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Greedy Matching: Guarantees and Limitations

Bert Besser∗ Matthias Poloczek†

Abstract

Since Tinhofer proposed the MinGreedy algorithm for maximum cardinality matching
in 1984, several experimental studies found the randomized algorithm to perform excellently
for various classes of random graphs and benchmark instances. In contrast, only few analytical
results are known. We show that MinGreedy cannot improve on the trivial approximation
ratio of 1

2
whp., even for bipartite graphs. Our hard inputs seem to require a small number of

high-degree nodes.
This motivates an investigation of greedy algorithms on graphs with maximum degree ∆: We

show that MinGreedy achieves a ∆−1

2∆−3
-approximation for graphs with ∆=3 and for ∆-regular

graphs, and a guarantee of ∆−1/2

2∆−2
for graphs with maximum degree ∆. Interestingly, our bounds

even hold for the deterministic MinGreedy that breaks all ties arbitrarily.
Moreover, we investigate the limitations of the greedy paradigm, using the model of prior-

ity algorithms introduced by Borodin, Nielsen, and Rackoff. We study deterministic priority
algorithms and prove a ∆−1

2∆−3
-inapproximability result for graphs with maximum degree ∆;

thus, these greedy algorithms do not achieve a 1

2
+ε-approximation and in particular the 2

3
-

approximation obtained by the deterministic MinGreedy for ∆=3 is optimal in this class.
For k-uniform hypergraphs we show a tight 1

k -inapproximability bound.
We also study fully randomized priority algorithms and give a 5

6
-inapproximability bound.

Thus, they cannot compete with matching algorithms of other paradigms.

1 Introduction

Due to their simplicity and efficiency, greedy algorithms have been studied intensely for the max-
imum cardinality matching problem, a problem that arises in many applications including image
feature matching [11], pairwise kidney exchange [40, 42], protein structure comparison [5], and low
delay network traffic routing [26].

In 1984 Tinhofer [41] proposed the following three randomized greedy algorithms. All have in
common that iteratively an edge is picked and added to the matching; to obtain a feasible matching,
afterwards both endpoints are removed from the graph with all their incident edges. Thus, the cru-
cial aspect is how the edge is selected. The first algorithm, simply referred to as Greedy, picks the
edge uniformly at random among all edges. The modified randomized greedy algorithm (MRG),
however, selects a node, the so-called first endpoint, uniformly at random and matches it to a ran-
domly picked neighbor, the second endpoint. Tinhofer’s third algorithm, MinGreedy, is identical,
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except that the first endpoint is selected uniformly at random among all nodes that have minimum
degree. These greedy algorithms can be implemented in linear time using only simple data struc-
tures; for MinGreedy we describe such a data structure in Sect. A. A linear time implementation
of MRG is proposed in [39].

Note that MinGreedy can be interpreted as a refinement of MRG, since MinGreedy priori-
tizes nodes that have a minimum number of matchable neighbors remaining. And indeed, Tinhofer
provides experimental and analytical results for Erdős-Rényi random graphs with varying density:
here MinGreedy achieves an expected matching size larger than MRG or Greedy. Frieze, Rad-
cliffe, and Suen [18] found a superior performance of MinGreedy on random cubic graphs: for
instance, MinGreedy left only about 10 out of 106 nodes unmatched, and hence performed better
than MRG by orders of magnitude. An excellent performance was also observed in experiments
for random graphs with small constant average degree [34] and on graphs arising from a real world
application [26].

In contrast little is known about rigorous performance guarantees of MinGreedy: The most
important analytical result is due to Frieze, Radcliffe, and Suen [18] and states that MinGreedy

leaves only o(n) nodes unmatched on random cubic graphs in expectation. No worst case analysis
is known. On the other hand, MRG beats approximation ratio 1

2 by a small constant [2, 39] on
general graphs, whereas Greedy cannot [15]. Recently, Chan, Chen, Wu, and Zhao [9] showed
that the Ranking algorithm of [32] achieves at least a 0.523-approximation on general graphs; we
refer to [35, 30] for results on bipartite graphs and to [39] for Erdős-Rényi random graphs.

Our first result is a worst case analysis of MinGreedy (see Sect. 2): We propose a family
of bipartite graphs and show that MinGreedy does not achieve approximation ratio 1

2+ε whp.
for any ε>0. Thus, somewhat surprisingly, it performs even worse than the seemingly less opti-
mized MRG algorithm on their respective hardest inputs. Moreover, we show that two popular
randomized variants of MinGreedy also fail on our graphs.

The closer the approximation ratio of MinGreedy is pushed towards 1
2 , the larger the number

of nodes n must be in order to obtain the respective upper bound on the approximation ratio.
It turns out that these graphs have a small number of high degree nodes: The maximum degree
is Θ(n), whereas the average degree is only O(

√
n). We wonder if these nodes of high degree

are essential in order to enforce a bad performance for MinGreedy? This question motivates an
investigation of graphs whose maximum degree ∆ is bounded above by a constant. For graphs with
maximum degree at most three we show that MinGreedy achieves an approximation ratio of 2

3

(see Sect. 2.2). Moreover, we show that MinGreedy gives a ∆−1
2∆−3 -approximation on ∆-regular

graphs for any ∆. We conjecture this guarantee to hold for all graphs with maximum degree ∆;
what we show now is a slightly weaker guarantee of ∆−1/2

2∆−2 .
Note that our guarantees even hold if all ties are broken deterministically, i.e. we select some

minimum degree node arbitrarily and match it to an arbitrary neighbor. Therefore, it is even more
striking that the worst case guarantee for MinGreedy is better than the best known guarantee
for the expected approximation ratio of 0.523 for Ranking [9] if ∆ ≤ 11; compared to the best
known bound for the expected approximation ratio of 0.5000025 [2] for MRG our guarantee is
better whenever ∆ ≤ 100, 001 holds. Regarding Greedy, our bound is better for all ∆ than the
known expected performance guarantee of 1

2(
√

(∆−1)2+1−∆+2) shown by Miller and Pritikin [36];
in particular, Greedy achieves an expected 0.618-approximation for ∆ = 3.

We also study the inherent limitations of greedy algorithms for the maximum matching problem.
While the above mentioned algorithms are certainly all “greedy” in a very natural sense, we need
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a formal characterization of what constitutes a greedy algorithm for the problem at hand. To this
end, we use the model of priority algorithms introduced by Borodin, Nielsen, and Rackoff [8]. This
model has been applied successfully to a large range of problems [13, 6, 38, 7, 28], see [28] for a
recent summary. Greedy algorithms explore the input myopically, making an irrevocable decision
for each piece. In the vertex model proposed in [13, 6] each piece of the input, also referred to
as data item, corresponds to a node and its neighbors. An adaptive priority algorithm submits an
ordering π on all data items without looking at the input I, and receives the first data item in I
according to π, say for node u. Then the algorithm either matches u to one of its neighbors or
isolates u. If the algorithm is additionally required to be greedy, then it does not have the option
to isolate u. Note that the deterministic MinGreedy (that breaks all ties arbitrarily) can be
implemented as a greedy adaptive priority algorithm.

We show that no greedy adaptive priority algorithm achieves an approximation ratio better
than ∆−1

2∆−3 on graphs with maximum degree ∆ ≥ 3 (see Sect. 3.1). In particular, no such determin-

istic algorithm can guarantee an approximation ratio of 1
2 + ε for any ε > 0, therefore providing

evidence that randomness is essential for greedy algorithms in order to guarantee a non-trivial ap-
proximation. For k-uniform hypergraphs we show a tight 1

k -inapproximability bound (see Sect. 4).
For priority algorithms that are not required to be greedy we show an inapproximability bound

of 2
3 (see Sect. 3); it relies on a graph of maximum degree three, hence our performance guarantee

for MinGreedy for ∆ = 3 is tight. We also study randomized priority algorithms introduced in [1]
and show that these do not achieve an expected approximation ratio better than 5

6 (see Sect. 3).
Therefore, these randomized greedy algorithms cannot achieve the performance of algorithms based
on augmenting paths or algebraic methods. We point out that our class of randomized priority
algorithms is very comprehensive; in particular, it contains all algorithms mentioned so far as well
as the randomized algorithm of Karp and Sipser [31, 3]. Furthermore, our class subsumes the
models of randomized algorithms proposed by Goel and Tripathi [22]. In particular, their models
do not contain MinGreedy.

1.1 The Maximum Cardinality Matching Problem

Let G = (V, E) be an unweighted and undirected graph. A matching M ⊆ E is a selection of
edges of G such that no two edges in M share a node. If no further edge of E \ M can be added
to M without violating this condition, then M is called a maximal matching. If M has largest
cardinality among all matchings in G, then M is a maximum matching. If M covers all nodes, we
call it perfect.

An algorithm is called an α-approximation algorithm for the maximum (cardinality) matching
problem, if for any graph it finds in polynomial time a matching whose size is at least α times the size
of a maximum matching. A randomized α-approximation algorithm is a polynomial time algorithm
that obtains a matching whose expected cardinality is at least α times the optimal solution.

Note that any maximal matching M has size at least half of the optimum. To see this, choose
any maximum matching M∗ and observe that each edge in M shares nodes with at most two edges
in M∗. Thus, any algorithm that finds a maximal matching is a 1

2 -approximation algorithm. In
particular, the greedy algorithms we consider in this article will have this property.

Related Work outside the Greedy Paradigm. A large variety of algorithmic techniques
have been applied to the maximum matching problem. We provide a brief outline.
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Edmonds [16] proposed the famous blossom algorithm that finds a maximum matching in polyno-
mial time by detecting augmenting paths. Gabow [19] showed how to implement this algorithm with
running time O(|V |3). Micali and Vazirani gave an exact algorithm with running time O(

√

|V ||E|),
that iteratively finds short augmenting paths. However, its analysis and implementation are non-
trivial (cp. [43, 20] and further references therein).

Goldberg and Karzanov [23] proposed an algorithm based on flow techniques with a running
time of O(

√

|V ||E| log (n2/m)/ log n); to the best of our knowledge this is the fastest exact algorithm
for dense non-bipartite graphs.

Using algebraic methods, a maximum matching can be found in time O(|V |ω) by the randomized
algorithm of Mucha and Sankowski [37] (see also [21, 24]), where ω is the exponent of the best known
matrix multiplication algorithm.

2 The MinGreedy Algorithm

Encouraged by its excellent performance on random graphs, we study the worst case performance
of MinGreedy and present a family of hard graphs. In particular, our graphs show that the
expected approximation ratio of MinGreedy is at most 1

2 + ε whp. for any ε > 0.
Choose a, b ∈ N, where b is even and b | a, and let c := 2 · ⌈√

a⌉. The graph Ga,b has 2a+c nodes
partitioned as follows:

S1 = {1, 2, . . . , a}
S2 = {a + 1, a + 2, . . . , 2a}, and

S3 = {2a + 1, 2a + 2, . . . , 2a + c}.

Edges are as follows (see Fig. 1 for an example of the graph Ga,4):

i. Each node in S1 is connected to every node in S3.

ii. Each node i ∈ S1 is connected to node a + i ∈ S2.

iii. Each S3-node is connected to exactly one S3-node.

iv. The crucial ingredient is: within S2 we form disjoint cliques of size b.

...
...

...

S1 S2S3

Figure 1: The graph Ga,4. The edges represented by double lines form a perfect matching
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Observe that a perfect matching of size a+ ⌈√
a⌉ consists of the a edges connecting the S1-node

with the S2-nodes and the ⌈√
a⌉ edges within S3. The edges of the perfect matching are displayed

as double edges in Fig. 1.
Our intention is that an instantiation of the MinGreedy algorithm matches S2-nodes with

S2-nodes initially, since these nodes will have minimum degree. Thereby the respective algorithm
may add |S2|

2 = a
2 edges within the cliques of S2 to its matching. When all S2 nodes are matched,

all remaining edges are incident with nodes in S3. Hence at most |S3| = 2⌈√
a⌉ additional edges

can be added to the matching. If the randomized algorithm follows this intended scheme, then it
achieves an approximation ratio of (a

2 + 2⌈√
a⌉)/(a + ⌈√

a⌉) on the graph Ga,b, which tends to 1
2

for large a. However, it turns out that the randomized MinGreedy algorithm does not strictly
adhere to this plan.

2.1 A Worst Case Analysis of MinGreedy and two Variants

Hougardy [27] considered deterministic algorithms that iteratively pick an edge (u, v) such that
either u or v has currently minimum degree. He proposed a family of graphs for which any such
algorithm achieves an approximation ratio of 1

2 + o(1). Since the difficulty of these graphs relies on
the assumption that all ties are broken towards the worst case, they are no obstacle for MinGreedy.

We begin with a worst case study of Tinhofer’s MinGreedy. In each iteration the algorithm
selects a node, the first endpoint, uniformly at random among all nodes of minimum degree and
matches it to the second endpoint; this neighbor is also picked uniformly at random. It is a well-
known fact that for every node v in a connected graph there is a maximum matching that covers v
(see [17] for a stronger statement). This provides additional motivation for MinGreedy, since we
have a good chance to pick an optimal edge if the first endpoint has small degree. However, we
show:

Theorem 1. MinGreedy cannot approximate the Maximum Matching Problem within 1
2 + ε whp.

(for any ε > 0), even on bipartite graphs.

Proof. We consider the graph Ga,
√

a, and let a be a large (integral) square number for the sake of
convenience. The crucial property P is that all nodes of minimal degree are in S2. Initially, this is
truly the case: Recall that by construction every node in S2 has degree

√
a, whereas the degrees

are 2
√

a + 1 in S1 and a + 1 in S3.
In the following, the notion of a (Sj, Sk) matching, for k, j ∈ {1, 2, 3}, means that a node in

set Sj is selected by the algorithm because of its minimal degree and matched to a neighbor in
set Sk. When may the property P be violated?

• Every (S2, S2) matching reduces the degree of their clique-neighbors by 2 and the degrees of
their unique S1 neighbors by 1. Since any node in S1 is affected only once, this case does not
pose any danger.

• Every (S2, S1) matching reduces the degree of all nodes in S3 and all nodes in the respective
clique by 1, but it has no effect on any other node in S1. Hence, a large number of (S2, S1)
matchings reduces the degree of nodes in S3 from its initial value a + 1 below the degrees of
nodes in S2 (which is at most

√
a). In that event the algorithm prefers matching the nodes

in S3, thereby drastically reducing the degrees in S1. As a consequence, a large number
of nodes in S1 might appear in the matching and the algorithm may come up with a good
approximation. We will see, however, that this scenario is very unlikely.
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First we assume that P is preserved. Later we show that P holds whp. throughout the computation.
We need to bound the expected number of (S2, S1) matchings. Observe that the algorithm processes
the cliques of S2 one after another, fixing all nodes of a clique before moving on to the next.

At first we focus on a single clique in S2 that initially has
√

a nodes. The probability that
a node v ∈ S2 is matched to its neighbor u ∈ S1, conditioned on the event that MinGreedy

selects v as first endpoint, depends on the number x of (S2, S2) matchings and the number y of
(S2, S1) matchings that have been performed in the respective clique so far. In particular, the
conditional probability equals 1

deg(v)−2x−y = 1√
a−2x−y

, since v has
√

a − 1 neighbors in S2 and one

in S1. Then the expected number of (S2, S1) matchings (for a single clique) is given by the sum of
such probabilities, where 0 ≤ 2x + y <

√
a holds.

For what values of x and y a random trial is performed depends on the outcome of previous
trials. We attain a worst case perspective. Let Zi for 0 ≤ i <

√
a be a binary random variable

with success probability pi = 1√
a−i

. Then
∑

i Zi is an upper bound on the number of (S2, S1)

matchings for a single clique. If a is sufficiently large, the expected value is upper-bounded by

E [
∑

i Zi] =
∑

√
a

i=1
1
i ≤ ln(a), where it is implicitly assumed that all previous actions were (S2, S1)

matchings.
To show that property P is likely to be preserved, we show that

∑

i Zi is concentrated at its
expected value, using a variant of the Chernoff bound (cp. Sect. 1.6 in [14]). Then,

prob

[

∑

i

Zi ≥ (1 + β) · ln(a)

]

≤
(

eβ

(1 + β)(1+β)

)ln(a)

≤ 1

a
3
2

where the second inequality follows by choosing β = e2. We employ the Union bound to obtain a
lower bound of 1 − √

a/a
3
2 = 1 − 1

a on the probability that for none of the
√

a cliques inside S2 the
sum deviates by more than a factor of 1 + β from its expected value.

Hence, there are whp. at most O (
√

a · ln(a)) = o(a) (S2, S1) matchings in total and in particular
property P is preserved whp. throughout the course of the algorithm, since a violation would
require Ω(a) (S2, S1) matchings. Furthermore, the size of the matching returned by MinGreedy

on Ga,
√

a is at most a
2 + o(a) with high probability, whereas the maximum matching in the graph

has cardinality at least a.
To obtain a bipartite graph, we take two copies L, R of Ga,

√
a and let Si := SL

i ∪SR
i . First we

remove the edges within S3 and create an edge for each node in SL
3 and its counterpart in SR

3 .
Then we remove all edges within S2 and form complete bipartite cliques of each former clique in SL

2

and its counterpart in SR
2 . Note that the degree of nodes in S2 have increased by one, which is

negligible in our analysis. All other degrees do not change. The maximum matching increased by
at least a edges, whereas the output matching grows by a

2+o(a).

There are two natural variants of MinGreedy. The first variant, eDSM (enhanced Degree-
Sequenced Matching), matches a node of minimum degree to a neighbor that has in turn minimum
degree among all neighbors. All ties are broken uniformly at random. Hosaagrahara and Sethu
[26] apply eDSM to the problem of assigning network packets from input ports to output ports to
achieve low average delay and find that it performs very well on real and synthetic traffic traces.
Another variant proposed in [26] reduces to eDSM on our hard instances. MDS (Minimum Degree
Sum) picks the next edge such that the sum of the degrees of its endpoints is minimal, also breaking
ties at random. Both algorithms ignore edges incident with already matched nodes.
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eDSM and MDS achieve only a trivial expected approximation ratio, as we show next. For
MDS, this fact also follows from the definition of graphs given in [27]. We present a unified
construction that applies to both algorithms.

Theorem 2. For any ε > 0, there is a bipartite graph such that neither eDSM nor MDS achieve
approximation ratio 1

2 + ε.

Proof. As worst case input we use the graph Ga,2. See the beginning of Sect. 2 for description of
the family of graphs, and our intention of how the algorithm should proceed. We show below how
to make the graph bipartite. Recall that the degrees of S3- and S1-nodes increase with a, whereas
all S2-nodes have degree two.

As desired, both eDSM and MDS start by repeatedly matching a node in S2 with its unique
neighbor in S2 until all nodes in S2 are matched. Thus, the claimed bound on the approximation
ratio follows from the discussion at the beginning of Sect. 2.

To obtain a bipartite graph, we first remove all inner edges of S3, thereby decreasing the size
of the maximum matching by ⌈√

a⌉. Note that if all nodes of S1 were connected to all nodes in S3,
there would be cycles of odd length. Hence we add a set S′

3 of nodes, with |S′
3| = |S3| = 2 ⌈√

a⌉,
and connect odd S1-nodes with S3-nodes and even S1-nodes with S′

3-nodes such that these edges
are evenly distributed over the nodes of S3 and S′

3. The matching obtained by the algorithm is
increased by o(a) only.

2.2 Guarantees for MinGreedy on Bounded Degree Graphs

In the construction of Theorem 1 the approximation ratio of MinGreedy converges to 1
2 as the

maximum degree increases. In this section we study degree bounded graphs.
We state that if all degrees are bounded above by ∆ = 2, then any algorithm that picks an edge

incident to a node of degree one (if such a node exists) computes a maximum matching. Thus, in
particular MinGreedy and KarpSipser [31], that picks a random edge incident with a degree-1
node, if such an edge exists, and a random edge otherwise, are optimal on such graphs.

In what follows we show that if the degrees in the input are bounded above by ∆ ≥ 3, then the
approximation ratio of MinGreedy is strictly better than 1

2 . Interestingly, our guarantee holds for
any algorithm that iteratively picks an edge that is incident with some node of current minimum
degree. Thus, we do not use the feature that MinGreedy breaks all ties uniformly at random. In
particular, our bounds hold for the deterministic variant of MinGreedy that picks an arbitrary
non-isolated node of minimum degree and matches it with an arbitrary neighbor. Then both nodes
and all their incident edges are removed from the graph. Therefore each node left in the graph is
unmatched, and the algorithm iterates on the remaining vertices.

First we study graphs of bounded degree 3 and show that the deterministic variant of Min-

Greedy, achieves an approximation ratio of 2
3 . Along the same lines, we also obtain a guarantee

of ∆−1
2∆−3 for ∆-regular graphs.
In Sect. 2.3 we prove a slightly worse bound for graphs of maximum degree ∆.

Theorem 3. If all degrees are bounded above by ∆ = 3 or the input graph is ∆-regular with ∆ ≥ 4,
then MinGreedy achieves approximation ratio at least ∆−1

2∆−3 .
More generally, these bounds hold for any algorithm which selects edges incident with a node of

minimum degree.
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Let G = (V, E) be a connected graph and M the matching computed by MinGreedy. Given M
we choose a maximum matching M∗ for the analysis such that the connected components of the
graph H = (M ∪ M∗) are of two types: An augmenting path X has mX ≥ 1 edges of M and
m∗

X = mX + 1 edges of M∗ that alternate. In particular, any augmenting path starts and ends
with an M∗-edge. The second type are singletons. Such a component is a path of length one in H,
i.e. its edge belongs both to M and M∗.

Why can we always find such an optimal matching M∗? Observe that H has maximum degree
two, hence it consists of cycles and paths. Every component that is not a singleton alternates
between M and M∗, since every node has degree at most one in each matching. Then the crucial
observation is that each component X that is either an even-length cycle or an even-length path
can be replaced by mX singletons; we simply exchange the respective edges of M∗ by the ones
of M .

Local Approximation Ratios. To obtain a bound of α = |M |/|M∗| ≥ ∆−1
2∆−3 on the global

approximation ratio α of MinGreedy we want to bound local approximation ratios

αX = mX/m∗
X

of components X of H. We call an augmenting path of length three a 1
2-path. A 1

2 -path X

has local approximation ratio only αX = 1
2 < ∆−1

2∆−3 , whereas longer augmenting paths X have

αX ≥ 2
3 ≥ ∆−1

2∆−3 since ∆ ≥ 3. A singleton X even has αX = 1. Therefore we balance local
approximation ratios. We say that a component X has M -funds mX and introduce a change tX to
the M -funds of X such that

αX =
mX + tX

m∗
X

!
≥ ∆ − 1

2∆ − 3

holds for the new local approximation ratio of X. By transferring M -funds between components
we assert that

∑

X tX = 0 holds. Then the total M -funds
∑

X mX + tX =
∑

X mX = |M | are
unchanged and MinGreedy achieves approximation ratio at least

α = |M |/|M∗| =

(

∑

X

mX + tX

)

/|M∗| ≥
(

∑

X

∆ − 1

2∆ − 3
· m∗

X

)

/|M∗| =
∆ − 1

2∆ − 3
.

The Choice of Transfers. Our approach is to transfer M -funds between components using
a selection of edges in F := E \ (M ∪ M∗). We develop a charging scheme that transfers M -funds
from M -covered nodes to adjacent endpoints of augmenting paths. Note that F does not contain
edges between endpoints of augmenting paths, since otherwise M would not be maximal.

In particular, we will assert that components whose local approximation ratio is insufficient
receive the required M -funds. These components in need are 1

2 -paths, i.e. augmenting paths of
length three.

First we show that every endpoint of an augmenting path is incident to at least one edge in F .
Let dG(w) denote the degree of node w in G.

Lemma 1. Let w be an endpoint of an augmenting path. Then dG(w) ≥ 2 holds.

Proof. Let X be the augmenting path of w. Consider the step when MinGreedy picks the first M -
edge e in X. Edge e and both its adjacent M∗-edges must still be contained in the graph. Since
MinGreedy selects a minimum degree node, all nodes of X have degree at least two.

8



Which edges in F are selected to transfer funds?

Definition 1. Let (v, w) be an edge in F , where v is covered by M and w is an endpoint of an
augmenting path. Assume that v is matched in step s. Then edge (v, w) is a transfer if at the end
of step s the degree of w is d(w) ≤ ∆ − 2.

We frequently denote a transfer as vw to stress its direction from the M -covered node v to the
augmenting path endpoint w. In order to refer to transfers to and from a given component X,
we also call vw a credit to w respectively a debit to v. Next we show that each endpoint of an
augmenting path is guaranteed to receive transfers.

Lemma 2. Let degrees be bounded by ∆. The number of credits cw to an augmenting path endpoint
w is at least cw ≥ min{dG(w) − 1, ∆ − 2} ≥ 1.

Proof. By Lemma 1 we have dG(w) ≥ 2, thus min{dG(w) − 1, ∆ − 2} ≥ 1 holds.
If dG(w) ≤ ∆ − 1 holds, then any time the degree of w drops, it drops to at most ∆ − 2.

Therefore all F -edges incident with w are credits.
If dG(w) = ∆ holds, then after d(w) drops to d(w) = ∆ − 1, all F -edges of w removed later are

credits: at most one F -edge of w is not a credit.

Bounding Local Approximation Ratios. Let dX (resp., cX) denote the numbers of debits
(respectively credits) to the nodes of a component X. We call dX − cX the balance of X. Our
approach is to move a constant amount θ of M -funds along each transfer. Assuming that dX −cX ≤
TX holds, the local approximation ratio of X is at least

αX =
mX − θdX + θcX

m∗
X

≥ mX − θTX

m∗
X

.

To prove Theorem 3 we find θ and TX such that αX ≥ ∆−1
2∆−3 holds for all X.

The maximum possible number of debits to a component depends on its number of M -covered
nodes and on ∆: By the degree constraint, each M -covered node of X has at most ∆ debits.
However, no funds are moved over edges in M∪M∗, and if X is an augmenting path, then its path
endpoints do not incur any debits at all. We say that a component has two missing debits, if its
actual number of debits is at least two less than the maximum possible number.

First consider a singleton X. By definition, X does not get credits, i.e. cX = 0. By the above
considerations, both nodes of X have at most ∆ − 1 debits each. Using two missing debits, the
balance of X and the local approximation ratio of X are

dX − cX = dX ≤ 2(∆ − 1) − 2 (1)

αX =
1 − θ(dX − cX)

1
≥ 1 − 2θ(∆ − 2) . (1’)

Note that αX ≥ ∆−1
2∆−3 holds if we choose θ ≤ 1

2(2∆−3) .
Let X be an augmenting path. Since degrees are at most ∆ = 3 or the graph is ∆-regular, by

Lemma 2 credits to a path endpoint w of X (respectively in total to both path endpoints of X) are

cw ≥ ∆ − 2 respectively cX ≥ 2 · (∆ − 2) . (2)

9



From the above considerations dX ≤ 2mX(∆ − 2) follows. Assuming that two debits are missing,
we obtain

dX − cX ≤ 2mX(∆ − 2) − 2(∆ − 2) − 2 (3)

αX =
mX − θ(dX − cX)

m∗
X

≥ mX − 2θmX(∆ − 2) + 2θ(∆ − 1)

mX + 1
(3’)

= 1 − 2θ(∆ − 2) +
2θ(2∆ − 3) − 1

mX + 1
= 1 − 2θ(∆ − 2) ,

where we choose θ = 1
2(2∆−3) in the last equality.

Combining Eq. (1’) and Eq. (3’) yields our claimed performance guarantee for MinGreedy:

the local approximation ratio of each component X is αX ≥ 1 − 2θ(∆ − 2) = 1 − 2(∆−2)
2(2∆−3) = ∆−1

2∆−3 .

The Proof of Theorem 3 for ∆-Regular Graphs with ∆ ≥ 4

First we show that each component X has two missing debits, be it due to a node in X having
low degree in G or being incident to non-transfer F -edges. The following steps of MinGreedy are
crucial: We say that a node u creates its component X, if MinGreedy selects node u as the first
endpoint of the first edge matched in X.

Lemma 3. Let u create X and d(u) be its degree at creation. X has two missing debits if
a) d(u)≤∆ − 2, b) d(u)=∆, c) ∆≥4, or d) X is a singleton.

Proof. In order to obtain a contradiction, we assume that at most one debit to a node of X is
missing. Let X be created in step s when u is selected because of its minimum degree d(u) and
matched to v. By assumption, one of u, v has a debit.
If d(u)≤∆−2 at step s, then u has two missing debits by Definition 1. This proves part a), and we
may assume d(u) ≥ ∆ − 1 from now on. Here is an overview of the argument. Consider a debit xw′

to x ∈ {u, v}. By Definition 1, step s removes edge (x, w′) from G and, by definition of transfers,
after step s the degree of w′ is d′(w′) ≤ ∆ − 2. In particular, after step s the degree of w′ is smaller
than the degree of u before step s. Our crucial claim is:

At step s+1 there is an augmenting path endpoint w that currently has minimum de-
gree d′(w) with ∆ − 2 ≥ d′(w) ≥ 1. In particular, w is not isolated.

Note that node w has a neighbor in X, but does not necessarily belong to X. Since w is an
augmenting path endpoint, it cannot be the node selected by MinGreedy in step s + 1. Hence it
cannot be the case that at step s + 1 all minimum degree nodes are augmenting path endpoints:
There must be a node y 6= w that is selected in step s+1 with minimum degree d′(y) = d′(w) ≤ ∆−2.
Since the degree of y was at least d(u)=∆ − 1 before step s, in step s edges of F connecting y with
u or v are removed. But u, v, y are M -covered, hence the removed edges are not debits to u, v. We
obtain a contradiction if we find at least two missing debits.

b) Assume that d(u) = ∆ holds at step s. Since in step s at most two edges incident with w
are removed and there is a transfer xw with x ∈ {u, v}, we have d′(w) = ∆ − 2 at step s + 1. In
particular, our claim holds: node w is not isolated, since d′(w) = ∆ − 2 ≥ 1, and w has minimum
degree. The reason is that every node had degree ∆ before step s, and every degree drops at most
by two. So let y 6= w be the node selected in step s + 1. The degree of y also drops from ∆
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to ∆ − 2 in step s when incident edges (u, y), (v, y) are removed. If y is not a node of X, then
both (u, y), (v, y) are F -edges but they are not debits, since u, v, y are M -covered. Hence we have
found for each of u, v a missing debit. If y is a node of X, then u, v, y form a triangle and one of
(u, y), (v, y), say (u, y), is an F -edge. Since both u, y are M -covered, edge (u, y) is not a transfer
and hence both u, y have a missing debit.

c) Since parts a) and b) apply to ∆ ≥ 4, we may assume that d(u) = ∆−1 holds at step s. Recall
that node u has a missing debit due to its low degree. We study step s + 1 to find an additional
missing debit. Our claim holds: since xw is a transfer, after step s the degree d′(w) ≤ ∆ − 2 is
smaller than that of u before step s; using ∆ ≥ 4 we get d′(w) ≥ ∆−3 ≥ 1, since at most two edges
incident with w are removed in step s. Let y 6= w be the neighbor of u or v being selected with
degree d′(y) ≤ ∆ − 2 next. Recall that step s removes an edge (x, y) with x ∈ {u, v}. If y is not a
node of X, then (x, y) is an F -edge. Since x, y are M -covered, edge (x, y) is not a transfer and we
have found the other missing debit to one of u, v. Now assume that y is a node of X. At step s + 1
node y is incident with its M -edge, maybe with debits and possibly with its M∗-edge. Observe that
no matter if the M∗-edge of y is already removed, node y has a missing debit since d(y) ≤ ∆ − 2.
We have found the second missing debit and obtain a contradiction to the assumption that X has
at most one missing debit.

d) By parts a)-c) it suffices to prove the case that degrees are bounded by ∆ = 3 and d(u) =
∆−1 = 2 holds. For singleton X both endpoints can have at most three debits, since the edge of X
belongs to M and hence does not move funds. Since u has a missing debit and by our assumption
at most one debit is missing for X, we get that u has exactly one debit, say to wu. Then v has
exactly two debits, say to wv and w′

v.
Thus, u can be adjacent to at most one of wv and w′

v, since u has degree two and is already
adjacent to v. Since the edges (u, wu), (v, wv), and (v, w′

v) are transfers, Definition 1 implies that
the degrees of wu, wv and, w′

v are each at most ∆ − 2 = 1 after u was matched to v.
If u is adjacent to neither wv nor w′

v, then wu, wv, and w′
v have degree one afterwards, since

their degrees were at least the minimum degree of d(u) = 2 before (u, v) was matched and dropped
to at most one afterwards. Now consider the case that wu is also a neighbor of v, say wv = wu.
Then the degree of w′

v drops by at most one when the edge (u, v) is picked by the algorithm, and
hence w′

v has degree one afterwards.
In both cases wu, wv or w′

v must be selected and matched by the algorithm in step s + 1, since
no other degrees dropped in step s. A contradiction: wu, wv , w′

v are assumed to be augmenting
path endpoints.

We prove Theorem 3 for ∆-regular graphs with ∆ ≥ 4. A singleton X has two missing debits
by Lemma 3d): the balance is at most dX−cX = dX≤2(∆−1) − 2 as required in Eq. (1). An
augmenting path X has two missing debits by Lemma 3c) and cX ≥ 2(∆ − 2) credits by Eq. (2):
the balance is at most dX − cX ≤ 2mX(∆ − 2) − 2 − 2(∆ − 2) as claimed in Eq. (3).

The Proof of Theorem 3 for Graphs of Degree At Most ∆ = 3

By Lemma 3d), a singleton X has a balance of at most dX − cX = dX ≤ 2(∆ − 1) − 2 = 2 as
required in Eq. (1). We prove Eq. (3) for an augmenting path X. By Eq. (2), each path endpoint
of X receives at least one credit. If X has two missing debits, then the balance of X is at most
dX − cX ≤ 2mX − 4, i.e. X receives a sufficient amount of M -funds. Hence we assume from now
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on that X has at most one missing debit and that each path endpoint of X receives exactly one
credit.

Lemma 3a) and b) imply that X has two missing debits if the degree of u in the creation step
of X is not ∆ − 1 = 2. Thus, we focus on the case that the degree of u is d(u) = 2 at creation.
Since u is incident with an M -edge and an M∗-edge, it is not incident with an F -edge. Therefore,
u has a missing debit. According to our assumption this is the only missing debit of X.

Lemma 4. Assume that the graph has maximum degree ∆ = 3. If X is an augmenting path with
dX = 2mX − 1 debits, then at least cX ≥ 3 credits are given to X.

Proof. To show the statement we assume that cX < 3 holds and show a contradiction.
We have already argued that each path endpoint of X receives exactly one credit, that the

node u selected to create X has degree d(u) = 2 at creation, and that u has the only missing debit
of X. Then all other M -covered nodes of X have exactly one debit in order to ensure dX = 2mX −1.
Assume that v is matched with u in M .

First we consider the case of mX = 1, i.e. that X is a 1
2 -path. Let wu, wv be the endpoints

of X such that (u, wu), (v, wv) ∈ M∗. Note that this implies wu 6= wv. Then v has the only debit,
say to the augmenting path endpoint zv. When u and v are matched, the degrees of wu, wv , zv all
drop, and no other degrees drop. In particular, we claim that wv has degree exactly one afterwards,
which is the new minimum degree in the graph. As a consequence, one of wv, wu, zv is matched in
the next round. A contradiction is obtained since augmenting path endpoints are never matched.

Now we prove the claim. When the component is created d(u) = 2 holds. Since u is adjacent
to v and wu, it is not a neighbor of node wv. Hence wv is incident with at least one F -edge. Since
only the M∗-edge of wv is removed, wv is still incident with at least one F -edge after creation. If wv

is still incident with at least two F -edges, then wv receives at least two credits, i.e. at least one
more than assumed. So after creation wv is incident with exactly one F -edge and has degree one.

Next consider the case that the edge (u, v) belongs to an augmenting path with mX ≥ 2 edges
in M . Since (u, v) ∈ M is the first edge picked by the algorithm in X, at least one path endpoint w
of X is still connected with its unique neighbor x in M∗, after u and v have been removed with all
their incident edges. We consider the step when x is matched to its neighbor in M , say x′. Node
w and the recipient of the debit to x are not yet isolated, since these two nodes are never matched.
Thus x has degree three before this step.

Moreover, we may assume that w has degree at most two before this step. To see this, assume
that w’s degree were still ∆ = 3 and observe that the two F -edges incident with w would become
credits, i.e. node w would get more credits than assumed.

Since x′ has exactly one debit, i.e. x′ is adjacent to one endpoint of an augmenting path, node
x′ has degree exactly two before the step. Consequently, node w has degree exactly two as well.

All still present neighbors of x, x′ are endpoints of augmenting paths, and only their degrees
drop when x and x′ are removed from the graph. If x′ is not adjacent to w, then w’s degree drops
by one and to exactly one, hence either w or another augmenting path endpoint would be picked
in the subsequent step. A contradiction, since an augmenting path endpoint is never matched.

Lastly, assume that x′ and w are adjacent; then w becomes isolated in that step. We consider
the recipient y of the debit to x. Since x′ is adjacent to w and x and has degree exactly two, node y
is not adjacent to x′. Therefore the degree of y drops by exactly one. Since y’s degree drops from
at least two before the step to at most ∆ − 2 = 1 afterwards by Def. 1 we get that y’s degree
is exactly one in the subsequent step. Furthermore, node y is now the only degree-1 node and is
matched next. A contradiction since y is an augmenting path endpoint.

12



2.3 A Guarantee for Graphs with Maximum Degree ∆ ≥ 4

In this section we consider graphs with maximum degree ∆ ≥ 4 and show a slightly weaker bound.
As in Theorem 3, our guarantee holds for a more general class of greedy algorithms that repeatedly
add an edge (u, v) to the matching such that either u or v has current minimum degree. For
instance, this holds for the deterministic variant of MinGreedy that breaks all ties arbitrarily.
We show the following guarantee.

Theorem 4. MinGreedy achieves an approximation ratio of at least ∆−1/2
2∆−2 on graphs with degrees

at most ∆.

Why does our bound not match our conjectured approximation ratio of ∆−1
2∆−3?

In Theorem 3 we proved a guarantee of ∆−1
2∆−3 for ∆-regular graphs. In order to provide sufficient

M -funds to 1
2 -paths, we used that each endpoint of such a short augmenting path receives the

required number of incoming transfers. This was possible, since in a ∆-regular graph each endpoint
has ∆ − 1 neighbors besides its mate in M∗.

This property no longer holds for the more general class of graphs we consider now. Thus, we
modify our system of transfers.

Recall that an edge in M creates a component X in H = (V, M∪M∗) if that edge is the first
edge that the algorithm picks in X.

In our new system nodes of an M -edge (u, v) that creates some augmenting path do not transfer
M -funds, i.e. the F -edges of u and v are not debits. As a consequence, a 1

2 -path does not have any
debits, because it contains exactly one edge of M . Other than that we do not change the definition
of transfers. Note that singletons are not augmenting paths and therefore might have debits.

In Lemma 1 we have shown that each endpoint of an 1
2 -path has at least one F -edge, i.e. one

edge that is eligible for a transfer. Indeed, as we show next, every 1
2 -path receives at least one

credit. We prove the following statement for augmenting paths of arbitrary lengths.

Lemma 5. Let X be an augmenting path. Then at least one of its endpoints is not isolated
immediately in the step when the first M -edge of X is added to the matching.

Let w be an endpoint of X that is not immediately isolated. If w is not incident with its M∗-edge
when it is eventually isolated in step s, then w receives a credit along one of the edges that it was
incident with at the beginning of step s.

Proof. If X contains more than one edge of M , then at most one M∗-edge can be adjacent to
the M -edge picked first, and the first part of the lemma follows. Thus, assume that X is a 1

2 -path.
Assume that both endpoints of X become isolated upon removing the M -edge (u, v), and note
that u and v both have degree at least two. Then the endpoints must also have degree two and
thus be adjacent to both u, v; recall that the algorithm picks a node of minimum degree. But then
the degree of u and v is in fact three. This implies that the endpoints must also have degree three,
and hence they cannot be isolated by removing u and v only.

Now we proof the second part of the lemma. By assumption of the lemma, at the beginning
of step s the incident edges of endpoint w are F -edges, and since w is assumed to be isolated in
this step, there can be at most two. Assume that u′ is matched to v′ in step s, and recall that
their F -edges provide credit for the endpoint w unless the algorithm creates a new augmenting
path by picking the M -edge (u′, v′). Thus, it suffices to show that picking (u′, v′) does not create
an augmenting path. Since w has degree at most two, u′ also has degree at most two. If d(u′) = 1,
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Figure 2: A 1
2 -path X with only one credit from another component: M -edges are picked in order

indicated by small numbers (from left to right) selecting fat nodes, the gray transfer is not an edge
of G and does not effect computations of MinGreedy

then u′ does not have both an incident M -edge and M∗-edge and hence step s does not create an
augmenting path. Since w becomes isolated but is not connected to u′, then v′ is connected to w
by exactly F -edge that provides a credit to w.

On the other hand, if d(u′) = 2, then d(w) = 2. Since w becomes isolated, it must be adjacent
to u′ and v′. If u′ belongs to X, then picking u′ does not create X, since X was created earlier.
Hence u′ and v′ both provide internal credit to w. Else u′ is not a node of X. Since u′ is connected
to w, node u′ is not incident both to an M -edge and an M∗-edge. But then matching u′ and v′

does not create a new augmenting path. Again both u′, v′ transfer a credit to w.

We briefly note that the first part of the lemma also implies that the approximation ratio
of MinGreedy may converge to 1

2 asymptotically as shown in Theorem 1, but will never attain
that value exactly.

Since we ensured that a 1
2 -path X has no debits, we claim that the local approximation would

be sufficient if we could always provide a second credit. However, it might be the case that the
endpoints of X have only one neighbor outside X in total (cf. Fig. 2 for an example). In this case the
second credit to X will be given via an indirect transfer ; this is an M -fund that is not transferred
via an F -edge (see the gray transfer in Fig. 2). To distinguish indirect transfers from F -edges which
move M -funds, we also call the latter direct transfers from here on.

Interestingly, indirect transfers are also issued by components that are connected to X via an F -
edge. Also, each indirect transfer originates at a node which is selected when it has degree one.
Consequently, no indirect transfer leaves X. So, as desired, no direct or indirect transfers leave X
at all.

We formally define indirect transfers in Sect. 2.3.2. But first we argue that a second incoming
transfer to X is indeed sufficient to guarantee the claimed local approximations.

2.3.1 Optimizing Transferred M-Funds

Our upper bounds on the balance in Eq. (1) and Eq. (3) for singletons respectively augmenting
paths are no longer valid for our new system of transfers. In the sequel we show upper bounds are
exactly larger by one unit: A singleton X can have a balance up to

dX − cX = dX ≤ 2(∆ − 1) − 2 + 1 (4)

and the balance of an augmenting path X with mX ≥ 2 is bounded by at most

dX − cX ≤ 2mX(∆ − 2) − 2(∆ − 2) − 2 + 1 . (5)
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We have already argued that a 1
2 -path X has a sufficient balance if we can provide credits over

two transfers, since no transfers leave X:

dX − cX ≤ 0 − 2 = −2. (6)

Assume we would move the amount θ = 1
2(2∆−3) of M -funds along each transfer, as we did in

case of ∆-regular graphs. Then a singleton with maximum balance dX = 2(∆ − 2) + 1 would have
a local approximation ratio of only

αX =
1 − θ(dX − cX)

1
= 1 − 2(∆ − 2) + 1

2(2∆ − 3)
=

1

2
.

In order to obtain a sufficient local approximation for all components, we adjust θ. What θ should
we choose? Parametrized by θ, we lower bound local approximation ratios for all components and
then optimize θ.

1
2 -paths: αX =

1 − θ(dX − cX)

2

(6)

≥ 1 + 2θ

2
=

1

2
+ θ (5’)

singletons: αX =
1 − θ(dX − cX)

1

(4)

≥ 1 − 2θ(∆ − 2) − θ (6’)

augmenting paths: αX =
mX − θ(dX − cX)

mX + 1
(5)

≥ mX − θ(1 + 2mX(∆ − 2) − 2(∆ − 1))

mX + 1

=
mX(1 − 2θ(∆ − 2)) − θ · (1 − 2(∆ − 1))

mX + 1

= 1 − 2θ(∆ − 2) +
2θ(2∆ − 3) − 1 − θ

mX + 1

Recall that in the last bound for augmenting paths we have mX ≥ 2. So if we choose θ ≥ 1
2(2∆−2) ,

then 2θ(2∆ − 3) − 1 ≥ −2θ holds and we can simplify the bound to

αX ≥ 1 − 2θ(∆ − 2) − 3θ

3
= 1 − 2θ(∆ − 2) − θ . (7’)

Combining Eq. (5’), Eq. (6’), and Eq. (7’), we set 1
2 + θ = 1− 2θ(∆ − 2)− θ and obtain θ = 1

2(2∆−2) .
Hence the local approximation ratio of any component X is lower bounded by

αX ≥ 1

2
+ θ =

1

2
+

1

2(2∆ − 2)
=

2∆ − 1

2(2∆ − 2)
=

∆ − 1/2

2∆ − 2
,

which proves our claimed performance guarantee for MinGreedy.

2.3.2 Indirect Transfers

To show the balance bounds claimed for singletons and augmenting paths in Eq. (4) respectively
Eq. (5), we first have to develop the definition of indirect transfers. Therefore we examine the
properties of a 1

2 -path for which an incoming indirect transfer needs to be added.
Let w be the endpoint of X that has receives the only direct credit. Denote by w′ the other

endpoint of X and assume that X is created in step s.
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(c1) Node w′ must be isolated in step s. Otherwise w′ would also receive a direct credit by
Lemma 5 since it loses its M∗-edge in step s.

(c2) Node w is not isolated in step s, also by Lemma 5.

(c3) Let step s′ > s be the step in which w becomes isolated. At this time w has exactly one
neighbor and receives exactly one direct credit. To see this, assume that w would be adjacent
with both nodes removed in step s′. Then each such F -edge would provide one direct credit,
since w’s degree drops from two to zero. But by assumption w receives only one direct credit.

What are the steps leading to w becoming isolated eventually? Recall that an F -edge does not pro-
vide a direct transfer to w if the respective neighbor is removed upon creation of a new augmenting
path. Thus:

(c4) If w has degree larger one after its own 1
2 -path is created, then until its degree reaches one

it only drops in steps when a new augmenting path is created (and one or both of the nodes
matched first is adjacent to w).

Why? If an adjacent node z of w is matched and z would not belong to the first M -edge of
an augmenting path, then the edge (z, w) would provide a second direct credit to w. But we
assumed that w only receives one direct credit.

Assume that in step s′ the algorithm selects node u and matches it to v. Note by (c3) node w has
degree one in that step, hence the degree of u is also one. Moreover, v is w’s last neighbor, since w
is isolated by removing u and v. Therefore, (v, w) is a direct transfer.

(c5) Since u has degree one when it is matched, all other neighbors (if any) must be matched.
Thus, u has no direct debits to its neighbors.

Since u has no direct debits on its own, we add an indirect transfer uw from u to v. Moreover, vw
is the direct transfer to X.

Definition 2. Let X be a 1
2-path that receives exactly one direct credit vw to a path endpoint w

of X. Let u be the mate of v in M . Then we add a transfer uw and call it an indirect transfer.

In particular, given X the two nodes that participate in the indirect transfer are uniquely defined.
However, it might be that several 1

2 -paths with exactly one direct credit require an indirect transfer
from the same node. Finally we remark:

(c6) No indirect transfer leaves node v, since by construction indirect transfers are added only
for its unique M -neighbor u.

(c7) Recall that in our new system of transfers the first M -edge (x, x′) picked in an augmenting
path does not have any outgoing direct or indirect transfers.

2.3.3 The Upper Bound on the Balance of Singletons

For a singleton X = (u, v) we claimed in Eq. (4) a balance of at most

dX − cX = dX ≤ 2(∆ − 1) − 2 + 1 .

16



Lemma 3d) gives an upper bound on direct debits of at most dX ≤ 2(∆ − 1) − 2. Thus, if there is
no outgoing indirect transfer, then the claimed bound on dX − cX follows because credits cX are
always nonnegative.

Assume otherwise and let u be the node with an outgoing indirect transfer. Then u has no
direct debits by (c5). Moreover, v has by the degree constraint at most ∆ − 1 direct debits, call
them vw1, . . . , vw∆−1. Recall from (c6) that v cannot have outgoing indirect transfers.

We show in Lemma 7b) that at most ∆ − 2 of the wi belong to 1
2 -paths which need an incoming

indirect transfer, hence at most ∆ − 2 indirect transfers leave u. So dX ≤ (∆ − 1) + (∆ − 2) =
2(∆ − 1) − 1 holds, which gives us the claimed bound on the balance. We prepare the bound of
Lemma 7.

Lemma 6. Let (u, v) be an M -edge and v have direct debits vw1, . . . , vwn. Assume that indirect
transfers uw1, . . . , uwn are added. Before u, v are matched, the degrees of all wi drop to d(wi) = 1
in the same step s↓.

Proof. By definition of indirect transfers, all recipients w1, . . . , wn are isolated when u and v are
matched with each other. We denote this step by s. By (c3) each node wi has degree one at the
beginning of step s. By (c4), for all i the degree of wi dropped to d(wi) = 1 in a step si

↓ with si
↓ < s,

when an augmenting path was created by picking an M -edge ei. Recall that step si
↓ selected a node

of degree at least two.
Assume that there is a step when we have d(wj) = 1 and d(wk) ≥ 2 for j 6= k. Until wj is

isolated in step s, MinGreedy picks only nodes of degree one and hence step sk
↓ does not happen

until after step s. Therefore d(wk) ≥ 2 holds when wj is isolated, a contradiction since all wi are
isolated in step s when all d(wi) = 1. So all d(wi) are decreased to d(wi) = 1 by the same step
s↓ = s1

↓ = · · · = sk
↓ creating an augmenting path by picking an M -edge e1 = · · · = ek.

Lemma 7. Let (u, v) be an M -edge and assume that indirect transfers uw1, . . . , uwn are added.
Denote by s↓ the step when the degrees of all wi drop to d(wi) = 1. Then:

a) In step s↓ for every wi an incident F -edge is removed.
b) It holds that n ≤ ∆ − 2.
c) If n = ∆ − 2, then step s↓ removes exactly ∆ − 2 edges of F .

Proof. We prove a). By (c4) step s↓ creates an augmenting path X, since at step s↓ the degrees
of the wi drop to d(wi) = 1. First consider the case that wi is not an endpoint of the augmenting
path X. Then the edge that connects wi to its neighbor in X is an F -edge. Now let wi be an
endpoint of X. Since in step s↓ the algorithm selects a node of degree at least two, we have
d(wi) ≥ 2 at that time. But wi is incident to at most one edge of X, its M∗-edge, and hence to at
least one F -edge.

We prove b) and c). W.l.o.g. step s↓ selects u↓ and matches u↓ with v↓. Step s↓ selects u↓ when
2 ≤ d(u↓) ≤ 3 since an augmenting path is created and the degrees of the wi drop to d(wi) = 1
from at most d(wi) ≤ 3.

Assume that d(u↓) = 2. Node u↓ is incident only to its M - and M∗-edge. So the n distinct
F -edges being removed by a) are incident to v↓. Since v↓ is also incident to its M - and M∗-edge,
we get n ≤ d(v↓) − 2 ≤ ∆ − 2. Exactly n many F -edges, namely (v↓, w1), . . . , (v↓, wn), are removed,
which holds in particular for n = ∆ − 2.

Assume that d(u↓) = 3. Let Xi be the 1
2 -path of wi. Step s↓ does not pick the M -edge of

one of the Xi, since otherwise an M∗-endpoint w′ of the created 1
2 -path would have to get isolated
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by (c1), implying the contradiction d(w′) ≤ 2 < d(u↓). So X 6= Xi for all i. At step s↓ we have
d(wi) ≥ d(u↓) = 3 for all i. Each wi is connected to each of u↓, v↓, since otherwise the degree of
wi could not drop to d(wi) = 1. Hence at step s↓ each of u↓, v↓ is incident to n edges of F . Again
we get n ≤ ∆ − 2, since each of u↓, v↓ is also incident to its M -edge and M∗-edge. Assume that
n = ∆ − 2 holds. Using ∆ ≥ 4 we get d(u↓) = 2 + ∆ − 2 > 3 = d(u↓), a contradiction. (Hence if
n = ∆ − 2, then case d(u↓) = 2 applies, where exactly n many F -edges are removed.)

2.3.4 The Upper Bound on the Balance of Augmenting Paths

For an augmenting path X with mX ≥ 2 we claim in Eq. (5) a balance of at most

dX − cX ≤ 2 · (mX − 1) · (∆ − 2) − 1 .

Recall that the nodes of the M -edge that was picked upon creation of X have no outgoing transfers
at all (cp. (c7)). For the other mX − 1 edges both nodes are incident to at most ∆ − 2 edges in F
each, and these edges could move M -funds out of X. In particular, we have already argued that
indirect transfers do not increase the overall number of transfers out of an M -edge: If (u, v) ∈ M
and u has outgoing indirect transfers, then by (c5) and (c6) node u has no direct debits and v has
no outgoing indirect transfers. In particular, the number of indirect transfers leaving u is bounded
above the number of direct debits to v, which in turn is at most ∆ − 2.

If one of the M -covered nodes that was not matched upon creation of X has less than ∆ − 2
outgoing transfers, then the upper bound on the balance claimed in Eq. (5) is implied. Hence we
assume from now on that X has 2 · (mX − 1) · (∆ − 2) outgoing transfers. Then the claim follows
from the next lemma.

Lemma 8. Let X be an augmenting path with mX ≥ 2. If X has its maximum number of dX =
2 · (mX − 1) · (∆ − 2) outgoing transfers, then X has at least one direct credit.

Proof. Let w denote an endpoint of X that is not isolated upon creation. Lemma 5 states that
such a node w exists. Moreover, Lemma 5 also states that X receives the desired M -fund via a
direct transfer to w, if w is not incident to its M∗-neighbor w∗ in the step s when w is isolated.
Thus, we assume in the sequel that w becomes isolated when the M -edge (x, w∗) is picked. Note
that (x, w∗) is not the first edge picked in X according to the choice of w. If w is adjacent to x,
then the F -edge (x, w) provides the desired direct transfer from x to w.

But if w is not adjacent to x, then w has degree one in step s. Hence x must also have degree
one, because w∗ is still adjacent to w and x, and thus x is a node of minimum degree. Then x
has no direct debits, but it might have indirect transfers to path endpoints that are adjacent to w∗.
Since we assumed that X has its maximum number of outgoing transfers, node x has exactly ∆ − 2
outgoing indirect transfers; call them xw1, . . . , xw∆−2. If there is a wk that belongs to X, then wk

receives a direct transfer from w∗, which provides the desired credit to X. Thus, we assume from
now on that all wi do not belong to X. It is crucial to note that w 6= wi for all i because w is in X.

By Lemma 6, the degrees of all wi drop to d(wi) = 1 in a step s↓ < s, and by (c4) step s↓
creates an augmenting path. So at step s we have d(w) = d(w1) = · · · = d(w∆−2) = 1. Since the
degree of w in the input G is at least two by Lemma 1, there is a step s′

↓ with s′
↓ < s when the

degree of w is decreased to d(w) = 1 by removing an incident F -edge.

• Assume that s′
↓ = s↓. Since step s′

↓ does not remove the M∗-edge (w, w∗), which is removed
later in step s, step s′

↓ removes an edge of F incident to w. Also, by Lemma 7a), step s′
↓
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removes ∆ − 2 edges of F incident to the endpoints wi. But since w 6= wi, for all i, step s′
↓

removes at least ∆ − 1 many edges of F . A contradiction to Lemma 7c).

• Assume that s′
↓ 6= s↓. Since in step s′

↓ the degree of w drops to d(w) = 1 and step s↓ selects a
node of degree at least 2, step s↓ happens before step s′

↓. Since step s↓ decreases the degrees
of all wi to d(wi) = 1, step s′

↓ is a degree-1 step, i.e. a step when a node of degree one is picked.
Consequently, step s′

↓ does not create a new augmenting path, especially not X. Also, we
claim that step s′

↓ does not pick any other M -edge of X: To see this, recall that step s′
↓ does

not remove (w, w∗), which is removed by step s. Nor does s′
↓ remove an edge of F incident

to w, since such an edge would imply an ‘internal’ direct transfer.

Hence step s′
↓ picks the M -edge of a component other than X. We already argued that s′

↓ does
not create an augmenting path, thus there is a direct credit to w coming from the M -edge
picked by step s′

↓.

3 Inapproximability Bounds for Priority Algorithms

In order to study the limitations of greedy algorithms, we utilize the model of priority algorithms.
The crucial idea is to regard the input graph I as a collection of data items, where in the vertex
model a data item corresponds to a node u in I with its respective neighbors v1, . . . , vd. The data
item is denoted by 〈u; v1, . . . , vd〉. An adaptive priority algorithm chooses an ordering π on the set
of all possible data items, i.e. without actually looking at I. Then it receives the first data item d
of I w.r.t. π such that the node u of d is still matchable, i.e. neither already matched nor isolated.
Now the algorithm has to make an irrevocable decision: Either it chooses a matchable neighbor v
and matches u to v, or u becomes isolated and cannot be matched afterwards. Then the algorithm
iterates until no matchable nodes are left. Such an algorithm is called greedy if it may not choose to
isolate u. All orderings and decisions are performed deterministically, but may take into account all
information about I gathered so far. In particular, priority algorithms are not resource-bounded.

The adaptive priority game is a convenient way to present inapproximability results by turning
the above definition into a game between the algorithm A and an adversary B (see [6] for a primer).
Initially, B selects a private graph I, then the game proceeds in rounds until no matchable nodes
are left in I: In each round A submits an ordering π on all possible data items and receives the
first data item of a matchable node u from B. Then A makes an irrevocable decision for u, thereby
ending the round.

Angelopoulos and Borodin [1] introduced fully randomized priority algorithms: These algorithms
proceed like adaptive priority algorithms, but may utilize randomness when determining an ordering
of the data items and making decisions.

The class of fully randomized algorithms is quite comprehensive, as it contains for instance the
algorithms Greedy, MinGreedy, MRG, Ranking, and the KarpSipser algorithm [31]. An
exception is MDS that we studied in Theorem 2.

First we study deterministic priority algorithms and show an inapproximability bound for adap-
tive priority algorithms. The underlying construction will provide the basis for our investigation of
fully randomized priority algorithms.
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Theorem 5. No adaptive priority algorithm, whether greedy or not, achieves approximation ratio
better than 2

3 in the vertex model.
The bound holds for graphs with maximum degree three, and hence the deterministic Min-

Greedy is an optimal adaptive priority algorithm for these graphs.

Proof. Given such a deterministic algorithm A, we consider the two input graphs in Fig. 3 and
Fig. 4, both with perfect matching. When the game starts, A submits an ordering π1 on the set of
all data items: Depending on π1, the first data item d gives a node of degree two or three; let d be
〈u; v, w〉 or 〈u; v, w, z〉. In both cases, if A decides not match u, then A will not obtain a matching

u

w
v z

b

c

Figure 3: Algorithm A receives 〈u; v, w〉

v

w
u z

b

c

Figure 4: Algorithm A receives 〈u; v, w, z〉

larger than two edges, and approximation ratio at most 2
3 follows.

How does the adversary proceed if A matches u? A has no knowledge about the graphs and
we may assume that u matches v. In particular, both graphs are indistinguishable for A. If u
has degree two, then the input is the graph in Fig. 3. Otherwise it is the one in Fig. 4. Thus,
after matching (u, v), A can match only one more edge, therefore the claimed bound follows. The
inapproximability bound matches the guarantee for the deterministic variant of MinGreedy given
in Theorem 3 for graphs of maximum degree three.

Theorem 6. No fully randomized priority algorithm can achieve an expected approximation ratio
better than 5

6 for the vertex model.

Proof. We apply Yao’s Minimax Principle [44]. We have to construct a hard distribution over
input instances and to analyze the best deterministic algorithm (that knows the distribution). As
distribution we take all the graphs corresponding to the permutations of the node labels of Fig. 3.
We will consider only mistakes made in the first round and assume that the algorithm proceeds
optimally afterwards.

First note that if the algorithm decides to isolate the node given in the first round, it cannot
obtain a matching larger than two. Thus, we may assume that the first node is matched. Further-
more, if the first matching is non-optimal, the algorithm again obtains at most two edges and has
approximation ratio at most 2

3 . On the other hand, if the first matching is optimal, a maximum
matching can be obtained.

Since we are in the first round, the algorithm has no information which neighbor is the optimal
choice, and any neighbor is the optimal mate with same probability because we picked a labeling of
the nodes uniformly at random. Thus, the best strategy for the algorithm is to request no degree
three prior to degree two, since the probability of matching the first node optimally decreases
with its degree, and the bound follows because a node of degree two is matched optimally with
probability 1

2 . The bound is still valid if the number of nodes, the number of edges, and all degrees
are revealed in advance by the adversary.

We compare our inapproximability result for fully randomized algorithms to the bounds ob-
tained by Goel and Tripathi [22]. On the one hand, they studied randomized greedy algorithms in
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the oblivious query commit model. In this model edges are not revealed to the algorithm; the only
way to figure out whether a particular edge exists is to probe the pair of its endpoints. If an edge
is found whose endpoints are both not matched yet, it must be added to the matching irrevocably.
In this case both nodes are removed from the graph.

Note that it is impossible to design an algorithm that chooses nodes depending on their degrees,
and in particular the algorithm cannot select a node of degree one. That’s why none of these
randomized algorithms achieves an expected approximation ratio better than 19

24 ≈ 0.792 on a
triangle with a single edge attached.

On the other hand, Goel and Tripathi consider the more restricted class of vertex iterative
algorithms. A vertex iterative algorithm picks randomly a vertex, say u, in each round and then
may scan (a subset of) the other vertices, one after another, to check whether they are adjacent
to u. As required by the oblivious query commit model, whenever an edge is found, it is added
to the matching. Moreover, before every probe the algorithm may choose to isolate the currently
inspected vertex u irrevocably and thereby skip to the next round.

Goel and Tripathi show that no vertex iterative algorithm obtains an expected approximation
ratio better than 3

4 on the graph of Dyer and Frieze [15].
The MRG algorithm and Ranking are prominent representatives of vertex iterative algorithms.

MinGreedy, however, cannot be implemented in the oblivious query commit model.
We point out that the class of fully randomized adaptive priority algorithms in the vertex model

contains all randomized algorithms in the oblivious query commit model.

Theorem 7. Every algorithm in the oblivious query commit model (and hence every vertex iterative
algorithm) can be implemented as fully randomized priority algorithm in the vertex model.

On the other hand, the fully randomized priority algorithm MinGreedy cannot be implemented
in the oblivious query commit model.

Proof. We have already pointed out that the oblivious query commit model does not allow the
algorithm to select edges depending on the degrees of their nodes. In fact, the lower bound given
in [22] relies on this observation. In the sequel we show the first claim of the lemma.

Recall from the definition of vertex iterative algorithms that each such randomized algorithm
can be implemented in the oblivious query commit model. Thus, it suffices to demonstrate that
an algorithm A in the oblivious query commit model can be simulated by some fully randomized
greedy algorithm B. Let G be the input on which both algorithms are run. Since G is unknown to
both algorithms, we assume for the sake of convenience that both algorithms are provided a set of
possible node identifiers in advance. In particular, we assume that an upper bound on the number
of nodes is common knowledge.

We assume that all random bits that A uses are drawn in advance. Thus, given these random
bits B can simulate A on G deterministically. Algorithm B determines the first query of A, say
for (u, v). B simulates the first query by giving highest priority to all possible data items of node u
that contain v as neighbor. Since exactly one of these data items is consistent with G, their ordering
w.r.t. each other is irrelevant. Let π1 be the ordering submitted by B in the first round. If (u, v)
exists, A adds this edge to its matching, and so does B.

If (u, v) does not exist, then A may query probabilistically for another edge, say (x, y). But B
will receive the first data item according to π1 that exists in the graph. In particular, the priority
algorithm may only change its ordering of data items after it has received a data item; since there
is no such data item for u in G, B may take no action at this time. Fortunately, B has access to the
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description of A and its pool of random bits, hence B can determine a priori which edge A would
query next if (u, v) does not exist. Therefore, in the first round B plans ahead and enumerates all
data items for node x that contain y as neighbor after the prefix of the data items for u in π1. We
iterate this process.

Assume that A eventually finds some edge (u′, v′) and adds it to the matching. Then B receives
the data item for u′ and picks the same edge. The gist is that B can infer the same information
from the data item for u′ that A has gathered: The position of the data item in π1 implies that no
edge of higher priority exists in G. Moreover, the data item of u′ contains at least the information
that (u′, v′) exists, and perhaps additional information about the neighborhood of u′.

Thus, B has always at least the same knowledge about G and hence can simulate A subsequently.
Here it is crucial to note that according to the respective definitions of their models, A and B may
only query data items of nodes that have not been matched yet.
Once B has decided the first data item, it determines π2, π3 and so on analogously.

3.1 Greedy Adaptive Priority Algorithms and Degree Bounded Graphs

The inapproximability bounds given in Sect. 3 rely on graphs with maximum degree three. How
do priority algorithms perform when applied to arbitrary graphs?

Recall that greedy adaptive priority algorithms do not have the option to isolate the node given
in the current data item; they must add an edge to their matching in each round. We show that
every such algorithm has approximation ratio at most 1

2 +ε for any ε > 0. Thus, randomness seems
essential for greedy algorithms in order to achieve a non-trivial guarantee.

v v1

v2 v3 vd. . .

Figure 5: A connected compo-
nent of G: Gray edges are un-
known to algorithm A

m1 r1l1 u1

mk rklk uk

mi rili ui

...
...

a

c

b

d

ce
nt

er
Figure 6: The full construction: Gray nodes and edges are
unknown to A, frontier nodes are drawn bold, the dashed edge
is an example for edge (mi = v, rj) in a type 3 round

Theorem 8. Let A be a greedy adaptive priority algorithm. There is a graph with maximum degree
at most ∆, for which the approximation ratio of A is not better than ∆−1

2∆−3 .

Proof. The adversary creates the input graph on-the-fly during the adaptive priority game; this
is legal as long as the adversary ensures that the final graph is consistent with the revealed data
items, since the algorithm works deterministically. We call a node known, if it was contained in a
data item shown in a previous round, and unknown otherwise. The gist of the construction is that
all known nodes are either already matched or isolated.

The game between A and the adversary B consists of two phases: The regular game lasts for
s = ∆ − 3 rounds, the endgame has two rounds. We consider round i ≥ 1 of the regular game and
assume that B returns data item ai that belongs to one of the following three types; B will give no
other data item to A.
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Type 1: ai = 〈v; v1, . . . , vd〉 with 3 ≤ d ≤ ∆ and all nodes are unknown. Thus, the nodes are
indistinguishable and we may assume that A matches v to v1. B constructs a separate connected
component C (cf. Fig. 5): The optimum M∗ contains two edges (v, v2), (v1, v3) in C, whereas A
adds only the edge (v, v1) to its matching M . Observe that all (data items of) nodes in C belong
to type 1 or 2 before the current round and are either matched or isolated afterwards.
Type 2: ai = 〈v; v1, v2〉, and all nodes are unknown. Assume that A matches v with v1. B
constructs a triangle {li, mi, ri} with li=v2, mi=v, ri=v1 and an edge (ri, ui) with a new node ui,
which connects the triangle to the unknown center (cf. Fig. 6). The center will connect triangles
created for data items of types 2 and 3. Again M∗ is extended by two edges (li, mi), (ri, ui), whereas
only (mi, ri) is added to M . To verify the legality, we observe that before mi, ri are matched, (the
data items of) nodes mi, li are of type 2 and ri, ui are of type 1; after matching mi, ri, nodes li, mi, ri

are isolated and ui turns into a type 3 node.
Type 3: ai = 〈v; v1, v2, v3〉, where v, v1, v2 are unknown and v3 is known. Node v3 occurred in
a data item presented previously, and in particular must be a neighbor of some node rj (with j < i)
by construction. But then, does v = uj hold? Not necessarily, since B may introduce further
neighbors of rj, since rj was matched on its first appearance and hence its data item is never
presented to the algorithm. Since v3 = rj is already matched and v1, v2 are both unknown, we
may assume that A matches v to v1. Again B creates a triangle {li = v2, mi = v, ri = v1} and
an additional edge (ri, ui) with a new node ui. Moreover, B also inserts the edge (mi=v, rj) to
preserve consistency. M∗ (resp., M) is extended by (li, mi), (ri, ui) (resp., (mi, ri)). Before mi, ri

are matched, node li is of type 2, nodes ri, ui are of type 1 and mi=v is of type 3. After matching
mi, ri, nodes li, mi, ri are isolated and ui turns into type 3. uj is still of type 3.

The regular game ends after round s = ∆ − 3. We consider the graph created by B (cf.
Fig. 6): a, b are of type 1 (for a specific value of d), b, c of type 2, and the u-nodes of type 3.
The edges matched in the endgame are all incident in the center: B enforces that A matches only
two edges, whereas the optimum obtains three. Summing up, we have |M | = s + 2 = ∆ − 1 and
|M∗| = 2s + 3 = 2∆ − 3, and the claim follows. B asserts that the edge (a, b) is matched in
round ∆ − 2; afterwards c can be matched to some neighbor, leaving all other nodes isolated. We
distinguish the following types for data item a∆−2:
I) a∆−2 = 〈v; v1, . . . , vd〉 is of type 1. Since no nodes in a∆−2 is known, we assume that A
matches v to v1. B chooses v = a, v1 = b, and v2, . . . , vd as the remaining neighbors of a.
II) a∆−2 = 〈v; v1, v2〉 is of type 2. Again we may assume that (v, v1) is matched, hence B chooses
v = b, v1 = a, and v2 = d.
III) a∆−2 = 〈v; v1, v2, v3〉 is of type 3. As above, the known node v3 is some matched node rj,
j < ∆ − 2, and we may assume that (v, v1) is matched by A. The adversary chooses v3 = rj, v=b,
v1=a, and v2=d; therefore, B creates the edge (v3, b) (not present in Fig. 6).

Concludingly, we verify that no node has degree larger than ∆: Nodes in type 1 components
have degree at most ∆ by definition of the component. The degree of a and c is at most ∆ = 3 + s,
since each round of the regular game adds at most one u-neighbor to both. At most s−1 neighbors
are added to an r-node during the regular game, at most one neighbor is added in (the first step
of) the endgame, hence degrees of r-nodes are at most ∆ as well. All other nodes have degree at
most three.
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4 Hypergraph Matching

We study the limitations of greedy algorithms for the more general k-Hypergraph Matching Problem.
In a k-hypergraph an edge may have up to k nodes. The goal is to find a maximum set of node
disjoint edges. As for common graphs, a 1

k -approximation is easily obtained by greedily picking
edges [33]. We show that greedy adaptive priority algorithms in the vertex model cannot surpass
this trivial worst case guarantee.

k-hypergraph matching is NP-complete: 3-dimensional matching, where each edge has exactly
three nodes and the graph is tripartite, as well as the unrestricted hypergraph matching problem,
also called the set packing problem, belong to Karp’s 21 NP-complete problems. For an overview
of problems closely related to hypergraph matching, see Chan and Lau [10].

We consider k-uniform hypergraphs where each edge has exactly k nodes. To achieve non-trivial
approximation guarantees efficiently, local search was shown to be successful. Hurkens and Schri-
jver [29] gave, for any fixed ε > 0, a polynomial time local search algorithm with approximation
ratio k

2 + ε. Using an enhanced local search method, Cygan [12] recently improved the approxima-
tion ratio to k+1+ε

3 . On the other hand, Hazan, Safra, and Schwartz [25] showed that k-uniform
hypergraph matching cannot efficiently be approximated within a factor of O( k

ln k ).
Greedy approaches have also been investigated. Bennett and Bohman [4] showed the following

bound on the expected performance of Greedy on k-uniform D-regular hypergraphs H with N
nodes: If D → ∞ as N → ∞ and co-degrees are at most L = o(D/ log5 N), then a proportion

of at most (L/D)
1

2(k−1)
+o(1) of the nodes remains unmatched whp. Aronson et al. [2] investigated

Greedy on general k-uniform hypergraphs and showed that the expected approximation ratio is
at least 1/(k − k−1

m ), where the non-negative value of m depends on the graph. We give a tight
bound for greedy adaptive priority algorithms.

Theorem 9. No greedy adaptive priority algorithm in the vertex model has approximation ratio
better than 1

k for k-uniform hypergraph matching with k ≥ 3.

Proof. Given an algorithm A, we construct a k-uniform hypergraph on which A has approximation
ratio exactly 1

k . The instance constructed by the adversary is illustrated in Fig. 7. The white
(vertical) edges constitute a maximum matching {e0, . . . , ek−1}. The topmost horizontal edge e will
be the only edge picked by the adaptive priority algorithm. (We call a node an e-node if it belongs
to the edge labeled e, and a non-e-node otherwise.)

The adversary creates k − 1 additional edges that are depicted as gray edges in Fig. 7. For
0 ≤ i ≤ k − 2 an edge contains the (unique) e-node of vertical edge ei and a non-e-node of each
ej 6= ei chosen in a way such that all non-e-nodes are covered at most once. Exactly one non-e-node
of each of e0, . . . , ek−2 is not contained in a gray edge, call them v0, . . . , vk−2.

So far, the e-nodes of e0, . . . , ek−2 have degree three, the e-node of ek−1 has degree two. The
adversary creates k − 1 more edges, that are displayed as black (vertical) lines in Fig. 7. These

edges use K = (k−1)(k−2)
2 new nodes 1, 2, . . . , K. Using these nodes, the adversary creates sets

S0, . . . , Sk−2 of k − 2 nodes each, such that every new node occurs in exactly two of the the Si and
|Si ∩ Sj | = 1 whenever i 6= j. Refer to Fig. 8 for the construction of the S0, . . . , Sk−2: a node listed
in the j-th row has its second occurrence in the j-th column. The i-th new edge, with 0 ≤ i ≤ k −2,
contains vi, the e-node of ei+1 mod k−1, and the nodes of Si.
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Figure 7: A hard k-uniform hyper-
graph matching instance

S0 = { 1, 2, 3, 4, . . . , k − 2 }

S1 = { 1, k − 1, k, k + 1, . . . , 2k − 5 }

S2 = { 2, k − 1, 2k − 4, 2k − 3, . . . , 3k − 9 }

S3 = { 3, k, 2k − 4, }

...
...

...
. . .

Sk−2 = { k − 2, 2k − 5, 3k − 9, K }

Figure 8: Definition of the Si

Observe the following properties of the construction:

i. The e-nodes of e0, . . . , ek−2 have degree four.

ii. All other nodes, including the new nodes in S0, . . . , Sk−2, have degree two.

iii. Any two edges have at most one node in common.

iv. The edge e shares exactly one node with any other edge.

Now the data items of the input graph look as follows: The data item

〈u; V1, . . . , Vd〉

of node u lists the d hyperedges incident in u: each hyperedge {u} ∪ Vi is represented by the node
set Vi.

How does the greedy adaptive priority algorithm A proceed when the adaptive priority game
starts? Recall that A submits an ordering π on the set of all data items without looking at the
graph. In the first round the adversary presents the, according to π, first data item 〈u; V1, . . . , Vd〉
with d ∈ {2, 4} (which are the only degrees present in the graph, by i. and ii.), Vi ∩ Vj = ∅ for i 6= j
(node u is the only common node of all incident edges, by iii.) and |Vi| = k − 1 for all i (the graph
is k-uniform). Since A is greedy, A selects an incident edge {u} ∪ Vi and adds it to its matching.

First assume that d = 4 holds. Then the adversary may relabel the nodes in the instance such
that u is the e-node of e0, since this is the first data item revealed to the algorithm. The greedy
adaptive priority algorithm must pick an edge incident to u, and the adversary asserts that this
edge is e. The matching is maximal by iv. In case d = 2 the adversary relabels the nodes such that
u is the e-node of ek−1, which has degree two by construction, and again lets the picked edge be
e.

5 Conclusion

Our inapproximability result for fully randomized priority algorithms implies that greedy-like algo-
rithms cannot compete with algorithms based on augmenting-paths or algebraic methods. Nonethe-
less, conceptually simple algorithms, that are easy to implement and very efficient in practice,
deserve further investigation.
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Theorem 8 gives inapproximability bounds for a large class of deterministic greedy algorithms on
graphs with maximum degree ∆ ≥ 3. We conjecture that the deterministic variant of MinGreedy

achieves these bounds for all ∆.
Moreover, our approximation guarantee given in Theorem 3 does not take into account that

choosing a random neighbor has a good probability of picking an optimal neighbor, if the degrees
are small (cp. [17] and also Sect. 1). We leave it as future work to exploit this observation.
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A A Linear Time Implementation of MinGreedy

For MRG and Ranking Poloczek and Szegedy [39] propose a data structure that allows to run
both algorithms in linear time. Greedy can also be implemented in linear time using a data
structure similar to the one we describe below.

Given an adjacency list representation of the input graph G = (V = {0, . . . , n−1}, E), the data
structure can be initialized in linear time O(|E| + |V |). At any time during MinGreedy, the data
structure supports each of the following operations in constant time: selection of a random node of
minimum (non-zero) degree, selection of a random neighbor of a given node, and the deletion of a
given edge. Hence MinGreedy can be implemented in linear time since a minimum degree node
and a neighbor are selected at most |V |

2 times and each of the |E| edges is removed exactly once.
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How is a minimum degree node u selected in constant time? Consider a step of MinGreedy

and let d0 < d1 < · · · < dk be the different degrees currently present in the graph, where d0 = 0
is the degree of already isolated nodes. We use an array S which is partitioned into sub-arrays Si

(0 ≤ i ≤ k) such that Si precedes all Sj with i < j. Each Si contains all nodes that currently have
degree di in contiguous cells of S. A doubly linked list D stores (from head to tail) the borders of
S0, S1, . . . , Sk. Node u is selected by reading the second entry in D, which stores nodes of minimum
degree d1, and choosing a random cell in S1.

To select a random neighbor v of u in constant time, instead of adjacency lists we utilize
adjacency arrays (which have same lengths as the lists and can be computed in linear time during
the preprocessing phase). To pick v from the adjacency array Au of u, we assert that the currently
available neighbors of u are stored in a consecutive part of Au.

Now that nodes u and v are selected, the edge (u, v), and all incident edges of u and v are
removed from the data structure. We remove these edges one-by-one, each in constant time.

This is how we update the adjacency arrays. Let a node x and an index of a cell in Ax be given,
say containing neighbor y. Assume that the array cell in Ax containing node y also stores the index
of the array cell in Ay containing node x as a reference and vice versa. In order to remove the edge
(x, y), we move the entry of the last non-empty cell in Ax to the position of y, and handle Ay and
x analogously. We also update the references of the two moved entries accordingly; this is done in
constant time using the references stored inside the moved entries. The references are initialized
during the construction of the adjacency arrays.

How to update S and D for the removal of an edge (x, y)? Since the degrees dx, dy of x
respectively y are decreased by exactly one, these nodes are moved from sub-array Sdx

to sub-array
Sdx−1 respectively from Sdy

to Sdy−1. We proceed analogously for x and y. To move x to its new
sub-array, we utilize two helper arrays PD, PS : PD[x] stores a pointer to the D-entry containing
x, PS [x] holds the index of the cell in S containing x. The entry of node x in the sub-array Sdx

is replaced by the “leftmost” node in Sdx
, i.e., the node stored at the smallest index, and x is

appended to the “right” of Sdx−1. If Sdx
is now empty, we remove it from D in constant time using

the pointer PD[x]. If Sdx−1 does not yet exist, i.e., x is now the only node of degree dx − 1, then we
create Sdx−1 at the now cleared position in S and insert Sdx−1 before Sdx

(or before the successor
of Sdx

, if Sdx
was removed), also in constant time. The pointers in PD and the addresses stored in

PS are updated accordingly.
Note that S, D, PS , PD can be initialized in time O(|E| + |V |) during the preprocessing phase

by scanning through the adjacency lists of G a constant number of times.
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