

′, which isκ′i = c(δ′), is less than or equal toi’s cost inx, which isκi = c(δ). Therefore, for
any sampled numbersi, agenti has a smaller scaled costκ̂′i in instancex′ than his corresponding
scaled cost̂κi in instancex, which in turn, implies a greater probability thati is designated as the
loser. Moreover, if in instancex′, agenti is allocated a facility atx′i, he incurs a positive cost, sincex′i
is different from his true locationxi. Thus, putting everything together, we obtain that agenti strictly
prefersx tox

′:
(

1− qi(x
′)
)

c(|x′i − xi|) + qi(x
′)c(δ) > qi(x

′)c(δ) ≥ qi(x)c(δ)

Case wherex′i ∈ (xi−δ, xi+δ) andδ′ > δ. The probabilityqi(x′) is now greater than the probability
qi(x). However, if agenti is allocated a facility atx′i, in instancex′, he incurs an additional cost of
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c(|x′i−xi|) ≥ c(δ′− δ), due to the distance ofx′i to i’s true locationxi. Thus, we obtain the following
lower bound on the expected cost of agenti in instancex′:

(

1− qi(x
′)
)

c(|x′i − xi|) + qi(x
′)c(δ) ≥

(

1− qi(x
′)
)

(c(δ′)− c(δ)) + qi(x
′)c(δ) ,

where the inequality follows fromc(δ′) ≤ c(δ) + c(δ′ − δ), which in turn, follows from the concavity
of c. Hence, to conclude that agenti strictly prefersx tox

′, we need to show that:
(

1− qi(x
′)
)

(c(δ′)− c(δ)) + qi(x
′)c(δ) > qi(x)c(δ) (1)

To this end, for each even numbered agentj, we letκj andκ′j denote the cost ofj computed by
the mechanism for the instancesx andx′, respectively. By the definition of the mechanism, we have
thatκj = κ′j , for any agentj ∈ E \ {i}, and thatκi = c(δ) andκ′i = c(δ′). Hence, the probability
qi(x

′) can be calculated as follows:

qi(x
′) = κ′i

∫ 1/κ′

i

0

∏

j∈E\{i}

min{1, κjt}dt (2)

To prove (1), we show thati’ expected cost is increasing withκ′i. To prove this, we show that the
partial derivative ofi’s cost with respect toκ′i is positive. Formally, we show that:

∂

∂κ′i
[
(

1− qi(x
′)
)

(κ′i − κi) + qi(x
′)κi] > 0 (3)

We first substituteqi(x′), with the use of (2), and the left-hand-side of (3) becomes:

∂

∂κ′i












1− κ′i

1/κ′

i
∫

0

∏

j∈E\{i}

min{1, κjt}dt






(κ′i − κi) + κi






κ′i

1/κ′

i
∫

0

∏

j∈E\{i}

min{1, κj t}dt













Next, we calculate the partial derivative with respect toκ′i, and the quantity above becomes:

1−
∏

j∈E\{i}

min

{

1,
κj
κ′i

}

+
2(κ′i − κi)

κ′i







∏

j∈E\{i}

min

{

1,
κj
κ′i

}

− κ′i

1/κ′

i
∫

0

∏

j∈E\{i}

min{1, κj t}dt







Using that
∏

j∈E\{i}min{1, κjt} ≤ ∏j∈E\{i}min{1, κj/κ′i}, which holds for allt ∈ [0, 1/κ′i], and
with strict inequality fort < 1/κ′i, we obtain that the quantity above is greater than:

1−
∏

j∈E\{i}

min

{

1,
κj
κ′i

}

+
2(κ′i − κi)

κ′i







∏

j∈E\{i}

min

{

1,
κj
κ′i

}

− κ′i
∏

j∈E\{i}

min

{

1,
κj
κ′i

}

1/κ′

i
∫

0

1dt







Simplifying the quantity above and returning back to (3), weconclude that:

∂

∂κ′i
[
(

1− qi(x
′)
)

(κ′i − κi) + qi(x
′)κi] > 1−

∏

j∈E\{i}

min{1, κj/κ′i} ≥ 0

Therefore, the expected cost of agenti is increasing withκ′i. Hence, we obtain that
(

1− qi(x
′)
)

(κ′i − κi) + qi(x
′)κi > qi(x)κi ,

which is identical to (1). This proves that in the third case,agenti strictly prefersx to x
′, and con-

cludes the proof of the lemma. ⊓⊔
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6.2 Strong Group Strategyproofness

Proving that PICK THE LOSER is strong group strategyproof requires some additional arguments and
case analysis, where we use that the mechanism is strategyproof (Lemma 6.1).

Throughout this section, we consider an instancex with n distinct locations, where the agents
are numbered as they appear on the line, from left to right. Hence, we have thatxi < xi+1, for
all i = 1, . . . , n − 1. We prove that there is no coalition of agents that can benefitby misreporting
their location. For sake of contradiction, let us assume that such a coalition exists. In particular, we
let S be such coalition of minimum size, and letx′ = (x′

S ,x−S) be the new instance, where the
agents inS misreport their location. By the definition of strong group strategyproofness, for alli ∈ S,
cost(xi,PtL(x

′, c)) ≤ cost(xi,PtL(x, c)), and the inequality is strict for at least one agent inS.
We observe that for every odd numbered agenti, xi ∈ x

′. Otherwise, agenti would incur a positive
cost inx′, and would preferx to x

′. Since PICK THE LOSER is anonymous, i.e., does not take the
agent identities into account, we can assume wlog. thatx′i = xi, which implies that the deviating
coalitionS doesn’t contain any odd numbered agents.

Furthermore, we observe that for every even numbered agenti, there is a location inx′ lying in
the interval(xi−1, xi+1), wherexn+1 is defined to be∞. Otherwise agenti would incur an expected
cost ofcost(xi,PtL(x′, c)) ≥ min{c(xi − xi−1), c(xi+1 − xi)}, which is greater than his expected
cost for instancex, wherexi is allocated a facility with positive probability. Again, since PICK THE

LOSER is anonymous, we can assume wlog. thatx′i ∈ (xi−1, xi+1), which implies that the relative
order of the agents inx′ is the same as inx.

Let us now consider an agenti ∈ S, and letκi andκ′i denote the cost ofi computed by the
mechanism for the instancesx andx′, respectively. Next, we exclude the possibility thatκ′i > κi.
Specifically, we show that ifκ′i > κi, the instancex′′ = (x′

−i, xi) is strictly preferable tox′ for
all agents inS. That holds because, inx′′, agenti has costκi < κ′i, and therefore, the probability
that he is designated as the loser inx

′′ is greater than the corresponding probability inx
′. Hence,

for every agentj ∈ E \ {i}, the probability that agentj is designated as the loser inx′′ is less than
the corresponding probability inx′, which implies that agentj strictly prefers the instancex′′ to the
instancex′. Also by Lemma 6.1, PICK THE LOSER is strategyproof, and thus, agenti strictly prefers
the instancex′′ to the instancex′. However, since the number of agents misreporting their locations
in x

′′ is one less than the corresponding number inx
′, this contradicts the hypothesis thatS is the

smallest coalition of agents that can benefit from misreporting their location.
So, let us now assume thatκ′i < κi, for all agentsi ∈ S, and letρ = min{κi/κ′i} > 1. We consider

an instancex′′ where the costκ′′i computed by the mechanism for all agentsi ∈ S is equal toρκ′i.
Such an instancex′′ can be obtained if we let all agentsi ∈ S report locations closer to their original
location. We next prove that for every agenti ∈ S, the probabilityqi(x′′) that i is designated as the
loser inx′′ is less than the probabilityqi(x′) thati is designated as the loser inx′. More precisely:

qi(x
′′) = IPr[κ̂′′i < κ̂′′j ,∀j 6∈ S | κ̂′′i < κ̂′′j ,∀j ∈ S \ {i}] · IPr[κ̂′′i < κ̂′′j ,∀j ∈ S \ {i}]

= IPr[ρκ̂′i < κ̂′j ,∀j 6∈ S | ρκ̂′i < ρκ̂′j ,∀j ∈ S \ {i}] · IPr[ρκ̂′i < ρκ̂′j ,∀j ∈ S \ {i}]
= IPr[κ̂′i < κ̂′j/ρ,∀j 6∈ S | κ̂′i < κ̂′j ,∀j ∈ S \ {i}] · IPr[κ̂′i < κ̂′j ,∀j ∈ S \ {i}]
< IPr[κ̂′i < κ̂′j ,∀j 6∈ S | κ̂′i < κ̂′j ,∀j ∈ S \ {i}] · IPr[κ̂′i < κ̂′j ,∀j ∈ S \ {i}]
= qi(x

′)

Since for every agenti ∈ S, (i) the probability thati is designated as the loser is smaller inx
′′

than inx, i.e., qi(x′′) < qi(x
′), (ii) the reported location ofi in x

′′ is closer to his true locationxi
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than his reported location inx′, i.e.,|x′′i − xi| < |x′i − xi|, and (iii) there are no odd numbered agents
in S, all agentsi ∈ S strictly preferx′′ tox

′.
Therefore, we can assume that in the instancex

′, there is an agenti ∈ S with κ′i = κi. We now
consider the instancex′′ = (x′

−i, xi), where the agenti is removed from the deviating coalitionS.
We note that for every agentj ∈ S, the probability that agentj is designated as the loser inx′′ is the
same as the corresponding probability inx′, i.e., qj(x′′) = qj(x

′). Therefore, the expected cost of
every agentj ∈ S \ {i} in x

′′ is the same as his expected cost inx
′. Moreover, by Lemma 6.1, PICK

THE LOSERis strategyproof, and thus, the expected cost of agenti in x
′′ is less than his expected cost

in x
′. Therefore, if the agents in the coalitionS can benefit by misreporting their locations, the same

holds for theS \{i}. However, this contradicts the hypothesis thatS is the smallest coalition of agents
that can benefit from misreporting their location. Hence, wehave shown that such a coalitionS does
not exist, and thus, the mechanism PICK THE LOSER is strongly group strategyproof.

6.3 Approximation Ratio

Lemma 6.2. For all concave cost functions,PICK THE LOSERachieves an approximation ratio of at
most2 for the objective ofSOCIAL COST, and an approximation ratio of at most4 for the objective
of MAX COST.

Proof. Let (x, c) be any instance with concavec, and letq be an agent withκq = mini{κi}. Then,
SC∗(x, c) = κq, while the SOCIAL COST of the mechanism is equal to:

∑

i

κi

∫ 1/κi

0
κi

∏

j∈E\{i}

min{1, κjt}dt ≤ κq +
∑

i 6=q

κi

∫ 1/κi

0
κi

∏

j∈E\{i}

min{1, κjt}dt

= κq +
∑

i 6=q

κi

∫ 1/κi

0
κiκqt

∏

j∈E\{i,q}

min{1, κj t}dt

≤ κq +
∑

i 6=q

κi

∫ 1/κi

0
κq

∏

j∈E\{i,q}

min{1, κjt}dt

≤ κq + κq
∑

i 6=q

∫ 1/κi

0
κi

∏

j∈E\{i,q}

min{1, κjt}dt

= κq + κq
∑

i 6=q

IPr[κ̂i < κ̂j ,∀j 6∈ {i, q}]dt

= κq + κq · 1 = 2κq

Moreover, sincec is concave,MC∗(x, c) ≥ κq/2 = 2κq/4 ≥ MC(PtL(x, c))/4. ⊓⊔

7 Open Problems

There are a few interesting open problems arising from our work. First, since EQUAL COST crucially
depends on the linear structure of the instances, it would beinteresting to have a mechanism that can
be applied to more general metric spaces, and retains the nice properties of EQUAL COST. Another
intriguing open problem has to do with the approximability of SOCIAL COST by randomized strate-
gyproof mechanisms. Despite the considerable interest in the problem, we do not know whether there
exists a randomized mechanism fork-Facility Location that achieves an approximation ratio ofo(n)
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for all k ≥ 3. Another, more general, direction for further research mayconcern the role of the cost
functionc, which we assume here to be the same for all players. It would be interesting to investigate
the approximability ofk-Facility Location on the line if each agenti may have a different concave
cost functionci(d). A good starting point in this direction may be a simple setting where each agenti
is associated with a tuple(xi, ri), with possibly bothxi andri being private information, and there is
some fixed small cost incurred by agenti, if there is a facility within a distance ofri to xi, and some
fixed large cost incurred by agenti, otherwise.
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