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Abstract

We prove two limits on the behavior of a model of self-assembling
particles introduced by Dabby and Chen (SODA 2013), called insertion
systems, where monomers insert themselves into the middle of a growing
linear polymer. First, we prove that the expressive power of these systems
is equal to context-free grammars, answering a question posed by Dabby
and Chen. Second, we prove that systems of k monomer types can de-

terministically construct polymers of length n = 2Θ(k3/2) in O(log5/3(n))
expected time, and that this is optimal in both the number of monomer
types and expected time.

1 Introduction

In this work we study a theoretical model of algorithmic self-assembly, in which
simple particles aggregate in a distributed manner to carry out complex func-
tionality. Perhaps the the most well-studied theoretical model of algorithmic
self-assembly is the abstract Tile Assembly Model (aTAM) of Winfree [22] con-
sisting of square tiles irreversibly attach to a growing polyomino-shaped assem-
bly according to matching edge colors. This model is capable of Turing-universal
computation [22], self-simulation [8], and efficient assembly of general (scaled)
shapes [21] and squares [1, 20]. Despite this power, the model is incapable of as-
sembling shapes efficiently; a single row of n tiles requires n tile types and Ω(n2)
expected assembly time, and any shape with n tiles requires Ω(

√
n) expected

time [1], even if the shape is assembled non-deterministically [3].
Such a limitation may not seem so significant, except that a wide range of

biological systems form complex assemblies in time polylogarithmic in the as-
sembly size, as noted in [7, 23]. These biological systems are capable of such
growth because their particles (e.g. living cells) actively carry out geometric
reconfiguration. In the interest of both understanding naturally occurring bi-
ological systems and creating synthetic systems with additional capabilities,
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several models of active self-assembly have been proposed recently. These in-
clude the graph grammars of Klavins et al. [14, 15], the nubots model of Woods
et al. [2, 4, 23], and the insertion systems of Dabby and Chen [7]. Both graph
grammars and nubots are capable of a topologically rich set of assemblies and
reconfigurations, but rely on stateful particles forming complex bond arrange-
ments. In contrast, insertion systems consist of stateless particles forming a
single chain of bonds. Indeed, all insertion systems are captured as a special
case of nubots in which a linear polymer is assembled via parallel insertion-
like reconfigurations, as in Theorem 5.1 of [24]. The simplicity of insertion
systems makes their implementation in matter a more immediately attainable
goal; Dabby and Chen [6, 7] describe a direct implementation of these systems
in DNA.

We are careful to make a distinction between active self-assembly, where
assemblies undergo reconfiguration, and active tile self-assembly [9, 10, 11, 12,
13, 16, 18, 19], where tile-based assemblies change their bond structure. Active
self-assembly enables exponential assembly rates by enabling insertion of new
particles throughout the assembly, while active tile self-assembly does not, since
the Ω(

√
n) expected-time lower bound of Chen and Doty [3] still applies.

2 Definitions

Section 2.1 defines standard context-free grammars, as well as a special type
called symbol-pair grammars, used in Section 3. Section 2.2 defines insertion
systems, with a small number of modifications from the definitions given in [7]
designed to ease readability. Section 2.3 formalizes the notion of expressive
power used in [7].

2.1 Grammars

A context-free grammar G is a 4-tuple G = (Σ,Γ,∆, S). The sets Σ and Γ are
the terminal and non-terminal symbols of the grammar. The set ∆ consists of
production rules or simply rules, each of the form L→ R1R2 · · ·Rj with L ∈ Γ
and Ri ∈ Σ ∪ Γ. Finally, the symbol S ∈ Γ is a special start symbol. The
language of G, denoted L(G), is the set of finite strings that can be derived by
starting with S, and repeatedly replacing a non-terminal symbol found on the
left-hand side of some rule in ∆ with the sequence of symbols on the right-hand
side of the rule. The size of G is |∆|, the number of rules in G. If every rule
in ∆ is of the form L → R1R2 or L → t, with R1R2 ∈ Γ and t ∈ Σ, then the
grammar is said to be in Chomsky normal form.

A symbol-pair grammar, used in Section 3, is a context-free grammar in
Chomsky normal form such that each non-terminal symbol is in fact a symbol
pair (a, d), and each production rule has the form (a, d)→ (a, b)(c, d) or (a, d)→
t.
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2.2 Insertion systems

Dabby and Chen [6, 7] describe both a physical implementation and formal
model of insertion systems. We briefly review the physical implementation,
then give formal definitions.

Physical implementation. Short strands of DNA, called monomers, are
bonded via complementary base sequences to form linear sequences of monomers
called polymers. Additional monomers are inserted into the gap between two ad-
jacent monomers, called an insertion site, by bonding to the adjacent monomers
and breaking the existing bond between them via a strand displacement reaction
(see Figure 1). Each insertion then creates two new insertion sites for additional
monomers to be inserted, allowing construction of arbitrarily long polymers.

b
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Figure 1: The two types of insertions. Each symbol denotes a DNA subsequence
or its complement. The directionality of DNA and hairpin design using generic
subsequence symbols z, z∗ creates these distinct types. This figure is loosely
based on Figures 2 and 3 of [7].

Each monomer consists of four base sequences that form specific bonds, and
only two of these can form bonds during insertion due to the monomer’s hairpin
design. This design gives each insertion site or monomer one of two signs such
that a monomer can only be inserted into a site with identical sign.

Formal model. An insertion system S is a 4-tuple S = (Σ,∆, Q,R). The
first element, Σ, is a set of symbols. Each symbol s ∈ Σ has a complement s∗.
We denote the complement of a symbol s as s, i.e. s = s∗ and s∗ = s.

The set ∆ is a set of monomer types, each assigned a concentration. Each
monomer is specified by a signed quadruple (a, b, c, d)+ or (a, b, c, d)−, where
a, b, c, d ∈ Σ∪{s∗ : s ∈ Σ}, and is positive or negative according to its sign. The
concentration of each monomer type is a real number between 0 and 1, and the
sum of call concentrations is at most 1.

The two symbols Q = (a, b) and R = (c, d) are special two-symbol monomers
that together form the initiator of S. It is required that either a = d or b = c.
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The size of S is |∆|, the number of monomer types in S.
A polymer is a sequence of monomers Qm1m2 . . .mnR where mi ∈ ∆ such

that for each pair of adjacent monomers (w, x, a, b)(c, d, y, z), either a = d or b =
c.1 The length of a polymer is the number of monomers it contains (including Q
and R). The gap between every pair of adjacent monomers (w, x, a, b)(c, d, y, z)
in a polymer is an insertion site, written (a, b)(c, d). Monomers can be in-
serted into an insertion site (a, b)(c, d) according to the following rules (seen in
Figure 1):

1. If a = d and b 6= c, then any monomer (b, e, f, c)+ can be inserted.

2. If a 6= d and b = c, then any monomer (e, a, d, f)− can be inserted.2

A positive or negative insertion site accepts only positive or negative monomers,
respectively. A dead insertion site accepts no monomers and has the form
(a, b)(b, a). An insertion sequence is a sequence of insertions, each specified
by the site and monomer types, such that each site is created by the previous
insertion.

A monomer is inserted after time t, where t is an exponential random vari-
able with rate equal to the concentration of the monomer type. The set of
all polymers constructed by an insertion system is recursively defined as any
polymer constructed by inserting a monomer into a polymer constructed by the
system, beginning with the initiator. Note that the insertion rules guarantee by
induction that for every insertion site (a, b)(c, d), either a = d or b = c.

We say that a polymer is terminal if no monomer can be inserted into any
insertion site in the polymer, and that an insertion system deterministically
constructs a polymer P (i.e. is deterministic) if every polymer constructed by
the system is either P or is non-terminal and has length less than that of P (i.e.
can become P ).

The string representation of a polymer is the sequence of symbols found
on the polymer from left to right, e.g. (a, b)(b∗, a, d, c)(c∗, a) has string repre-
sentation abb∗adcc∗a. We call the set of string representations of all terminal
polymers of an insertion system S the language of S, denoted L(S).

2.3 Expressive power

Intuitively, a system expresses another if the terminal polymers or strings cre-
ated by the system “look” like the terminal polymers or strings created by the
other system. In the simplest instance, a symbol-pair grammar G′ is said to
express a context-free grammar G if L(G′) = L(G). Similarly, a grammar G is
said to express an insertion system S if L(S) = L(G), i.e. if the set of string
representations of the terminal polymers of S equals the language of G.

1For readability, the signs of monomers belonging to a polymer are omitted.
2In [7], this rule is described as a monomer (d, f, e, a)− that is inserted into the polymer

as (e, a, d, f).
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An insertion system S = (Σ′,∆′, Q′, R′) is said to express a grammar G =
(Σ,Γ,∆, S) if there exists a function g : Σ′∪{s∗ : s ∈ Σ′} → Σ∪{ε} and integer
κ such that

1. {g(s′1)g(s′2) . . . g(s′n) : s′1s
′
2 . . . s

′
n ∈ L(S)} = L(G).

2. No κ consecutive symbols of a string in L(S) are mapped to ε by g.

The string representations of polymers have both complementary symbol
and length requirements that imply they are unable to capture even simple
languages, e.g. {aa . . . a}, despite intuition and claims to the contrary, e.g.
Theorem 3.2 of [7] that claims insertion systems express all regular languages.
Allowing g to output ε enables locally “cleaning up” string representations to
eliminate complementary pairs and other debris, while κ ensures there is a limit
on the amount that can be “swept under the rug” locally. A feasible stricter
definition could instead use a function g : ∆′ → Σ (monomer types of S to
terminal symbols of S); it is open whether the results presented here would
hold under such a definition.

3 The Expressive Power of Insertion Systems

Dabby and Chen proved that any insertion system has a context-free grammar
expressing it. They construct such a grammar by creating a non-terminal for
every possible insertion site and a production rule for every monomer type in-
sertable into the site. For instance, the insertion site (a, b)(c∗, a∗) and monomer
type (b∗, d∗, e, c)+ induce non-terminal symbol A(a,b)(c∗,a∗) and production rule
A(a,b)(c∗,a∗) → A(a,b)(b∗,d∗)A(e,c)(c∗,a∗). Here we give a reduction in the other
direction, resolving in the affirmative the question posed by Dabby and Chen of
whether context-free grammars and insertion systems have the same expressive
power:

Theorem 3.1. For every context-free grammar G, there exists an insertion
system that expresses G.

The primary difficulty in proving Theorem 3.1 lies in developing a way to
simulate the “complete” replacement that occurs during derivation with the
“incomplete” replacement that occurs at an insertion site during insertion. For
instance, bcAbc⇒ bcDDbc via a production rule A→ DD and A is completely
replaced by DD. On the other hand, inserting a monomer (b∗, d, d, c)+ into a
site (a, b)(c∗, a∗) yields the consecutive sites (a, b)(b∗, d) and (d, c)(c∗, a∗), with
(a, b)(c∗, a∗) only partially replaced – the left side of the first site and the right
side of second site together form the initial site. This behavior constrains how
replacement can be captured by insertion sites, and the κ parameter of the def-
inition of expression (Section 2.3) prevents eliminating the issue via additional
insertions.

We overcome this difficulty by proving Theorem 3.1 in two steps. First,
we prove that symbol-pair grammars, a constrained type of grammar with in-
complete replacements, are able to express context-free grammars (Lemma 3.2).
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Second, we prove symbol-pair grammars can be expressed by insertion systems
(Lemma 3.3).

Lemma 3.2. For every context-free grammar G, there exists a symbol-pair
grammar that expresses G.

Proof. Let G = (Σ,Γ,∆, S). Let n = |Γ|. Start by putting G into Chomsky
normal form and then relabeling the non-terminals of G to A0, A1, . . . , An−1,
with S = A0.

Now we define a symbol-pair grammar G′ = (Σ′,Γ′,∆′, S′) such that L(G′) =
L(G). Let Σ′ = Σ and Γ′ = {(a, d) : 0 ≤ a, d < n}; we treat the symbols in the
pairs of Γ′ as both symbols and integers.

For each production rule Ai → AjAk in ∆, add to ∆′ the set of rules
(a, d)→ (a, b)(c, d), with 0 ≤ a < n, d = (i− a) mod n, b = (j − a) mod n, and
c = (k − d) mod n. For each production rule Ai → t in ∆, add to ∆′ the set of
rules (a, d)→ t, with 0 ≤ a < n and d = (i− a) mod n. Let S′ = (0, 0).

We claim that a partial derivation P ′ of G′ exists if and only if the par-
tial derivation P obtained by replacing each non-terminal (a, d) in P ′ with
A(a+d) mod n is a partial derivation of G. By construction, a rule (a, d) →
(a, b)(c, d) is in ∆′ if and only if the rule A(a+d) mod n → A(a+b) mod nA(c+d) mod n

is in ∆. Similarly, a rule (a, d)→ t is in ∆′ if and only if the rule A(a+d) mod n →
r is in ∆. Also, S′ = (0, 0) and S = A(0+0) mod n. So the claim holds by induc-
tion.

Since the set of all partial derivations of P ′ are equal to those of P , the
completed derivations are as well and L(S ′) = L(S). So G′ expresses G.

Lemma 3.3. For every symbol-pair grammar G, there exists an insertion system
that expresses G.

Proof. Let G = (Σ,Γ,∆, S). The symbol-pair grammar G is expressed by an
insertion system S = (Σ′,∆′, Q′, R′) that we now define. Let Σ′ = {sa, sb :
(a, b) ∈ Γ} ∪ {u, x} ∪ Σ. Let ∆′ = ∆′1 ∪∆′2 ∪∆′3 ∪∆′4, where

∆′1 = {(sb, u∗, s∗b , x)− : (a, d)→ (a, b)(c, d) ∈ ∆}
∆′2 = {(s∗a, sb, s∗c , s∗d)+ : (a, d)→ (a, b)(c, d) ∈ ∆}
∆′3 = {(x, sc, u, sc)− : (a, d)→ (a, b)(c, d) ∈ ∆}
∆′4 = {(s∗a, t, x, s∗d)+ : (a, d)→ t ∈ ∆}

Let Q′ = (u, a) and R′ = (b, u∗), where S = (a, b).
For instance, the following insertions simulate applying the production rule

(0, 0) → (0, 1)(2, 0) to (0, 0), where � denotes the available insertion sites and
bold the inserted monomer:

(u, s0) � (s0, u
∗)

(u, s0) � (s∗0, s1, s∗2, s∗0) � (s0, u
∗)

(u, s0) � (s1, u∗, s∗1, x)(s
∗
0, s1, s

∗
2, s
∗
0) � (s0, u

∗)
(u, s0) � (s1, u

∗, s∗1, x)(s∗0, s1, s
∗
2, s
∗
0)(x, s2, u, s2) � (s0, u

∗)
(u, s0) � (s1, u

∗) . . . (u, s2) � (s0, u
∗)
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The subsequent application of production rules (0, 1) → p (2, 0) → q to the
string (0, 1)(2, 0) are simulated by the following insertions:

(u, s0) � (s1, u
∗) . . . (u, s2) � (s0, u

∗)
(u, s0)(s∗0, p, x, s

∗
1)(s1, u

∗) . . . (u, s2) � (s0, u
∗)

(u, s0)(s∗0, p, x, s
∗
1)(s1, u

∗) . . . (u, s2)(s∗2, q, x, s
∗
0)(s0, u

∗)
(u, s0)(s∗0, p, x, s

∗
1) . . . (s∗2, q, x, s

∗
0)(s0, u

∗)

Insertion types. First, it is proved that for any polymer constructed by S,
only three types of insertions of a monomer m2 between two adjacent monomers
m1m3 are possible:

1. m1 ∈ ∆′2, m2 ∈ ∆′3, m3 ∈ ∆′1.

2. m1 ∈ ∆′3, m2 ∈ ∆′2 ∪∆′4, m3 ∈ ∆′1.

3. m1 ∈ ∆′3, m2 ∈ ∆′1, m3 ∈ ∆′2.

Moreover, for every adjacent m1m3 pair satisfying one of these conditions, an
insertion of some type m2 from the specified set is possible.

Consider each possible combination of m1 ∈ ∆′i and m3 ∈ ∆′j , respectively,
with i, j ∈ {1, 2, 3, 4}. Observe that for an insertion to occur at insertion site
(a, b)(c, d), the symbols a, b, c, and d must each occur on some monomer. Then
since x∗ and t∗ do not appear on any monomers, any i, j with i ∈ {1, 4} or
j ∈ {3, 4} cannot occur. This leaves monomer pairs (∆′i,∆

′
j) with (i, j) ∈

{(2, 1), (2, 2), (3, 1), (3, 2)}.
Insertion sites between (∆′2,∆

′
1) pairs have the form (s∗c , s

∗
d)(sd, u

∗), so an
inserted monomer must have the form ( , sc, u, )− and is in ∆′3. An insertion
site (s∗c , s

∗
d)(sd, u

∗) implies a rule of the form (a, d)→ (a, b)(c, d) in ∆, so there
exists a monomer (x, sc, u, s

∗
c)
− ∈ ∆′3 that can be inserted.

Insertion sites between (∆′3,∆
′
2) pairs have the form (u, sc)(s

∗
c , sb), so an

inserted monomer must have the form ( , u∗, s∗b , )− and thus is in ∆′1. An
insertion site (u, sc)(s

∗
c , sb) implies a rule of the form (c, d) → (c, b)(e, d) in Γ,

so there exists a monomer (sb, u
∗, s∗b , x)− ∈ ∆′1 that can be inserted.

Insertion sites between (∆′2,∆
′
2) pairs can only occur once a monomer m2 ∈

∆′2 has been inserted between a pair of adjacent monomers m1m3 with either
m1 ∈ ∆′2 or m3 ∈ ∆′2, but not both. But we just proved that all such such
possible insertions only permit m2 ∈ ∆′3 ∪ ∆′1. Moreover, the initial insertion
site between Q′ and R′ has the form (u, sa)(sb, u

∗) of an insertion site with
m1 ∈ ∆′3 and m3 ∈ ∆′1. So no pair of adjacent monomers m1m3 are ever both
from ∆′2 and no insertion site between (∆′2,∆

′
2) pairs can ever exist.

Insertion sites between (∆′3,∆
′
1) pairs have the form (u, sc)(sb, u

∗), so an
inserted monomer must have the form (s∗c , , , s∗b)

+ and is in ∆′2 or ∆′4. We
prove by induction that for each such insertion site (u, sc)(sb, u

∗) that (c, b) ∈ Γ.
First, observe that this is true for the insertion site (u, sa)(sb, u

∗) between Q′

and R′, since (a, b) = S ∈ Γ. Next, suppose this is true for all insertion sites of
some polymer and a monomer m2 ∈ ∆′2 ∪ ∆′4 is about to be inserted into the
polymer between monomers from ∆′3 and ∆′1. Inserting a monomer m2 ∈ ∆′4
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only reduces the set of insertion sites between monomers in ∆′3 and ∆′1, and
the inductive hypothesis holds. Inserting a monomer m2 ∈ ∆′2 induces new
(∆′3,∆

′
2) and (∆′2,∆

′
1) insertion site pairs between m1m2 and m2m3. These

pairs must accept two monomers m4 ∈ ∆1 and m5 ∈ ∆3, inducing a sequence
of monomers m1m4m2m5m3 with adjacent pairs (∆′3,∆

′
1), (∆′1,∆

′
2), (∆′2,∆

′
3),

(∆′3,∆
′
1). Only the first and last pairs permit insertion and both are (∆′3,∆

′
1)

pairs.
Now consider the details of the three insertions yielding m1m4m2m5m3,

starting with m1m3. The initial insertion site m1m3 must have the form
(u, sa)(sd, u

∗). So the sequence of insertions has the following form, with the
last two insertions interchangeable:

(u, sa) � (sd, u
∗)

(u, s∗a) � (s∗a, sb, s∗c , s∗d) � (sd, u
∗)

(u, sa) � (sb, u∗, s∗b , x)(s
∗
a, sb, s

∗
c , s
∗
d) � (sd, u

∗)
(u, sa) � (sb, u

∗, s∗b , x)(s∗a, sb, s
∗
c , s
∗
d)(x, sc, u, sc) � (sd, u

∗)

Notice the two resulting (∆′3,∆
′
1) pair insertion sites (u, sa)(sb, u

∗) and
(u, sc)(sd, u

∗). Assume, by induction, that the monomer m2 must exist. So
there is a rule (a, d) → (a, b)(c, d) ∈ ∆ and (a, b), (c, d) ∈ Γ, fulfilling the in-
ductive hypothesis. So for every insertion site (u, sc)(sb, u

∗) between a (∆′3,∆
′
1)

pair there exists a non-terminal (c, b) ∈ Γ. So for every adjacent monomer pair
m1m3 with m1 ∈ ∆′3 and m3 ∈ ∆′1, there exists a monomer m2 ∈ ∆′2 ∪∆′4 that
can be inserted between m1 and m2.

Partial derivations and terminal polymers. Next, consider the se-
quence of insertion sites between (∆′3,∆

′
1) pairs in a polymer constructed by a

modified version of S lacking the monomers of ∆′4. We claim that a polymer with
a sequence (u, sa1)(sb1 , u

∗), (u, sa2)(sb2 , u
∗), . . . , (u, sai)(sbi , u

∗) of (∆′3,∆
′
1) in-

sertion sites is constructed if and only if there is a partial derivation (a1, b1)(a2, b2) . . . (ai, bi)
of a string in L(G). This follows directly from the previous proof by ob-
serving that two new adjacent (∆′3,∆

′
1) pair insertion sites (u, sa)(sb, u

∗) and
(u, sc)(sd, u

∗) can replace a (∆′3,∆
′
1) pair insertion site if and only if there exists

a rule (a, d)→ (a, b)(c, d) ∈ ∆.
Observe that any string in L(G) can be derived by first deriving a partial

derivation containing only non-terminals, then applying only rules of the form
(a, d) → t. Similarly, since the monomers of ∆′4 never form half of a valid
insertion site, any terminal polymer of S can be constructed by first generat-
ing a polymer containing only monomers in ∆′1 ∪∆′2 ∪∆′3, then only inserting
monomers from ∆′4. Also note that the types of insertions possible in S imply
that in any terminal polymer, any triple of adjacent monomers m1m2m3 with
m1 ∈ ∆′i, m2 ∈ ∆′j , andm3 ∈ ∆′k, that (i, j, k) ∈ {(4, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 1)},
with the first and last monomers of the polymer in ∆′4.

Expression. Define the following piecewise function g : Σ′∪{s∗ : s ∈ Σ′} →
Σ ∪ {ε} that maps to ε except for second symbols of monomers in ∆′4.

g(s) =

{
t, if t ∈ Σ
ε, otherwise

8



Observe that every string in L(S) has length 2+4 · (4n−3)+2 = 16n−8 for
some n ≥ 0. Also, for each string s′1s

′
2 . . . s

′
16n−8 ∈ L(S), g(s′1)g(s′2) . . . g(s′16n−8) =

ε3t1ε
16t2ε

16 . . . tnε
5. There is a terminal polymer with string representation in

L(S) yielding the sequence s1s2 . . . sn if and only if the polymer can be con-
structed by first generating a terminal polymer excluding ∆′4 monomers with a
sequence of (∆′3,∆

′
1) insertion pairs (a1, b1)(a2, b2) . . . (an, bn) followed by a se-

quence of insertions of monomers from ∆′4 with second symbols t1t2 . . . tn. Such
a generation is possible if and only if (a1, b1)(a2, b2) . . . (an, bn) is a partial deriva-
tion of a string in L(G) and (a1, b1) → t1, (a2, b2) → t2, . . . , (an, bn) → tn ∈ ∆.
So applying the function g to the string representations of the terminal poly-
mers of S gives L(G), i.e. L(S) = L(G). Moreover, the second symbol in every
fourth monomer in a terminal polymer of S maps to a symbol of Σ using g. So
S expresses G with the function g and κ = 16.

4 Positive Results for Polymer Growth

Dabby and Chen also consider the size and speed of constructing finite polymers.
They give a construction achieving the following result:

Theorem 4.1 ([7]). For any positive integer r, there exists an insertion sys-
tem with O(r2) monomer types that deterministically constructs a polymer of
length n = 2Θ(r) in O(log3 n) expected time. Moreover, the expected time has
an exponentially decaying tail probability.

Here we improve on this construction significantly in both polymer length
and expected running time. In Section 5, we prove that this construction is the
best possible with respect to both the polymer length and construction time.

Theorem 4.2. For any positive integer r, there exists an insertion system with
O(r2) monomer types that deterministically constructs a polymer of length n =

2Θ(r3) in O(log5/3(n)) expected time. Moreover, the expected time has an expo-
nentially decaying tail probability.

Proof. The approach is to implement a three variable counter where each vari-
able ranges over the values 0 to r, effectively carrying out the execution of a
triple for-loop. Insertion sites of the form (sa, sb)(sc, s

∗
a) are used to encode the

state of the counter, where a, b, and c are the variables of the outer, inner, and
middle loops, respectively. Three types of variable increments are carried out
by the counter:

Inner: If b < r, then (sa, sb)(sc, s
∗
a) (sa, sb+1)(sc, s

∗
a).

Middle: If b = r and c < r, then (sa, sb)(sc, s
∗
a) (sa, s0)(sc+1, s

∗
a).

Outer: If b = c = r and a < r, then (sa, sb)(sc, s
∗
a) (sa+1, s0)(s0, s

∗
a+1).

For r = 2, these increment types give an insertion sequence of the following
form from left to right:

9



(s0, s0) (s0, s
∗
0) (s1, s0) (s0, s

∗
1) (s2, s0) (s0, s

∗
2) 

inner×2

 

inner×2

 

inner×2

(s0, s2) (s0, s
∗
0) (s1, s2) (s0, s

∗
1) (s2, s2) (s0, s

∗
2) 

middle

 

middle

 

middle

(s0, s0) (s1, s
∗
0) (s1, s0) (s1, s

∗
1) (s2, s0) (s1, s

∗
2) 

inner×2

 

inner×2

 
inner×2

(s0, s2) (s1, s
∗
0) (s1, s2) (s1, s

∗
1) (s2, s2) (s1, s

∗
2) 

middle

 

middle

 
middle

(s0, s0) (s2, s
∗
0) (s1, s0) (s2, s

∗
1) (s2, s0) (s2, s

∗
2) 

inner×2

 

inner×2

 

inner×2

(s0, s2) (s2, s
∗
0) (s1, s2) (s2, s

∗
1) (s2, s2) (s2, s

∗
2) 

outer

 

outer

(s1, s0) (s0, s
∗
1) (s2, s0) (s0, s

∗
2)

A site is modified by an insertion sequence that yields a new usable site where
all other sites created by the insertion sequence are unusable. For instance, we
modify a site (sa, sb)(sc, s

∗
a) to become (sa, sd)(sc, s

∗
a), written (sa, sb)(sc, s

∗
a) 

(sa, sd)(sc, s
∗
a), by adding the monomer types (s∗b , x, u, s

∗
c)

+ and (x, u∗, sa, sd)−

to the system, where x is a special symbol whose complement is not found on
any monomer. These two monomer types cause the following insertion sequence,
using � to indicate the site being modified and the inserted monomer shown in
bold:

(sa, sb) � (sc, s
∗
a)

(sa, sb)(s
∗
b , x, u, s

∗
c) � (sc, s

∗
a)

(sa, sb)(s
∗
b , x, u, s

∗
c)(x,u

∗, sa, sd) � (sc, s
∗
a)

We call this simple modification, where a single symbol in the insertion site
is replaced with another symbol, a replacement. There are four types of replace-
ments, seen in Table 1, that can each be implemented by a pair of corresponding
monomers.

Replacement Monomers

(sa, sb)(sc, s
∗
a) (sa, sd)(sc, s

∗
a) (s∗b , x, u, s

∗
c)

+, (x, u∗, sa, sd)−

(sa, sb)(sc, s
∗
a) (sa, sb)(sd, s

∗
a) (s∗b , u, x, s

∗
c)

+, (sd, s
∗
a, u
∗, x)−

(sb, sa)(s∗a, sc) (sd, sa)(s∗a, sc) (x, s∗b , s
∗
c , u)−, (u∗, x, sd, sa)+

(sb, sa)(s∗a, sc) (sb, sa)(s∗a, sd) (u, s∗b , s
∗
c , x)−, (s∗a, sd, x, u

∗)+

Table 1: The four types of replacement steps and monomer pairs that implement
them. The symbol u can be any symbol, and x is a special symbol whose
complement does not appear on any monomer.

Each of the three increment types are implemented using a sequence of site
modifications. The resulting triple for-loop carries out a sequence of Θ(r3)

insertions to construct a Θ(r3)-length polymer. A 2Θ(r3)-length polymer is
achieved by simultaneously duplicating each site during each inner increment.
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In the remainder of the proof, we detail the implementation of each increment
type, starting with the simplest: middle increments.

Middle increment. A middle increment of a site (sa, sb)(sc, s
∗
a) occurs

when the site has the form (sa, sr)(sc, s
∗
a) with 0 ≤ c < r, performing the mod-

ification (sa, sr)(sc, s
∗
a)  (sa, s0)(sc+1, s

∗
a). We implement middle increments

using a sequence of three replacements:

(sa, sr)(sc, s
∗
a)

1
 (sa, sr)(sf1(c), s

∗
a)

2
 (sa, s0)(sf1(c), s

∗
a)

3
 (sa, s0)(sc+1, s

∗
a)

where fi(n) = n+2ir2. Use of the function f avoids unintended interactions
between monomers, since for any n1, n2 ∈ {0, 1, . . . , r}, fi(n1) 6= fj(n2) for all
i 6= j. Compiling this sequence of replacements into monomer types gives the
following monomers:

Step 1: (s∗r , sf2(c), x, s
∗
c)

+ and (sf1(c), s
∗
a, s
∗
f2(c), x)−.

Step 2: (s∗r , x, sf3(c), s
∗
f1(c))

+ and (x, s∗f3(c), sa, s0)−.

Step 3: (s∗0, sf4(c+1), x, s
∗
f1(c))

+ and (sc+1, s
∗
a, s
∗
f4(c+1), x)−.

This set of monomers results in the following sequence of insertions:

(sa, sr) � (sc, s
∗
a)

(sa, sr) � (s∗r, sf2(c), x, s
∗
c)(sc, s

∗
a)

(sa, sr) � (sf1(c), s
∗
a, s

∗
f2(c)

, x)(s∗r , sf2(c), x, s
∗
c)(sc, s

∗
a)

(sa, sr) � (sf1(c), s
∗
a)

(sa, sr)(s
∗
r, x, sf3(c), s

∗
f1(c)

) � (sf1(c), s
∗
a)

(sa, sr)(s
∗
r , x, sf3(c), s

∗
f1(c))(x, s

∗
f3(c)

, sa, s0) � (sf1(c), s
∗
a)

(sa, s0) � (sf1(c), s
∗
a)

(sa, s0) � (s∗0, sf4(c+1), x, s
∗
f1(c)

)(sf1(c), s
∗
a)

(sa, s0) � (sc+1, s
∗
a, s

∗
f4(c+1), x)(s

∗
0, sf4(c+1), x, s

∗
f1(c))(sf1(c), s

∗
a)

(sa, s0) � (sc+1, s
∗
a)

Since each inserted monomer has an instance of x, all other insertion sites
created are unusable. This is true of the insertions used for outer increments
and duplications as well.

Outer increment. An outer increment of the site (sa, sb)(sc, s
∗
a) occurs

when the site has the form (sa, sr)(sr, s
∗
a) with 0 ≤ a < r. We implement

this step using a four-step sequence of three normal replacements and a special
quadruple replacement (Step 2):

(sa, sr)(sr, s
∗
a)

1
 (sa, s

∗
f6(a))(sr, s

∗
a)

2
 (sa+1, sf7(r))(sf6(a), s

∗
a+1)

(sa+1, sf7(r))(sf6(a), s
∗
a+1)

3
 (sa+1, s0)(sf6(a), s

∗
a+1)

4
 (sa+1, s0)(s0, s

∗
a+1)

As with middle increments, we compile replacement steps 1, 2, and 4 into
monomers using Table 1:

11



Step 1: (s∗r , x, sf5(r), s
∗
r)

+ and (x, s∗f5(r), sa, s
∗
f6(a))

−.

Step 2: (sf6(a), s
∗
a+1, x, s

∗
r)

+ and (x, s∗a, sa+1, sf7(r))
−.

Step 3: (s∗f7(r), x, sf8(r), s
∗
f6(a))

+ and (x, s∗f8(r), sa+1, s0)−.

Step 4: (s∗0, sf9(a), x, s
∗
f6(a))

+ and (s0, s
∗
a+1, s

∗
f9(a), x)−.

Here is the sequence of insertions, using � to indicate the site being modified
and the inserted monomer shown in bold:

(sa, sr) � (sr, s
∗
a)

(sa, sr)(s
∗
r, x, sf5(r), s

∗
r) � (sr, s

∗
a)

(sa, sr)(s
∗
r , x, sf5(r), s

∗
r)(x, s

∗
f5(r)

, sa, s
∗
f6(a)

) � (sr, s
∗
a)

(sa, s
∗
f6(a)) � (sr, s

∗
a)

(sa, s
∗
f6(a)) � (sf6(a), s

∗
a+1, x, s

∗
r)(sr, s

∗
a)

(sa, s
∗
f6(a))(x, s

∗
a, sa+1, sf7(r)) � (sf6(a), s

∗
a+1, x, s

∗
r)(sr, s

∗
a)

(sa+1, sf7(r)) � (sf6(a), s
∗
a+1)

(sa+1, sf7(r))(s
∗
f7(r)

, x, sf8(r), s
∗
f6(a)

) � (sf6(a), s
∗
a+1)

(sa+1, sf7(r))(s
∗
f7(r), x, sf8(r), s

∗
f6(a))(x, s

∗
f8(r)

, sa+1, s0) � (sf6(a), s
∗
a+1)

(sa+1, s0) � (sf6(a), s
∗
a+1)

(sa+1, s0) � (s∗0, sf9(a), x, s
∗
f6(a)

)(sf6(a), s
∗
a+1)

(sa+1, s0) � (s0, s∗a+1, s
∗
f9(a)

, x)(s∗0, sf9(a), x, s
∗
f6(a))(sf6(a), s

∗
a+1)

(sa+1, s0) � (s0, s
∗
a+1)

Inner increment. The inner increment has two phases. The first phase
(Steps 1-2) performs duplication, modifying the initial site to a pair of sites:
(sa, sb)(sc, s

∗
a) (sa, sb)(sf10(c), s

∗
a) . . . (sa, sb+1)(sc, s

∗
a), yielding an incremented

version of the original site and one other site. The second phase (Steps 3-5) is
(sa, sb)(sf10(c), s

∗
a) (sa, sb+1)(sc, a

∗), transforming the second site into an in-
cremented version of the original site.

For the first phase, we use the three monomers:

Step 1: (s∗b , sf10(c), sf10(b+1), s
∗
c)

+.

Step 2: (sf11(c), s
∗
a, s
∗
f10(c), x)− and (x, s∗f10(b+1), sa, sb+1)−.

The resulting sequence of insertions is

(sa, sb) � (sc, s
∗
a)

(sa, sb) � (s∗b , sf10(c), sf10(b+1), s
∗
c) � (sc, s

∗
a)

(sa, sb) � (sf11(c), s
∗
a, s

∗
f10(c)

, x)(s∗b , sf10(c), sf10(b+1), s
∗
c) � (sc, s

∗
a)

(sa, sb) � (sf11(c), s
∗
a, s
∗
f10(c), x)(s∗b , sf10(c), sf10(b+1), s

∗
c)(x, s

∗
f10(b+1), sa, sb+1) � (sc, s

∗
a)

(sa, sb) � (sf11(c), s
∗
a) . . . (sa, sb+1) � (sc, s

∗
a)

12



The last two insertions occur independently and may happen in the op-
posite order of the sequence depicted here. In the second phase, the site
(sa, sb)(sf11(c), s

∗
a) is transformed into (sa, sb+1)(sc, s

∗
a) by a sequence of replace-

ment steps:

(sa, sb)(sf11(c), s
∗
a)

3
 (sa, sf12(b))(sf11(c), s

∗
a)

4
 (sa, sf12(b))(sc, s

∗
a)

5
 (sa, sb+1)(sc, s

∗
a)

As with previous sequences of replacement steps, we compile this sequence
into a set of monomers:

Step 3: (s∗b , x, sf13(b), s
∗
f11(c))

+ and (x, s∗f13(b), sa, sf12(b))
−.

Step 4: (s∗f12(b), sf14(c), x, s
∗
f11(c))

+ and (sc, s
∗
a, s
∗
f14(c), x)−.

Step 5: (s∗f12(b), x, sf15(b+1), s
∗
c)

+ and (x, s∗f15(b+1), sa, sb+1)−.

The resulting sequence of insertions is

(sa, sb) � (sf11(c), s
∗
a)

(sa, sb)(s
∗
b , x, sf13(b), s

∗
f11(c)

) � (sf11(c), s
∗
a)

(sa, sb)(s
∗
b , x, sf13(b), s

∗
f11(c))(x, s

∗
f13(b)

, sa, sf12(b)) � (sf11(c), s
∗
a)

(sa, sf12(b)) � (sf11(c), s
∗
a)

(sa, sf12(b)) � (s∗f12(b)
, sf14(c), x, s

∗
f11(c)

)(sf11(c), s
∗
a)

(sa, sf12(b)) � (sc, s∗a, s∗f14(c)
, x)(s∗f12(b), sf14(c), x, s

∗
f11(c))(sf11(c), s

∗
a)

(sa, sf12(b)) � (sc, s
∗
a)

(sa, sf12(b))(s
∗
f12(b)

, x, sf15(b+1), s
∗
c) � (sc, s

∗
a)

(sa, sf12(b))(s
∗
f12(b), x, sf15(b+1), s

∗
c)(x, s

∗
f15(b+1), sa, sb+1) � (sc, s

∗
a)

(sa, sb+1) � (sc, s
∗
a)

When combined, the two phases of duplication modify (sa, sb)(sc, s
∗
a) to

become (sa, sb+1)(sc, s
∗
a) . . . (sa, sb+1)(sc, s

∗
a), where all sites between the du-

plicated sites are unusable. Notice that although we need to duplicate Θ(r3)
distinct sites, only Θ(r2) monomers are used in the implementation since each
monomer either does not depend on a, e.g. (s∗b , x, sf13(b), s

∗
f11(c))

+, or does not

depend on c, e.g. (x, s∗f13(b), sa, sf12(b))
−.

Putting it together. The system starts with the intiator (s0, s0)(s0, s
∗
0).

Each increment of the counter occurs either through a middle increment, outer
increment, or a duplication. The total set of monomers is seen in Table 2. There
are at most (r + 1)2 monomer types in each family (each row of Table 2) and
O(r2) monomer types total.

The system is deterministic if no pair of monomers can be inserted into any
insertion site appearing during construction. It can be verified by an inspection
of Table 2 that any two positive monomers have distinct pairs of first and fourth
symbols, and any pair of negative monomers have distinct pairs of second and
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Step Inner monomer types (b < r)

1 (s∗b , sf10(c), sf10(b+1), s
∗
c)

+

2 (sf11(c), s
∗
a, s
∗
f10(c), x)− (x, s∗f10(b+1), sa, sb+1)−

3 (s∗b , x, sf13(b), s
∗
f11(c))

+ (x, s∗f13(b), sa, sf12(b))
−

4 (s∗f12(b), sf14(c), x, s
∗
f11(c))

+ (sc, s
∗
a, s
∗
f14(c), x)−

5 (s∗f12(b), x, sf15(b+1), s
∗
c)

+ (x, s∗f15(b+1), sa, sb+1)−

Step Middle monomer types (c < r)

1 (s∗r , sf2(c), x, s
∗
c)

+ (sf1(c), s
∗
a, s
∗
f2(c), x)−

2 (s∗r , x, sf3(c), s
∗
f1(c))

+ (x, s∗f3(c), sa, s0)−

3 (s∗0, sf4(c+1), x, s
∗
f1(c))

+ (sc+1, s
∗
a, s
∗
f4(c+1), x)−

Step Outer monomer types (a < r)

1 (s∗r , x, sf5(r), s
∗
r)

+ (x, s∗f5(r), sa, s
∗
f6(a))

−

2 (sf6(a), s
∗
a+1, x, s

∗
r)

+ (x, s∗a, sa+1, sf7(r))
−

3 (s∗f7(r), x, sf8(r), s
∗
f6(a))

+ (x, s∗f8(r), sa+1, s0)−

4 (s∗0, sf9(a), x, s
∗
f6(a))

+ (s0, s
∗
a+1, s

∗
f9(a), x)−

Table 2: The set of all monomer types used to deterministically construct a
monomer of size 2Θ(r3) using O(r2) monomer types.
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third symbols. So no two monomers can be inserted into the same site and thus
the system is deterministic.

The size Pi of a subpolymer with an initiator encoding some value i between
0 and (r+1)3−1 can be bounded by 2Pi+2+9 ≤ Pi ≤ 2Pi+1+9, since either i+1
or i+ 2 is an inner increment step and no step inserts more than 9 monomers.
Moreover, P(r+1)3−2 ≥ 1. So P0 + 2, the size of the terminal polymer, is 2Θ(r3).

Running time. Define the concentration of each monomer type to be
equal. There are 12r2 + 24r + 3 ≤ 39r2 monomer types, so each monomer
type has concentration at least 1/(39r2). The polymer is complete as soon as
every counter’s variables have reached the value a = b = c = r, i.e. every
site encoding a counter has been modified to become (sr, sr)(sr, s

∗
r) and the

monomer (s∗r , x, sf5(r), s
∗
r)

+ has been inserted.

There are fewer than 2r
3

such insertions, and each insertion requires at most
9 · (r + 1)3 ≤ 72r3 previous insertions to occur. So an upper bound on the
expected time Tr for each such insertion is described as a sum of 72r3 random
variables, each with expected time 39r2. The Chernoff bound for independent
exponential random variables [5] implies the following upper bound on Tr:

Prob[Tr > 39r2 · 72r3(1 + δ)] ≤ e−39·72r5δ2/(2+δ)

≤ e−r
5δ2/(2+δ)

≤ e−r
5δ2/(2δ) for all δ ≥ 2

≤ e−r
5δ/2

Let TSr be the total running time of the system. Then we can bound TSr
from above using the bound for Tr:

Prob[TSr > 39r2 · 72r3(1 + δ)] ≤ 2r
3

· e−r
5δ/2

≤ 2r
3

2−r
5δ/2

≤ 2r
3−r5δ/2

≤ 2r
5δ/4−r5δ/2 for all δ ≥ 4

≤ 2−r
5δ/4

So Prob[TSr > 39r2 · 72r3(1 + δ)] ≤ 2−r
5δ/4 for all δ ≥ 4. So the expected

value of TSr , the construction time, is O(r5) = O(log5/3(n)) with an exponen-
tially decaying tail probability.

5 Negative Results for Polymer Growth

Here we show that the construction in the previous section is the best possible.
We start by proving a helpful lemma on the number of insertion sites that accept
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at least one monomer type, which we call usable insertion sites.

Lemma 5.1. Any insertion system with k monomer types has at most 4k3/2

usable insertion sites.

Proof. Let S = (Σ,∆, Q,R) be an insertion system that deterministically con-
structs a polymer of length n. Let k = |∆| (the number of monomer types in
S), and relabel the symbols in Σ ∪ {s∗ : s ∈ Σ} as s1, s2, . . . , s4k, with some of
these symbols possibly unused. Define the sets Li = {(sa, sb, si, sc)± ∈ ∆} and
Ri = {(sa, si, sb, sc)± ∈ ∆}. We will consider the number of usable insertion
sites of S, and define Ui = {(si, sb)(sc, si) is usable}.

Since each monomer type can only be inserted into one site in each Ui,
|Ui| ≤ k, and since each usable site requires a distinct pair of right and left
monomer pairs, |Ui| ≤ |Li| · |Ri|. So |Ui| = min(k, |Li| · |Ri|). Since each

monomer type appears in exactly one Li and Ri,
∑4k
i=1 |Li| =

∑4k
i=1 |Ri| = k.

Consider maximizing
∑4k
i=1 |Ui| =

∑4k
i=1 min(k, |Li|·|Ri|) subject to

∑4k
i=1 |Li| =∑4k

i=1 |Ri| = k. Clearly |Li|·|Ri| ≤ max(|Li|, |Ri|)2, and if we define Bi = Li∪Ri,
|Li| · |Ri| ≤ |Bi|2. Then

∑4k
i=1 |Ui| ≤

∑4k
i=1 |Bi|2 with

∑4k
i=1 |Bi| = 2k and

|Bi| ≤
√
k. So

∑4k
i=1 |Ui| ≤ (

√
k)2 · 2

√
k and thus

∑4k
i=1 |Ui| ≤ 2k3/2. So the set

of all usable sites of the form (si, sb)(sc, si) has size 2k3/2.
A similar argument using the monomer sets L′i = {(sa, sb, sc, si)± ∈ ∆},

R′i = {(si, sa, sb, sc)± ∈ ∆}, and insertion site set U ′i = {(sb, si)(si, sc) is usable}
suffices to prove that the set of all usable sites of the form (sb, si)(si, sc) also
has size 2k3/2. Since these describe all usable sites, S has at most 4k3/2 total
usable sites.

Theorem 5.2. Any polymer deterministically constructed by an insertion sys-

tem with k monomer types has length 2O(k3/2).

Proof. Let S be a system with k monomer types that deterministically con-
structs a polymer. By Lemma 5.1, S has O(k3/2) usable sites. As observed
by Dabby and Chen, S can be expressed by a grammar GS with at most 4k3/2

non-terminal symbols, where each insertion site (a, b)(c, d) corresponds to a
non-terminal Aa,b,c,d, and each monomer type (e, f, g, h)± insertable into the
site corresponds to a rule Aa,b,c,d → Aa,b,e,fAg,h,c,d.

Let σ be a string in L(GS) of length n. So the (binary) derivation tree of
any derivation of σ contains a path of length at least log2 n. If log2 n > 4k3/2,
then this path must contain at least two occurrances of the same non-terminal
symbol. The portion of the path between these two occurrances can be pumped
to derive strings of arbitrary lengths, so L(GS) is infinite. So L(S) 6= L(GS) and
GS does not express S, a contradiction. Thus log2 n ≤ 4k3/2 for every string
in L(GS) and the length of the polymer deterministically constructed by S is

2O(k3/2).

Theorem 5.3. Deterministically constructing a polymer of length n takes Ω(log5/3(n))
expected time.
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Proof. The proof approach is to prove a lower bound on the expected time to
carry out an insertion sequence of length Ω(log n) involving (by Lemma 5.1),
Ω(log n) distinct monomer types. This is converted into a minimization prob-
lem for the expected time, whose optimal solutions shown algebraically to be
Ω(log5/3(n)).

A long insertion sequence. Since each insertion only increases the num-
ber of insertion sites by one, the system must carry out an insertion sequence
of length at least log2 n when constructing the polymer. No insertion site ap-
pears twice in this sequence, since otherwise the system (non-deterministically)
constructs polymers of arbitrary length.

Suppose, for the sake of contradiction, that an insertion site in the sequence
accepts monomer types m1 and m2, and inserts m1 into some polymer. Then
all polymers constructed by the system without m1 and, seperately, the sys-
tem without m1 are constructed by the system and each has polymers not
constructed by the other. So the system cannot deterministically construct a
polymer, a contradiction, and so no insertion site in the sequence accepts more
than one monomer type.

Thus the log2 n (or more) distinct insertion sites appearing in the insertion
sequence each accept a unique monomer type. The remainder of the proof
is develop a lower bound for the total expected time of the insertions in this
sequence.

An optimization problem. By linearity of expectation, the total expected
time of the insertions is equal to the sum of the expected time for each insertion.
Because each insertion site accepts a unique monomer type, the expected time
to carry out the insertion is equal to the reciprocal of concentration of this
type. Let k be the number of monomer types inserted into the sites in the
subsequence. Let c1, c2, . . . , ck be the sums of the concentrations of these types,
and x1, x2, . . . , xk be the number of times a monomer from each part is inserted
during the subsequence. Then the total expected time for all of the insertions
in the subsequence is

∑k
i=1 xi/ci. Moreover, these variables are subject to the

following constraints:

1.
∑k
i=1 xi ≥ log2 n/2 (total number of insertions is at least log2 n/2).

2.
∑k
i=1 ci ≤ 1 (total concentration is at most 1).

3. k ≥ log2/3(n)/4 (monomer types is at least log2/3(n)/4, Lemma 5.1).

Minimizing expected time. Consider minimizing the total expected time
subject to these constraints, starting with proving that xi/ci = xj/cj for all
1 ≤ i, j ≤ k. That is, that the ratio of the number of times a monomer type
is inserted in the subsequence to the type’s concentration is equal for all types.
Assume, without loss of generality, that xi/ci > xj/cj and ci, cj > 0. Then it
can be shown algebraically that the following two statements hold:

1. If cj ≥ ci, then for sufficiently small ε > 0, xi

ci
+

xj

cj
> xi

ci+ε
+

xj

cj−ε .
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2. If cj < ci, then for sufficiently small ε > 0, xi

ci
+

xj

cj
> xi

ci−ε +
xj

cj+ε .

Since the ratios of every pair of monomer types are equal,

ci
1
≤ ci∑k

i=1 ci
=

xi∑k
i=1 xi

≤ xi
log n

So log n ≤ xi/ci and k log n ≤
∑k
i=1 xi/ci. By Lemma 5.1, since the in-

sertion subsequence has length log(n)/2 and no repeated insertion sites, k ≥
log2/3(n)/4. So the total expected time is k log n ≥ log2/3(n)/8.
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