
ar
X

iv
:1

40
9.

37
41

v2
 [

cs
.G

T
]

 1
 O

ct
 2

01
4

Computing Approximate Nash Equilibria in Polymatrix

Games

Argyrios Deligkas · John Fearnley ·

Rahul Savani · Paul Spirakis

Abstract In an ǫ-Nash equilibrium, a player can gain at most ǫ by unilaterally
changing his behaviour. For two-player (bimatrix) games with payoffs in [0, 1],
the best-known ǫ achievable in polynomial time is 0.3393 [24]. In general,
for n-player games an ǫ-Nash equilibrium can be computed in polynomial
time for an ǫ that is an increasing function of n but does not depend on the
number of strategies of the players. For three-player and four-player games
the corresponding values of ǫ are 0.6022 and 0.7153, respectively. Polymatrix
games are a restriction of general n-player games where a player’s payoff is the
sum of payoffs from a number of bimatrix games. There exists a very small but
constant ǫ such that computing an ǫ-Nash equilibrium of a polymatrix game is
PPAD-hard. Our main result is that a (0.5+ δ)-Nash equilibrium of an n-player
polymatrix game can be computed in time polynomial in the input size and 1

δ
.

Inspired by the algorithm of Tsaknakis and Spirakis [24], our algorithm uses
gradient descent on the maximum regret of the players. We also show that this
algorithm can be applied to efficiently find a (0.5 + δ)-Nash equilibrium in a
two-player Bayesian game.

Keywords Approximate Nash equilibria, gradient descent, polymatrix
games, Bayesian games.

The first author is supported by the Microsoft Research PhD sponsorship program. The
second and third authors are supported by EPSRC grant EP/L011018/1, and the third
author is also supported by ESRC grant ESRC/BSB/09. The work of the fourth author is
supported partially by the EU ERC Project ALGAME and by the Greek THALIS action
“Algorithmic Game Theory”.

A. Deligkas · J. Fearnley · R. Savani · P. Spirakis
Department of Computer Science, University of Liverpool, UK

P. Spirakis
Research Academic Computer Technology Institute (CTI), Greece

http://arxiv.org/abs/1409.3741v2

2 Argyrios Deligkas et al.

1 Introduction

Approximate Nash equilibria. Nash equilibria are the central solution con-
cept in game theory. Since it is known that computing an exact Nash equilib-
rium [9,5] is unlikely to be achievable in polynomial time, a line of work has
arisen that studies the computational aspects of approximate Nash equilibria.
The most widely studied notion is of an ǫ-approximate Nash equilibrium (ǫ-
Nash), which requires that all players have an expected payoff that is within ǫ
of a best response. This is an additive notion of approximate equilibrium; the
problem of computing approximate equilibria of bimatrix games using a rel-
ative notion of approximation is known to be PPAD-hard even for constant
approximations [8].

So far, ǫ-Nash equilibria have mainly been studied in the context of two-
player bimatrix games. A line of work [11,10,2] has investigated the best ǫ
that can be guaranteed in polynomial time for bimatrix games. The current
best result, due to Tsaknakis and Spirakis [24], is a polynomial-time algorithm
that finds a 0.3393-Nash equilibrium of a bimatrix game with all payoffs in
[0, 1].

In this paper, we study ǫ-Nash equilibria in the context of many-player

games, a topic that has received much less attention. A simple approxima-
tion algorithm for many-player games can be obtained by generalising the
algorithm of Daskalakis, Mehta and Papadimitriou [11] from the two-player
setting to the n-player setting, which provides a guarantee of ǫ = 1− 1

n
. This

has since been improved independently by three sets of authors [3,19,2]. They
provide a method that converts a polynomial-time algorithm that for find-
ing ǫ-Nash equilibria in (n − 1)-player games into an algorithm that finds a
1

2−ǫ
-Nash equilibrium in n-player games. Using the polynomial-time 0.3393

algorithm of Tsaknakis and Spirakis [24] for 2-player games as the base case
for this recursion, this allows us to provide polynomial-time algorithms with
approximation guarantees of 0.6022 in 3-player games, and 0.7153 in 4-player
games. These guarantees tend to 1 as n increases, and so far, no constant ǫ < 1
is known such that, for all n, an ǫ-Nash equilibrium of an n-player game can
be computed in polynomial time.

For n-player games, we have lower bounds for ǫ-Nash equilibria. More pre-
cisely, Rubinstein has shown that when n is not a constant there exists a
constant but very small ǫ such that it is PPAD-hard to compute an ǫ-Nash
equilibrium [23]. This is quite different from the bimatrix game setting, where
the existence of a quasi-polynomial time approximation scheme rules out such
a lower bound, unless all of PPAD can be solved in quasi-polynomial time [22].

Polymatrix games. In this paper, we focus on a particular class of many-
player games called polymatrix games. In a polymatrix game, the interaction
between the players is specified by an n vertex graph, where each vertex repre-
sents one of the players. Each edge of the graph specifies a bimatrix game that
will be played by the two respective players, and thus a player with degree d
will play d bimatrix games simultaneously. More precisely, each player picks a

Computing Approximate Nash Equilibria in Polymatrix Games 3

strategy, and then plays this strategy in all of the bimatrix games that he is
involved in. His payoff is then the sum of the payoffs that he obtains in each
of the games.

Polymatrix games are a class of succinctly represented n-player games: a
polymatrix game is specified by at most n2 bimatrix games, each of which can
be written down in quadratic space with respect to the number of strategies.
This is unlike general n-player strategic form games, which require a represen-
tation that is exponential in the number of players.

There has been relatively little work on approximation algorithms for poly-
matrix games. The approximation algorithms for general games can be applied
in this setting in an obvious way, but to the best of our knowledge there have
been no upper bounds that are specific to polymatrix games. On the other
hand, the lower bound of Rubinstein mentioned above is actually proved by
constructing polymatrix games. Thus, there is a constant but very small ǫ such
that it is PPAD-hard to compute an ǫ-Nash equilibrium [23], and this again indi-
cates that approximating polymatrix games is quite different to approximating
bimatrix games.

Our contribution. Our main result is an algorithm that, for every δ in the
range 0 < δ ≤ 0.5, finds a (0.5 + δ)-Nash equilibrium of a polymatrix game
in time polynomial in the input size and 1

δ
. Note that our approximation

guarantee does not depend on the number of players, which is a property that
was not previously known to be achievable for polymatrix games, and still
cannot be achieved for general strategic form games.

We prove this result by adapting the algorithm of Tsaknakis and Spi-
rakis [24] (henceforth referred to as the TS algorithm). They give a gradient
descent algorithm for finding a 0.3393-Nash equilibrium in a bimatrix game.
We generalise their gradient descent techniques to the polymatrix setting, and
show that it always arrives at a (0.5+ δ)-Nash equilibrium after a polynomial
number of iterations.

In order to generalise the TS algorithm, we had to overcome several issues.
Firstly, the TS algorithm makes the regrets of the two players equal in every
iteration, but there is no obvious way to achieve this in the polymatrix setting.
Instead, we show how gradient descent can be applied to a strategy profile
where the regrets are not necessarily equal. Secondly, the output of the TS
algorithm is either a point found by gradient descent, or a point obtained by
modifying the result of gradient descent. In the polymatrix game setting, it is
not immediately obvious how such a modification can be derived with a non-
constant number of players (without an exponential blowup). Thus we apply a
different analysis, which proves that the point resulting from gradient descent
always has our approximation guarantee. It is an interesting open question
whether a better approximation guarantee can be achieved when there is a
constant number of players.

An interesting feature of our algorithm is that it can be applied even when
players have differing degrees. Originally, polymatrix games were defined only
for complete graphs [20]. Since previous work has only considered lower bounds

4 Argyrios Deligkas et al.

for polymatrix games, it has been sufficient to restrict attention to regular
graphs, as in work Rubinstein [23]. However, since this paper is proving an
upper bound, we must be more careful. As it turns out, our algorithm will
efficiently find a (0.5 + δ)-Nash equilibrium for all δ > 0, no matter what
graph structure the polymatrix game has.

Finally, we show that our algorithm can be applied to two-player Bayesian
games. In a two-player Bayesian game, each player is assigned a type according
to a publicly known probability distribution. Each player knows their own type,
but does not know the type of their opponent. We show that finding an ǫ-Nash
equilibrium in these games can be reduced to the problem of finding an ǫ-Nash
equilibrium in a polymatrix game, and therefore, our algorithm can be used
to efficiently find a (0.5+ δ)-Nash equilibrium of a two-player Bayesian game.

Related work. An FPTAS for the problem of computing an ǫ-Nash equilib-
rium of a bimatrix game does not exist unless every problem in PPAD can be
solved in polynomial time [5]. Arguably, the biggest open question in equilib-
rium computation is whether there exists a PTAS for this problem. As we have
mentioned, for any constant ǫ > 0, there does exist a quasi-polynomial -time
algorithm for computing an ǫ-Nash equilibria of a bimatrix game, or any game
with a constant number of players [22,1], with running time kO(log k) for a k×k
bimatrix game. Consequently, in contrast to the many-player case, it is not
believed that there exists a constant ǫ such that the problem of computing an
ǫ-Nash equilibrium of a bimatrix game (or any game with a constant number
of players) is PPAD-hard, since it seems unlikely that all problems in PPAD have
quasi-polynomial-time algorithms. On the other hand, for multi-player games,
as mentioned above, there is a small constant ǫ such that it is PPAD-hard to
compute an ǫ-Nash equilibrium of an n-player game when n is not constant.
One positive result we do have for multi-player games is that there is a PTAS
for anonymous games (where the identity of players does not matter) when
the number of strategies is constant [12].

Polymatrix games have played a central role in the reductions that have
been used to show PPAD-hardness of games and other equilibrium problems [9,
5,14,16,6]. Computing an exact Nash equilibrium in a polymatrix game is
PPAD-hard even when all the bimatrix games played are either zero-sum games
or coordination games [4]. Polymatrix games have been used in other contexts
too. For example, Govindan and Wilson proposed a (non-polynomial-time) al-
gorithm for computing Nash equilibria of an n-player game, by approximating
the game with a sequence of polymatrix games [17]. Later, they presented a
(non-polynomial) reduction that reduces n-player games to polymatrix games
while preserving approximate Nash equilibria [18]. Their reduction introduces
a central coordinator player, who interacts bilaterally with every player.

Computing Approximate Nash Equilibria in Polymatrix Games 5

2 Preliminaries

We start by fixing some notation. We use [k] to denote the set of integers
{1, 2, . . . , k}, and when a universe [k] is clear, we will use S̄ = {i ∈ [k], i /∈ S}
to denote the complement of S ⊆ [k]. For a k-dimensional vector x, we use
x−S to denote the elements of x with with indices S̄, and in the case where
S = {i} has only one element, we simply write x−i for x−S .

Polymatrix games. An n-player polymatrix game is defined by an undi-
rected graph (V,E) with n vertices, where every vertex corresponds to a player.
The edges of the graph specify which players interact with each other. For each
i ∈ [n], we use N(i) = {j : (i, j) ∈ E} to denote the neighbours of player i.

Each edge (i, j) ∈ E specifies that a bimatrix game will be played between
players i and j. Each player i ∈ [n] has a fixed number of pure strategies
mi, and the bimatrix game on edge (i, j) ∈ E will therefore be specified by an
mi×mj matrix Aij , which gives the payoffs for player i, and an mj×mi matrix
Aji, which gives the payoffs for player j. We allow the individual payoffs in
each matrix to be an arbitrary (even negative) rational number. As we describe
in the next subsection, we will rescale these payoffs so that the overall payoff
to each player lies in the range [0, 1].

2.1 Payoff Normalization

Before we continue, we must first discuss how the payoffs in the game are
rescaled. It is common, when proving results about additive notions of ap-
proximate equilibria, to rescale the payoffs of the game. This is necessary in
order for different results to be comparable. For example, all results about addi-
tive approximate equilibria in bimatrix games assume that the payoff matrices
have entries in the range [0, 1], and therefore an ǫ-Nash equilibrium always has
a consistent meaning. For the same reason, we must rescale the payoffs in a
polymatrix in order to give a consistent meaning to an ǫ-approximation.

An initial, naive, approach would be to specify that each of the individual
bimatrix games has entries in the range [0, 1]. This would be sufficient if we
were only interested in polymatrix games played on either complete graphs or
regular graphs. However, in this model, if the players have differing degrees,
then they also have differing maximum payoffs. This means that an additive
approximate equilibrium must pay more attention to high degree players, as
they can have larger regrets.

One solution to this problem, which was adopted in the conference version
of this paper [13], is to rescale according to the degree. That is, given a polyma-
trix game where each bimatrix game has payoffs in the range [0, 1], if a player
has degree d, then each of his payoff matrices is divided by d. This transfor-
mation ensures that every player has regret in the range [0, 1], and therefore
low degree players are not unfairly treated by additive approximations.

6 Argyrios Deligkas et al.

However, rescaling according to the degree assumes that each bimatrix
game actually uses the full range of payoffs between [0, 1]. In particular, some
bimatrix games may have minimum payoff strictly greater than 0, or maximum
payoff strictly less than 1. This issue arises, in particular, in our application
of two-player Bayesian games. Note that, unlike the case of a single bimatrix
game, we cannot fix this by rescaling individual bimatrix games in a polymatrix
game, because we must maintain the relationship between the payoffs in all of
the bimatrix games that a player is involved in.

To address this, we will rescale the games so that, for each player, the
minimum possible payoff is 0, and the maximum possible payoff is 1. For each
player i, we denote by U the maximum payoff he can obtain, and by L the
minimum payoff he can obtain. Formally:

Ui := max
p∈[mi]





∑

j∈N(i)

max
q∈[mj]

(

Aij(p, q)
)



 ,

Li := min
p∈[mi]





∑

j∈N(i)

min
q∈[mj]

(

Aij(p, q)
)



 .

Then, for all i and all j ∈ N(i) we will apply the following transformation,
which we call T (·), to all the entries z of payoff matrices Aij :

Ti(z) =
1

Ui − Li

·

(

z −
Li

d(i)

)

.

Observe that, since player i’s payoff is the sum of d(i) many bimatrix games, it
must be the case that after transforming the payoff matrices in this way, player
i’s maximum possible payoff is 1, and player i’s minimum possible payoff is 0.
For the rest of this paper, we will assume that the payoff matrices given by
Aij are rescaled in this way.

2.2 Approximate Nash Equilibria

Strategies. A mixed strategy for player i is a probability distribution over
player i’s pure strategies. Formally, for each positive integer k, we denote the
(k − 1)-dimensional simplex by ∆k := {x : x ∈ R

k, x ≥ 0,
∑k

i=1 xi = 1}, and
therefore the set of strategies for player i is ∆mi

. For each mixed strategy
x ∈ ∆m, the support of x is defined as supp(x) := {i ∈ [m] : xi 6= 0}, which is
the set of strategies played with positive probability by x.

A strategy profile specifies a mixed strategy for every player. We denote
the set of mixed strategy profiles as ∆ := ∆m1

× . . .×∆mn
. Given a strategy

profile x = (x1, . . . , xn) ∈ ∆, the payoff of player i under x is the sum of the
payoffs that he obtains in each of the bimatrix games that he plays. Formally,
we define:

ui(x) := xT
i

∑

j∈N(i)

Aijxj . (1)

Computing Approximate Nash Equilibria in Polymatrix Games 7

We denote by ui(x
′
i,x) the payoff for player i when he plays x′

i and the other
players play according to the strategy profile x. In some cases the first argu-
ment will be xi − x′

i which may not correspond to a valid strategy for player
i but we still apply the equation as follows:

ui(xi − x′
i,x) := xT

i

∑

j∈N(i)

Aijxj − x′T
i

∑

j∈N(i)

Aijxj = ui(xi,x)− ui(x
′
i,x).

Best responses. Let vi(x) be the vector of payoffs for each pure strategy of
player i when the rest of players play strategy profile x. Formally,

vi(x) =
∑

j∈N(i)

Aijxj .

For each vector x ∈ Rm, we define suppmax(x) to be the set of indices that
achieve the maximum of x, that is, we define suppmax(x) = {i ∈ [m] : xi ≥
xj , ∀j ∈ [m]}. Then the pure best responses of player i against a strategy
profile x (where only x−i is relevant) is given by:

Bri(x) = suppmax





∑

j∈N(i)

Aijxj



 = suppmax(vi(x)). (2)

The corresponding best response payoff is given by:

u∗
i (x) = max

k







(

∑

j∈N(i)

Aijxj

)

k







= max
k

{(

vi(x)
)

k

}

. (3)

Equilibria. In order to define the exact and approximate equilibria of a poly-
matrix game, we first define the regret that is suffered by each player under a
given strategy profile. The regret function fi : ∆ → [0, 1] is defined, for each
player i, as follows:

fi(x) := u∗
i (x)− ui(x). (4)

The maximum regret under a strategy profile x is given by the function f(x)
where:

f(x) := max{f1(x), . . . , fn(x)}. (5)

We say that x is an ǫ-approximate Nash equilibrium (ǫ-NE) if we have:

f(x) ≤ ǫ,

and x is an exact Nash equilibrium if we have f(x) = 0.

8 Argyrios Deligkas et al.

3 The gradient

Our goal is to apply gradient descent to the regret function f . In this section,
we formally define the gradient of f in Definition 1, and give a reformulation
of that definition in Lemma 3. In order to show that our gradient descent
method terminates after a polynomial number of iterations, we actually need
to use a slightly modified version of this reformulation, which we describe at
the end of this section in Definition 5.

Given a point x ∈ ∆, a feasible direction from x is defined by any other
point x′ ∈ ∆. This defines a line between x and x′, and formally speaking, the
direction of this line is x′ −x. In order to define the gradient of this direction,
we consider the function f((1− ǫ) · x+ ǫ · x′)− f(x) where ǫ lies in the range
0 ≤ ǫ ≤ 1. The gradient of this direction is given in the following definition.

Definition 1 Given profiles x,x′ ∈ ∆ and ǫ ∈ [0, 1], we define:

Df(x,x′, ǫ) := f((1− ǫ) · x+ ǫ · x′)− f(x).

Then, we define the gradient of f at x in the direction x′ − x as:

Df(x,x′) = lim
ǫ→0

1

ǫ
Df(x,x′, ǫ).

This is the natural definition of the gradient, but it cannot be used directly
in a gradient descent algorithm. We now show how this definition can be
reformulated. Firstly, for each x,x′ ∈ ∆, and for each player i ∈ [n], we define:

Dfi(x,x
′) := max

k∈Bri(x)

{(

vi(x
′)
)

k

}

− ui(xi,x
′) + ui(xi − x′

i,x). (6)

Next we define K(x) to be the set of players that have maximum regret under
the strategy profile x.

Definition 2 Given a strategy profile x, define K(x) as follows:

K(x) :=
{

i ∈ [n], fi(x) = f(x)
}

=

{

i ∈ [n], fi(x) = max
j∈[n]

fj(x)

}

. (7)

The following lemma, which is proved in Appendix A, provides our refor-
mulation.

Lemma 3 The gradient of f at point x along direction x′ − x is:

Df(x,x′) = max
i∈K(x)

Dfi(x,x
′)− f(x).

In order to show that our gradient descent algorithm terminates after a
polynomial number of steps, we have to use a slight modification of the formula
given in Lemma 3. More precisely, in the definition of Dfi(x,x

′), we need to
take the maximum over the δ-best responses, rather than the best responses.

We begin by providing the definition of the δ-best responses.

Computing Approximate Nash Equilibria in Polymatrix Games 9

Definition 4 (δ-best response) Let x ∈ ∆, and let δ ∈ (0, 0.5]. The δ-best
response set Brδi (x) for player i ∈ [n] is defined as:

Brδi (x) :=
{

j ∈ [mi] :
(

vi(x)
)

j
≥ u∗

i (x)− δ
}

.

We now define the function Df δ
i (x,x

′).

Definition 5 Let x,x′ ∈ ∆, let ǫ ∈ [0, 1], and let δ ∈ (0, 0.5]. We define
Df δ

i (x,x
′) as:

Df δ
i (x,x

′) := max
k∈Brδ

i
(x)

{(

vi(x
′)
)

k

}

− ui(xi,x
′)− ui(x

′
i,x) + ui(xi,x). (8)

Furthermore, we define Df δ(x,x′) as:

Df δ(x,x′) = max
i∈K(x)

Df δ
i (x,x

′)− f(x). (9)

Our algorithm works by performing gradient descent using the function
Df δ as the gradient. Obviously, this is a different function to Df , and so
we are not actually performing gradient descent on the gradient of f . It is
important to note that all of our proofs are in terms of Df δ, and so this does
not affect the correctness of our algorithm. We proved Lemma 3 in order to
explain where our definition of the gradient comes from, but the correctness
of our algorithm does not depend on the correctness of Lemma 3.

4 The algorithm

In this section, we describe our algorithm for finding a (0.5 + δ)-Nash equi-
librium in a polymatrix game by gradient descent. In each iteration of the
algorithm, we must find the direction of steepest descent with respect to Df δ.
We show that this task can be achieved by solving a linear program, and we
then use this LP to formally specify our algorithm.

The direction of steepest descent. We show that the direction of steepest
descent can be found by solving a linear program. Our goal is, for a given
strategy profile x, to find another strategy profile x′ so as to minimize the
gradient Df δ(x,x′). Recall that Df δ is defined in Equation (9) to be:

Df δ(x,x′) = max
i∈K(x)

Df δ
i (x,x

′)− f(x).

Note that the term f(x) is a constant in this expression, because it is the same
for all directions x′. Thus, it is sufficient to formulate a linear program in order
to find the x′ that minimizes maxi∈K(x)Df δ

i (x,x
′). Using the definition ofDf δ

i

in Equation (8), we can do this as follows.

10 Argyrios Deligkas et al.

Definition 6 (Steepest descent linear program) Given a strategy profile
x, the steepest descent linear program is defined as follows. Find x′ ∈ ∆,
l1, l2, . . . , l|K(x)|, and w such that:

minimize w

subject to
(

vi(x
′)
)

k
≤ li ∀k ∈ Brδi (x), ∀i ∈ K(x)

li − ui(xi,x
′)− ui(x

′
i,x) + ui(x) ≤ w ∀i ∈ K(x)

x′ ∈ ∆.

The li variables deal with the maximum in the term maxk∈Brδ
i
(x)

{(

vi(x
′)
)

k

}

,
while the variable w is used to deal with the maximum over the functions
Df δ

i . Since the constraints of the linear program correspond precisely to the
definition ofDf δ, it is clear that, when we minimize w, the resulting x′ specifies
the direction of steepest descent. For each profile x, we define Q(x) to be the
direction x′ found by the steepest descent LP for x.

Once we have found the direction of steepest descent, we then need to move
in that direction. More precisely, we fix a parameter ǫ = δ

δ+2 which is used to
determine how far we move in the steepest descent direction. We will show in
Section 6 that this value of ǫ leads to a polynomial bound on the running time
of our algorithm.

The algorithm. We can now formally describe our algorithm. The algorithm
takes a parameter δ ∈ (0, 0.5], which will be used as a tradeoff between running
time and the quality of approximation.

Algorithm 1

1. Choose an arbitrary strategy profile x ∈ ∆.

2. Solve the steepest descent linear program with input x to ob-
tain x′ = Q(x).

3. Set x := x+ ǫ(x′ − x), where ǫ = δ
δ+2 .

4. If f(x) ≤ 0.5 + δ then stop, otherwise go to step 2.

A single iteration of this algorithm corresponds to executing steps 2, 3,
and 4. Since this only involves solving a single linear programs, it is clear that
each iteration can be completed in polynomial time.

The rest of this paper is dedicated to showing the following theorem, which
is our main result.

Theorem 7 Algorithm 1 finds a (0.5+ δ)-NE after at most O(1
δ2
) iterations.

To prove Theorem 7, we will show two properties. Firstly, in Section 5, we
show that our gradient descent algorithm never gets stuck in a stationary point

Computing Approximate Nash Equilibria in Polymatrix Games 11

before it finds a (0.5+ δ)-NE. To do so, we define the notion of a δ-stationary
point, and we show that every δ-stationary point is at least a (0.5 + δ)-NE,
which then directly implies that the gradient descent algorithm will not get
stuck before it finds a (0.5 + δ)-NE.

Secondly, in Section 6, we prove the upper bound on the number of iter-
ations. To do this we show that, if an iteration of the algorithm starts at a
point that is not a δ-stationary point, then that iteration will make a large
enough amount of progress. This then allows us to show that the algorithm
will find a (0.5+ δ)-NE after O(1

δ2
) many iterations, and therefore the overall

running time of the algorithm is polynomial.

5 Stationary points

Recall that Definition 6 gives a linear program for finding the direction x′ that
minimises Df δ(x,x′). Our steepest descent procedure is able to make progress
whenever this gradient is negative, and so a stationary point is any point x for
which Df δ(x,x′) ≥ 0. In fact, our analysis requires us to consider δ-stationary
points, which we now define.

Definition 8 (δ-stationary point) Let x∗ be a mixed strategy profile, and
let δ > 0. We have that x∗ is a δ-stationary point if for all x′ ∈ ∆:

Df δ(x∗,x′) ≥ −δ.

We now show that every δ-stationary point of f(x) is a (0.5+δ)-NE. Recall
from Definition 5 that:

Df δ(x,x′) = max
i∈K(x)

Df δ
i (x,x

′)− f(x).

Therefore, if x∗ is a δ-stationary point, we must have, for every direction x′:

f(x∗) ≤ max
i∈K(x)

Df δ
i (x

∗,x′) + δ. (10)

Since f(x∗) is the maximum regret under the strategy profile x∗, in order to
show that x∗ is a (0.5 + δ)-NE, we only have to find some direction x′ such
that that maxi∈K(x) Df δ

i (x,x
′) ≤ 0.5. We do this in the following lemma.

Lemma 9 In every stationary point x∗, there exists a direction x′ such that:

max
i∈K(x)

Df δ
i (x

∗,x′) ≤ 0.5.

Proof First, define x̄ to be a strategy profile in which each player i ∈ [n] plays
a best response against x∗. We will set x′ = x̄+x

∗

2 . Then for each i ∈ K(x), we

12 Argyrios Deligkas et al.

have that Df δ
i (x

∗,x′), is less than or equal to:

max
k∈Brδ

i
(x∗)

{

(

vi(
x̄+ x∗

2
)
)

k

}

− ui(x
∗
i ,

x̄+ x∗

2
)− ui(

x̄i + x∗
i

2
,x∗) + ui(x

∗
i ,x

∗)

=
1

2
· max
k∈Brδ

i
(x∗)

{(

vi(x̄+ x∗)
)

k

}

−
1

2
· ui(x

∗
i , x̄)−

1

2
· ui(x̄i,x

∗)

≤
1

2
·

(

max
k∈Brδ

i
(x∗)

{(

vi(x̄)
)

k

}

+ max
k∈Brδ

i
(x∗)

{(

vi(x
∗)
)

k

}

− ui(x
∗
i , x̄)− ui(x̄i,x

∗)

)

=
1

2
·

(

max
k∈Brδ

i
(x∗)

{(

vi(x̄)
)

k

}

− ui(x
∗
i , x̄)

)

because x̄i is a b.r. to x∗

≤
1

2
· max
k∈Brδ

i
(x∗)

{(

vi(x̄)
)

k

}

≤
1

2
.

Thus, the point x′ satisfies maxi∈K(x)Df δ
i (x

∗,x′) ≤ 0.5. ⊓⊔

We can sum up the results of the section in the following lemma.

Lemma 10 Every δ-stationary point x∗ is a (0.5 + δ)-Nash equilibrium.

6 The time complexity of the algorithm

In this section, we show that Algorithm 1 terminates after a polynomial num-
ber of iterations. Let x be a strategy profile that is considered by Algorithm
1, and let x′ = Q(x) be the solution of the steepest descent LP for x. These
two profiles will be fixed throughout this section.

We begin by proving a technical lemma that will be crucial for showing
our bound on the number of iterations. To simplify our notation, throughout
this section we define fnew := f(x + ǫ(x′ − x)) and f := f(x). Furthermore,
we define D = maxi∈[n] Df δ

i (x,x
′). The following lemma, which is proved in

Appendix B, gives a relationship between f and fnew.

Lemma 11 In every iteration of Algorithm 1 we have:

fnew − f ≤ ǫ(D − f) + ǫ2(1−D). (11)

In the next lemma we prove that, if we are not in a δ-stationary point,
then we have a bound on the amount of progress made in each iteration. We
use this in order to bound the number of iterations needed before we reach a
point x where f(x) ≤ 0.5 + δ.

Lemma 12 Fix ǫ = δ
δ+2 , where 0 < δ ≤ 0.5. Either x is a δ-stationary point

or:

fnew ≤

(

1−

(

δ

δ + 2

)2
)

f. (12)

Computing Approximate Nash Equilibria in Polymatrix Games 13

Proof Recall that by Lemma 11 the gain in every iteration of the steepest
descent is

fnew − f ≤ ǫ(D − f) + ǫ2(1−D). (13)

We consider the following two cases:

a) D − f > −δ. Then, by definition, we are in a δ-stationary point.
b) D − f ≤ −δ. We have set ǫ = δ

δ+2 . If we solve for δ we get that δ = 2ǫ
1−ǫ

.
Since D − f ≤ −δ, we have that (D − f)(1 − ǫ) ≤ −2ǫ. Thus we have:

(D − f)(ǫ− 1) ≥ 2ǫ

0 ≥ (D − f)(1− ǫ) + 2ǫ

0 ≥ (D − f) + ǫ(2−D + f)

−ǫf − ǫ ≥ (D − f) + ǫ(1−D) (ǫ ≥ 0)

−ǫ2f − ǫ2 ≥ ǫ(D − f) + ǫ2(1−D).

Thus, since ǫ2 ≥ 0 we get:

−ǫ2f ≥ ǫ(D − f) + ǫ2(1 −D)

≥ fnew − f According to (13).

Thus we have shown that:

fnew − f ≤− ǫ2f

fnew ≤(1− ǫ2)f.

Finally, using the fact that ǫ = δ
δ+2 , we get that

fnew ≤

(

1−

(

δ

δ + 2

)2
)

f.

⊓⊔

So, when the algorithm has not reached yet a δ-stationary point, there is a
decrease on the value of f that is at least as large as the bound specified
in (12) in every iteration of the gradient descent procedure. In the following
lemma we prove that after O(1

δ2
) iterations of the steepest descent procedure

the algorithm finds a point x where f(x) ≤ 0.5 + δ.

Lemma 13 After O(1
δ2
) iterations of the steepest descent procedure the algo-

rithm finds a point x where f(x) ≤ 0.5 + δ.

Proof Let x1, x2, . . . , xk be the sequence of strategy profiles that are con-
sidered by Algorithm 1. Since the algorithm terminates as soon as it finds a
(0.5+δ)-NE, we have f(xi) > 0.5+δ for every i < k. Therefore, for each i < k
we we can apply Lemma 10 to argue that xi is not a δ-stationary point, which
then allows us to apply Lemma 12 to obtain:

f(xi+1) ≤

(

1−

(

δ

δ + 2

)2
)

f(xi).

14 Argyrios Deligkas et al.

So, the amount of progress made by the algorithm in iteration i is:

f(xi)− f(xi+1) ≥ f(xi)−

(

1−

(

δ

δ + 2

)2
)

f(xi)

=

(

δ

δ + 2

)2

f(xi)

≥

(

δ

δ + 2

)2

· 0.5.

Thus, each iteration of the algorithm decreases the regret by at least (δ
δ+2)

2 ·
0.5. The algorithm starts at a point x1 with f(x1) ≤ 1, and terminates when
it reaches a point xk with f(xk) ≤ 0.5+ δ. Thus the total amount of progress
made over all iterations of the algorithm can be at most 1−(0.5+δ). Therefore,
the number of iterations used by the algorithm can be at most:

1− (0.5 + δ)
(

δ
δ+2

)2

· 0.5

≤
1− 0.5

(

δ
δ+2

)2

· 0.5

=
(δ + 2)2

δ2
=

δ2

δ2
+

4δ

δ2
+

4

δ2
.

Since δ < 1, we have that the algorithm terminates after at most O(1
δ2
) itera-

tions. ⊓⊔

Lemma 13 implies that that after polynomially many iterations the algorithm
finds a point such that f(x) ≤ 0.5 + δ, and by definition such a point is a
(0.5 + δ)-NE. Thus we have completed the proof of Theorem 7.

7 Application: Two-player Bayesian games

In this section, we define two-player Bayesian games, and show how our al-
gorithm can be applied in order to efficiently find a (0.5 + δ)-Bayesian Nash
equilibrium. A two-player Bayesian game is played between a row player and
a column player. Each player has a set of possible types, and at the start of the
game, each player is assigned a type by drawing from a known joint probabil-
ity distribution. Each player learns his type, but not the type of his opponent.
Our task is to find an approximate Bayesian Nash equilibrium (BNE).

We show that this can be reduced to the problem of finding an ǫ-NE in
a polymatrix game, and therefore our algorithm can be used to efficiently
find a (0.5 + δ)-BNE of a two-player Bayesian game. This section is split into
two parts. In the first part we formally define two-player Bayesian games,
and approximate Bayesian Nash equilibria. In the second part, we give the
reduction from two-player Bayesian games to polymatrix games.

Computing Approximate Nash Equilibria in Polymatrix Games 15

7.1 Definitions

Payoff matrices. We will use k1 to denote the number of pure strategies of
the row player and k2 to denote the number of pure strategies of the column
player. Furthermore, we will use m to denote the number of types of the row
player, and n to denote the number of types of the column player.

For each pair of types i ∈ [m] and j ∈ [n], there is a k1× k2 bimatrix game
(R,C)ij := (Rij , Cij) that is played when the row player has type i and the
column player has type j. We assume that all payoffs in every matrix Rij and
every matrix Cij lie in the range [0, 1].

Types. The distribution over types is specified by a joint probability distri-
bution: for each pair of types i ∈ [m] and j ∈ [n], the probability that the row
player is assigned type i and the column player is assigned type j is given by
pij . Obviously, we have that:

m
∑

i=1

n
∑

j=1

pij = 1.

We also define some useful shorthands: for all i ∈ [m] we denote by pRi (pCj)
the probability that row (column) player has type i ∈ [m] (j ∈ [n]). Formally:

pRi =

n
∑

j=1

pij for all i ∈ [m],

pCj =

m
∑

i=1

pij for all j ∈ [n].

Note that
∑m

i=1 p
R
i =

∑n

j=1 p
C
j = 1. Furthermore, we denote by pRi (j) the

conditional probability that type j ∈ [n] will be chosen for column player
given that type i is chosen for row player. Similarly, we define pCj (i) for the
column player. Formally:

pRi (j) =
pij

pRi
for all i ∈ [m]

pCj (i) =
pij
pCj

for all j ∈ [n].

We can see that for given type t = (i, j) we have that pij = pRi · pRi (j) =
pCj · pCj (i).

Strategies. In order to play a Bayesian game, each player must specify a
strategy for each of their types. Thus, a strategy profile is a pair (x,y), where
x = (x1, x2, . . . , xm) such that each xi ∈ ∆k1

, and where y = (y1, y2, . . . , yn)
such that each yi ∈ ∆k2

. This means that, when the row player gets type
i ∈ [m] and the column player gets type j ∈ [n], then the game (Rij , Cij) will

16 Argyrios Deligkas et al.

be played, and the row player will use strategy xi while the column player will
use strategy yj.

Given a strategy profile (x,y), we can define the expected payoff to both
players (recall that the players are not told their opponent’s type).

Definition 14 (Expected payoff) Given a strategy profile (x,y) and a type
t = (i, j), the expected payoff for the row player is given by:

uR(xi,y) =

n
∑

j=1

pRi (j) · x
T
i Rijyj

= xT
i

n
∑

j=1

pRi (j) ·Rijyj

Similarly, for the column player the expected payoff is:

uC(x, yj) = yTj

m
∑

i=1

pCj (i) · C
T
ijxi.

Rescaling. Before we define approximate equilibria for two-player Bayesian
games, we first rescale the payoffs. Much like for polymatrix games, rescaling is
needed to ensure that an ǫ-approximate equilibrium has a consistent meaning.
Our rescaling will ensure that, for every possible pair of types, both player’s
expected payoff uses the entire range [0, 1].

For each type i of the row player, we use U i
R to denote the maximum

expected payoff for the row player when he has type i, and we use Li
R to

denote the minimum expected payoff for the row player when he has type i.
Formally, these are defined to be:

U i
R = max

a∈[k1]

n
∑

j=1

max
b∈[k2]

(

pRi (j) ·Rij

)

a,b
,

Li
R = min

a∈[k1]

n
∑

j=1

min
b∈[k2]

(

pRi (j) ·Rij

)

a,b
.

Then we apply the transformation T i
R(·) to every element z of Rij , for all types

j of the column player, where:

T i
R(z) :=

1

U i
R − Li

R

·

(

z −
Li
R

n

)

. (14)

Similarly, we transform all payoff matrices for the column player using

T j
C(z) :=

1

U j
C − Lj

C

·

(

z −
Lj
C

m

)

, (15)

where U j
C and Lj

C are defined symmetrically. Note that, after this transfor-
mation has been applied, both player’s expected payoffs lie in the range [0, 1].

Computing Approximate Nash Equilibria in Polymatrix Games 17

Moreover, the full range is used: there exists a strategy for the column player
against which one of the row player’s strategies has expected payoff 1, and
there exists a strategy for the column player against which one of the row
player’s strategies has expected payoff 0. From now on we will assume that
the payoff matrices have been rescaled in this way.

We can now define approximate Bayesian Nash equilibria for a two-player
Bayesian game.

Definition 15 (Approximate Bayes Nash Equilibrium (ǫ-BNE)) Let
(x,y) be a strategy profile. The profile (x,y) is an ǫ-BNE iff the following
conditions hold:

uR(xi,y) ≥ uR(x
′
i,y) − ǫ for all x′

i ∈ ∆k1 for all i ∈ [m], (16)

uC(x, yj) ≥ uC(x, y
′
j)− ǫ for all y′j ∈ ∆k2 for all j ∈ [n]. (17)

7.2 The reduction

In this section we reduce in polynomial time the problem of computing an ǫ-
BNE for a two-player Bayesian game B to the problem of computing an ǫ-NE
of a polymatrix game P(B). We describe the construction of P(B) and prove
that every ǫ-NE for P(B) maps to an ǫ-BNE of B.

Construction. Let B be a two-player Bayesian game where the row player
has m types and k1 pure strategies and the column player has n types and k2
pure strategies. We will construct a polymatrix game P(B) as follows.

The game has m + n players. We partition the set of players [m+ n] into
two sets: the set K = {1, 2, . . . ,m} will represent the types of the row player
in B, while the set L = {m+1,m+2, . . . ,m+n} will represent the types of the
column player in B. The underlying graph that shows the interactions between
the players is a complete bipartite graph G = (K∪L,E), where every player in
K (respectively L) plays a bimatrix game with every player in L (respectively
K). The bimatrix game played between vertices vi ∈ K and vj ∈ L is defined
to be (R∗

ij , C
∗
ij), where:

R∗
ij := pRi (j) · Rij (18)

C∗
ij := pCj (i) · Cij (19)

for all i ∈ [m] and j ∈ [n].
Observe that, for each player i in the K, the matrices R∗

ij all have the
same number of rows, and for each player j ∈ L, the matrices C∗

ij all have the
same number of columns. Thus, P(B) is a valid polymatrix game. Moreover,
we clearly have that P(B) has the same size as the original game B. Note
that, since we have assumed that the Bayesian game has been rescaled, we
have that for every player in P(B) the minimum (maximum) payoff achievable
under pure strategy profiles is 0 (1), so no further scaling is needed in order
to apply our algorithm.

18 Argyrios Deligkas et al.

We can now prove that every ǫ-NE of the polymatrix game is also an ǫ-
BNE of the original two-player Bayesian game, which is the main result of this
section.

Theorem 16 Every ǫ-NE of P(B) is a ǫ-BNE for B.

Proof Let z = (x1, . . . , xm, y1, . . . , yn) be an ǫ-NE for P(B). This mean that
no player can gain more than ǫ by unilaterally changing his strategy. We define
the strategy profile (x,y) for B where x = (x1, . . . , xm) and y = (y1, . . . , yn),
and we will show that (x,y) is an ǫ-BNE for B.

Let i ∈ K be a player. Since, z is an ǫ-NE of P(B), we have:

ui(xi, z) ≥ ui(x
′
i, z)− ǫ for all x′

i ∈ ∆k1 .

By construction, we can see that player i only interacts with the players from
L. Hence his payoff can be written as:

ui(xi, z) = xT
i

n
∑

j=1

R∗
ijyj = uR(xi,y)

and since we are in an ǫ-NE, we have:

uR(xi,y) ≥ uR(x′
i,y) − ǫ for all x′

i ∈ ∆k1 . (20)

This is true for all i ∈ K, thus it is true for all i ∈ [m].

Similarly, every player j ∈ L interacts only with players form K, thus:

uC(x, yj) = yTj

m
∑

i=1

(C∗
ij)

Txi.

and since we are in an ǫ-NE we have:

uC(x, yj) ≥ uC(x, y
′
j)− ǫ for all y′j ∈ ∆k2 (21)

and this is true for all j ∈ K, thus it is true for all j ∈ [n].

Combining now the fact that Equation (20) is true for all i ∈ [m] and that
Equation (21) is true for all j ∈ [m], it is easy to see that the strategy profile
(x,y) is an ǫ-BNE for B. ⊓⊔

Applying Algorithm 1 to P(B) thus gives us the following.

Theorem 17 A (0.5+δ)-Bayesian Nash equilibrium of a two-player Bayesian

game B can be found in time polynomial in the input size of B and 1/δ.

Computing Approximate Nash Equilibria in Polymatrix Games 19

8 Conclusions and open questions

We have presented a polynomial-time algorithm that finds a (0.5 + δ)-Nash
equilibrium of a polymatrix game for any δ > 0. Though we do not have ex-
amples that show that the approximation guarantee is tight for our algorithm,
we do not see an obvious approach to prove a better guarantee. The initial
choice of strategy profile affects our algorithm, and it is conceivable that one
may be able to start the algorithm from an efficiently computable profile with
certain properties that allow a better approximation guarantee. One natural
special case is when there is a constant number of players, which may allow one
to derive new strategy profiles from a stationary point as done by Tsaknakis
and Sprirakis [24]. It may also be possible to develop new techniques when
the number of pure strategies available to the players is constant, or when the
structure of the graph is restricted in some way. For example, in the games
arising from two-player Bayesian games, the graph is always bipartite.

This paper has considered ǫ-Nash equilibria, which are the most well-
studied type of approximate equilibria. However, ǫ-Nash equilibria have a
drawback: since they only require that the expected payoff is within ǫ of a
pure best response, it is possible that a player could be required to place prob-
ability on a strategy that is arbitrarily far from being a best response. An
alternative, stronger, notion is an ǫ-well supported approximate Nash equilib-

rium (ǫ-WSNE). It requires that players only place probability on strategies
that have payoff within ǫ of a pure best response. Every ǫ-WSNE is an ǫ-Nash,
but the converse is not true. For bimatrix games, the best-known additive
approximation that is achievable in polynomial time gives a

(

2
3 − 0.0047

)

-
WSNE [15]. It builds on the algorithm given by Kontogiannis and Spirakis
that achieves a 2

3 -WSNE in polynomial time [21]. Recently a polynomial-time
algorithm with a better approximation guarantee have been given for sym-

metric bimatrix games [7]. Note, it has been shown that there is a PTAS for
finding ǫ-WSNE of bimatrix games if and only if there is a PTAS for ǫ-Nash [9,
5]. For n-player games with n > 2 there has been very little work on develop-
ing algorithms for finding ǫ-WSNE. This is a very interesting direction, both
in general and when n > 2 is a constant.

Acknowledgements We thank Aviad Rubinstein for alerting us to the two-player Bay-
sesian games application, and Haralampos Tsaknakis for feedback on earlier versions of this
paper.

References

1. Babichenko, Y., Barman, S., Peretz, R.: Simple approximate equilibria in large games.
In: EC, pp. 753–770 (2014)

2. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate Nash equilibria in
bimatrix games. Theoretical Computer Science 411(1), 164–173 (2010)

3. Briest, P., Goldberg, P., Röglin, H.: Approximate equilibria in games with few players.
CoRR abs/0804.4524 (2008)

20 Argyrios Deligkas et al.

4. Cai, Y., Daskalakis, C.: On minmax theorems for multiplayer games. In: SODA, pp.
217–234 (2011)

5. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player Nash
equilibria. Journal of the ACM 56(3), 14:1–14:57 (2009)

6. Chen, X., Paparas, D., Yannakakis, M.: The complexity of non-monotone markets. In:
STOC, pp. 181–190 (2013)

7. Czumaj, A., Fasoulakis, M., Jurdziński, M.: Approximate well-supported Nash equilibria
in symmetric bimatrix games. In: Proc. of SAGT (2014). To appear.

8. Daskalakis, C.: On the complexity of approximating a Nash equilibrium. ACM Trans-
actions on Algorithms 9(3), 23 (2013)

9. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a
Nash equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009)

10. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in approximate Nash equilib-
ria. In: Proceedings of ACM-EC, pp. 355–358 (2007)

11. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A note on approximate Nash equilibria.
Theoretical Computer Science 410(17), 1581–1588 (2009)

12. Daskalakis, C., Papadimitriou, C.H.: Approximate Nash equilibria in anonymous games.
Journal of Economic Theory (2014). DOI http://dx.doi.org/10.1016/j.jet.2014.02.002.
To appear. http://dx.doi.org/10.1016/j.jet.2014.02.002

13. Deligkas, A., Fearnley, J., Savani, R., Spirakis, P.: Computing approximate Nash equi-
libria in polymatrix games. In: Proc. of WINE (2014). To appear.

14. Etessami, K., Yannakakis, M.: On the complexity of nash equilibria and other fixed
points. SIAM J. Comput. 39(6), 2531–2597 (2010)

15. Fearnley, J., Goldberg, P.W., Savani, R., Sørensen, T.B.: Approximate well-supported
Nash equilibria below two-thirds. In: SAGT, pp. 108–119 (2012)

16. Feige, U., Talgam-Cohen, I.: A direct reduction from k-player to 2-player approximate
Nash equilibrium. In: SAGT, pp. 138–149 (2010)

17. Govindan, S., Wilson, R.: Computing Nash equilibria by iterated polymatrix approxi-
mation. Journal of Economic Dynamics and Control 28(7), 1229–1241 (2004)

18. Govindan, S., Wilson, R.: A decomposition algorithm for n-player games. Eco-
nomic Theory 42(1), 97–117 (2010). DOI 10.1007/s00199-009-0434-4. URL
http://dx.doi.org/10.1007/s00199-009-0434-4

19. Hémon, S., de Rougemont, M., Santha, M.: Approximate Nash equilibria for multi-
player games. In: SAGT, pp. 267–278 (2008)

20. Howson Joseph T., J.: Equilibria of polymatrix games. Management Science 18(5), pp.
312–318 (1972)

21. Kontogiannis, S.C., Spirakis, P.G.: Well supported approximate equilibria in bimatrix
games. Algorithmica 57(4), 653–667 (2010)

22. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In:
EC, pp. 36–41 (2003)

23. Rubinstein, A.: Inapproximability of Nash equilibrium. CoRR abs/1405.3322 (2014)
24. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate Nash equilib-

ria. Internet Mathematics 5(4), 365–382 (2008)

http://dx.doi.org/10.1016/j.jet.2014.02.002
http://dx.doi.org/10.1007/s00199-009-0434-4

Computing Approximate Nash Equilibria in Polymatrix Games 21

A Proof of Lemma 3

Before we begin with the proof, we introduce the following notation. For a player i ∈ [n],
given a strategy profile x and a subset of i’s pure strategies S ⊆ [mi], we use Mi(x, S) for
taking the maximum of the payoffs of i when the others play according to x, and player i is
restricted to pick elements from S:

Mi(x, S) := max
S

vi(x).

In order to find the gradient, we have to calculate the variation of fi along the direction
x′ − x, by evaluating f(x̄) for points x̄ of the form

x̄ := x+ ǫ(x′ − x) = (1 − ǫ) · x+ ǫ · x′.

Recall from (4), that for x̄ ∈ ∆ we have that fi(x̄) := u∗

i (x̄) − ui(x̄). In order to rewrite
u∗

i (x̄) we introduce notation Λi(x,x′, ǫ) as follows.

Definition 18 Given (x,x′, ǫ) and S = Bri(x) we define Λi(x,x′, ǫ) as:

Λi(x,x
′, ǫ) := max

{

0,max
k∈S̄

{(vi(x̄))k} −max
l∈S

{(vi(x̄))l}

}

. (22)

In the following technical lemma we provide an expression for u∗

i (x̄). In order to rewrite
u∗

i (x̄), we use the following simple observation. Consider a multiset of numbers {a1, . . . , an},
and the index sets S ⊆ [n] and S̄ = [n] \ S. We have the following identity:

max{a1, . . . , an} ≡ max
j∈S

{aj}+max

{

0, max
k∈S̄

{ak} −max
j∈S

{aj}

}

. (23)

In the following lemma, we use this identity with S = Bri(x) to rewrite u∗

i (x̄).

Lemma 19 Given profiles x and x′ in ∆ and a player i ∈ [n], let S = Bri(x). We have:

u∗

i ((1− ǫ) · x+ ǫ · x′)) = (1− ǫ) ·Mi(x, S) + ǫ ·Mi(x
′, S) + Λi(x,x

′, ǫ). (24)

Proof

u∗

i (x̄) = u∗

i ((1− ǫ) · x+ ǫ · x′))

= max
k∈[mi]

{(

vi(x+ ǫ(x′ − x))
)

k

}

By (3)

= max
k∈S

{(

vi(x+ ǫ(x′ − x))
)

k

}

+ Λi(x,x
′, ǫ) By (23) and (22)

= max
k∈S

{(

(1 − ǫ) · vi(x) + ǫ · vi(x
′)
)

k

}

+ Λi(x,x
′, ǫ).

Since S = Bri(x), we know that for all k ∈ S we have that (vi(x))k are equal, so we have
the following:

max
k∈S

{(

(1 − ǫ) · vi(x) + ǫ · vi(x
′)
)

k

}

= max
k∈S

{(

(1− ǫ) · vi(x)
)

k

}

+max
k∈S

{(

ǫ · vi(x
′)
)

k

}

= (1− ǫ) ·Mi(x, S) + ǫ ·Mi(x
′, S)

and we get the claimed result. ⊓⊔

We will use the expression (24) for u∗

i (x̄), along with the following reformulation of
ui(x̄):

ui(x̄) = ui(x+ ǫ(x′ − x))

= ui(xi + ǫ(x′

i − xi),x+ ǫ(x′ − x))

= ui(xi,x) + ǫ · ui(xi,x
′ − x) + ǫ · ui(x

′

i − xi,x) + ǫ2 · ui(x
′

i − xi,x
′ − x)

= ui(x) + ǫ · ui(xi,x
′)− ǫ · ui(xi,x) + ǫ · ui(x

′

i,x) + ǫ · ui(xi,x)− ǫ2 · ui(x
′ − x)

= (1− ǫ) · ui(x) + ǫ
(

ui(xi,x
′) + ui(x

′

i,x)− ui(x)
)

+ ǫ2 · ui(x
′ − x). (25)

We now use these reformulations to prove the following lemma.

22 Argyrios Deligkas et al.

Lemma 20 We have that fi(x̄)− f(x) is equal to:

ǫ
(

Dfi(x,x
′)− f(x)

)

+ Λi(x,x
′, ǫ)− ǫ2ui(x

′ − x)− (1 − ǫ) max
j∈[n]

{

fj(x) − fi(x)
}

.

Proof Recall that S = Bri(x). For a given i ∈ [n], using Lemma 19 and the reformulation
for ui(x̄), we have:

fi(x̄)− f(x) = u∗

i (x̄)− ui(x̄)− f(x)

= (1− ǫ) ·Mi(x, S) + ǫ ·Mi(x
′, S) + Λi(x,x

′, ǫ)

− (1− ǫ)ui(x) + ǫ
(

−ui(xi,x
′)− ui(x

′

i,x) + ui(x)
)

− ǫ2ui(x
′ − x)− f(x).

Recall from (4) that fi(x) = Mi(x, S)− ui(x), so the formula above is equal to:

ǫ
(

Mi(x
′, S)−ui(xi,x

′)−ui(x
′

i,x)+ui(x)
)

+Λi(x,x
′, ǫ)− ǫ2ui(x

′−x)+(1− ǫ)fi(x)−f(x).

Using now (6) for Dfi(x,x′), the above formula becomes:

ǫ ·Dfi(x,x
′) + Λi(x,x

′, ǫ)− ǫ2ui(x
′ − x) + (1 − ǫ)fi(x)− f(x) =

ǫ ·Dfi(x,x
′) + Λi(x,x

′, ǫ)− ǫ2ui(x
′ − x) + (1 − ǫ)fi(x)− (1− ǫ)f(x)− ǫf(x) =

ǫ
(

Dfi(x,x
′)− f(x)

)

+ Λi(x,x
′, ǫ)− ǫ2ui(x

′ − x)− (1 − ǫ)
(

f(x)− fi(x)
)

.

Recall now that f(x) = maxj∈[n] fj(x). Thus the term f(x) − fi(x) can be written as

maxj∈[n]

{

fj(x) − fi(x)
}

. So, the expression above is equivalent to

ǫ
(

Dfi(x,x
′)− f(x)

)

+ Λi(x,x
′, ǫ)− ǫ2ui(x

′ − x)− (1 − ǫ) max
j∈[n]

{

fj(x) − fi(x)
}

.

⊓⊔

Now we are ready to prove Lemma 3. Recall from definition 1 for the gradient that

Df(x,x′) = lim
ǫ→0

1

ǫ

(

f((1 − ǫ) · x+ ǫ · x′)− f(x)
)

= lim
ǫ→0

1

ǫ

(

f(x̄)− f(x)
)

= lim
ǫ→0

1

ǫ

(

max
i∈[n]

fi(x̄)− f(x)

)

= lim
ǫ→0

1

ǫ

(

max
i∈[n]

(

fi(x̄)− f(x)
)

)

= max
i∈[n]

(

lim
ǫ→0

1

ǫ

(

fi(x̄)− f(x)
)

)

. (26)

We will now use lemma 20 to study the limit limǫ→0(fi(x̄)−f(x)
)

for all i ∈ [n]. Firstly, we

deal with Λ(x,x′, ǫ). It is easy to see that limǫ→0

(

x+ǫ(x′−x)
)

= x. Then, when S = Bri(x)
we have that

lim
ǫ→0

(

max
k∈S̄

{(vi(x̄))k} −max
l∈S

{(vi(x̄))l}

)

< 0.

This is true from the definition of pure best response strategies. So, from equation (22) for
Λi(x,x

′, ǫ) it is true that limǫ→0 Λi(x,x
′, ǫ) = 0.

Furthermore, the term ǫ2 · ui(x′ − x) when is divided by ǫ equals to ǫ · ui(x′ − x), thus
limǫ→0

(

ǫ · ui(x′ − x)
)

= 0.
Moreover, the term

lim
ǫ→0

(

−
1− ǫ

ǫ
· max
j∈[n]

{

fj(x) − fi(x)
}

)

Computing Approximate Nash Equilibria in Polymatrix Games 23

is either 0 when fi(x) = f(x), i.e player i has the maximum regret and maxj∈[n]

{

fj(x) −

fi(x)
}

= 0, or −∞ otherwise, because maxj∈[n]

{

fj(x) − fi(x)
}

> 0.

To sum up, if fi(x) achieves the maximum regret at point x′, then the limit limǫ→0
(

fi(x̄)−

f(x)
)

= Dfi(x,x′)− f(x), otherwise the limit equals −∞.

From (26) for the gradient we want the maximum of these quantities, thus we have the
claimed result.

B Proof of Lemma 11

Throughout this proof, x,x′, x̄, and ǫ will be fixed as they are defined in Section 6. In order
to prove this lemma, we must show a bound on:

f(x̄)− f(x) = max
i∈[n]

fi(x̄)− f(x).

Before we start the analysis we need to redefine the term Λδ
i (x,x

′, ǫ) in order to prove
an analogous version of Lemma 19 when δ-best responses are used.

Definition 21 We define Λδ
i (x,x

′, ǫ) as:

Λδ
i (x,x

′, ǫ) := max







0, max
k∈Brδ

i
(x)

{(vi(x̄))k} − max
l∈Brδ

i
(x)

{(vi(x̄))l}







. (27)

We now use this definition to prove the following lemma.

Lemma 22 We have:

u∗

i ((1− ǫ) · x+ ǫ · x′)) ≤ (1− ǫ) max
k∈Brδ

i
(x)

(

vi(x))k + ǫ max
k∈Brδ

i
(x)

(vi(x
′)
)

k
+ Λδ

i (x,x
′, ǫ).

(28)

Proof We have:

u∗

i ((1 − ǫ) · x+ ǫ · x′)) = max
k∈[mi]

(

vi((1 − ǫ) · x+ ǫ · x′)
)

k

= max
k∈Brδ

i
(x)

(

vi((1 − ǫ) · x+ ǫ · x′)
)

k
+ Λδ

i (x,x
′, ǫ) Using (23)

≤ (1− ǫ) max
k∈Brδ

i
(x)

(

vi(x)
)

k
+ ǫ max

k∈Brδ
i
(x)

(

vi(x
′)
)

k
+ Λδ

i (x,x
′, ǫ).

⊓⊔

We will use the reformulation from Equation (25) for ui(x̄):

ui(x̄) = (1− ǫ) · ui(x) + ǫ
(

ui(xi,x
′) + ui(x

′

i,x)− ui(x)
)

+ ǫ2 · ui(x
′ − x). (29)

The correctness of this was proved in Appendix A. Now we use all the these reformulations
in order to prove the following lemma.

Lemma 23 We have that fi(x̄)− f(x) is less than or equal to:

ǫ
(

Dfδ
i (x,x

′)− f(x)
)

+ Λδ
i (x,x

′, ǫ)− ǫ2ui(x
′ − x) − (1− ǫ) max

j∈[n]
{fj − fi} . (30)

24 Argyrios Deligkas et al.

Proof Recall that, by definition, we have that:

fi(x̄) = u∗

i (x̄)− ui(x̄).

Thus, we can apply Lemma 22 along with the reformulation given in Equation (29) for ui(x̄)
to prove that fi(x̄)− f(x) is less than or equal to:

(1 − ǫ) max
k∈Brδ

i
(x)

(

vi(x))k + ǫ max
k∈Brδ

i
(x)

(vi(x
′)
)

k
+ Λδ

i (x,x
′, ǫ)

− (1− ǫ)ui(x) + ǫ
(

−ui(xi,x
′)− ui(x

′

i,x) + ui(x)
)

− ǫ2ui(x
′ − x)− f(x).

We can now use the fact that max
k∈Brδ

i
(x)

(

vi(x)
)

k
− ui(x) = fi(x) and the definition of

Dfδ
i (x,x

′) given in (8) to prove that the expression above is equivalent to:

ǫ ·Dfδ
i (x,x

′) + Λδ
i (x,x

′, ǫ)− ǫ2ui(x
′ − x) + (1− ǫ)fi(x)− f(x)

= ǫ ·Dfδ
i (x,x

′) + Λδ
i (x,x

′, ǫ)− ǫ2ui(x
′ − x) + (1− ǫ)fi(x) − (1 − ǫ)f(x) − ǫf(x)

= ǫ
(

Dfδ
i (x,x

′)− f(x)
)

+ Λδ
i (x,x

′, ǫ)− ǫ2ui(x
′ − x)− (1− ǫ)

(

f(x) − fi(x)
)

= ǫ
(

Dfδ
i (x,x

′)− f(x)
)

+ Λδ
i (x,x

′, ǫ)− ǫ2ui(x
′ − x)− (1− ǫ) max

j∈[n]

{

fj(x) − fi(x)
}

.

This completes the proof. ⊓⊔

Having shown Lemma 23, we will now study each term of (30) and provide bounds for
each of them. To begin with, it is easy to see that for all i ∈ [n] we have that maxj∈[n]

{

fj(x)−

fi(x)
}

≥ 0, and since ǫ < 1, we have that (1 − ǫ)maxj∈[n]

{

fj(x) − fi(x)
}

≥ 0. Thus,
Equation (30) is less than or equal to:

ǫ
(

Dfδ
i (x,x

′) − f(x)
)

+ Λδ
i (x,x

′, ǫ)− ǫ2ui(x
′ − x). (31)

Next we consider the term Λδ
i (x,x

′, ǫ). In the following technical lemma we prove that

Λδ
i (x,x

′, ǫ) = 0 for all i ∈ [n].

Lemma 24 We have Λδ
i (x,x

′, ǫ) = 0 for all i ∈ [n].

Proof According to equation (27) for Λδ
i (x,x

′, ǫ), we have:

Λδ
i (x,x

′, ǫ) = max







0, max
k∈Brδ

i
(x)

{(vi(x̄))k} − max
l∈Brδ

i
(x)

{(vi(x̄))l}







.

We can rewrite this expression as follows. First define:

Z(x,x′, ǫ, k) = (vi(x̄))k − max
l∈Brδ

i
(x)

{(vi(x̄))l}.

Then we have:

Λδ
i (x,x

′, ǫ) = max

{

0, max
k∈Brδ

i
(x)

{

Z(x,x′, ǫ, k)
}

}

.

Our goal is to show that, for our chosen value of ǫ, we have Λδ
i (x,x

′, ǫ) = 0. For this to be

the case, we must have that Z(x,x′, ǫ, k) ≤ 0 for all k ∈ Brδi (x). In the rest of this proof,
we will show that this is indeed the case.

By definition, we have that:

(vi(x̄))k =
(

vi(x) + ǫ(vi(x
′)− vi(x))

)

k
. (32)

Computing Approximate Nash Equilibria in Polymatrix Games 25

The term max
l∈Brδ

i
(x){(vi(x̄))l} can be written as follows:

max
l∈Brδ

i
(x)

{(vi((1 − ǫ)x+ ǫx′))l} ≥ max
l∈Brδ

i
(x)

{(vi((1 − ǫ)x))l}

= (1− ǫ) · max
l∈Brδ

i
(x)

{(vi(x))l}

= max
l∈Brδ

i
(x)

{(vi(x))l} − ǫ · max
l∈Brδ

i
(x)

{(vi(x))l}. (33)

We now substitute these two bounds into the definition of Z(x,x′, ǫ, k). We have:

Z(x,x′, ǫ, k) ≤ vi(x)k − max
l∈Brδ

i
(x)

{(vi(x))l}+ ǫ

(

vi(x
′)k −vi(x)k + max

l∈Brδ
i
(x)

{(vi(x))l}

)

.

(34)

From the definition of δ-best responses (Definition 4), we know that for all k ∈ Brδi (x):

vi(x)k − max
l∈Brδ

i
(x)

{(vi(x))l} < −δ.

Furthermore, since we know that the maximum payoff for player i ∈ [n] is 1, we have the

following trivial bound for all k ∈ Brδi (x):

vi(x
′)k − vi(x)k + max

l∈Brδ
i
(x)

{(vi(x))l} ≤ 2.

Substituting these two bounds into Equation (34) gives, for all k ∈ Brδi (x):

Z(x,x′, ǫ, k) ≤ −δ + ǫ · 2.

Thus, for each k ∈ Brδi (x), we have that Z(x,x′, ǫ, k) ≤ 0 whenever:

−δ + ǫ · 2 ≤ 0,

and this is equivalent to:

ǫ ≤
δ

2
.

This inequality holds by the definition of ǫ, so we have Z(x,x′, ǫ, k) ≤ 0 for all k ∈ Brδi (x),

which then implies that Λδ
i (x,x

′, ǫ) ≤ 0. ⊓⊔

Next we consider the term ui(x′ − x) in Equation (31). The following lemma provides
a simple lower bound for this term.

Lemma 25 For all i ∈ [n], we have Dfδ
i (x,x

′)− 1 ≤ ui(x
′ − x).

Proof For ui(x
′ − x) we have the following:

ui(x
′ − x) = ui(x

′

i − xi,x
′ − x)

= ui(x
′

i,x
′ − x)− ui(xi,x

′ − x)

= ui(x
′

i,x
′)− ui(x

′

i,x)− ui(xi,x
′) + ui(xi,x). (35)

Recall from (8) that

Dfδ
i (x,x

′) = max
k∈Brδ

i
(x)

{(

vi(x
′)
)

k

}

− ui(xi,x
′)− ui(x

′

i,x) + ui(xi,x).

We can see that (35) and (8) differ only in terms ui(x
′

i,x
′) and max

k∈Brδ
i
(x)

{(

vi(x
′)
)

k

}

re-

spectively. We know that max
k∈Brδ

i
(x)

{(

vi(x
′)
)

k

}

≤ 1. Then, we can see that Dfδ
i (x,x

′)−

1 ≤ ui(x′ − x). ⊓⊔

26 Argyrios Deligkas et al.

Recall that D = maxi∈[n] Dfδ
i (x,x

′) and fnew = f(x̄) and f = f(x). We can now apply
the bounds from Lemma 24 and Lemma 25 to Equation (31) to obtain:

fnew − f ≤ max
i∈[n]

{

ǫ
(

Dfδ
i (x,x

′) − f(x)
)

− ǫ2
(

Dfδ
i (x,x

′) − 1
)

}

≤ max
i∈[n]

{

ǫ
(

Dfδ
i (x,x

′) − f(x)
)

− ǫ2
(

D − 1
)

}

= ǫ(D − f) + ǫ2(1 −D).

This completes the proof of Lemma 11.

	1 Introduction
	2 Preliminaries
	3 The gradient
	4 The algorithm
	5 Stationary points
	6 The time complexity of the algorithm
	7 Application: Two-player Bayesian games
	8 Conclusions and open questions
	A Proof of Lemma 3
	B Proof of Lemma 11

