
ar
X

iv
:1

31
2.

20
18

v2
 [

cs
.D

S]
 1

0
D

ec
 2

01
3

RAM-Efficient External Memory Sorting⋆

Lars Arge1⋆⋆ and Mikkel Thorup2⋆ ⋆ ⋆

1 MADALGO†, Aarhus University, Aarhus, Denmark
2 University of Copenhagen,‡ Copenhagen, Denmark

Abstract. In recent years a large number of problems have been consid-
ered in external memory models of computation, where the complexity
measure is the number of blocks of data that are moved between slow
external memory and fast internal memory (also called I/Os). In prac-
tice, however, internal memory time often dominates the total running
time once I/O-efficiency has been obtained. In this paper we study al-
gorithms for fundamental problems that are simultaneously I/O-efficient
and internal memory efficient in the RAM model of computation.

1 Introduction

In the last two decades a large number of problems have been considered in
the external memory model of computation, where the complexity measure is
the number of blocks of elements that are moved between external and internal
memory. Such movements are also called I/Os. The motivation behind the model
is that random access to external memory, such as disks, often is many orders of
magnitude slower than random access to internal memory; on the other hand, if
external memory is accessed sequentially in large enough blocks, then the cost
per element is small. In fact, disk systems are often constructed such that the
time spent on a block access is comparable to the time needed to access each
element in a block in internal memory.

Although the goal of external memory algorithms is to minimize the number
of costly blocked accesses to external memory when processing massive datasets,
it is also clear from the above that if the internal processing time per element in
a block is large, then the practical running time of an I/O-efficient algorithm is
dominated by internal processing time. Often I/O-efficient algorithms are in fact
not only efficient in terms of I/Os, but can also be shown to be internal memory
efficient in the comparison model. Still, in many cases the practical running time
of I/O-efficient algorithms is dominated by the internal computation time. Thus
both from a practical and a theoretical point of view it is interesting to investigate

⋆ This paper will appear in the Proceedings of The 24th International Symposium on
Algorithms and Computation, LNCS 8283, Springer, 2013.

⋆⋆ Supported in part by the Danish National Research Foundation and the Danish
National Advanced Technology Foundation.

⋆ ⋆ ⋆ Supported in part by an Advanced Grant from the Danish Council for Independent
Research under the Sapere Aude research career program.

† Center for Massive Data Algorithmics—a center of the Danish National Research
Foundation

‡ Part of this work was done while the author was at AT&T Labs–Research.

http://arxiv.org/abs/1312.2018v2

how internal-memory efficient algorithms can be obtained while simultaneously
ensuring that they are I/O-efficient. In this paper we consider algorithms that
are both I/O-efficient and efficient in the RAM model in internal memory.

Previous results. We will be working in the standard external memory model
of computation, where M is the number of elements that fit in main memory
and an I/O is the process of moving a block of B consecutive elements between
external and internal memory [1]. We assume thatN ≥ 2M ,M ≥ 2B and B ≥ 2.
Computation can only be performed on elements in main memory, and we will
assume that each element consists of one word. We will sometime assume the
comparison model in internal memory, that is, that the only computation we can
do on elements are comparisons. However, most of the time we will assume the
RAM model in internal memory. In particular, we will assume that we can use
elements for addressing, e.g. trivially implementing permuting in linear time. Our
algorithms will respect the standard so-called indivisibility assumption, which
states that at any given time during an algorithm the original N input elements
are stored somewhere in external or internal memory. Our internal memory time
measure is simply the number of performed operations; note that this includes
the number of elements transferred between internal and external memory.

Aggarwal and Vitter [1] described sorting algorithms using O(NB logM/B
N
B)

I/Os. One of these algorithms, external merge-sort, is based on Θ(M/B)-way
merging. FirstO(N/M) sorted runs are formed by repeatedly sortingM elements
in main memory, and then these runs are merged together Θ(M/B) at a time
to form longer runs. The process continues for O(logM/B

N
M) phases until one is

left with one sorted list. Since the initial run formation and each phase can be
performed in O(N/B) I/Os, the algorithm uses O(NB logM/B

N
B) I/Os. Another

algorithm, external distribution-sort, is based on Θ(
√

M/B)-way splitting. The

N input elements are first split into Θ(
√

M/B) sets of roughly equal size, such
that the elements in the first set are all smaller than the elements in the second
set, and so on. Each of the sets are then split recursively. After O(log√

M/B
N
M) =

O(logM/B
N
M) split phases each set can be sorted in internal memory. Although

performing the split is somewhat complicated, each phase can still be performed
in O(N/B) I/Os. Thus also this algorithm uses O(NB logM/B

N
B) I/Os.

Aggarwal and Vitter [1] proved that external merge- and distribution-sort
are I/O-optimal when the comparison model is used in internal memory, and
in the following we will use sortE(N) to denote the number of I/Os per block
of elements of these optimal algorithms, that is, sortE(N) = O(logM/B

N
B) and

external comparison model sort takes Θ(NB sortE(N)) I/Os. (As described be-
low, the I/O-efficient algorithms we design will move O(N · sortE(N)) elements
between internal and external memory, so O(sortE(N)) will also be the per el-
ement internal memory cost of obtaining external efficiency.) When no assump-
tions other than the indivisibility assumption are made about internal memory
computation (i.e. covering our definition of the use of the RAM model in internal
memory), Aggarwal and Vitter [1] proved that permuting N elements according
to a given permutation requires Ω(min{N, N

B sortE(N)}) I/Os. Thus this is also

2

a lower bound for RAM model sorting. For all practical values of N , M and
B the bound is Ω(NB sortE(N)). Subsequently, a large number of I/O-efficient
algorithms have been developed. Of particular relevance for this paper, several
priority queues have been developed where insert and deletemin operations can
be performed in O(1

B sortE(N)) I/Os amortized [2,4,8]. The structure by Arge [2]
is based on the so-called buffer-tree technique, which uses O(M/B)-way split-
ting, whereas the other structures also use O(M/B)-way merging.

In the RAM model the best known sorting algorithm uses O(N log logN)
time [6]. Similar to the I/O-case, we use sortI(N) = O(log logN) to denote the
per element cost of the best known sorting algorithm. If randomization is allowed
then this can be improved to O(

√
log logn) expected time [7]. A priority queue

can also be implemented so that the cost per operation is O(sortI (N)) [9].

Our results. In Section 2 we first discuss how both external merge-sort and
external distribution-sort can be implemented to use optimal O(N logN) time
if the comparison model is used in internal memory, by using an O(N logN)
sorting algorithm and (in the merge-sort case) an O(logN) priority queue. We
also show how these algorithms can relatively easily be modified to use

O(N · (sortI(N) + sortI(M/B) · sortE(N))) and

O(N · (sortI(N) + sortI(M) · sortE(N)))

time, respectively, if the RAM model is used in internal memory, by using an
O(N · sortI(N)) sorting algorithm and an O(sortI(N)) priority queue.

The question is of course if the above RAM model sorting algorithms can be
improved. In Section 2 we discuss how it seems hard to improve the running time
of the merge-sort algorithm, since it uses a priority queue in the merging step. By
using a linear-time internal-memory splitting algorithm, however, rather than an
O(N · sortI(N)) sorting algorithm, we manage to improve the running time of
external distribution-sort to

O(N · (sortI(N) + sortE(N))).

Our new split-sort algorithm still uses O(NB sortE(N)) I/Os. Note that for small
values ofM/B the N ·sortE(N)-term, that is, the time spent on moving elements
between internal and external memory, dominates the internal time. Given the
conventional wisdom that merging is superior to splitting in external memory, it
is also surprising that a distribution algorithm outperforms a merging algorithm.

In Section 3 we develop an I/O-efficient RAM model priority queue by modi-
fying the buffer-tree based structure of Arge [2]. The main modification consists
of removing the need for sorting of O(M) elements every time a so-called buffer-
emptying process is performed. The structure supports insert and deletemin op-
erations in O(1

B sortE(N)) I/Os and O(sortI(N) + sortE(N)) time. Thus it can

be used to develop anotherO(NB sortE(N)) I/O andO(N ·(sortI (N)+sortE(N)))
time sorting algorithm.

Finally, in Section 4 we show that when N
B sortE(N) = o(N) (and our sorting

algorithms are I/O-optimal), any I/O-optimal sorting algorithm must transfer

3

a number of elements between internal and external memory equal to Θ(B)
times the number of I/Os it performs, that is, it must transfer Ω(N · sortE(N))
elements and thus also use Ω(N · sortE(N)) internal time. In fact, we show
a lower bound on the number of I/Os needed by an algorithm that transfers
b ≤ B elements on the average per I/O, significantly extending the lower bound
of Aggarwal and Vitter [1]. The result implies that (in the practically realistic
case) when our split-sort and priority queue sorting algorithms are I/O-optimal,
they are in fact also CPU optimal in the sense that their running time is the
sum of an unavoidable term and the time used by the best known RAM sorting
algorithm. As mentioned above, the lower bound also means that the time spent
on moving elements between internal and external memory resulting from the
fact that we are considering I/O-efficient algorithms can dominate the internal
computation time, that is, considering I/O-efficient algorithms implies that less
internal-memory efficient algorithms can be obtained than if not considering
I/O-efficiency. Furthermore, we show that when B ≤ M1−ε for some constant
ε > 0 (the tall cache assumption) the same Ω(N ·sortE(N)) number of transfers
are needed for any algorithm using less than εN/4 I/Os (even if it is not I/O-
optimal).

To summarize our contributions, we open up a new area of algorithms that
are both RAM-efficient and I/O-efficient. The area is interesting from both a
theoretical and practical point of view. We illustrate that existing algorithms,
in particular multiway merging based algorithms, are not RAM-efficient, and
develop a new sorting algorithm that is both efficient in terms of I/O and RAM
time, as well as a priority queue that can be used in such an efficient algo-
rithm. We prove a lower bound that shows that our algorithms are both I/O
and internal-memory RAM model optimal. The lower bound significantly ex-
tends the Aggarwal and Vitter lower bound [1], and shows that considering
I/O-efficient algorithms influences how efficient internal-memory algorithms can
be obtained.

2 Sorting

External merge-sort. In external merge-sortΘ(N/M) sorted runs are first formed
by repeatedly loading M elements into main memory, sorting them, and writing
them back to external memory. In the first merge phase these runs are merged
together Θ(M/B) at a time to form longer runs. The merging is continued for
O(logM/B

N
M) = O(sortE(N)) merge phases until one is left with one sorted

run. It is easy to realize that M/B runs can be merged together in O(N/B)
I/Os: We simply load the first block of each of the runs into main memory,
find and output the B smallest elements, and continue this process while load-
ing a new block from the relevant run every time all elements in main mem-
ory from that particular run have been output. Thus external merge-sort uses
O(NB logM/B

N
M) = O(NB sortE(N)) I/Os.

In terms of internal computation time, the initial run formation can trivially
be performed in O(N/M ·M logM) = O(N logM) time using any O(N logN) in-

4

ternal sorting algorithm. Using an O(log(M/B)) priority queue to hold the mini-
mal element from each of theM/B runs during a merge, each of the O(logM/B

N
M)

merge phases can be performed in O(N log M
B) time. Thus external merge-sort

can be implemented to use O(N logM + logM/B
N
M · N log M

B) = O(N logM +

N log N
M) = O(N logN) time, which is optimal in the comparison model.

When the RAM model is used in internal memory, we can improve the in-
ternal time by using a RAM-efficient O(M · sortI(M)) algorithm in the run
formation phase and by replacing the O(log(M/B)) priority queue with an
O(sortI (M/B)) time priority queue [9]. This leads to an O(N · (sortI(M) +
sortI(M/B) · sortE(N)) algorithm. There seems no way of avoiding the extra
sortI(M/B)-term, since that would require an O(1) priority queue.

External distribution-sort. In external distribution-sort the input set of N el-
ements is first split into

√

M/B sets X0, X1, . . . , X√
M/B−1

defined by s =
√

M/B − 1 split elements x1 < x2 < . . . < xs, such that all elements in X0 are
smaller than x1, all elements in X√

M/B−1
are larger than or equal to xs, and

such that for 1 ≤ i ≤
√

M/B − 2 all elements in Xi are larger than or equal
to xi and smaller than xi+1. Each of these sets is recursively split until each
set is smaller than M (and larger than M/(M/B) = B) and can be sorted in
internal memory. If the s split elements are chosen such that |Xi| = O(N/s) then
there are O(logs

N
B) = O(logM/B

N
B) = O(sortE(N)) split phases. Aggarwal and

Vitter [1] showed how to compute a set of s split elements with this property in
O(N/B) I/Os. Since the actual split of the elements according to the split ele-
ments can also be performed in O(N/B) I/Os (just like merging of M/B sorted
runs), the total number of I/Os needed by distribution-sort is O(NB sortE(N)).

Ignoring the split element computation it is easy to implement external
distribution-sort to use O(N logN) internal time in the comparison model: Dur-
ing a split we simply hold the split elements in main memory and perform a
binary search among them with each input element to determine to which set
Xi the element should go. Thus each of the O(logM/B

N
B) split phases uses

O(N log
√

M/B) time. Similarly, at the end of the recursion we sort O(N/M)
memory loads using O(N logM) time in total. The split element computation
algorithm of Aggarwal and Vitter [1], or rather its analysis, is somewhat com-
plicated. Still it is easy to realize that it also works in O(N logM) time as
required to obtain an O(N logN) time algorithm in total. The algorithm works
by loading the N elements a memory load at a time, sorting them and pick-
ing every

√

M/B/4’th element in the sorted order. This obviously requires

O(N/M · M logM) = O(N logM) time and results in a set of 4N/
√

M/B el-

ements. Finally, a linear I/O and time algorithm is used
√

M/B times on this
set of elements to obtain the split elements, thus using O(N) additional time.

If we use a RAM sorting algorithm to sort the memory loads at the end of
the split recursion, the running time of this part of the algorithm is reduced to
O(N · sortI(M)). Similarly, we can use the RAM sorting algorithm in the split
element computation algorithm, resulting in an O(N · sortI(M)) algorithm and

5

consequently a sortI(M)-term in the total running time. Finally, in order to
avoid the binary search over

√

M/B split elements in the actual split algorithm,
we can modify it to use sorting instead: To split N elements among s splitting
elements stored in s/B blocks in main memory, we allocate a buffer of one block
in main memory for each of the s + 1 output sets. Thus in total we require
s/B+(s+1)B < M/2 of the main memory for split elements and buffers. Next
we repeatedly bring M/2 elements onto main memory, sort them, and distribute
them to the s + 1 buffers, while outputting the B elements in a buffer when it
runs full. Thus this process requires O(N ·sortI(M)) time and O(N/B) I/Os like
the split element finding algorithm. Overall this leads to an O(N · (sortI (M) +
sortI(M) · sortE(N))) time algorithm.

Split-sort. While it seems hard to improve the RAM running time of the external
merge-sort algorithm, we can actually modify the external distribution-sort algo-
rithm further and obtain an algorithm that in most cases is optimal both in terms
of I/O and time. This split-sort algorithm basically works like the distribution-
sort algorithm with the split algorithm modification described above. However,
we need to modify the algorithm further in order to avoid the sortI(M)-term in
the time bound that appears due to the repeated sorting of O(M) elements in
the split element finding algorithm, as well as in the actual split algorithm.

First of all, instead of sorting each batch of M/2 elements in the split al-
gorithm to split them over s =

√

M/B − 1 <
√

M/2 split elements, we use a
previous result that shows that we can actually perform the split in linear time.

Lemma 1 (Han and Thorup [7]). In the RAM model N elements can be
split over N1−ε split elements in linear time and space for any constant ε > 0.

Secondly, in order to avoid the sorting in the split element finding algorithm of
Aggarwal and Vitter [1], we design a new algorithm that finds the split elements
on-line as part of the actual split algorithm, that is, we start the splitting with
no split elements at all and gradually add at most s =

√

M/B−1 split elements
one at a time. An online split strategy was previously used by Frigo et al [5] in a
cache-oblivious algorithm setting. More precisely, our algorithm works as follows.
To split N input elements we, as previously, repeatedly bring M/2 elements
onto main memory, distribute them to buffers using the current split elements
and Lemma 1, while outputting the B elements in a buffer when it runs full.
However, during the process we keep track of how many elements are output to
each subset. If the number of elements in a subset Xi becomes 2N/s we pause
the split algorithm, compute the median of Xi and add it to the set of splitters,
and split Xi at the median element into two sets of size N/s. Then we continue
the splitting algorithm.

It is easy to see that the above splitting process results in at most s+1 subsets
containing between N/s and 2N/s− 1 elements each, since a set is split when it
has 2N/s elements and each new set (defined by a new split element) contains
at least N/s elements. The actual median computation and the split of Xi can
be performed in O(|Xi|) = O(N/s) time and O(|Xi|/B) = O(N/sB) I/Os [1].

6

Thus if we charge this cost to the at least N/s elements that were inserted in Xi

since it was created, each element is charged O(1) time and O(1/B) I/Os. Thus
each distribution phase is performed in linear time and O(N/B) I/Os, leading
to an O(N · (sortI (M) + sortE(N))) time algorithm.

Theorem 1. The split-sort algorithm can be used to sort N elements in O(N ·
(sortI(M) + sortE(N))) time and O(NB sortE(N)) I/Os.

Remarks. Since sortI(M) + sortE(N) ≥ sortI(N) our split-sort algorithm uses
Ω(N · sortI(N)) time. In Section 4 we prove that the algorithm in some sense
is optimal both in terms of I/O and time. Furthermore, we believe that the
algorithm is simple enough to be of practical interest.

3 Priority queue

In this section we discuss how to implement an I/O- and RAM-efficient priority
queue by modifying the I/O-efficient buffer tree priority queue [2].

Structure. Our external priority queues consists of a fanout
√

M/B B-tree [3] T
over O(N/M) leaves containing between M/2 and M elements each. In such a
tree, all leaves are on the same level and each node (except the root) has fan-out
between 1

2

√

M/B and
√

M/B and contains at most
√

M/B splitting elements

defining the element ranges of its children. Thus T has height O(log√
M/B

N
M) =

O(sortE(N)). To support insertions efficiently in a “lazy” manner, each internal
node is augmented with a buffer of size M and an insertion buffer of size at most
B is maintained in internal memory. To support deletemin operations efficiently,
a RAM-efficient priority queue [9] supporting both deletemin and deletemax,3

called the mini-queue, is maintained in main memory containing the up to M/2
smallest elements in the priority queue.

Insertion. To perform an insertion we first check if the element to be inserted
is smaller than the maximal element in the mini-queue, in which case we insert
the new element in the mini-queue and continue the insertion process with the
currently maximal element in the mini-queue. Next we insert the element to
be inserted in the insertion buffer. When we have collected B elements in the
insertion buffer we insert them in the buffer of the root. If this buffer now contains
more than M/2 elements we perform a buffer-emptying process on it, “pushing”
elements in the buffer one level down to buffers on the next level of T : We load
the M/2 oldest elements into main memory along with the less than

√

M/B
splitting elements, distribute the elements among the splitting elements, and
finally output them to the buffers of the relevant children. Since the splitting and
buffer elements fit in memory and the buffer elements are distributed to

√

M/B
buffers one level down, the buffer-emptying process is performed in O(M/B)

3 A priority queue supporting both deletemin and deletemax can easily be obtained
using two priority queues supporting deletemin and delete as the one by Thorup [9].

7

I/Os. Since we distribute M/2 elements using
√

M/B splitters the process can
be performed in O(M) time (Lemma 1). After emptying the buffer of the root
some of the nodes on the next level may contain more than M/2 elements. If
they do we perform recursive buffer-emptying processes on these nodes. Note
that this way buffers will never contain more than M elements. When (between
1 and M/2) elements are pushed down to a leaf (when performing a buffer-
emptying process on its parent) resulting in the leaf containing more than M
(and less than 3M/2) elements we split it into two leaves containing between
M/2 and 3M/4 elements each. We can easily do so in O(M/B) I/Os and O(M)
time [1]. As a result of the split the parent node v gains a child, that is, a new leaf
is inserted. If needed, T is then balanced using node splits as a normal B-tree,
that is, if the parent node now has

√

M/B children it is split into two nodes

with 1/2
√

M/B children each, while also distributing the elements in v’s buffer
among the two new nodes. This can easily be accomplished in O(M/B) I/Os and
M time. The rebalancing may propagate up along the path to the root (when
the root splits a new root with two children is constructed).

During buffer-emptying processes we push Θ(M) elements one level down
the tree using O(M/B) I/Os and O(M) time. Thus each element inserted in the
root buffer pays O(1/B) I/Os and O(1) time amortized, or O(1

B logM/B
N
B) =

O(1
B sortE(N)) I/Os andO(logM/B

N
B) = O(sortE(N)) time amortized on buffer-

emptying processes on a root-leaf path. When a leaf splits we may use O(M/B)
I/Os and O(M) time in each node of a leaf-root path of length O(sortE(N)).
Amortizing among the at least M/4 elements that were inserted in the leaf since
it was created, each element is charged and additional O(1

B sortE(N)) I/Os and
O(sortE(N)) time on insertion in the root buffer. Since insertion of an element
in the root buffer is always triggered by an insertion operation, we can charge
the O(1

B sortE(N)) I/Os and O(sortE(N)) time cost to the insertion operation.

Deletemin. To perform a deletemin operation we first check if the mini-queue
contains any elements. If it does we simply perform a deletemin operation on it
and return the retrieved element usingO(sortI (M)) time and no I/Os. Otherwise
we perform buffer-emptying processes on all nodes on the leftmost path in T
starting at the root and moving towards the leftmost leaf. After this the buffers
on the leftmost path are all empty and the smallest elements in the structure
are stored in the leftmost leaf. We load the between M/2 and M elements in
the leaf into main memory, sort them and remove the smallest M/2 elements
and insert them in the mini-queue in internal memory. If this results in the leaf
having less than M/2 elements we insert the elements in a sibling and delete the
leaf. If the sibling now has more than M elements we split it. As a result of this
the parent node v may lose a child. If needed T is then rebalanced using node
fusions as a normal B-tree, that is, if v now has 1/2

√

M/B children it is fused
with its sibling (possibly followed by a split). As with splits after insertion of a
new leaf, the rebalancing may propagate up along the path to the root (when
the root only has one leaf left it is removed). Note that no buffer merging is
needed since the buffers on the leftmost path are all empty.

8

If buffer-emptying processes are needed during a deletemin operation we
spend O(MB logM/B

N
B) = O(MB sortE(N)) I/Os and O(M logM/B

N
B) = O(M ·

sortE(N)) time on such processes that are not paid by buffers running full
(containing more than M/2 elements). We also use O(M/B) I/Os and O(M ·
sortI(M)) time to load and sort the leftmost leaf, and another O(M · sortI(M))
time is used to insert the M/2 smallest elements in the mini-queue. Then we
may spend (M/B) I/Os and O(M) time on each of at most O(logM/B

N
B) nodes

on the leftmost path that need to be fused or split. Altogether the filling up of
the mini-queue requires O(MB sortE(N)) I/Os and O(M ·(sortI(M)+sortE(N)))
time. Since we only fill up the mini-queue when M/2 deletemin operations have
been performed since the last fill up, we can amortize this cost over these M/2
deletemin operations such that each deletemin is charged O(1

B sortE(N)) I/Os
and O(sortE(N) + sortI(M)) time.

Theorem 2. There exists a priority queue supporting an insert operation in
O(1

B sortE(N)) I/Os and O(sortE(N)) time amortized and a deletemin opera-
tion in O(1

B sortE(N)) I/Os and O(sortI (M) + sortE(N)) time amortized.

Remarks. Our priority queue obviously can be used in a simple O(NB sortE(N))
I/O and O(N · (sortI (M) + sortE(N))) time sorting algorithm. Note that it is
essential that a buffer-emptying process does not require sorting of the elements
in the buffer. In normal buffer-trees [2] such a sorting is indeed performed, mainly
to be able to support deletions and (batched) rangesearch operations efficiently.
Using a more elaborate buffer-emptying process we can also support deletions
without the need for sorting of buffer elements.

4 Lower bound

Assume that N
B sortE(N) = o(N) and for simplicity also that B divides N .

Recall that under the indivisibility assumption we assume the RAM model in
internal memory but require that at any time during an algorithm the original
N elements are stored somewhere in memory; we allow copying of the original
elements. The internal memory contains at most M elements and the external
memory is divided into N blocks of B elements each; we only need to consider
N blocks, since we are considering algorithms doing less than N I/Os. During
an algorithm, we let X denote the set of original elements (including copies) in
internal memory and Yi the set of original elements (including copies) in the i’th
block; an I/O transfers up to B elements between an Yi and X . Note that in
terms of CPU time, an I/O can cost anywhere between 1 and B (transfers).

In the external memory permuting problem, we are given N elements in the
first N/B blocks and want to rearrange them according to a given permutation;
since we can always rearrange the elements within the N/B blocks in O(N/B)
I/Os, a permutation is simply given as an assignment of elements to blocks
(i.e. we ignore the order of the elements within a block). In other words, we
start with a distribution of N elements in X,Y1, Y2, . . . YN such that |Y1| =
|Y2| = . . . = |YN/B| = B and X = Y(N/B)+1 = Y(N/B)+2 = . . . = YN = ∅,

9

and should produce another given distribution of the same elements such that
|Y1| = |Y2| = . . . = |YN/B| = B and X = Y(N/B)+1 = Y(N/B)+2 = . . . = YN = ∅.

To show that any permutation algorithm that performs O(NB sortE(N)) I/Os
has to transfer Ω(N ·sortE(N)) elements between internal and external memory,
we first note that at any given time during a permutation algorithm we can
identify a distribution (or more) of the original N elements (or copies of them)
in X,Y1, Y2, . . . YN . We then first want to bound the number of distributions
that can be created using T I/Os, given that bi, 1 ≤ i ≤ T , is the number of
elements transferred in the i’th I/O; any correct permutation algorithm needs
to be able to create at least N !

B!N/B = Ω((N/B)N) distributions.
Consider the i’th I/O. There are at most N possible choices for the block Yj

involved in the I/O; the I/O either transfers bi ≤ B elements from X to Yj or

from Yj to X . In the first case there are at most
(

M
bi

)

ways of choosing the bi
elements, and each element is either moved or copied. In the second case there
are at most most

(

B
bi

)

ways of choosing the elements to move or copy. Thus the
I/O can at most increase the number of distributions that can be created by a
factor of

N ·
((

M

bi

)

+

(

B

bi

))

· 2bi < N(2eM/bi)
2bi .

Now the T I/Os can thus at most create
∏T

i=1 N(2eM/bi)
2bi distributions. That

this number is bounded by
(

N(2eM/b)2b
)T

, where b is the average of the bi’s,
can be seen by just considering two values b1 and b2 with average b. In this case
we have

N(2eM/b1)
2b1 ·N(2eM/b2)

2b2 ≤ N2(2eM)2(b1+b2)

b2(b1+b2)
≤

(

N(2eM/b)2b
)2

.

Next we consider the number of distributions that can be created using T
I/Os for all possible values of bi, 1 ≤ i ≤ T , with a given average b. This
can trivially be bounded by multiplying the above bound by BT (since this is a
bound on the total number of possible sequences b1, b2, . . . , bT). Thus the number

of distributions is bounded by BT
(

N(2eM/b)2b
)T

= ((BN)(2eM/b)2b)T . Since
any permutation algorithm needs to be able to create Ω((N/B)N) distributions,
we get the following lower bound on the number of I/Os T (b) needed by an
algorithm that transfers b ≤ B elements on the average per I/O:

T (b) = Ω

(

N log(N/B)

logN + b log(M/b)

)

.

Now T (B) = Ω(min{N, N
B sortE(N)}) corresponds to the lower bound proved

by Aggarwal and Vitter [1]. Thus when N
B sortE(N) = o(N) we get T (B) =

Ω(NB sortE(N)) = Ω
(

N log(N/B)
B log(M/B)

)

. Since 1 ≤ b ≤ B ≤ M/2, we have T (b) =

ω(T (B)) for b = o(B). Thus any algorithm performing optimal O(NB sortE(N))
I/Os must transfer Ω(N · sortE(N)) elements between internal and external
memory.

10

Reconsider the above analysis under the tall cache assumption B ≤ M1−ε for
some constant ε > 0. In this case, we have that the number of distributions any
permutation algorithm needs to be able to create is Ω((N/B)N) = Ω(NεN).
Above we proved that with T I/Os transferring an average number of b keys
an algorithm can create at most (BN(2eM/b)2b)T < N2TM2bT distributions.
Thus we have M2bT ≥ NεN−2T . For T < εN/4, we get M2bT ≥ NεN/2 and
thus that the number of transferred elements bT is Ω(N logM N). Since the tall
cache assumption implies that log(N/B) = Θ(logN) and log(M/B) = Θ(logM)
we have that N logM N = Θ(N logM/B(N/B)) = Θ(N · sortE(N)). Thus any
algorithm using less than εN/4 I/Os must transfer Ω(N · sortE(N)) elements
between internal and external memory.

Theorem 3. When B ≤ 1
2M and N

B sortE(N) = o(N), any I/O-optimal per-
muting algorithm must transfer Ω(N · sortE(N)) elements between internal and
external memory under the indivisibility assumption.

When B ≤ M1−ε for some constant ε > 0 any, permuting algorithm using
less than εN/4 I/Os must transfer Ω(N · sortE(N)) elements between internal
and external memory under the indivisibility assumption.

Remark. The above means that in practice where N
B sortE(N) = o(N) our

O(NB sortE(N)) I/O and O(N · (sortI (N)+ sortE(N)) time split-sort and prior-
ity queue sort algorithms are not only I/O-optimal but also CPU optimal in the
sense that their running time is the sum of an unavoidable term and the time
used by the best known RAM sorting algorithm.

References

1. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

2. L. Arge. The buffer tree: A technique for designing batched external data structures.
Algorithmica, 37(1):1–24, 2003.

3. D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, 1979.
4. R. Fadel, K. V. Jakobsen, J. Katajainen, and J. Teuhola. Heaps and heapsort on

secondary storage. Theoretical Computer Science, 220(2):345–362, 1999.
5. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious al-

gorithms. In Proc. IEEE Symposium on Foundations of Computer Science, pages
285–298, 1999.

6. Y. Han. Deterministic sorting in O(n log log n) time and linear space. In Proc. ACM

Symposium on Theory of Computation, pages 602–608, 2002.
7. Y. Han and M. Thorup. Integer sorting in O(n

√

log log n) expected time and linear
space. In Proc. IEEE Symposium on Foundations of Computer Science, pages 135–
144, 2002.

8. V. Kumar and E. Schwabe. Improved algorithms and data structures for solving
graph problems in external memory. In Proc. IEEE Symp. on Parallel and Dis-

tributed Processing, pages 169–177, 1996.
9. M. Thorup. Equivalence between priority queues and sorting. Journal of the ACM,

54(6):Article 28, 2007.

11

	RAM-Efficient External Memory Sorting

