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Matrix sparsification and the sparse null space problem
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Abstract

We revisit the matrix problems sparse null space and matrix sparsification, and show that they are equiv-
alent. We then proceed to seek algorithms for these problems: We prove the hardness of approximation
of these problems, and also give a powerful tool to extend algorithms and heuristics for sparse approxi-
mation theory to these problems.

1 Introduction

In this paper, we revisit the matrix problems sparse null space and matrix sparsification.

The sparse null space problem was first considered by Pothen in 1984 [27]. The problem asks, given a matrix
A, to find a matrix N that is a full null matrix for A – that is, N is full rank and the columns of N span
the null space of A. Further, N should be sparse, i.e. contain as few nonzero values as possible. The sparse
null space problem is motivated by its use to solve Linear Equality Problems (LEPs) [9]. LEPs arise in
the solution of constrained optimization problems via generalized gradient descent, segmented Lagrangian,
and projected Lagrangian methods. Berry et al. [4] consider the sparse null space problem in the context
of the dual variable method for the Navier-Stokes equations, or more generally in the context of null space
methods for quadratic programming. Gilbert and Heath [16] noted that among the numerous applications
of the sparse null space problem arising in solutions of underdetermined system of linear equations, is
the efficient solution to the force method (or flexibility method) for structural analysis, which uses the
null space to create multiple linear systems. Finding a sparse null space will decrease the run time and
memory required for solving these systems. More recently, it was shown [36, 26] that the sparse null space

problem can be used to find correlations between small numbers of times series, such as financial stocks.
The decision version of the sparse null space problem is known to be NP-Complete [9], and only heuristic
solutions have been suggested for the minimization problem [9, 16, 4].

The matrix sparsification problem is of the same flavor as sparse null space. One is given a full rank matrix
A, and the task is to find another matrix B that is equivalent to A under elementary column operations,
and contains as few nonzero values as possible. Many fundamental matrix operations are greatly simplified
by first sparsifying a matrix (see [12]) and the problem has applications in areas such as machine learning
[30] and in discovering cycle bases of graphs [20]. But there seem to be only a small number of heuristics
for matrix sparsification ([7] for example), or algorithms under limiting assumptions ([17] considers matrices
that satisfy the Haar condition), but no general approximation algorithms. McCormick [22] established
that the decision version of this problem is NP-Complete.
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For these two classic problems, we wish to investigate potentials and limits of approximation algorithms
both for the general problems and for some variants under simplifying assumptions. To this end, we will
need to consider the well-known vector problems min unsatisfy and exact dictionary representation (elsewhere
called the sparse approximation or highly nonlinear approximation problem [32]).

The min unsatisfy problem is an intuitive problem on linear equations. Given a system Ax = b of linear
equations (where A is an integer m × n matrix and b is an integer m-vector), the problem is to provide
a rational n-vector x; the measure to be minimized is the number of equations not satisfied by Ax = b.
The term “min unsatisfy” was first coined by Arora et al. [2] in a seminal paper on the hardness of
approximation, but they claim that the the NP-Completeness of the decision version of this problem
is implicit in a 1978 paper of Johnson and Preparata [18]. Arora et al. demonstrated that it is hard to

approximate min unsatisfy to within a factor 2log
.5−o(1) n of optimal (under the assumption that NP does not

admit a quasi-polynomial time deterministic algorithm). This hardness result holds over Q, and stronger
results are known for finite fields [10]. For this problem, Berman and Karpinski [3] gave a randomized

m
c logm -approximation algorithm (where c is a constant). We know of no heuristics studied for this problem.

The exact dictionary representation problem is the fundamental problem in sparse approximation theory
(see [23]). In this problem, we are given a matrix of dictionary vectors D and a target vector s, and the
task is to find the smallest set D′ ⊂ D such that a linear combination of the vectors of D′ is equal to
s. This problem and its variants have been well studied. According to Temlyakov [31], a variant of this
problem may be found as early as 1907, in a paper of Schmidt [28]. The decision version of this problem
was shown to be NP-Complete by Natarajan [24]. (See [21] for further discussion.)

The field of sparse approximation theory has become exceedingly popular: For example, SPAR05 was
largely devoted to it, as was the SparseLand 2006 workshop at Princeton, and a mini-symposium at NYU’s
Courant Institute in 2007. The applications of sparse approximation theory include signal representation
and recovery [8, 25], amplitude optimization [29] and function approximation [24]. When the dictionary
vectors are Fourier coefficients, this problem is a classic problem in Fourier analysis, with applications
in data compression, feature extraction, locating approximate periods and similar data mining problems
[37, 14, 15, 6]. There is a host of results for this problem, though all are heuristics or approximations under
some qualifying assumptions. In fact, Amaldi and Kann [1] showed that this problem (they called it RVLS
– ‘relevant variables in the linear system’) is as hard to approximate as min unsatisfy, though their result
seems to have escaped the notice of the sparse approximation theory community.

Our contribution. As a first step, we note that the matrix problems sparse null space and matrix

sparsification are equivalent, and that the vector problems min unsatisfy and exact dictionary representation

are equivalent as well. Note that although these equivalences are straightforward, they seem to have escaped
researchers in this field. For example, [5] claimed that the sparse null space problem is computationally
more difficult than matrix sparsification.)

We then proceed to show that matrix sparsification is hard to approximate, via a reduction from min

unsatisfy. We will thereby show that the two matrix problems are hard to approximate within a factor

2log
.5−o(1) n of optimal (assuming NP does not admit quasi-polynomial time deterministic algorithms).

This hardness result for matrix sparsification is important in its own right, but it further leads us to ask
what can be done for this problem. Specifically, what restrictions or simplifying assumptions may be
made upon the input matrix to make matrix sparsification problem tractable? In addressing this question,
we provide the major contribution of this paper and show how to adapt the vast number of heuristics
and algorithms for exact dictionary representation to solve matrix sparsification (and hence sparse null space

as well). This allows us to conclude, for example, that matrix sparsification admits a randomized m
c logm -

approximation algorithm, and also to give limiting conditions under which a known ℓ1 relaxation scheme
for exact dictionary matching solves matrix sparsification exactly. Our results also carry over to relaxed
version of these problems, where the input is extended by an error term δ which relaxes a constraint.
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These versions are defined in the appendix (§B), although we omit the proof of their equivalence. All of
our results assume that the vector variables are over Q.

An outline of our paper follows: In Section 2 we review some linear algebra and introduce notation. In
closing the preliminary section (2.3), we prove equivalences between the two matrix problems and the two
vector problems. In Section 3 we prove that matrix sparsification is hard to approximate, and in Section 4
we show how to adapt algorithms for exact dictionary representation to solve matrix sparsification.

2 Preliminaries

In this section we review some linear algebra, introduce notation and definitions, and formally state our
four problems.

2.1 Linear algebra and notation.

Matrix and vector properties. Given a set V of n m-dimensional column vectors, an m-vector v /∈ V
is independent of the vectors of V if there is no linear combination of vectors in V that equals v. A set of
vectors is independent if each vector in the set is independent of the rest.

Now let the vectors of V be arranged as columns of an m× n matrix A; we refer to a column of A as ai,
and to a position in A as aij . We define #col(A) to be the number of columns of A. The column span
of A (col(A)) is the (infinite) set of column vectors that can be produced by a linear combination of the
columns of A. The column rank of A is the dimension of the column space of A (rank(A) = dim(col(A)));
it is the size of the maximal independent subset in the columns of A. If the column rank of A is equal to
n, then the columns of A are independent, and A is said to be full rank.

Other matrices may be produced from A using elementary column operations. These include multiplying
columns by a nonzero factor, interchanging columns, and adding a multiple of one column to another.
These operations produce a matrix A′ which has the same column span as A; we say A and A′ are column
equivalent. It can be shown that A, A′ are column equivalent iff A′ = AX for some invertible matrix X.

Let R be a set of rows of A, and C be a set of columns. A(R,C) is the submatrix of A restricted to R and
C. Let A(:, C) (A(R, :)) be the submatrix of A restricted to all rows of A and to columns in C (restricted to
the rows of R and all columns in A). A square matrix is an m×m matrix. A square matrix is nonsingular
if it is invertible.

Null space. The null space (or kernel) of A (null(A)) is the set of all nonzero n-length vectors b for which
Ab = 0. The rank of A’s null space is called the corank of A. The rank-nullity theorem states that for any
matrix A, rank(A)+ corank(A) = n. Let N be a matrix consisting of column vectors in the null space of
A; we have that AN = 0. If the rank of N is equal to the corank of A then N is a full null matrix for A.

Given matrix A, a full null matrix for A can be constructed in polynomial time. Similarly, given a full
rank matrix N , polynomial time is required to construct a matrix A for which N is a full null matrix [26].

Notation. Throughout this paper, we will be interested in the number of zero and nonzero entries in a
matrix A. Let nnz(A) denote the number of nonzero entries in A. For a vector x, let ||x||0 denote the
number of nonzero entries in x. This notation refers to the quasi-norm ℓ0, which is not a true norm since
λ||x||0 6= ||λx||0, although it does honor the triangle inequality.

For vector x, let xi be the value of the ith position in x. The support of x (supp(x)) is the set of indices in
x which correspond to nonzero values, i ∈ supp(x)⇔ xi 6= 0.

3



The notation A|B indicates that the rows of matrix B are concatenated to the rows of matrix A. The
notation

(

A
B

)

indicates that the columns of B are appended to the columns of A. M = A⊗B denotes the
Kronecker product of two matrices, where M is formed by multiplying each individual entry in A by the
entire matrix B. (If A is m× n, B is p× q, then M is mp× nq.)

By equivalent problems, we mean that reductions between them preserve approximation factors. A formal
definition of approximation equivalence is found in Appendix A.

2.2 Minimization problems

In this section, we formally state the four major minimization problems discussed in this paper. The
first two problems have vector solutions, and the second two problems have matrix solutions. Our results
hold when the variables are over Q, although these problems can be defined over R. IF is the set of
input instances, SF (x) is the solution space for x ∈ IF , MF (x, y) is the objective metric for x ∈ IF and
y ∈ SF (x).

exact dictionary representation (EDR)
IEDR = 〈D, s〉, m× n matrix D, vector s with s ∈ col(D)
SEDR(D, s) = {v ∈ Qn : Dv = s}
mEDR(〈D, s〉, v) = ||v||0

min unsatisfy (MU)
IMU = 〈A, y〉, m× n matrix A, vector y ∈ Qm

SMU(A, y) = {x : x ∈ Qn}
mMU(〈A, y〉, x) = ||y −Ax||0

sparse null space (SNS)
ISNS = matrix A
SSNS(A) = {N : N is a full null matrix for A}
mSNS(A,N) = nnz(N)

matrix sparsification (MS)
IMS = full rank m× n matrix B
SMS(B) = {matrix N : N = BX for some invertible matrix X}
mMS(B,N) = nnz(N)

2.3 Equivalences

In closing the preliminary section, we show that min unsatisfy and exact dictionary representation are equiv-
alent. We then show that matrix sparsification and matrix sparsification are equivalent. The type of equiv-
alence is formally stated in definition 14, and guarantees exact equality of approximation factors among
polynomial-time algorithms (Corollary 16).

Equivalence of vector problems. Here we show that EDR and min unsatisfy are equivalent.

We reduce EDR to min unsatisfy. Given input 〈D, s〉 to EDR, we seek a vector v with minimum ||v||0 that
satisfies Dv = s. Let y be any vector that satisfies Dy = s, and A be a full null matrix for D. (These can
be derived in polynomial time.) Let x = MU(A, y) and v = y−Ax. We claim that v is a solution to EDR.
First note that v satisfies Dv = s: Dv = D(y−Ax) = Dy−DAx = s− 0 = s. Now, the call to MU(A, y)
returned a vector x for which ||y − Ax||0 = ||v||0 is the minimization measure; and, as x ranges over Rn,
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the vector v = y − Ax ranges over all vectors with Dv = s. Hence, the oracle for min unsatisfy directly
minimizes ||v||0, and so v is a solution to EDR.

We now reducemin unsatisfy to EDR. Given input 〈A, y〉 tomin unsatisfy, we seek a vector x which minimizes
||y−Ax||0. We may assume that A is full rank. (Otherwise, we can simply take any matrix Ã whose columns
form a basis of col(A), and it follows easily that ||MU(A, y)|| = ||MU(Ã, y)||.) Find (in polynomial time)
a matrix D such that A is a full null matrix for D (this can be achieved by finding DT as a null matrix of
AT ). Let s = Dy, and v = EDR(D, s). Since Dv = s we have that D(y − v) = Dy −Dv = 0, from which
we conclude that y − v is in the null space of D, and therefore in the column space of A. It follows that
we can find an x such that Ax = y − v. We claim that x solves the instance of min unsatisfy: It suffices to
note that the call to EDR(D, s) minimizes ||v||0 = ||y −Ax||0, and that as v ranges over {v : Dv = s}, the
vector Ax = y − v ranges over all of col(A). In conclusion,

Lemma 1 The problems exact dictionary representation and min unsatisfy are equivalent.

Equivalence of matrix problems. Here we demonstrate that sparse null space and matrix sparsification

are equivalent. Recall that in the description of matrix sparsification on input matrix B, we required that
B be full rank, #col(B) = rank(B). (We could in fact allow #col(B) > rank(B), but this would trivially
result in #col(B)− rank(B) zero columns in the solution, and these columns are not interesting.) We will
need the following lemma:

Lemma 2 Let B be a full null matrix for m× n matrix A. The following statements are equivalent: (1)
N = BX for some invertible matrix X. (2) N is a full null matrix for A.

Proof. In both cases, N and B must have the same number of columns, the same rank, and the same
span. This is all that is required to demonstrate either direction. ✷

We can now prove that sparse null space and matrix sparsification are equivalent. The problem sparse null

space may be solved utilizing an oracle for matrix sparsification. Given input A to sparse null space, create
(in polynomial time) a matrix B which is a full null matrix for A, and let N = MS(B). We claim that N
is a solution to SNS(A). Since N = BX for some invertible matrix X, by Lemma 2 N is a full null matrix
for A. Therefore the call to MS(B) is equivalent to a call to MS(N), which solves sparse null space on A.

We show that matrix sparsification can be solved using an oracle for sparse null space. Given input B to
matrix sparsification, create (in polynomial time) matrix A such that B is a full null matrix for A. Let
N = SNS(A). We claim that N is a solution to MS(B). By the lemma, N = BX for some invertible matrix
X, so N can be derived from B via elementary row reductions. The call to SNS(A) finds an optimally
sparse N , which is equivalent to solving min unsatisfy on B. In conclusion,

Lemma 3 The problems matrix sparsification and sparse null space are equivalent.

3 Hardness of approximation for matrix problems

In this section, we prove the hardness of approximation of matrix sparsification (and therefore sparse null

space). This motivates the search for heuristics or algorithms under simplifying assumptions for matrix

sparsification, which we undertake in the next section. For the reduction, we will need a relatively dense
matrix which we know cannot be further sparsified. We will prove the existence of such a matrix in the
first subsection.
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3.1 Unsparsifiable matrices

Any m×n matrix A may be column reduced to contain at most (m− r+1)r nonzeros, where r = rank(A).
For example, Gaussian elimination on the columns of the matrix will accomplish this sparsification. We
will say that a rank r, m× n matrix A is completely unsparsifiable if and only if, for any invertible matrix
X, nnz(AX) ≥ (m− r + 1)r. A matrix A is optimally sparse if, for any invertible X, nnz(AX) ≥ nnz(A).
The main result of this section follows.

Theorem 4 Let A be an m× n matrix with m ≥ n. If every square submatrix of A is nonsingular, then
A has rank n and is completely unsparsifiable. Moreover, in such case the matrix

(

I
A

)

is optimally sparse,
where I is the n× n identity matrix.

Before attempting a proof of the theorem, we need a few intermediate results.

Lemma 5 Matrix A is optimally sparse if and only if, for any vector x 6= 0, ||Ax||0 ≥ maxi∈supp(x) ||ai||0.

Proof. Suppose that there exists an x that, for some i ∈ supp(x), ||Ax||0 < ||ai||0. Then we may replace
the matrix column ai by Ax, and create a matrix with the same rank as A which is sparser than A;
a contradiction. Similarly, suppose that A is not optimally sparse, so that there exists B = AX with
nnz(B) < nnz(A), for some invertible X. Assume without loss of generality that the diagonal of X is full,
xii 6= 0 (otherwise just permute the columns of X to make it so). Then there must exist an index j ∈ [n]
with ||bj ||0 < ||aj ||0, and we have ||Axj ||0 = ||bj ||0 < ||aj ||0 ≤ maxi∈supp(xj) ||ai||0, since xjj 6= 0. ✷

A submatrix A(R,C) is row-inclusive iff r 6∈ R implies that A(r, C) is not in the row span of A(R,C).
In other words, A(R,C) includes all the rows of A(:, C) which are in the row span of this submatrix. A
submatrix A(R,C) is a candidate submatrix of A (written A(R,C) ✁ A) if and only if A(R,C) is both
row-inclusive and rank(A(R,C)) = |C| − 1. This last property is equivalent to stating that the columns of
A(R,C) form a circuit – they are minimally linearly dependent. We can potentially zero out |R| entries
of A by using the column dependency of A(R,C); being row-inclusive means there would be exactly |R|
zeros in the modified column of A.

The next lemma demonstrates the close relationship between candidate submatrices and vectors x which
may sparsify A as in Lemma 5.

Lemma 6 For any m × n matrix A: (1) For any x 6= 0 and i ∈ supp(x), there exists A(R,C) ✁ A for
which |R| ≥ m− ||Ax||0, and i ∈ C ⊂ supp(x). (2) For any A(R,C)✁A there exists a vector x for which
supp(x) = C and ||Ax||0 = m− |R|.

Proof. Part 1: Let R′ = [m] − supp(Ax) (where [m] = {1, 2, ..., m}), and choose C so that i ∈ C ⊂
supp(x), and the columns of A(R′, C) form a circuit. (Note that the columns A(R′, supp(x)) are dependent
since A(R′, :)x = 0). Now expand R′ to R so that A(R,C) is row-inclusive. Then rank(A(R,C)) =
rank(A(R′, C)) = |C| − 1, so that A(R,C)✁A.

Part 2: Since the columns of A(R,C) form a circuit, there is an x̃ with x̃i 6= 0∀i and A(R,C)x̃ = 0. Then
dim(col(A(R,C)T )) = |C| − 1 = dim(null(x̃T )) and also col(A(R,C)T ) ⊂ null(x̃T ), which together imply
col(A(R,C)T ) = null(x̃T ). So A(r, C)x̃ = 0 is true iff r ∈ R (using the fact that A(R,C) is row-inclusive).
Now choose x so that x(C) = x̃ and all other coordinates are zero; then supp(Ax) = [m]−R. ✷

The following is an immediate consequence of the lemma, and is crucial to our proof of Theorem 4.
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Corollary 7 The m × n matrix A is optimally sparse if and only if there is no candidate submatrix
A(R,C)✁A with m− |R| < ||ai||0 for some i ∈ C.

We are now ready to prove the theorem.

Proof of Theorem 4. Let B =
(

I
A

)

. We prove that B is optimally sparse. Suppose B(R,C) ✁ B.
Let RI = R ∩ [n] and RA = R − [n]. Now B(RI , C) is a submatrix of I with dependent columns, so
B(RI , C) = 0. By row-inclusiveness, RI must include all zero rows in B([n], C), so |RI | = n − |C|. Since
B(RI , C) = 0, it follows that rank(B(RA, C)) = rank(B(R,C)) = |C|−1, and |RA| ≥ |C|−1. Any |C|×|C|
subsquare of B(RA, C) would make the rank at least |C|, so we must have |RA| < |C|; thus |RA| = |C|−1.
Combined with |RI | = n− |C|, this implies that |R| = n− 1. Then m+ n− |R| = m+ 1 = ||bi||0 for any
column bi of B, proving that B is optimally sparse by corollary 7.

Recall that Gaussian elimination on matrix A → G yields nnz(G) = (m − n + 1)n. Now suppose there
is an invertible matrix X with nnz(AX) < (m − n + 1)n. Then nnz(BX) = nnz(

(

X
AX

)

) < n2 + (m − n +
1)n = (m + 1)n, contradicting the optimal sparsity of B. Hence no such X exists and A is completely
unsparsifiable. ✷

3.2 Efficiently building an unsparsifiable matrix

The next lemma establishes that we can easily construct an unsparsifiable matrix with a given column, a
useful fact for the reductions to follow.

Lemma 8 If n× n matrix M = (Mij) has entries mij = ipj for distinct positive reals p1, p2, . . . , pn, then
every subsquare of M is nonsingular.

Proof. Let f be a signomial (a polynomial allowed to have nonintegral exponents). We define positive zeros(f) :=
{x : x > 0 & f(x) = 0} and #sign changes(f) := #{i : µiµi+1 < 0}, where f =

∑

i µix
pi , and no µi = 0. A

slight generalization of Descartes’ rule of signs [35] states that

#positive zeros(f) ≤ #sign changes(f) (1)

Consider any k× k subsquare M(R,C) given by R = {r1, . . . , rk}, C = {c1, . . . , ck} ⊂ [n], and any nonzero
vector µ ∈ Rk. Then M(R,C) · µ matches the signomial f(x) =

∑

µix
pci evaluated at x = r1, . . . , rk.

Using (1), #{i : f(ri) = 0} ≤ #sign changes(f) < k, so that some f(ri) 6= 0, and M(R,C)µ 6= 0. Hence
the subsquare has a trivial kernel, and is nonsingular. ✷

To avoid problems of precision, we will choose powers of pj to be consecutive integers beginning at 0. This
yields the Vandermonde matrix over Q. It can also be shown, by an elementary cardinality argument, that
a random matrix (using a non-atomic distribution) is unsparsifiable with probability 1 over infinite fields.
The above lemma avoids any probability and allows us to construct such a matrix as quickly as we can
iterate over the entries.

3.3 Reduction for matrix problems

After proving the existence of an unsparsifiable matrix in the last section, we can now prove the hardness
of approximation of matrix sparsification. We reduce min unsatisfy to matrix sparsification. Given an instance
〈A, y〉 of min unsatisfy, we create a matrix M such that matrix sparsification on M solves the instance of
min unsatisfy.

7



Before describing the reduction, we outline the intuition behind it. We wish to create a matrix M with
many copies of y and some copies of A. The number of copies of y should greatly outnumber the number
of copies of A. The desired approximation bounds will be achieved by guaranteeing that M is composed
mostly of zero entries and of copies of y. It follows that minimizing the number of nonzero entries in the
matrix (solving matrix sparsification) will reduce to minimizing the number of nonzero entries in the copies
of y by finding a sparse linear combination of y with some other dictionary vectors (solving min unsatisfy).

The construction is as follows: Given an instance 〈A, y〉 of min unsatisfy (where A is an m × n matrix,
y ∈ Rm, and q ≥ p are free parameters), take an optimally sparse (p + q) × p matrix

(

Ip
X

)

as given by

Lemma 8 and Theorem 4 (where Ip is a p × p identity matrix), and create matrix Ml =
(

Ip
X

)

⊗ y =
(

Ip⊗y
X⊗y

)

(of size (p+ q)m× p). Further create matrix Iq ⊗A (of size qm× qn), and take matrix 0 (of size pm× qn)
and form matrix Mr =

( 0
Iq⊗A

)

(of size (p + q)m × qn). Append Mr to the right of Ml to create matrix

M = Ml|Mr of size (p+ q)m× (p+ qn). We can summarize this construction as M =

(

Ip ⊗ y 0
X ⊗ y Iq ⊗A

)

.

Ml is composed of p+pq m-length vectors, all corresponding to copies of y. Mr is composed of qn m-length
vectors, all corresponding copies of vectors in A. By choosing p = q = n2, we ensure that the term pq is
larger than qn by a factor of n. Note that M now contains O(n3) columns.

It follows that the number of zeros in M depends mostly on the number of zeros induced by a linear
combination of dictionary vectors that include y. Because Ml is unsparsifiable, vectors in the rows of
Ml will not contribute to sparsifying other vectors in these rows; only vectors in Mr (which are copies
of the vectors of A) may sparsify vectors in Ml (which are copies of the vectors in y). It follows that an

approximation to matrix sparsification will yield a similar approximation – within a factor of 1+n− 1
3 – to min

unsatisfy, and that matrix sparsification is hard to approximate within a factor 2log
.5−o(1) n1/3

= 2log
.5−o(1) n

of optimal (assuming NP does not admit quasi-polynomial time deterministic algorithms).

4 Solving matrix sparsification through min unsatisfy

In the previous section we showed that matrix sparsification is hard to approximate. This motivates the
search for heuristics and algorithms under simplifying assumptions for matrix sparsification. In this section
we show how to extend algorithms and heuristics for min unsatisfy to apply to matrix sparsification – and
hence sparse null space – while preserving approximation guarantees. (Note that this result is distinct from
the hardness result; neither one implies the other.)

We first present an algorithm for matrix sparsification which is in essence identical to the one given by
Coleman and Pothen [9] for sparse null space. The algorithm assumes the existence of an oracle for a
problem we will call the sparsest independent vector problem. The algorithm makes a polynomial number
of queries to this oracle, and yields an optimal solution to matrix sparsification.

The sparsest independent vector problem takes full-rank input matrices A and B, where the columns of
B are a contiguous set of right-most columns from A (informally, one could say that B is a suffix of A,
in terms of columns). The output is the sparsest vector in the span of A but not in the span of B. For
convenience, we add an extra output parameter — a column of A\B which can be replaced by the sparsest
independent vector while preserving the span of A. More formally, sparsest independent vector is defined
as follows. (See §A for the definition of a problem instance.)

sparsest independent vector (SIV)
ISIV = 〈A,B〉; A is an m×n full rank matrix with A = (C|B) for some non-empty
matrix C.
SSIV(A,B) = {a : a ∈ col(A), a /∈ col(B)}
mSIV(〈A,B〉, a) = nnz(a)

8



The following algorithm reduces matrix sparsification on an m× n input matrix A to making a polynomial
number of queries to an oracle for sparsest independent vector:

Algorithm Matrix Sparsification(A)
B ← null
for i = n to 1:
〈bi, aj〉 = SIV(A,B)
A← (A \ {aj}|bi)
B ← (bi|B)

return B

This greedy algorithm sparsifies the matrix A by generating a new matrix B one column at a time. The
first-added column (bn) is the sparsest possible, and each subsequent column is the next sparsest. It is
decidedly non-obvious why such a greedy algorithm would actually succeed; we refer the reader to [9] where
it is proven that greedy algorithms yield an optimal result on matroids such as the set of vectors in col(A).
Our first contribution is in expanding the result of [9] as follows.

Lemma 9 Let subroutine SIV in algorithm Matrix Sparsification be a λ-approximation oracle for sparse

independent vector. Then the algorithm yields a λ-approximation to matrix sparsification.

Proof. Given m × n matrix A, suppose C̃ exactly solves MS(A), and that the columns c̃1, . . . , c̃n of C̃
are sorted in decreasing order by number of nonzeros. Let si = ||c̃i||0; then s1 ≥ s2 ≥ . . . ≥ sn. As already
mentioned, given a true oracle to sparsest independent vector, algorithm Matrix Sparsification would first
discover a column with sn nonzeros, then a column with sn−1 nonzeros, etc.

Now suppose algorithm Matrix Sparsification made calls to a λ−approximation oracle for sparse independent
vector. The first column generated by the algorithm, call it bn, will have at most λsn nonzeros, since the
optimal solution has sn nonzeros. The second column generated will have at most λsn−1 nonzeros, since
the optimal solution to the call to SIV has no more than sn−1 nonzeros: even if bn is suboptimal, it is true
that at least one of c̃n or c̃n−1 is an optimal solution to SIV(A, bn).

More generally, the ith column found by the algorithm has no more then λsi nonzeros, since at least one of
{c̃n, . . . , c̃i} is an optimal solution to the ith query to SIV. Thus we have nnz(B) =

∑

i ||bi||0 ≤
∑

λ||c̃i||0 =
λ nnz(C̃), and may conclude that the algorithm yields a λ−approximation to matrix sparsification. ✷

It follows that in order to utilize the aforementioned algorithm for matrix sparsification, we need some
algorithm for sparsest independent vector. This is in itself problematic, as the sparsest independent vector

problem is hard to approximate – in fact, we will demonstrate later that sparsest independent vector is as
hard to approximate as min unsatisfy. Hence, although we have extended the algorithm of [9] to make use
of an approximation oracle for sparsest independent vector, the benefit of this algorithm remains unclear.

To this end, we will show how to solve sparsest independent vector while making queries to an approximate
oracle for min unsatisfy. This algorithm preserves the approximation ratio of the oracle. This implies that
all algorithms for min unsatisfy immediately carry over to sparsest independent vector, and further that they
carry over to matrix sparsification as well. This also implies a useful tool for applying heuristics for min

satisfy to the other problems.

The problem sparsest independent vector on input 〈A,B〉 asks to find the sparsest vector in the span of A
but not in the span of B. It is not difficult to see that min unsatisfy solves a similar problem: Given a
matrix A and target vector y not in the span of A, find the sparsest vector in the span of (A|y) but not
in the span of A. Hence, if we query the oracle for min unsatisfy once for each vector aj /∈ col(B), one of
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these queries must return the solution for the sparsest independent vector problem. This discussion implies
the following algorithm:

Algorithm Sparse Independent Vector(A,B)
s← m+ 1
for j = 1 to n:

if aj /∈ col(B) :
Aj ← A\{aj}
x← MU(Aj , aj)
c′ ← Ajx− aj
if ||c′||0 < s
c← c′; s← ||c||0; α← aj

return 〈c, α〉

Note that when this algorithm is given a λ-approximate oracle for min unsatisfy, it yields a λ-approximate
algorithm for sparsest independent vector. (In this case, the approximation algorithm is valid over the field
for which the oracle is valid.)

We conclude this section by giving hardness results for sparsest independent vector by reduction from min

unsatisfy; we show that any instance 〈A, b〉 of min unsatisfy may be modeled as an instance 〈A′, B′〉 of
sparsest independent vector: Let A′ = A|y, and B′ = A. This suffices to force the linear combination to
include y. It follows that sparsest independent vector is as hard to approximate as min unsatisfy, and in fact
that the two problems are approximation equivalent.

4.1 Approximation algorithms

We have presented a tool for extending algorithms and heuristics for exact dictionary representation to min

unsatisfy and then directly to the matrix problems. When these algorithms make assumptions on the
dictionary of EDR, it is necessary to investigate how these assumptions carry over to the other problems.

To this end, we consider here one of the most popular heuristic for EDR – ℓ1-minimization – and the case
where it is guaranteed to provide the optimal result. The heuristic is to find a vector v that satisfies
Dv = s, while minimizing ||v||1 instead of ||v||0. (See [34, 33, 11] for more details.) In [13], Fuchs shows
that under the following relatively simple condition ℓ1-minimization provides the optimal answer to EDR.

In the following, we write sgn(x) to indicate x
|x| , or zero if x = 0. Given a matrix D whose columns are

divided into two submatrices D0 and D1, we may write D = (D0 D1), even though D0 and D1 may not be
contiguous portions of the full matrix. (The reader may view this as permuting the columns of D before
splitting into D0 and D1.)

Theorem 10 (Fuchs) Suppose that s = Dv, and that ||v||0 is minimal (so that this v solves EDR(D, s)).
Split D = (D0 D1) so that D0 contains all the columns in the support of v. Accordingly, we split the vector
v =

(v0
~0

)

, in which all coordinates of v0 are nonzero.

If there exists a vector h so that DT
0 h = sgn(v0), and ||D

T
1 h||∞ < 1, then ||v||1 < ||w||1 for all vectors

w 6= v with Dw = s.

We extend this result to each of our major problems.

10



Theorem 11 min unsatisfy. Suppose, for a given A, y pair, that x minimizes ||y −Ax||0. Split y =
(

y0
y1

)

and A =
(

A0

A1

)

so that A1 is maximal such that y1 = A1x, and let v = y0−A0x. If there is a matrix u with

||u||∞ < 1 and AT
1 u = −AT

0 sgn(v), then our reduction of MU(A, y) to an ℓ1 approximation of EDR(D, s)
gives the truly optimal answer.

matrix sparsification. For a given m × n matrix B, suppose C minimizes nnz(C) such that C = BX for
invertible X. For any i ∈ [n], split column ci =

(ci,0
~0

)

so that ci,0 is completely nonzero, and, respectively,

B =
(

Bi,0

Bi,1

)

, so that ci,0 = Bi,0xi. If, for all i ∈ [n], there exists vector ui with ||ui||∞ < 1 and BT
i,1ui =

−BT
i,0sgn(ci,0), then our reduction algorithm to an ℓ1 approximation of EDR via min unsatisfy will give a

truly optimal answer to this MS instance.

sparse null space For a given matrix A with corank c, suppose matrix V solves SNS(A). For each i ∈ [c], split
column vi =

(vi,0
~0

)

so that vi,0 is completely nonzero and, respectively, A = (Ai,0 Ai,1) so that Ai,0vi,0 = 0.

If, for all i ∈ [c], there exists vector hi with ||A
T
i,1hi||∞ < 1 and AT

i,0hi = sgn(vi,0), then our reduction
to an ℓ1 approximation of EDR via matrix sparsification and min unsatisfy gives a truly optimal answer to
this SNS instance.

Proof. min unsatisfy. As in our reduction from MU to EDR, we find matrix D with DA = 0 and vector
s = Dy. Then

(

sgn(v0)

u

)

∈ null(AT ) = col(DT ) =⇒ ∃h : DTh =

(

sgn(v)

u

)

.

Splitting D = (D0 D1), we see that DT
0 h = sgn(v) and ||DT

1 h||∞ < 1, exactly what is required for theorem
10, showing that ℓ1 minimization gives the answer D0v0. Since D0v0 = (D0 D1)

(

v
~0

)

= D(y −Ax) = s, this
completes the proof.

matrix sparsification. We write A \ i to denote matrix A with the ith column removed. In our reduction of
MS to MU, we need to solve instances of MU over equations of the form (B \ i)x = bi. According to the
MU portion of this theorem, it suffices to show that (Bi,1 \ i)

Tui = −(Bi,0 \ i)
T sgn(ci,0). The condition for

this portion of the theorem implies this, since removing any corresponding rows from a matrix equation of
the form Ax = By still preserves the equality.

sparse null space. As in our reduction from SNS to MS, we find a matrix B such that A is a full null matrix
for B. For any i, let ui = AT

i,1hi so that AThi =
(sgn(vi,0)

ui

)

. Then
(sgn(vi,0)

ui

)

∈ col(AT ) = null(BT ), and

BT
i,1ui = −B

T
i,0sgn(vi,0), which is exactly what is necessary for matrix sparsification to function through ℓ1

approximation. ✷

The following intuitive conditions give insight into which matrices are amenable to ℓ1 approximations. A+

denotes (ATA)−1AT , the pseudoinverse of A.

Corollary 12 min unsatisfy. Suppose matrix A =
(

A0
A1

)

is split by an optimal answer as in theorem 11. If

row(A0) ⊂ row(A1) and ||(A
T
1 )

+AT
0 ||1,1 < 1, our ℓ1 approximation scheme will give a truly optimal answer.

matrix sparsification. Suppose matrix B =
(

Bi,0

Bi,1

)

is split by the columns of an optimal answer C = BX as

in theorem 11. If, for any i, row(Bi,0) ⊂ row(Bi,1) and ||(BT
i,1)

+BT
i,0||1,1 < 1, then our ℓ1 approximation

will give the optimal answer.

sparse null space. Suppose matrix A = (Ai,0 Ai,1) is split by the columns of an optimal answer V with
AV = 0 as in theorem 11. If col(Ai,0) ⊂ col(Ai,1) and ||A

+
i,0Ai,1||1,1 < 1 ∀i, then our ℓ1 approximation will

give an optimal answer.
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A Approximation equivalence

Here we define approximation equivalence. Some of our notation and definitions are inspired by [1], which
itself built upon [19].

Definition 13 An optimization problem is a four-tuple F = {IF , SF ,MF , optF }, where IF is the set of
input instances, SF (x) is the solution space for x ∈ IF , MF (x, y) is the objective metric for x ∈ IF and
y ∈ SF (x), and optF ∈ {min,max}.

We will assume throughout the paper that optF = min.

For any optimization problem F and x ∈ IF , we define F (x) = argminy∈SF (x)MF (x, y) and ||F (x)|| =

MF (x, F (x)). An approximation F̃ to F is any map on IF with F̃ (x) ∈ SF (x). We write ||F̃ (x)|| for

MF (x, F̃ (x)). F̃ is an λ-approximation for F when, for all x ∈ IF ,
||F̃ (x)||
||F (x)|| ≤ λ(|x|).

Definition 14 Given optimization problems F and G, an exact reduction from F to G is a pair 〈t1, t2〉
that satisfies the following: (1) t1, t2 ∈ P . (2) t1 : IF → IG and for all x ∈ IF , y ∈ SG(t1(x)), we have
t2(x, y) ∈ SF (x). (3) For all x ∈ IF , y ∈ SG(t1(x)), we have MF (x, t2(x, y)) = MG(t1(x), y). (4) For all
x ∈ IF , ||F (x)|| ≥ ||G(t1(x))||.

We write F � G. We write F ∼ G to denote that F � G and G � F , and call these problems equivalent.

Theorem 15 If F � G and G admits a λ-approximation, then so does F .

Proof. We are given that for G, there exists G̃ with ||G̃(x)||
||G(x)|| ≤ λ for all x ∈ IG. Let F̃ (x) = t2(x, G̃(t1(x))),

where 〈t1, t2〉 is the F � G exact reduction. It suffices to show that ||F̃ (x)||
||F (x)|| ≤

||G̃(x′)||
||G(x′)|| , where x′ = t1(x).

By the fourth item of the definition, it suffices to demonstrate that ||F̃ (x)|| ≤ ||G̃(x′)||. By the third item,
||F̃ (x)|| = MF (x, t2(x, G̃(x′))) = MG(x

′, G̃(x′)) = ||G̃(x′)||. ✷

In fact, it can be shown that ||F̃ (x)||
||F (x)|| =

||G̃(x′)||
||G(x′)|| .

Corollary 16 If F ∼ G, then F admits a λ-approximation if and only if G admits a λ-approximation.

B Relaxed Versions

The following problems are variations which work with more approximate solution spaces. This can be
considered as allowing some noise in either the inputs or outputs. It is not difficult to extend the above
proofs to see that these four problems are equivalent as well.
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Relaxed Dictionary Representation (RDR)
IRDR = 〈D, s, δ〉, m× n matrix D, vector s with s ∈ col(D), δ ≥ 0
SRDR(D, s, δ) = {〈v,w〉 each in Rn : D(v −w) = s, ||w|| ≤ δ}
mRDR(〈D, s〉, 〈v,w〉) = ||v||0

Relaxed MinUnsatisfy (RMU)
IRMU = 〈A, y, δ〉, m× n matrix A, vector y ∈ Rm, δ ≥ 0
SRMU(A, y, δ) = {〈x ∈ Rn, w ∈ Rm〉 : ||w|| ≤ δ}
mRMU(〈A, y〉, 〈x,w〉) = ||y −Ax+ w||0

Relaxed Sparse Null Space (RSNS)
IRSNS = 〈A, δ〉, matrix A, and δ ≥ 0
SRSNS(A, δ) = {〈M,N〉 : N is a full null matrix for A, ||M || ≤ δ}
mRSNS(〈A, δ〉, 〈M,N〉) = nnz(M +N)

Relaxed Matrix Sparsification (RMS)
IRMS = 〈B, δ〉, matrix B, and δ ≥ 0
SRMS(B, δ) = {〈M,N〉 : N = BX,X invertible, ||M || ≤ δ}
mRMS(〈B, δ〉, 〈M,N〉) = nnz(M +N)
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