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Abstract

We introduce a new structure for a set of points in the plane and an angle α, which is similar
in flavor to a bounded-degree MST. We name this structure α-MST. Let P be a set of points
in the plane and let 0 < α ≤ 2π be an angle. An α-ST of P is a spanning tree of the complete
Euclidean graph induced by P , with the additional property that for each point p ∈ P , the
smallest angle around p containing all the edges adjacent to p is at most α. An α-MST of P is
then an α-ST of P of minimum weight. For α < π/3, an α-ST does not always exist, and, for
α ≥ π/3, it always exists [1, 2, 9]. In this paper, we study the problem of computing an α-MST
for several common values of α.

Motivated by wireless networks, we formulate the problem in terms of directional antennas.
With each point p ∈ P , we associate a wedge wp of angle α and apex p. The goal is to assign
an orientation and a radius rp to each wedge wp, such that the resulting graph is connected
and its MST is an α-MST. (We draw an edge between p and q if p ∈ wq, q ∈ wp, and
|pq| ≤ rp, rq.) Unsurprisingly, the problem of computing an α-MST is NP-hard, at least for
α = π and α = 2π/3. We present constant-factor approximation algorithms for α = π/2, 2π/3, π.

One of our major results is a surprising theorem for α = 2π/3, which, besides being inter-
esting from a geometric point of view, has important applications. For example, the theorem
guarantees that given any set P of 3n points in the plane and any partitioning of the points into
n triplets, one can orient the wedges of each triplet independently, such that the graph induced
by P is connected. We apply the theorem to the antenna conversion problem.

1 Introduction

Let P be a set of points in the plane and let 0 < α ≤ 2π be an angle. An α-ST of P is a spanning
tree of the complete Euclidean graph induced by P , with the additional property that for each
point p ∈ P , the smallest angle around p containing all the edges adjacent to p is at most α. An
α-MST of P is then an α-ST of P of minimum weight.

In this paper, we study the problem of computing an α-MST for several common values of α.
For α < π/3, an α-ST does not always exist (consider, e.g., an equilateral triangle). Moreover,
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it is well known that there always exists a Euclidean MST of degree at most 5. Therefore, it is
interesting to focus on the range π/3 ≤ α < 8π/5.

Carmi et al. [9] showed that, for α = π/3, an α-ST always exists. A somewhat simpler con-
struction was subsequently proposed by Ackerman et al. [1]. Aichholzer et al. [2] have also obtained
this result (together with additional related results), independently. However, in all these papers,
the goal is to construct an α-ST (for α = π/3) and not an α-MST.

The problem of computing an α-MST is similar in flavor to the problem of computing a Eu-
clidean minimum weight degree-k spanning tree, which has been studied extensively (see, e.g., [4,
10,15,16,18]). A minimum weight degree-k spanning tree is a minimum weight spanning tree, such
that the degree of each point is at most k, where the interesting values of k are 2,3, and 4. Notice
that for k = 2 we get the Euclidean traveling salesman path problem.

The problem of computing an α-ST is closely related to problems in which one needs to compute
a Hamiltonian path or cycle, with some restrictions on the angles. Fekete and Woeginger [13] showed
that every set of points has a Hamiltonian path, such that all its angles are bounded by π/2. An
alternative construction was given later in [9]. Fekete and Woeginger also conjectured that for
every set of 2k ≥ 8 points there exists a Hamiltonian cycle, such that all its angles are bounded by
π/2. Recently, Dumitrescu et al. [11] showed how to construct a Hamiltonian cycle whose angles
are bounded by 2π/3. As for lower bound, in [9] and, independently, in [11] it is shown that, for
any ε > 0, there exists a set of points, for which any Hamiltonian path has an angle greater than
π/2 − ε. The problem of finding Hamiltonian paths with large angles was also considered in [13],
where it is conjectured that every point set admits a Hamiltonian path, whose angles are at least
π/6; Bárány et al. [6] showed how to construct a path, whose angles are at least π/9.

Unsurprisingly, the problem of computing an α-MST is NP-hard, at least for α = π and α =
2π/3. For α = π, one can show this by a reduction from the problem of finding a Hamiltonian path
in grid graphs of degree at most 3, which is known to be NP-hard [14]. The reduction is similar to
the one described for the problem of computing a minimum weight degree-3 spanning tree [19], with
a few simple adaptations. For α = 2π/3, one can show this by a straight-forward reduction from
Hamiltonian path in hexagonal grid graphs. Arkin et al. [3] showed that the problem of finding a
Hamiltonian cycle in hexagonal grid graphs is NP-hard. However, with not too much effort, one
can prove that finding a Hamiltonian path in hexagonal grid graphs is NP-hard as well.

Motivated by wireless networks, we formulate the problem of computing an α-MST in terms of
directional antennas. In the last few years, directional antennas have received considerable attention
(see, e.g., [7, 8, 17]), as they have some noticeable advantages over omni-directional antennas. In
particular, they require less energy to reach a receiver at a given distance, and when broadcasting
to this receiver the affected region is much smaller, reducing the probability of causing interference
at friendly receivers or being subject to eves dropping by hostile receivers. With each point p ∈ P ,
we associate a wedge wp of angle α and apex p. The goal now is to assign an orientation and a
radius rp to each wedge wp, such that the resulting graph is connected and its MST is an α-MST.
(We draw an edge between p and q if p ∈ wq, q ∈ wp, and |pq| ≤ rp, rq.)

An interesting related problem is the antenna conversion problem. The unit disk graph of P ,
denoted udg(P), is the graph in which there is an edge between p and q if |pq| ≤ 1. This is the
communication graph induced by P , where each point in P represents a transceiver equipped with
an omni-directional antenna of radius 1. We assume that udg(P) is connected. Suppose that one
wishes to replace the omni-directional antennas with directional antennas of angle α. The goal
now is to assign an orientation to each of the wedges wp and to fix a common range δ = δ(α),
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such that the resulting (symmetric) communication graph is a c-hop-spanner of udg(P), where
c = c(α). Moreover, δ and c should be small constants. Aschner et al. [5] considered this problem
for α = π/2. Here we solve it for α = 2π/3, using significantly smaller constants.

Our results. In Section 2 we focus on the case α = 2π/3. We begin by describing a simple
gadget: Given any set S of three points in the plane, we show how to orient the wedges associated
with the points of S, such that GS , the graph induced by S, is connected, and, moreover, the union
of the wedges of S covers the plane. We then prove a surprising theorem, which, besides being
interesting from a geometric point of view, has far-reaching applications, such as the one mentioned
in the abstract. Informally, the theorem states that any two such gadgets are connected. That
is, let S1 and S2 be two triplets of points in the plane, and assume that the wedges (associated
with the points) of S1 and, independently, of S2 are oriented according to the gadget construction
instructions, then the graph induced by S1∪S2 is connected. Proving this theorem turned out to be
a very challenging task, due to the huge number of possible configurations that must be considered,
and only after arriving at the current three-stage proof structure (see Section 2.2), were we able to
complete the proof.

In Section 3, we present constant-factor approximation algorithms for computing an α-MST. In
particular, we compute a 2-approximation for a π-MST, a 6-approximation for a 2π/3-MST, and a
16-approximation for a π/2-MST. These approximations are actually with respect to a Euclidean
MST, which is a lower bound for an α-MST, for any α. In Section 4, we present a solution to the
antenna conversion problem for α = 2π/3, based on the theorem above. Specifically, we construct,
in O(n log n) time, a 6-hop-spanner of udg(P), in which each edge is of length at most 7. Finally,
NP-hardness proofs for the problem of computing an α-MST, for α = π and α = 2π/3, can be
found in Section 5.

2 α = 2π
3

Notation. Let p be a point and let α be an angle. We denote the wedge of angle α and apex p by
wp. The left ray bounding wp (when looking from p into wp) is denoted by

←
wp and the right ray by→

wp. The bisector of wp is denoted by bis(wp). The orientations of
←
wp,
→
wp, and bis(wp) are denoted

by θ(
←
wp), θ(

→
wp), and θ(bis(wp)), respectively. The orientation of wp is the orientation of its bisector

and is denoted by θ(wp). We denote the ray emanating from p of orientation θ(bis(wp)) + 180 by
w̃p; its orientation is denoted by θ(w̃p).

Let S be a set of points, where each point p ∈ S is associated with a wedge wp of some
orientation. The graph induced by S, denoted GS , is the graph in which there is an edge between
p, q ∈ S if and only if p ∈ wq and q ∈ wp. If there is an edge between p and q, we say that p and q
are connected and denote this by {p} ↔ {q}. Similarly, if S1 and S2 are two such sets of points, and
there exist a point p in S1 and a point q in S2 such that p and q are connected, then we say that
S1 and S2 are connected and denote this by {S1} ↔ {S2}. The notation {p} 6↔ {q} means that p
and q are not connected, and, similarly, {S1} 6↔ {S2} means that there does not exist a point in
S1 and a point in S2 such that these points are connected.
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2.1 The basic gadget

Claim 2.1. Let S = {a, b, c} be a set of three points in the plane, and set α = 2π/3. Then, one
can orient the wedges of S, such that GS, the induced graph of S, contains a 2π/3-ST of S, and
the wedges of S cover the plane.

Proof. Consider 4abc, and assume w.l.o.g. that ∠b ≤ ∠c ≤ ∠a. Then, ∠b ≤ 60 and ∠c < 90.
Draw 4abc, such that bc is horizontal (with b to the left of c) and a is not below the line containing
bc. Orient the wedges of S as follows (see Figure 1(a)): θ(wa) = 240, θ(wb) = 0, θ(wc) = 120.

It is easy to see that the non-directed edges (a, b) and (b, c) are in the induced graph GS . Thus,
GS contains a 2π/3-ST. As for the second requirement, notice that wa contains the wedge wa

′ of
orientation θ(wa) and apex b, and wc contains the wedge wc

′ of orientation θ(wc) and apex b. But,
clearly, wa

′ ∪wb ∪wc
′ = R.

a

cb

Rc

Ra Rb

(a)

a

cb

→
W a

←
W a

←
W c→

W b

→
W c

←
W b

W̃a

W̃c

W̃b

(b)

R1

R2
R3

R4

R5

R6

(c)

Figure 1: (a) The basic gadget of Claim 2.1. θ(wa) = 240, θ(wb) = 0, and θ(wc) = 120. A point
p is in region Ra if and only if p ∈ wa and p 6∈ wb,wc, i.e., Ra = wa \ (wb ∪wc). Regions Rb and
Rc are defined analogously. (b) θ(

←
wa) = θ(

→
wb) = θ(w̃c) = 300, θ(

→
wa) = θ(w̃b) = θ(

←
wc) = 180, and

θ(w̃a) = θ(
←
wb) = θ(

→
wc) = 60. (c) The six ranges R1, . . . , R6.

The gadget of Claim 2.1 has some noticeable properties:
Property 1. For any x ∈ S, the orientations of the wedges of S are θ(wx) and θ(wx)± 120.
Property 2. For any x ∈ S, the orientations of the rays bounding the wedges of S are θ(wx)± 60
and θ(wx) + 180. Moreover, each of these three orientations appears exactly twice, once as the
orientation of a left ray bounding some wedge and once as the orientation of a right ray bounding
some other wedge (see Figure 1(b)).
Property 3. Consider any two wedges wx and wy and the four rays defining them. Then, by
Property 2, exactly two of these rays, ρ1 from wx and ρ2 from wy, have the same orientation. Let
l be a line intersecting both ρ1 and ρ2 and perpendicular to ρ1 (and to ρ2). Then, wx ∪wy covers
the halfplane defined by l that does not include the points x and y.

Finally, let Ri denote the range ((i− 1)60, i60), for i = 1, . . . , 6 (see Figure 1(c)).

2.2 The induced graph of S1 ∪ S2 is connected

In this section, we prove the following surprising theorem (Theorem 2.4), which, as mentioned,
has far-reaching applications. Let S1 = {a, b, c} and S2 be two triplets of points in the plane, and
assume that the wedges (associated with the points) of S1 and, independently, of S2 are oriented
according to the proof of Claim 2.1. Then, the induced graph of S1 ∪ S2 is connected.

4



In order to cope with the huge number of cases, we prove Theorem 2.4 in three stages. In the
first stage (Lemma 2.2), we prove the statement assuming that both induced graphs of S1 and of
S2 are cliques. In the second stage (Lemma 2.3), we prove the statement assuming only one of the
induced graphs is a clique, using, of course, Lemma 2.2. Finally, in the third stage (Theorem 2.4),
we prove the statement without any additional assumptions, using Lemma 2.3.

Throughout this section, we assume (as in the proof of Claim 2.1) that, in ∆abc, ∠b ≤ ∠c ≤ ∠a,
bc is horizontal, with b to the left of c, and a is not below the line l containing bc (see Figure 1(a)).

Lemma 2.2 (Two cliques). Let S1 = {a, b, c} and S2 be two triplets of points in the plane and let
α = 2π/3. Assume that the wedges (associated with the points) of S1 and, independently, of S2

are oriented according to the proof of Claim 2.1, and that both induced graphs, GS1 and GS2, are
cliques. Then, the induced graph GS1∪S2 is connected.

Proof. The wedges of S2 cover the plane, in particular they cover all points of S1. Therefore, we
distinguish between three (not necessarily disjoint) cases: (i) there exists a point x ∈ S2 such that
wx covers all points of S1, (ii) there exists a point x ∈ S2 such that wx covers exactly two points
of S1, and (iii) the wedge of each point in S2 covers exactly one point of S1.

Case (i): There exists a point x ∈ S2 such that wx covers all points of S1. Since the wedges
of S1 cover the plane, at least one of them must cover x, and therefore {x} ↔ {S1}.

Case (ii): There exists a point x ∈ S2 such that wx covers exactly two points of S1. We divide
this case into three sub-cases, according to which two points of S1 are covered by wx.

a

cb

Rc

Ra

x

Rb
y

(a) y ∈ Ra

a

cb

Rc

Ra

x

Rb

y

(b) y ∈ wb

Figure 2: Proof of Lemma 2.2, Case (ii)(1).

(1) wx covers b and c and does not cover a. Assume {x} 6↔ {b, c} (since otherwise we are
done), then x ∈ Ra and one of the rays of wx intersects ab and ac. Notice that this ray must
be
←
wx and that

←
wx also intersects

←
wb (see Figure 2). Since x lies below l,

←
wx intersects

←
wb, and

θ(
←
wb) = 60, we have that θ(

←
wx) ∈ R1. It follows that θ(

→
wx) ∈ R5, θ(wx) ∈ R6, and θ(w̃x) ∈ R3.

Therefore, bis(wx) (whose orientation is θ(wx)) does not intersect l. Let y be the point of S2 such
that θ(

←
wy) = θ(w̃x) ∈ R3 and θ(

→
wy) = θ(

←
wx) ∈ R1. Since {x} ↔ {y}, we have that y ∈ wx and
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y lies to the right of bis(wx). Notice that wy contains the (imaginary) wedge of orientation θ(wy)
and apex x. If y ∈ Ra (see Figure 2(a)), then {y} ↔ {a}, since wy covers a. Otherwise, y ∈ wb

and in particular y lies to the right of b (see Figure 2(b)). In this case we show that {y} ↔ {b}.
Indeed,

→
wy intersects l to the right of b, since θ(

→
wy) ∈ R1, and, since l(

←
wy) is parallel to l(bis(wx))

and below it, we have that
←
wy intersects l to the left of b. We conclude that b ∈ wy and {y} ↔ {b}.

a

cb

Rc

Ra

x

Rb

Figure 3: Proof of Lemma 2.2, Case (ii)(2).

(2) wx covers a and b and does not cover c. Assume {x} 6↔ {a, b} (since otherwise we are done),
then x ∈ Rc and one of the rays of wx intersects ac and bc. Notice that this ray must be

←
wx and

that
←
wx also intersects

←
wa (see Figure 3). Since x lies above l,

←
wx intersects

←
wa, and θ(

←
wa) = 300,

we have that θ(
←
wx) ∈ R5. It follows that θ(

→
wx) ∈ R3, θ(wx) ∈ R4, and θ(w̃x) ∈ R1. The rest of

the proof for this case is very similar to the proof of Case (ii)(1), thus we omit further details.

a

cb

Rc

Ra
Rb

x

(a)
←
wx intersects ab and bc

a

cb

Rc

Ra Rb

x

(b)
→
wx intersects ab and bc

Figure 4: Proof of Lemma 2.2, Case (ii)(3).

(3) wx covers a and c and does not cover b. Assume {x} 6↔ {a, c} (since otherwise we are done),
then x ∈ Rb, and one of the rays of wx intersects ab and bc. Notice that this ray can be either

←
wx

or
→
wx.
If it is

←
wx (see Figure 4(a)), then the orientations associated with wx are: θ(

←
wx) ∈ R3, θ(

→
wx) ∈

R1, and θ(w̃x) ∈ R5. The rest of the proof for this branch is very similar to the proof of Case
(ii)(1), thus we omit further details.
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If the ray intersecting ab and bc is
→
wx (see Figure 4(b)), then the orientations associated with

wx are: θ(
←
wx) ∈ R6, θ(

→
wx) ∈ R4, and θ(w̃x) ∈ R2. Again, the rest of the proof for this branch is

very similar to the proof of Case (ii)(1), thus we omit further details.

a

cb

Rc

Ra
x

Rb

y

Figure 5: Proof of Lemma 2.2, Case (iii).

Case (iii): The wedge of each point in S2 covers exactly one point of S1. We may assume that
this condition also holds for the wedges of S1; that is, the wedge of each point in S1 covers exactly
one point of S2. Since, otherwise, we can simply interchange the set names. It follows that each
point of S2 lies in its own private region among the regions Ra, Rb, and Rc.

Let x be the point that lies in Ra. We claim that {x} ↔ {a}. Assume that {x} 6↔ {a}. We
show that there exists a point y ∈ S2 that covers two points of S1. If wx covers b (see Figure 5),
then θ(

→
wx) ∈ (0, 120), which implies that θ(w̃x) ∈ (240, 360). Let y be the point of S2 such that

θ(
→
wy) = θ(w̃x) and θ(

←
wy) = θ(

→
wx). Since {y} ↔ {x}, we have that y ∈ wx and y lies to the left

of bis(wx), but then wy must cover a and c – contradiction. If wx covers c, then θ(
←
wx) ∈ (0, 120),

which implies that θ(w̃x) ∈ (120, 240). Let y be the point of S2 such that θ(
←
wy) = θ(w̃x) and

θ(
→
wy) = θ(

←
wx). Since {y} ↔ {x}, we have that y ∈ wx and y lies to the right of bis(wx), but then

wy must cover a and b – contradiction.

Lemma 2.3 (One clique). Let S1 = {a, b, c} and S2 be two triplets of points in the plane and let
α = 2π/3. Assume that the wedges of S1 and, independently, of S2 are oriented according to the
proof of Claim 2.1, and that the induced graph GS2 is a clique. Then, the induced graph GS1∪S2 is
connected.

Proof. If the induced graph GS1 is also a clique, then, by Lemma 2.2, we are done. Assume therefore
that GS1 is not a clique. Let c′ be the intersection point of

←
wa and

←
wc (see Figure 6), and consider

the wedge wc′ of orientation θ(wc′) = θ(wc) and apex c′. The graph induced by {a, b, c′} is a clique,
and therefore, by Lemma 2.2, {a, b, c′} ↔ {S2}. If {a, b} ↔ {S2}, then we are done, so assume that
{c′} ↔ {S2}. Let x be a point of S2 such that {x} ↔ {c′}, and assume that wx does not cover c
(if it does, then {x} ↔ {c}, since wc′ ⊆ wc). Then, x lies above l and

←
wx intersects cc′. Below

we consider the three cases: (i)
→
wx intersects bc′, (ii)

→
wx intersects l to the left of b, and (iii)

→
wx

does not intersect l. However, in the first case (i.e., Case (i)) and in sub-cases (1) and (2) of the
second case (i.e., Case (ii)(1) and Case (ii)(2)) we refrain from using the assumption that GS2 is a
clique. This is because these cases appear again later in the proof of Theorem 2.4, where we may
not assume that GS2 is a clique.

Case (i):
→
wx intersects bc′ (see Figure 6(a)). Notice that in this case wx does not cover points b

and c. Since θ(
←
wx) < 360 and θ(

→
wx) > 180, we get that θ(

←
wx) ∈ R6, θ(

→
wx) ∈ R4, and θ(w̃x) ∈ R2.
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a

cb

Rc

Ra

x

Rb

c′

(a) Case (i)

a

cb

Rc

Ra

x

Rb

c′

(b) Case (ii)

a

cb

Rc

Ra

x

Rb

c′

(c) Case (iii)

Figure 6: Proof of Lemma 2.3.

Between the two points in S2 \ {x}, let y be the one whose wedge covers more points of S1; in case
of tie, let y be any one of them. We know that one of wy’s rays has orientation in R2. There are
five sub-cases:

(1) wy covers all points of S1. There must exist a point in S1 that covers y, so we are done.
(2) wy covers b and c and does not cover a. If {y} ↔ {b, c}, then we are done. Otherwise,

y ∈ Ra. Now, since θ(
←
wb) = 60 and wy must cover b and c and avoid a, we get that θ(

←
wy) ∈ R1.

But, this is impossible, since R1 is not among the three relevant ranges mentioned above.
(3) wy covers a and b and does not cover c. If {y} ↔ {a, b}, then we are done. Otherwise,

y ∈ Rc. We show that this is impossible. If θ(
→
wy) ∈ R2, then θ(

←
wy) ∈ R4, and a, b /∈ wy. And, if

θ(
←
wy) ∈ R2, then θ(

→
wy) ∈ R6, and wy must also cover c.

(4) wy covers a and c and does not cover b. This case is analogous to the previous one.
(5) wy covers exactly one point of S1. Therefore, the wedge of each point in S2 covers exactly

one point of S1. Since wx does not cover points b and c, it must cover a. Assume, w.l.o.g., that wy

covers c and wz, the wedge of the remaining point, covers b. Next, we show that this is impossible.
Indeed, if θ(

→
wy) ∈ R2 and θ(

←
wy) ∈ R4, then wy must also cover a and b. And, if θ(

→
wz) ∈ R2 and

θ(
←
wz) ∈ R4, then both y and z must lie below l. (Since, if y is above l, then {y} ↔ {c}, and, if z is

above l, then {z} ↔ {b}). Therefore, wy ∪wz covers the halfplane above l (see Property 3), and,
in particular, at least one of the two wedges covers a.

Case (ii):
→
wx intersects l to the left of b (see Figure 6(b)). In this case, as in Case (i),

θ(
←
wx) ∈ R6, θ(

→
wx) ∈ R4, and θ(w̃x) ∈ R2. Notice that in this case b ∈ wx, so we assume that

x /∈ wb, since otherwise {x} ↔ {b}. Let y be a point of S2 whose wedge covers c. We distinguish
between three sub-cases:

(1) wy covers all points of S1. There must exist a point in S1 that covers y, so we are done.
(2) wy covers exactly two points of S1. If wy covers b and c and {y} 6↔ {b, c}, then y ∈ Ra and

either θ(wy) ∈ R1 or θ(wy) ∈ R3. However, in both cases, wy must also cover a – contradiction.
(Since, in the former case,

←
wy does not intersect

←
wb, and in the latter case,

→
wy does not intersect←

wa.) If wy covers a and c and {y} 6↔ {a, c}, then y ∈ Rb and θ(wy) ∈ R3. However, in the case,
wy must also cover b – contradiction. (Since

→
wy passes above a and is directed upwards, and

←
wy

passes below c and is directed downward.)
(3) wy covers exactly one point of S2, namely, c. We know that either θ(wy) ∈ R1 or θ(wy) ∈ R3.

In the latter case, wy must also cover b, which is impossible. In the former case, if y is above l,
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then {y} ↔ {c}, so y is necessarily below l. Let z be the remaining point. Then, θ(wz) ∈ R3. We
show below that {z} ↔ {a, b}. Notice first that

←
wy separates between a and c and between b and

c, since θ(wy) ∈ R1 and wy covers only c. Since GS2 is a clique, we know that {y} ↔ {z}, and
therefore z lies to the right of bis(wy). Clearly, a and b lie to the left of

→
wz (whose orientation is

in R2), and to the right of
←
wz (whose orientation is in R4). In other words, wz covers both a and

b. Notice also that z 6∈ Rc, since bis(wy) (whose orientation is in R1) intersects l to the right of b,
and z lies to the right of bis(wy). Therefore, either wa or wb (or both) covers z. We conclude that
{z} ↔ {a, b}.

Case (iii):
→
wx does not intersect l, i.e., θ(

→
wx) < 180 (see Figure 6(c)). Since wx covers b, we

may assume that x 6∈ wb. Therefore, θ(
←
wx) > 240. We thus have that θ(

→
wx) ∈ R3 and θ(

←
wx) ∈ R5.

Notice that bis(wx) (whose orientation is in R4) intersects l to the right of b. Moreover, wx

necessarily covers a, since θ(
←
wx) ∈ R5 and

←
wx intersects l between c′ and c. Let y be the point of

S2 such that θ(wy) ∈ R6. Since GS2 is a clique, we know that {x} ↔ {y}, and therefore y lies to
the right of bis(wx). If y is above l, then {y} ↔ {c}. Otherwise, y is below l and in wa (since it is
to the left of b). But then {y} ↔ {a}, since

←
wy passes above a and

→
wy is directed downwards.

Theorem 2.4. Let S1 = {a, b, c} and S2 be two triplets of points in the plane and let α = 2π/3.
Assume that the wedges of S1 and, independently, of S2 are oriented according to the proof of
Claim 2.1. Then, the induced graph GS1∪S2 is connected.

Proof. If one (or both) of the induced graphs GS1 , GS2 is a clique, then, by Lemma 2.3, we are
done. Assume therefore that none of them is a clique. Let c′ be the intersection point of

←
wa and←

wc, and consider the wedge wc′ of orientation θ(wc′) = θ(wc) and apex c′. The graph induced by
{a, b, c′} is a clique, and therefore, by Lemma 2.3, {a, b, c′} ↔ {S2}. If {a, b} ↔ {S2}, then we are
done, so assume that {c′} ↔ {S2}. Let x be a point of S2 such that {x} ↔ {c′}, and assume that
{x} 6↔ {c} (otherwise we are done). Then, x lies above l and

←
wx intersects cc′. We distinguish

between three cases, as in the proof of Lemma 2.3: (i)
→
wx intersects bc′, (ii)

→
wx intersects l to the

left of b, and (iii)
→
wx does not intersect l. As mentioned in the proof of Lemma 2.3, our arguments

there for Case (i) and Cases (ii)(1) and (ii)(2) do not use the extra assumption that GS2 is a clique.
Therefore, we can reuse them here. It remains to show that {S1} ↔ {S2} in Cases (ii)(3) and (iii).

Case (ii)(3): wy covers exactly one point of S2, namely, c. We know that either θ(wy) ∈ R1

or θ(wy) ∈ R3. In the latter case, wy must also cover b, which is impossible. In the former case,
if y is above l, then {y} ↔ {c}, so y is necessarily below l. Let z be the remaining point. Then,
θ(wz) ∈ R3. At this point, we would like to show, as in the proof of Lemma 2.3, that {z} ↔ {a, b}.
However, we cannot assume now that {y} ↔ {z}. So, we first prove that {y} ↔ {z}, by proving
that {x} 6↔ {y}, and then we proceed as in the proof of Lemma 2.3.

Thus, our goal now is to prove that {x} 6↔ {y}. Let p be the midpoint of bc, and let a′ be the
projection of a onto l. According to the construction in the proof of Claim 2.1, a′ lies somewhere
between p and c (not including c). Let o be the intersection point of

←
wx and l. We know that o

is somewhere between c′ and c (not including c). Finally, let t be the intersection point of bis(wx)
and l (see Figure 7(a)). We show that t lies to the left of p and therefore also to the left of a′.
If t is to the left of b (or t = b), then this is clear. Assume therefore that t is to the right of b,
and consider the two triangles 4xto and 4xbt. Recall first that x is above

←
wb and notice that it

is below bis(wc) (since, if x were above bis(wc), then {x} ↔ {c}). Therefore ∠xbt > 60 and the
projection of x onto l lies to the left of p. Now, in 4xto, ∠xot ≤ 60 and ∠txo = 60, and therefore
|xt| ≤ |to|. And, in 4xbt, ∠bxt < 60 and ∠xbt > 60, and therefore |bt| < |xt|. Together, we get
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that |bt| < |to| < |tc|, so t lies to the left of p and therefore to the left of a′.
Since the projection of x onto l lies to the left of p and so does t, we have that a lies to the left

of bis(wx). Now, if {x} ↔ {y}, then y must lie to the right of bis(wx) and therefore cover a, which
is impossible. We conclude that {x} 6↔ {y}, and therefore {y} ↔ {z} (and {x} ↔ {z}).

From this point, we continue as in the proof of Lemma 2.3. Notice that
←
wy separates between

a and c and between b and c, since θ(wy) ∈ R1 and wy covers only c. Since {y} ↔ {z}, we know
that z lies to the right of bis(wy). Clearly, a and b lie to the left of

→
wz (whose orientation is in

R2), and to the right of
←
wz (whose orientation is in R4). In other words, wz covers both a and b.

Notice also that z 6∈ Rc, since bis(wy) (whose orientation is in R1) intersects l to the right of b,
and z lies to the right of bis(wy). Therefore, either wa or wb (or both) covers z. We conclude that
{z} ↔ {a, b}.

Case (iii):
→
wx does not intersect l, implying that θ(

→
wx) < 180. Notice that in this case b ∈ wx,

so we assume that x /∈ wb, implying that θ(
←
wx) > 240. It follows that θ(wx) ∈ R4, θ(

←
wx) ∈ R5,

θ(
→
wx) ∈ R3, and θ(w̃x) ∈ R1. Notice also that bis(wx), whose orientation is in R4, intersects l to

the left of b.
Let y be the point of S2 such that θ(

←
wy) ∈ R3 and θ(

→
wy) ∈ R1, and let z be the point of S2

such that θ(
←
wz) ∈ R1 and θ(

→
wz) ∈ R5. Notice that for

←
wx to intersect l to the right of c′, x must

lie above l(
←
wa), and, therefore, wx covers a.

We first show that if {x} ↔ {z}, then {S1} ↔ {S2}. Indeed, if {x} ↔ {z}, then z must lie to
the right of bis(wx). If z is above l, then {z} ↔ {c}. Assume, therefore, that z is below l. Notice
that

←
wz intersects

←
wb at a point above x, implying that

←
wz passes above a. Moreover,

→
wz passes

below a, since it is directed downwards. It follows that wz covers a. But, z ∈ wa, since z lies to
the right of bis(wx), which intersects l to the left of b. We conclude that {z} ↔ {a}.

Next, we address the most difficult case, in which {x} 6↔ {z}. If {x} 6↔ {z}, then necessarily y is
connected to both x and z. Notice that z must lie below

←
wx. Also, if it is above l, then {z} ↔ {c}.

Assume, therefore, that z is below l. Since wy’s rays are directed upwards and {y} ↔ {z}, we
know that y is below z and therefore also below l. According to the construction in the proof of
Claim 2.1, either x or z lies on bis(wy), and the angle at this point in 4xyz does not exceed the
angle at the other point. It follows that the point that lies on bis(wy) is necessarily x. Since, if it
were z, then ∠yzx ≥ 120, as it contains wz.

c

Rc

Ra Rb
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b

x

c′ ot p a′

(a)

a

c
b

Rc

Ra Rb

x

y

m

m′

o′ o

(b)

a

c
b

(c)

Figure 7: (a) t lies to the left of a′. (b) x lies on bis(wy). (c) Each of the triplets induces a
connected graph and covers the plane, but the graph of their union is not connected.

The case where x lies on bis(wy) is also impossible, as we show below (see Figure 7(b)). If
y /∈ wb, then {y} ↔ {a}, since

←
wy is below l(

→
wb) and

→
wy is above l(

←
wx). Assume, therefore, that

y ∈ wb but {y} 6↔ {b}. Let m be the intersection point of
←
wy and bis(wx). Then, m is above l
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(since otherwise {y} ↔ {b}). Notice that 4xmy is equilateral, and consider the bisector of ∠xmy.
Let m′ be the intersection point of this bisector and side xy. Then, mm′ is the perpendicular
bisector of xy.

Next, we show that m′ lies above l. Let o be the intersection point of xy and l, and let o′ the
intersection point of my and l. We show that |yo| < |xo|, implying that m′ is somewhere between
o and x and thus above l. Consider 4yoo′. Since θ(

←
wy) ∈ R3, we know that ∠yo′o < 60. But

∠oyo′ = 60, so we get that |oy| < |oo′|. Now, consider 4xbo. ∠xbo > 60 and ∠bxo < 60, and
therefore |ox| > |ob|. It follows that |oy| < |oo′| < |ob| < |ox|.

Since all its corners lie above l, 4mm′x is above l. Since {y} ↔ {z} and z is below l, we have
that z ∈ 4yo′o ⊆ 4ymm′, and therefore z is closer to y than to x – contradiction the construction
of Claim 2.1.

Remark. Theorem 2.4 above proves that when the wedges of each of the triplets are oriented,
independently, according to the construction of Claim 2.1, then there is always an edge between
the two triplets. This is not necessarily true for other constructions with similar properties. For
example, the wedges of each of the triplets in Figure 7(c) form a connected graph and cover the
plane, but there is no edge between the triplets.

3 Approximating the α-MST

Let P be a set of n points in the plane. In this section we consider the problem of computing an α-
MST of P , for α = π, 2π/3, π/2. For each of these angles, we devise a constant-factor approximation
algorithm. The approximation ratios are actually with respect to the weight of a Euclidean MST,
which is a lower bound for the weight of an α-MST, for any α.

Consider the TSP tour Π = e0, e1, . . . , en−1 obtained by applying the standard 2-approximation
algorithm for metric TSP. This algorithm first duplicates the edges of a MST to obtain an Eulerian
tour, and then transforms the Eulerian tour into a TSP tour by introducing shortcuts. Thus,
wt(Π) ≤ 2wt(MST). Each of our approximation algorithms below begins by constructing Π. It
then constructs, using Π, a connected α-graph, i.e., a graph in which, for each node p, the angle
spanned by the edges adjacent to p is at most α. Finally, it construct an α-ST from the α-graph,
whose weight is bounded by c · wt(Π), for some constant c = c(α), and thus is a 2c-approximation
of an α-MST.

α = π. Observe that any graph of maximum degree two is a π-graph. In particular, Π is a
π-graph, and, by removing an arbitrary edge, we obtain a π-ST of weight at most 2wt(π-MST).

α = 2π/3. Assume, for convenience, that n = 3m, for some integer m. We partition P into
m triplets, by traversing Π from an arbitrary point p ∈ P . That is, each of the triplets consists
of three consecutive points along Π. Orient the wedges of each triplet, independently, according
to Claim 2.1. By Theorem 2.4, the graph induced by P , denoted here Gα (instead of GP ), is
connected. In particular, for any two consecutive triplets t, t′ along Π, there exists an edge of the
graph between a point of t and a point of t′.

Next, we construct a 2π/3-ST, T , and show that wt(T ) ≤ 6 · wt(2π/3-MST). Initially, T has
no edges. For each of the m triplets t, add to T any two edges (of the at least two edges) of Gα
connecting between pairs of points of t. We call these edges inner-edges. Next, for each of the m
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pairs of consecutive triplets t, t′ along Π (except for the pair consisting of the ‘last’ triplet and the
‘first’ triplet), add to T any edge (of the at least one edge) of Gα connecting between a point of t
and a point of t′. We call these edges connecting-edges. T is connected and has 2n/3 inner-edges
and n/3− 1 connecting-edges, thus the total number of edges is n− 1, and T is a 2π/3-ST.

We now bound the weight of T . By the triangle inequality, the weight of an edge (u, v) of T
does not exceed the weight of the shorter path (in terms of number of edges) in Π between u and
v. We charge the weight of this path for the edge (u, v). Each edge of Π between two points of
the same triplet t is charged at most four times. Twice for the two inner-edges chosen for t, and
twice for the two connecting-edges that connect t to its two adjacent triplets along Π. Each edge of
Π between two consecutive triplets t, t′ (except for the edge between the last and first) is charged
only once for the corresponding connecting-edge of T . Thus, each edge of Π is charged at most
four times, and wt(T ) = Σe∈T |e| ≤ 4Σe∈Π|e| = 4 · wt(Π) ≤ 8 · wt(MST) ≤ 8 · wt(2π/3-MST).

Next, we improve the approximation ratio. Observe, that there are three possible ways to
partition Π into m triplets. In other words, the set of edges of Π connecting between the triplets
can be either E0, E1, or E2, where Ej = {ei ∈ E : i = (j mod 3)}, for 0 ≤ j ≤ 2. By the
pigeon hole principle, the weight of one of these sets, say E2, is at least 1

3 · wt(Π). We partition
Π into triplets, such that the set of edges connecting between the triples is E2. Now, each of the
edges of E2 (except en−1) is charged exactly once, and each of the edges of E0 ∪ E1 is charged at
most four times. Thus, wt(T ) ≤ wt(E2) + 4(wt(E0) + wt(E1)) = wt(Π) + 3(wt(E0) + wt(E1)) ≤
wt(Π) + 3 · 2

3wt(Π) = 3 · wt(Π) ≤ 6 · wt(MST) ≤ 6 · wt(2π/3-MST).

α = π/2. Assume, for convenience, that n = 8m, for some integer m. Our construction for
α = π/2 is similar to the one for α = 2π/3, but slightly more complicated. It is based on a basic
gadget described by Aschner et al. [5] for a set S of four points, indicating the locations of four
π/2-wedges. This gadget is presented as the proof for the claim that one can orient the wedges of
S, such that the induced graph is connected, and the wedges of S cover the plane. Unfortunately,
we cannot claim that two quadruplets, whose wedges are oriented independently, are connected.
However, if they are separable by a line, then they are connected, see [5].

We use this latter claim in our construction. We partition the tour Π into m sections, each
consisting of 8 consecutive points along Π. Then, we partition each of the sections into two quadru-
plets, a left quadruplet consisting of the 4 leftmost points of the section and a right quadruplet
consisting of the 4 rightmost points. (Notice that the points of a quadruplet are not necessarily
consecutive along Π.) Thus, in each section, the two quadruplets are separable by a (vertical)
line. Now, orient the wedges of each quadruplet, independently, such that their induced graph is
connected and the wedges cover the plane. Let Gα be the graph induced by P . Observe that Gα
is connected, since, for any two consecutive sections, there exists two quadruplets, one from each
section, that are separable by a (vertical) line and thus connected.

Next, we construct the tree T from Gα. We distinguish between three types of edges. The
first type are the inner-edges, which connect between points of the same quadruplet. For each
quadruplet, we pick three such edges that make the quadruplet connected. The second type are the
q-connecting-edges, which connect between quadruplets of the same section. For each section, we
pick one such edge. The third type are the s-connecting-edges, which connect between consecutive
sections along Π. For each pair of consecutive sections along Π (except for the pair consisting of the
last and first sections), we pick one such edge. Notice that T is a π/2-ST, since it is connected and
it has n− 1 edges, i.e., 3n/4 inner-edges, n/8 q-connecting-edges, and n/8− 1 s-connecting-edges.
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We compute the approximation ratio by charging the edges of Π. Each edge of Π either connects
between points of the same section, or between points of consecutive sections. An edge of the former
kind is charged at most nine times. Since for a section, we have six inner-edges, one q-connecting-
edge, and two s-connecting-edges. An edge of the latter kind is charged only once.

As for α = 2π/3, we can choose the subset of edges of Π that connect between consecutive
sections, so that its weight is at least 1

8 · wt(Π). Let E7 denote this subset. Then, wt(T ) ≤
wt(E7) + 9 ·wt(E \E7) ≤ wt(Π) + 8 ·wt(E \E7) ≤ wt(Π) + 8 · 7

8wt(Π) = 8 ·wt(Π) ≤ 16 ·wt(MST) ≤
16 · wt(π/2-MST).

The following theorem summarizes the results of this section.

Theorem 3.1. Let P be a set of points in the plane. Then, one can construct (i) a π-ST of weight
at most 2 · wt(π-MST), (ii) a 2π/3-ST of weight at most 6 · wt(2π/3-MST), and (iii) a π/2-ST of
weight at most 16 · wt(π/2-MST).

Remark. As mentioned, the approximation ratios above are with respect to wt(MST), which is
a lower bound for wt(α-MST). It is possible that by comparing the weight of the constructed α-ST
with that of an α-MST, one can get better ratios, but it is not clear how to do so. Moreover, it
is easy to see that, for α ∈ [60, 180), 2 is a lower bound on the ratio with respect to a MST, e.g.,

consider n points on a line. And, for α ∈ [180, 240), 2+
√

3
3 ≈ 1.244 is a lower bound on the ratio,

e.g., consider 3 points at the corners of an equilateral triangle and a fourth point at the center
of the circle passing through them. Finally, for α ∈ [60, 90), it is easy to give an example where
wt(α-MST)/wt(MST)→ n−1. Therefore, any construction algorithm for an angle α in this range,
should be analyzed with respect to wt(α-MST).

4 Constant range hop-spanner for α = 2π/3

In this section we apply Theorem 2.4 to obtain a solution to a problem that arises in wireless
communication networks. Let P be a set of n points in the plane, where each point in P represents
a transceiver equipped with an omni-directional antenna. The coverage region of p’s antenna is
modeled by a disk centered at p, and assume that all disks are of radius 1. Then, the resulting
communication graph is the unit disk graph of P , denoted udg(P). (I.e, there is an edge between
points p and q if the distance between them is at most 1.) As mentioned in the introduction, direc-
tional antennas have some advantages over omni-directional antennas and are gaining popularity.
The coverage region of a directional antenna of angle α is modeled by a circular sector of angle α.

Assume that udg(P) is connected. Before stating our problem, we need the following definition.
A graph G = (P,E) is a c-hop-spanner of udg(P), for some constant c, if for any two points
p, q ∈ P , the minimum number of hops between p and q in G is at most c times this number in
udg(P). That is, for each edge e = (p, q) in udg(P), there exists a path in G between p and q
consisting of at most c edges. Assume now that one replaces each of the omni-directional antennas
by a directional antenna of angle 2π/3. We address the following Antenna Conversion problem:
Orient the directional antennas and fix a range δ = O(1), such that the resulting (symmetric)
communication graph is a c-hop-spanner of udg(P), for some constant c. I.e., construct a 2π/3-
graph, such that the length of its edges is bounded by δ and it is a c-hop-spanner of udg(P).

We show how to construct such a graph with δ = 7 and c = 6, in O(n log n) time. We first
partition the points of P into connected components (of udg(P)) of size at most three. This is
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done greedily. Set Q = P . As long as Q 6= ∅, perform the following step, which finds the next
component C. Pick any point a ∈ Q, add it to C (which is initially empty), and remove it from
Q. Now, if Q 6= ∅ and there exists a point in Q whose distance from a is at most 1, then pick any
such point b ∈ Q, add it to C, and remove it from Q. Finally, if Q 6= ∅ and there exists a point in
Q whose distance to either a or b (or both) is at most 1, then pick any such point c ∈ Q, add it to
C, and remove it from Q.

Claim 4.1. Let C be a connected component of size one or two. Then, each of the neighbors of C
in udg(P) belongs to a component of size three.

Proof. Assume that one of the neighbors of C belongs to a component C ′ of size one or two, i.e.,
there exists an edge of udg(P) between a point in C and a point in C ′. Moreover, assume, e.g.,
that C was found before C ′. Then, in the iteration in which C was found, we would have found a
larger component, i.e., with at least one additional point.

Now, consider the connected components that were found. We first orient the wedges of each
connected component of size exactly three, independently, according to the proof of Claim 2.1.
Next, for each connected component C of size one or two, let C ′ be any connected component
of size exactly three, such that C has a neighbor in C ′. Recall that the wedges of C ′ cover the
plane. We orient each of the wedges of C (alternatively, the single wedge of C) towards the wedge
of C ′ that covers it. Observe that if the length of the edges is not limited, then the 2π/3-graph,
Gα, that is induced by the wedges of P is connected. Moreover, it is easy to verify that Gα is a
c-hop-spanner, for c = 5. However, our goal is to limit the length of the edges without increasing
c by much.

Let C be a component of size one or two. Then, the edge of Gα connecting between C and C ′,
where C ′ is the component of size three to which C was connected, is of length at most 4. Moreover,
consider any two components of size three C ′ and C ′′, such that C has a neighbor both in C ′ and
in C ′′. Then, the edge of Gα connecting between C ′ and C ′′ is of length at most 7. Finally, the
edge of Gα connecting between two neighboring components of size three is of length at most 5.
Therefore, one can drop all edges of length greater than 7 from Gα, without disconnecting it.

Next, we show that the resulting graph G is a 6-hop spanner. Let (p, q) be an edge of udg(P).
We show that the number of hops between p and q in G is at most 6. If p, q are in the same
component of size three, then, clearly, the path between them consists of at most 2 edges. If
p, q are in the same component of size two, then, the path between them passes through a single
component of size three, and thus consists of at most 4 edges. If p, q are in different components,
then, by Claim 4.1, at least one of them, say p, is in a component of size three. If q is also in a
component of size three, then the path from p to q consists of at most 5 edges. Otherwise, the
path between them goes from q to some component C ′ of size three (which is not necessarily p’s
component) and from there to p’s component, and thus consists of at most 6 edges.

The following theorem summarizes the result of this section.

Theorem 4.2. Let P be a set of points in the plane and assume that udg(P) is connected. Let
α = 2π/3. Then, one can construct, in O(n log n) time, a 6-hop-spanner of udg(P), in which each
edge is of length at most 7.

Running time. It is possible to implement the algorithm described above in O(n log n) time,
using a data structure presented by Efrat et al. [12]. This data structure is designed for a given set
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Q of n points in the plane. It supports queries of the following form: Given a query point a, return
a point q ∈ Q whose distance from a is at most 1, and also delete it from Q (if requested to do so).
The data structure can be constructed in O(n log n) time, and a query (including deletion if needed)
can be answered in amortized O(log n) time. We use it in both phases of the algorithm. For the first
phase, in which P is partitioned into connected components of udg(P) of size at most three, we
construct the data structure for the set P . Now, finding a single component requires at most three
queries (plus deletions), and, since there are O(n) components, the total running time of this phase
is O(n log n). In the second phase, we orient the wedges of each component. Orienting the wedges
of the components of size three can be done in O(1) time per component. For the components of
size one or two, we construct the data structure for the subset of P consisting of all points belonging
to components of size three. Now, by Claim 4.1, orienting the wedge of a component of size one
(alternatively, the wedges of a component of size two) can be done in amortized O(log n) time.
For a component of size one, we perform a single query (without deletion) in the data structure,
and, for a component of size two, we perform one or two queries (without deletion), depending on
whether the query with the first point is successful or not. We conclude that the overall running
time of the algorithm for constructing G is O(n log n).

5 NP-hardness

We prove that the problem of computing an α-MST, for α = π and α = 2π/3, is NP-hard.

5.1 α = π

(a) (b) (c)

Figure 8: (a) A square grid graph G = (V,E) consisting of 13 vertices and a 2-coloring of the
graph. (b) For each point v ∈ V , we add a corresponding point qv (denoted by a square). (c) A
Hamiltonian path of G. The semi-circles indicate the orientation of the wedges at the points of V .

We describe a reduction from the problem of finding a Hamiltonian path in square grid graphs
of degree at most 3. This problem was shown to be NP-hard by Itai et al. [14]. A square grid
graph is a graph whose vertices correspond to points in the plane with integer coordinates, and
there is an edge between two vertices if the distance between their corresponding points is 1. Let
G = (V,E), |V | = n, be a square grid graph of degree at most 3. Our reduction is very similar to
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the one in [19]. Since every square grid graph is bipartite, one can color G with two colors, say,
black and white (see Figure 8(a)). Let c(v) denote v’s color in some 2-coloring of G, and let n1

and n2, n1 + n2 = n, be the number of black and white points (i.e., vertices), respectively. We add
a set Q(V ) of n points as follows. For each point v ∈ V , consider any edge e of the complete grid
graph that is adjacent to v and is missing in G. We place a point qv on e, such that |vqv| = 1/4, if
c(v) is black, and |vqv| = 1/5, if c(v) is white (see Figure 8(b)). Notice that the distance from qv
to any point in V ∪Q(V ) \ {v, qv} is greater than 1. Therefore, any MST of the point set V ∪Q(V )
contains the n edges (v, q(v)), v ∈ V , and n−1 edges from E. Its weight is L = n−1+n1/4+n2/5.

Lemma 5.1. G has a Hamiltonian path if and only if V ∪Q(V ) has a π-MST of weight L.

Proof. Assume G has a Hamiltonian path, then its weight is n− 1, since it consists of n− 1 edges
and the weight of each edge in G is 1. By adding an edge between each point v ∈ V and its
corresponding point qv, we obtain a tree, T , of weight L. Notice that the degree of each point in
T is at most 3. Moreover, T is a π-ST of V ∪ Q(V ), since, at each vertex of T , one can place a
π-wedge that covers all its neighbors (see Figure 8(c)). Finally, the weight of T is L, and, therefore,
T is a π-MST of V ∪Q(V ).

Assume now that V ∪Q(V ) has a π-MST, T , of weight L. Then, T must contain the n edges
(v, qv), v ∈ V , plus n − 1 edges from E. Moreover, the maximum degree in T is at most 3 (since,
a π-wedge can cover at most 3 orthogonal directions). We conclude that G has a spanning tree of
maximum degree at most 2 of weight n− 1. That is, G has a Hamiltonian path.

5.2 α = 2π/3

We describe a reduction from the problem of finding a Hamiltonian path in hexagonal grid graphs.
Consider a tiling of the plane with regular hexagons of side length 1. The vertex set of an hexagonal
grid graph is a subset of the vertices of the tiling, and there is an edge between two vertices of the
graph if the distance between them is 1 (see Figure 9). The problem of finding a Hamiltonian cycle
in such graphs was shown to be NP-hard by Arkin et al. [3]. We first show that the path version
is also NP-hard.

u
s

t

w

(a)

u v
s t

(b)

Figure 9: (a) If deg(u) = 1, then we add three points. (b) If deg(u) = 2, then we add two points.

Let G = (P,E) be an hexagonal grid graph, and let u be the highest point in P . (If there are
several highest points, then pick the leftmost among them.). Notice that since u is the highest
point, its degree cannot be 3, i.e., deg(u) ≤ 2. Moreover, if deg(u) = 2, then one of the edges
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adjacent to u must be horizontal. We construct another hexagonal grid graph, G′, by adding at
most three points to P , depending on u’s degree in G. If deg(u) = 0, then G′ = G. If deg(u) = 1,
then we add the points, s, t, and w to P , as in Figure 9(a). The only edges that are formed due
to this addition are (s, w), (t, w), and (u,w). Finally, if deg(u) = 2, then we add the points s and
t to P , as in Figure 9(b). The only edges that are formed due to this addition are (s, u) and (t, v),
where v is the horizontal neighbor of u.

Lemma 5.2. G contains a Hamiltonian cycle if and only if G′ contains a Hamiltonian path.

Proof. Assume that G contains a Hamiltonian cycle. Then, deg(u) = 2, and (u, v) is an edge of
this cycle. By dropping the edge (u, v), we obtain a Hamiltonian path between u and v in G. And,
by adding the edges (s, u) and (t, v) to this path, we obtain a Hamiltonian path between s and t
in G′.

Assume now that G′ contains a Hamiltonian path. We claim that this is possible only if G′

was obtained by adding two points to P . Indeed, if G′ = G, then deg(u) = 0, and G′ cannot
contain a Hamiltonian path. And, if G′ was obtained by adding three points to P , then, since
deg(s) = deg(t) = 1 and s and t have a common neighbor, namely, w, G′ cannot contain a
Hamiltonian path. So, consider the graph G′ that is obtained by adding the points s and t to P
(see Figure 9(b)), and recall that we are assuming that G′ contains a Hamiltonian path. Since
deg(s) = deg(t) = 1, the endpoints of this path are necessarily s and t. By dropping the edges
(s, u) and (t, v) from this path, we get a Hamiltonian path Π in G, between u and v. Notice that
the edge (u, v) is not in Π, and by adding it to Π, we get a Hamiltonian cycle in G.

We are now ready to show that the problem of computing an α-MST, for α = 2π/3, is NP-hard.
Let G = (P,E) be an hexagonal grid graph, where |P | = n. Since the distance between any two
points in P is at least 1, the weight of a MST of P is at least n− 1.

Lemma 5.3. G has a Hamiltonian path if and only if P has a 2π/3-MST of weight n− 1.

Proof. Assume first that G has a Hamiltonian path. Then, its weight is n− 1. Moreover, the angle
between any two consecutive edges along the path is 2π/3. Therefore, the path is also a 2π/3-ST,
and, since its weight is n− 1, it is a 2π/3-MST.

Assume now that P has a 2π/3-MST, T , of weight n− 1. Then, all the edges of T are of length
exactly 1, and therefore belong also to E. It follows that the degree of any point in T is at most 2.
Therefore, T is a Hamiltonian path of G.
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