
ar
X

iv
:1

10
9.

34
01

v2
 [

cs
.D

S]
 3

0
O

ct
 2

01
2

Max-Throughput for (Conservative) k-of-n Testing

Lisa Hellerstein∗ Özgür Özkan† Linda Sellie‡

June 4, 2018

Abstract

We define a variant of k-of-n testing that we call conservative k-of-n testing. We present a polynomial-
time, combinatorial algorithm for the problem of maximizing throughput of conservative k-of-n testing,
in a parallel setting. This extends previous work of Kodialam and Condon et al., who presented com-
binatorial algorithms for parallel pipelined filter ordering, which is the special case where k = 1 (or
k = n) [4,5,8]. We also consider the problem of maximizing throughput for standard k-of-n testing, and
show how to obtain a polynomial-time algorithm based on the ellipsoid method using previous techniques.

1 Introduction

In standard k-of-n testing, there are n binary tests, that can be applied to an “item” x. We use xi to denote
the value of the ith test on x, and treat x as an element of {0, 1}n. With probability pi, xi = 1, and with
probability 1 − pi, xi = 0. The tests are independent, and we are given p1, . . . , pn. We need to determine
whether at least k of the n tests on x have a value of 0, by applying the tests sequentially to x. Once we
have enough information to determine whether this is the case, that is, once we have observed k tests with
value 0, or n− k + 1 tests with value 1, we do not need to perform further tests.1

We define conservative k-of-n testing the same way, except that we continue performing tests until we
have either observed k tests with value 0, or have performed all n tests. In particular, we do not stop testing
when we have observed n− k + 1 tests with value 1.

There are many applications where k-of-n testing problems arise, including quality testing, medical
diagnosis, and database query optimization. In quality testing, an item x manufactured by a factory is
tested for defects. If it has at least k defects, it is discarded. In medical diagnosis, the item x is a patient;
patients are diagnosed with a particular disease if they fail at least k out of n special medical tests. A
database query may ask for all tuples x satisfying at least k of n given predicates (typically k = 1 or k = n).

For k = 1, standard and conservative k-of-n testing are the same. For k > 1, the conservative variant is
relevant in a setting where, for items failing fewer than k tests, we need to know which tests they failed. For
example, in quality testing, we may want to know which tests were failed by items failing fewer than k tests
(i.e. those not discarded) in order to repair the associated defects.

Our focus is on the MaxThroughput problem for k-of-n testing. Here the objective is to maximize the
throughput of a system for k-of-n testing in a parallel setting where each test is performed by a separate
“processor”. In this problem, in addition to the probabilities pi, there is a rate limit ri associated with the
processor that performs test i, indicating that the processor can only perform tests on ri items per unit time.

∗Polytechnic Institute of NYU. This research is supported by the NSF Grant CCF-0917153. hstein@poly.edu
†Polytechnic Institute of NYU. This research supported by US Department of Education Grant P200A090157.

ozgurozkan@gmail.com
‡Polytechnic Institute of NYU. This research is supported by a CIFellows Project postdoc, sponsored by NSF and the CRA.

sellie@mac.com
1In an alternative definition of k-of-n testing, the task is to determine whether at least k of the n tests have a value of 1.

Symmetric results hold for this definition.

1

http://arxiv.org/abs/1109.3401v2

MaxThroughput problems are closely related to MinCost problems [6, 9]. In the MinCost problem
for k-of-n testing, in addition to the probabilities pi, there is a cost ci associated with performing the ith

test. The goal is to find a testing strategy (i.e. decision tree) that minimizes the expected cost of testing
an individual item. There are polynomial-time algorithms for solving the MinCost problem for standard
k-of-n testing [1, 3, 10, 11].

Kodialam was the first to study the MaxThroughput k-of-n testing problem, for the special case
where k = 1 [8]. He gave a O(n3 logn) algorithm for the problem. The algorithm is combinatorial, but its
correctness proof relies on polymatroid theory. Later, Condon et al. studied the problem, calling it “parallel
pipelined filter ordering”. They gave two O(n2) combinatorial algorithms, with direct correctness proofs [5].

Our Results. In this paper, we extend the previous work by giving a polynomial-time combinatorial
algorithm for the MaxThroughput problem for conservative k-of-n testing. Our algorithm can be im-
plemented to run in time O(n2), matching the running time of the algorithms of Condon et al. for 1-of-n
testing. More specifically, the running time is O(n(log n+ k) + o), where o varies depending on the output
representation used; the algorithm can be modified to produce different output representations. We discuss
output representations below.

The MaxThroughput problem for standard k-of-n testing appears to be fundamentally different from
its conservative variant. We leave as an open problem the task of developing a polynomial time combinatorial
algorithm for this problem. We show that previous techniques can be used to obtain a polynomial-time
algorithm based on the ellipsoid method. This approach could also be used to yield an algorithm, based on
the ellipsoid method, for the conservative variant.

Output Representation For the type of representation used by Condon et al. in achieving their
O(n2) bound, o = O(n2). A more explicit representation has size o = O(n3). We also describe a new, more
compact output representation for which o = O(n).

In giving running times, we follow Condon et al. and consider only the time taken by the algorithm
to produce the output representation. We note, however, that different output representations may incur
different post-processing costs when we want to use them them to implement the routings. For example, the
compressed representation has o = O(n), but it requires spending O(n) time in the worst case to extract any
permutation of megaprocessors stored by the megaprocessor representation. We can reduce this complexity
to O(log n) using persistent search trees [13]. In contrast, the explicit O(n3) representation gives direct
access to the permutations. In practice, the choice of the best output representation can vary depending on
the application and the setting.

For ease of presentation, in our pseudocode we use the megaprocessor representation, which is also used
by Condon et al. [5] in their Equalizing Algorithm.

2 Related Work

Deshpande and Hellerstein studied the MaxThroughput problem for k = 1, when there are precedence
constraints between tests [6]. They also showed a close relationship between the exact MinCost and
MaxThroughput problems for k-of-n testing, when k = 1. Their results can be generalized to apply to
testing of other functions.

Liu et al. [9] presented a generic, LP based method for converting an approximation algorithm for a
MinCost problem, into an approximation algorithm for a MaxThroughput problem. Their results are
not applicable to this paper, where we consider only exact algorithms.

Polynomial-time algorithms for the MinCost problem for standard k-of-n testing were given by Salloum,
Breuer, Ben-Dov, and Chang et al. [1, 3, 10–12].

The problem of how to best order a sequence of tests, in a sequential setting, has been studied in many
different contexts, and in many different models. See for example [9] and [5] for a discussion of related work
on the filter-ordering problem (i.e. the MinCost problem for k = 1) and its variants, and [14] for a general
survey of sequential testing of functions.

2

3 Problem Definitions

A k-of-n testing strategy for tests 1, . . . , n is a binary decision tree T that computes the k-of-n function,
f : {0, 1}n → {0, 1}, where f(x) = 1 if and only if x contains fewer than k 0’s. Each node of T is labeled by
a variable xi. The left child of a node labeled with xi is associated with xi = 0 (i.e., failing test i), and the
right child with xi = 1 (i.e., passing test i). Each x ∈ {0, 1}n corresponds to a root-to-leaf path in the usual
way, and the label at the leaf is f(x).

A k-of-n testing strategy T is conservative if, for each root-to-leaf path leading to a leaf labeled 1, the
path contains exactly n non-leaf nodes, each labeled with a distinct variable xi.

Given a permutation π of the n tests, we define T c
k (π) to be the conservative strategy described by the

following procedure: Perform the tests in order of permutation π until at least k 0’s have been observed, or
all tests have been performed, whichever comes first. Output 0 in the first case, and 1 in the second.

Similarly, we define T s
k (π) to be the following standard k-of-n testing strategy: Perform the tests in order

of permutation π until at least k 0’s have been observed, or until n− k+1 1’s have been observed, whichever
comes first. Output 0 in the first case, and 1 in the second.

Each test i has an associated probability pi, where 0 < pi < 1. Let Dp denote the product distribution
on {0, 1}n defined by the pi’s; that is, if x is drawn from Dp, then ∀i,Pr [xi = 1] = pi and the xi are
independent. We use x ∼ Dp to denote a random x drawn from Dp. In what follows, when we use an
expression of the form Pr [. . .] involving an item x, we mean the probability with respect to Dp.

3.1 The MinCost problem

In the MinCost problem for standard k-of-n testing, we are given n probabilities pi and costs ci > 0, for
i ∈ {1, . . . , n}, associated with the tests. The goal is to find a k-of-n testing strategy T that minimizes the
expected cost of applying T to a random item x ∼ Dp. The cost of applying a testing strategy T to an item
x is the sum of the costs of the tests along the root-to-leaf path for x in T .

In theMinCost problem for conservative k-of-n testing, the goal is the same, except that we are restricted
to finding a conservative testing strategy.

For example, consider the MinCost 2-of-3 problem with probabilities p1 = p2 = 1/2, p3 = 1/3 and costs
c1 = 1, c2 = c3 = 2. A standard testing strategy for this problem can be described procedurally as follows:
Given item x, begin by performing test 1. If x1 = 1, follow strategy T s

2 (π1), where π1 = (2, 3). Else if x1 = 0,
follow strategy T s

1 (π2), where π2 = (3, 2).
Under the above strategy, which can be shown to be optimal, evaluating x = (0, 0, 1) costs 5, and

evaluating x′ = (1, 1, 0) costs 3. The expected cost of applying this strategy to a random item x ∼ Dp is 3 5
6 .

Because theMinCost testing strategy may be a tree of size exponential in the number of tests, algorithms
for the MinCost problem may output a compact representation of the output strategy.

The Algorithm for the MinCost Problem. In the literature, versions of the MinCost problem for
1-of-n testing are studied under a variety of different names, including pipelined filter ordering, selection
ordering, and satisficing search (cf. [5]).

The following is a well-known, simple algorithm for solving the MinCost problem for standard 1-of-n
testing (see e.g. [7]): First, sort the tests in increasing order of the ratio ci/(1 − pi). Next, renumber the
tests, so that c1/(1− p1) < c2/(1− p2) < . . . < cn/(1− pn). Finally, output the sorted list π = (1, . . . , n) of
tests, which is a compact representation of the strategy T s

1 (π) (which is the same as T c
1 (π)).

The above algorithm can be applied to the MinCost problem for conservative k-of-n testing, simply by
treating π as a compact representation of the conservative strategy T c

k (π). In fact, that strategy is optimal
for conservative k-of-n testing: it has minimum expected cost among all conservative strategies. This follows
immediately from a lemma of Boros et al. [2]2.

2The lemma of Boros et al. actually proves that the corresponding decision tree is 0-optimal. A decision tree computing a
function f is 0-optimal if it minimizes the expected cost of testing an random x, given that f(x) = 0. In conservative k-of-n
testing, where f is the k-of-n function, the cost of testing x is the same for all x such that f(x) = 1. Thus the problem of finding
a min-cost conservative strategy for k-of-n testing is essentially equivalent to the problem of finding a 0-optimal decision tree

3

3.2 The MaxThroughput problem

The MaxThroughput problem for k-of-n testing is a natural generalization of the MaxThroughput

problem for 1-of-n testing, first studied by Kodialam [8]. We give basic definitions and motivation here.
For further information about this problem, including information relevant to its application in practical
settings, see [4, 5, 8].

In the MaxThroughput problem for k-of-n testing, as in the MinCost problem, we are given the
probabilities p1, . . . , pn associated with the tests. Instead of costs ci for the tests, we are given rate limits
ri > 0. The MaxThroughput problem arises in the following context. There is an (effectively infinite)
stream of items x that need to be tested. Every item x must be assigned a strategy T that will determine
which tests are performed on it. Different items may be assigned to different strategies. Each test is performed
by a separate “processor”, and the processors operate in parallel. (Imagine a factory testing setting.) Item
x is sent from processor to processor for testing, according to its strategy T . Each processor can only test
one item at a time. We view the problem of assigning items to strategies as a flow-routing problem.

Processor Oi performs test i. It has rate limit (capacity) ri, indicating that it can only process ri items
x per unit time.

The goal is to determine how many items should be assigned to each strategy T , per unit time, in order
to maximize the number of items that can be processed per unit time, the throughput of the system. The
solution must respect the rate limits of the processors, in that the expected number of items that need to
be tested by processor Oi per unit time must not exceed ri. We assume that tests behave according to
expectation: if m items are tested by processor Oi per unit time, then mpi of them will have the value 1,
and m(1 − pi) will have the value 0.

Let T denote the set of all k-of-n testing strategies and Tc denote the set of all conservative k-of-n testing
strategies. Formally, the MaxThroughput problem for standard k-of-n testing is defined by the linear
program below. The linear program defining the MaxThroughput problem for conservative k-of-n testing
is obtained by simply replacing the set of k-of-n testing strategies T by the set of conservative k-of-n testing
strategies Tc.

We refer to a feasible assignment to the variables zT in the LP below as a routing. We call constraints of
type (1) rate constraints. The value of F is the throughput of the routing. We define g(T, i) as the probability
that test i will be performed on an item x that is tested using strategy T , when x ∼ Dp. For i ∈ {1, . . . , n},
if
∑

T∈T g(T, i)zT = ri, we say that the routing saturates processor Oi.
We will refer to the MaxThroughput problems for standard and conservative k-of-n testing as the

“SMT(k) problem” and the “CMT(k) problem”, respectively.
As a simple example, consider the following CMT(k) problem (equivalently, SMT(k) problem) instance,

where k = 1 and n = 2: r1 = 1, r2 = 2, p1 = 1/2, p2 = 1/4. There are only two possible strategies,
T1(π1), where π1 = (1, 2), and T1(π2), where π2 = (2, 1). Since all flow assigned to T1(π1) is tested by
O1, g(T1(π1), 1) = 1; this flow continues on to O2 only if it passes test 1, which happens with probability
p1 = 1/2, so g(T1(π1), 2) = 1/2. Similarly, g(T1(π2), 2) = 1 while g(T1(π2), 1) = 1/4, since p2 = 1/4.
Consider the routing that assigns F1 = 4/7 units of flow to strategy T1(π1), and F2 = 12/7 units to strategy
T1(π2). Then the amount of flow reaching O1 is 4/7 ·g(T1(π1), 1)+12/7 ·g(T1(π2), 1) = 1, and the amount of
flow reaching O2 is 4/7 · g(T1(π1), 2)+12/7 · g(T1(π2), 2) = 2. Since r1 = 1 and r2 = 2, this routing saturates
both processors. By the results of Condon et al. [5], it is optimal.

MaxThroughput LP:

Given r1, . . . , rn > 0 and p1 . . . , pn ∈ (0, 1), find an assignment to the variables zT , for all T ∈ T , that
maximizes

F =
∑

T∈T

zT

subject to the constraints:

computing the k-of-n function. The lemma of Boros et al. also applies to a more general class of functions f that include the
k-of-n functions.

4

(1)
∑

T∈T g(T, i)zT ≤ ri for all i ∈ {1, . . . , n} and

(2) zT ≥ 0 for all T ∈ T

where g(T, i) denotes the probability that test i will be performed on an item x that is tested using strategy
T , when x ∼ Dp.

4 The Algorithm for the CMT(k) problem

We begin with some useful lemmas. The algorithms of Condon et al. [5] for maximizing throughput of 1-of-n
testing rely crucially on the fact that saturation of all processors implies optimality. We show that the same
holds for conservative k-of-n testing.

Lemma 1. Let R be a routing for an instance of the CMT(k) problem. If R saturates all processors, then it
is optimal.

Proof. Each processor Oi can test at most ri items per unit time. Thus at processor Oi, there are at most
ri(1− pi) tests performed that have the value 0. Let f denote the k-of-n function.

Suppose R is a routing achieving throughput F . Since F items enter the system per unit time, F items
must also leave the system per unit time. An item x such that f(x) = 0 does not leave the system until it
fails k tests. An item x such that f(x) = 1 does not leave the system until it has had all tests performed on
it. Thus, per unit time, in the entire system, the number of tests performed that have the value 0 must be
F ·M , where M = (k ·Pr [x has at least k 0’s] +

∑k−1
j=0 j ·Pr [x has exactly j 0’s]).

Since at most ri(1 − pi) tests with the value 0 can occur per unit time at processor Oi, F · M ≤
∑n

i=1 ri(1 − pi). Solving for F , this gives an upper bound of F ≤
∑n

i=1 ri(1 − pi)/M on the maximum
throughput. This bound is tight if all processors are saturated, and hence a routing saturating all processors
achieves the maximum throughput.

In the above proof, we rely on the fact that every routing with throughput F results in the same number
of 0 test values being generated in the system per unit time. Note that this is not the case for standard
testing, where the number of 0 test values generated can depend on the routing itself, and not just on the
throughput of that routing. We now give a simple counterexample showing that, in fact, saturation does not
imply optimality for the SMT(k) problem. Consider the MaxThroughput 2-of-3 testing instance where
p1 = 1/2, p2 = 1/4, p3 = 3/4, and r1 = 2, r2 = 1 3

4 , r3 = 1 3
4 .

The following is a 2-of-3 testing strategy: Given item x, peform test 1. If x1 = 1, follow strategy T s
1 (π1),

where π1 = (2, 3). Else if x1 = 0, follow strategy T s
1 (π2), where π1 = (3, 2).

Assigning 2 units of flow to this strategy saturates the processors: O1 is saturated since it receives the 2
units entering the system, O2 is saturated since it receives 1 = 2·p1 units fromO1 and 3/4 = 2·p3·(1−p1) items
from O1, O2. Similarly, O3 is saturated since it receives 1 = 2 ·(1−p1) units from O1 and 3/4 = 2 ·(1−p3) ·p1
units from O1O3.

We show that the routing is not optimal by giving a different routing with higher throughput. The
routing uses two strategies. The first is as follows: Given item x, perform test 1. If x1 = 1, follow strategy
T s
2 (π1), where π1 = (3, 2). Else, if x1 = 0 follow strategy T s

1 (π1), where π2 = (2, 3). The second strategy
used by the routing is T s

2 (π3), where π3 = (3, 2, 1). Assigning F = 1 1
2 units to the first strategy uses 1 1

2
units of the capacity of O1, 15/16 = 1 1

2 · (1 − p1) + 1 1
2 · p1 · (1 − p3) units of the capacity of O2, and

15/16 = 1 1
2 · (1− p1) + 1 1

2 · (1− p1) · p2 of the capacity of O3. This leaves O2 and O3 with residual capacity
more than 3/4 < 1 + 3/4 − 15/16, and O1 with residual capacity 1/2 = 2 − 1 1

2 . We can then assign 3/4
additional units to the second strategy without violating any of the rate constraints, for a routing with total
throughput 2 1

4 . (The resulting routing is not optimal, but illustrates our point.)
The routing produced by our algorithm for the CMT(k) problem uses only strategies of the form T c

k (π),
for some permutation π of the tests (in terms of the LP, this means zT > 0 only if T = T c

k (π) for some π).
We call such a routing a permutation routing. We say that it has a saturated suffix if for some subset Q of

5

the processors (1) R saturates all processors in Q, and (2) for every strategy T c
k (π) used by R, the processors

in Q (in some order) must form a suffix of π.
With this definition, and the above lemma, we are now able to generalize a key lemma of Condon et

al. to apply to conservative k-of-n testing. The proof is essentially the same as theirs; we present it below
for completeness.

Lemma 2. (Saturated Suffix Lemma) Let R be a permutation routing for an instance of the CMT(k) problem.
If R has a saturated suffix, then R is optimal.

Proof. If R saturates all processors, then the previous lemma guarantees its optimality. If not, let L denote
the set of processors not saturated by R. Imagine that we removed the rate constraints for each processor
in L. Let R′ be an optimal routing for the resulting problem. We may assume that on any input x, R′

performs the tests in L in some fixed arbitrary order (until and unless k tests with value 0 are obtained),
prior to performing any tests in Q. This assumption is without loss of generality, because if not, we could
modify R′ to first perform the tests in L without violating feasibility, since the processors in L have no rate
constraints, and performing their tests first can only decrease the load on the other processors. Thus the
throughput attained by R′ is TR ·

1
pL

, where TR denotes the maximum throughput achievable just with the
processors in Q, and pL is the probability that a random x will have the value 0 for fewer than k of the tests
in L (i.e. it will not be eliminated by the tests in L).

Routing R also routes flow first through L, and then through Q. Since it saturates the processors in Q,
by the previous lemma, it achieves maximum possible throughput with those processors. It follows that R
achieves the same throughput as R′, and hence is optimal for the modified instance where processors in L
have no rate constraints. Since removing constraints can only increase the maximum possible throughput,
it follows that R is also optimal for the original instance.

4.1 The Equal Rates Case

We begin by considering the CMT(k) problem in the special case where the rate limits ri are equal to
some constant value r for all processors. Condon et al. presented a closed-form solution for this case when
k = 1 [5]. The solution is a permutation routing that uses n strategies of the form T1(π). Each permutation
π is one of the n left cyclic shifts of the permutation (1, . . . , n). More specifically, for i ∈ {1, . . . , n}, let
πi = (i, i+1, . . . , n, 1, 2, . . . , i− 1), and let Ti = T c

1 (πi). The solution assigns r(1− pi−1)/(1− p1 · · · pn) units
of flow to each Ti (where p0 is defined to be pn). By simple algebra, Condon et al. verified that the solution
saturates all processors. Hence it is optimal.

The solution of Condon et al. is based on the fact that for the 1-of-n problem, assigning (1− pi−1) flow
to each Ti equalizes the load on the processors. Surprisingly, this same assignment equalizes the load for the
k-of-n problem as well. Using this fact, we obtain a closed-form solution to the CMT(k) problem.

Lemma 3. Consider an instance of the CMT(k) problem. For i ∈ {1, . . . , n}, let Ti be as defined above. Let

Xa,b =
∑b

ℓ=a(1− xℓ) and let α =
∑k

t=1 Pr [X1,n ≥ t]. Any routing that assigns a total of t units of flow to
the strategies Ti, such that the fraction of the total that is assigned to each Ti is (1− pi−1)/

∑n

j=1(1− pj−1),

will cause each processor’s residual capacity to be reduced by tα/
∑n

j=1(1 − pj) units. If all processors have
the same rate limit r, then the routing that assigns r(1 − pi−1)/α units of flow to strategy Ti saturates all
processors.

Proof. We begin by considering the routing in which (1−pi−1) units of flow are assigned to each Ti. Consider
the question of how much flow arrives per unit time at processor O1, under this routing. For simplicity,
assume now that k = 2. Thus as soon as an item has failed 2 tests, it is discarded. Let qi = (1 − pi).

Of the qn units assigned to strategy T1, all qn arrive at processor O1. Of the qn−1 units assigned to
strategy Tn, all qn−1 arrive at processor O1, since they can fail either 0 or 1 test (namely test n) beforehand.

Of the qn−2 units assigned to strategy Tn−1, the number reaching processor O1 is qn−2βn−1, where βn−1

is the probability that an item fails either 0 or 1 of tests n− 1 and n. Therefore, βn−1 = 1− qn−1qn.

6

More generally, for i ∈ {1, . . . , n}, of the qi−1 units assigned to Ti, the number reaching processor O1

is qi−1βi, where βi is the probability that a random item fails a total of 0 or 1 of tests i, i + 1, . . . , n.
Thus, βi = Pr [Xi,n = 0] + Pr [Xi,n = 1]. It follows that the total flow arriving at processor O1 is
∑n

i=1(qi−1Pr [Xi,n = 0]) +
∑n

i=1(qi−1Pr [Xi,n = 1]).
Consider the second summation,

∑n

i=1(qi−1Pr [Xi,n = 1]). We claim that this summation is equal to
Pr [X1,n ≥ 2], which is the probability that x has at least two xi’s that are 0. To see this, consider a process
where we observe the value of xn, then the value of xn−1 and so on down towards x1, stopping if and when we
have observed exactly two 0’s. The probability that we will stop at some point, having observed two 0’s, is
clearly equal to the probability that x has at least two xi’s that are set to 0. The condition

∑n

j=i(1−xj) = 1
is satisfied when exactly 1 of xn, xn−1, . . . , xi has the value 0. Thus qi−1Pr [Xi,n = 1] is the probability that
we observe exactly one 0 in xn, . . . , xi, and then we observe a second 0 at xi−1. That is, it is the probability
that we stop after observing xi−1. Since the second summation takes the sum of qi−1Pr [Xi,n = 1] over
all i between 1 and n, the summation is precisely equal to the probability of stopping at some point in the
above process, having seen two 0’s. This proves the claim.

An analogous argument shows that the first summation,
∑n

i=1(qi−1Pr [Xi,n = 0]), is equal toPr [X1,n ≥ 1].
It follows that the amount of flow reaching processor O1 is Pr [X1,n ≥ 1]+Pr [X1,n ≥ 2]. This expres-

sion is symmetric in the processor numbers, so the amount of flow reaching every Oi is equal to this value.
Thus the above routing causes all processors to receive the same amount of flow.

Scaling each assignment in the above routing by a constant factor scales the amount of flow reaching
each processor by the same factor. In the above routing, the fraction of total flow assigned to each Ti is
qi−1/

∑n

j=1 qj , so each unit of input flow sent along the Ti results in each processor receiving (Pr [X1,n ≥ 1]+

Pr [X1,n ≥ 2])/
∑n

j=1 qj units. Thus any routing that assigns a total of t units of flow to the strate-

gies Ti, such that the fraction assigned to each Ti is qi−1/
∑n

j=1 qj , will cause each processor to receive

t(Pr [X1,n ≥ 1] +Pr [X1,n ≥ 2])/
∑n

j=1 qj units.
Thus if all processors have the same rate limit r, the routing that assigns rqi−1/(Pr [X1,n ≥ 1] +

Pr [X1,n ≥ 2]) units to each strategy Ti will saturate all processors.
The above argument for k = 2 can easily be extended to arbitrary k. The corresponding proportional

distribution of flow for arbitrary k assigns a qi−1/
∑n

j=1 qj fraction of the total flow to strategy Ti, and each

unit of input flow sent along the Ti according to these proportions results in α/
∑n

j=1 qj units reaching each
processor. The saturating routing for arbitrary k, when all processors have rate limit r, assigns rqi−1/α
units of flow to strategy Ti.

4.2 The Equalizing Algorithm of Condon et al.

Our algorithm for the CMT(k) problem is an adaptation of one of the two MaxThroughput algorithms,
for the special case where k = 1, given by Condon et al. [5]. We begin by reviewing that algorithm, which
we will call the Equalizing Algorithm. Note that when k = 1, it only makes sense to consider strategies that
are permutation routings, since an item can be discarded as soon as it fails a single test.

Consider the CMT(k) problem for k = 1. View the problem as one of constructing a flow of items
through the processors. The capacity of each processor is its rate limit, and the amount of flow sent along
a permutation π (i.e., assigned to strategy T c

1 (π)) is equal to the number of items sent along that path per
unit time. Sort the tests by their rate limits, and re-number them so that rn ≥ rn−1 ≥ . . . ≥ r1. Assume for
the moment that all rate limits ri are distinct.

The Equalizing Algorithm constructs a flow incrementally as follows. Imagine pushing flow along the
single permutation (n, . . . , 1). Suppose we continuously increase the amount of flow being pushed, beginning
from zero, while monitoring the “residual capacity” of each processor, i.e., the difference between its rate
limit and the amount of flow it is already receiving. (For the moment, do not worry about exceeding the
rate limit of a processor.)

Consider two adjacent processors, i and i− 1. As we increase the amount of flow, the residual capacity
of each decreases continuously. Initially, at zero flow, the residual capacity of i is greater than the residual
capacity of i−1. It follows by continuity that the residual capacity of i cannot become less than the residual

7

capacity of i − 1 without the two residual capacities first becoming equal. We now impose the following
stopping condition: increase the flow sent along permutation (n, . . . , 1) until either (1) some processor
becomes saturated, or (2) the residual capacities of at least two of the processors become equal. The second
stopping condition ensures that when the flow increase is halted, permutation (n, . . . , 1) still orders the
processors in decreasing order of their residual capacities. (Algorithmically, we do not increase the flow
continuously, but instead directly calculate the amount of flow which triggers the stopping condition.)

If stopping condition (1) above holds when the flow increase is stopped, then the routing can be shown
to have a saturated suffix, and hence it is optimal.

If stopping condition (2) holds, we keep the current flow, and then augment it by solving a new Max-

Throughput problem in which we set the rate limits of the processors to be equal to their residual capacities
under the current flow (their pi’s remain the same).

We solve the new MaxThroughput problem as follows. We group the processors into equivalence
classes according to their rate limits. We then replace each equivalence class with a single megaprocessor,
with a rate limit equal to the residual capacities of the constituent processors, and probability pi equal to the
product of their probabilities. We then essentially apply the procedure for the case of distinct rate limits to
the megaprocessors. gen The one twist is the way in which we translate flow sent through a megaprocessor
into flow sent through the constituent processors of that megaprocessor; we route the flow through the
constituent processors so as to equalize their load. We accomplish this by dividing the flow proportionally
between the cyclic shifts of a permutation of the processors, using the proportional allocation of Lemma 3.
We thus ensure that the processors in each equivalence class continue to have equal residual capacity. Note
that, under this scheme, the residual capacity of a processor in a megaprocessor may decrease more slowly
than it would if all flow were sent directly to that processor (because some flow may first be filtered through
other processors in the megaprocessor) and this needs to be taken into account in determining when the
stopping condition is reached.

We illustrate the Equalizing Algorithm on the following CMT(k) problem where k = 1 and n = 3 (since
k = 1 this is also an SMT(k) problem, where k = 1 and n = 3). Suppose we have 3 processors, O1, O2, O3

with rate limits r1 = 3, r2 = 14, and r3 = 18, and probabilities p1 = 1/8, p2 = 1/2 and p3 = 1/3. When flow
is sent along O3, O2, O1, after 6 units of flow is sent we achieve a stopping condition with O3 and O2 having
the same residual capacity of 12; the residual capacity of O1 is 2.

Our algorithm then performs a recursive call where the processors O3 and O2 are combined into a
megaprocessor O2,3 with associated probability p2,3 = 1/2 · 1/3 = 1/6. Within megaprocessor O2,3, flow will
be routed by sending 3/7 of it along permuatation O3, O2, and the remaining 4/7 along permutation O2, O3;
we observe that for one unit of flow sent through O2,3 the amount of capacity used by each processor is
3/7+2/7 = 5/7. Using this internal routing for megaprocessor O2,3, the algorithm sends flow along O2,3, O1;
after 12 units of flow, we reach a stopping condition when O1 is saturated. Even though O2 and O3 are not
saturated (they have 12− 12 · 5/7 residual capacity left) the flows constructed as described provide optimal
throughput.

The Equalizing Algorithm, implemented in a straightforward way, outputs a representation of the result-
ing routing that consists of a sequence of pairs of the form ((Em, . . . , E1), t̂), one for each recursive call. We
call this a megaprocessor representation. The list (Em, . . . , E1) represents the permutation of megaprocessors
Ei along which flow is sent during that call. Each Ei is given by the subset of original processors contained
in it, and t̂ > 0 is a real number that denotes the amount of flow to be sent along (Em, . . . , E1). Of course,
flow coming into each megaprocessor should be routed so as to equalize the load on each of its constituent
processors. The size of this representation is O(n2). Interpreted in a straightforward way, the representa-
tion corresponds to a routing that sends flow along an exponential number of different permutations of the
original processors.

Condon et al. describe a combinatorial method to reduce the number of such permutations used to be
O(n2) [5]. After such a reduction, the output can be represented explicitly as a set of O(n2) pairs of the form
(π, t), one for each permutation π that is used, indicating that t > 0 amount of flow should be sent along
permutation π. We call such a representation a permutation representation. The size of this permutataion
representation, given explicitly, is O(n3). (Hellerstein and Deshpande describe a linear algebraic method for

8

reducing the number of permutations to be at most n, yielding an explicit reprsentation of size O(n2), but
at the cost of higher time complexity [6].)

We also describe a variant of the megaprocessor representation called the compressed representation,
where the algorithm outputs only the first permutation explicitly, and the outputs the sequence of merges,
yielding a representation of size O(n).

4.3 An Equalizing Algorithm for the CMT(k) problem

In this section, we prove the following Theorem by presenting an algorithm. We will give an outline of the
algorithm as well as its pseudocode. We will then describe how to achieve the running time stated in the
Theorem.

Theorem 4. There is a combinatorial algorithm for solving the CMT(k) problem that can be implemented to
run in time O(n(log n+k)+o), where the value of o depends on the output representation. For the megapro-
cessor representation, o = O(n2), for the permutation representation, o = O(n3), and for the compressed
representation, o = O(n).

Algorithm Outline We extend the Equalizing Algorithm of Condon et al., to apply to arbitrary values of
k. Again, we will push flow along the permutation of the processors (n, . . . , 1) (where rn ≥ rn−1 ≥ . . . ≥ r1)
until one of the two stopping conditions is reached: (1) a processor is saturated, or (2) two processors have
equal residual capacity. Here, however, we do not discard an item until it has failed k tests, rather than
discarding it as soon as it fails one test. To reflect this, we divide the flow into k different types, numbered
0 through k − 1, depending on how many tests its component items have failed. Flow entering the system
is all of type 0.

When m units of flow of type τ enters a processor Oi, pim units pass test i, and (1 − pi)m units fail it.
So, if τ < k− 1, then of the m incoming units of type τ , (1− pi)m units will exit processor Oi as type τ +1
flow, and pim will exit as type τ flow. Both types will be passed on to the next processor in the permutation,
if any. If τ = k − 1, then pim units will exit as type τ flow and be passed on to the next processor, and the
remaining (1− pi)m will be discarded.

Algorithmically, we need to calculate the minimum amount of flow that triggers a stopping condition.
This computation is only slightly more complicated for general k than it is for k = 1. The key is to compute,
for each processor Oi, what fraction of the flow that is pushed into the permutation will actually reach
processor Oi (i.e. we need to compute the quantity g(T c

k(π), i) in the LP.)
If stopping condition (2) holds, we keep the current flow, and augment it by solving a new MaxThrough-

put problem in which we set the rate limits of the processors to be equal to their residual capacities under
the current flow (their pi’s remain the same). To solve the new MaxThroughput problem, we again group
the processors into equivalence classes according to their rate limits, and replace each equivalence class with
a single megaprocessor, with a rate limit equal to the rate limit of the constituent processors, and probability
pi equal to the product of their probabilities.

We then want to apply the procedure for the case of distinct rate limits to the megaprocessors. To do
this, we need to translate flow sent into a megaprocessor into flow sent through the constituent processors
of that megaprocessor, so as to equalize their load. We do this translation separately for each type of flow
entering the megaprocessor. Note that flow of type τ must be discarded as soon as it fails an additional
k− τ tests. We therefore send flow of type τ into the constituent processors of the megaprocessor according
to the proportional allocation of Lemma 3 for (k − τ)-of-n′ testing, where n′ is the number of consituent
processors of the megaprocessor. We also need to compute how much flow of each type ends up leaving the
megaprocessor (some of the incoming flow of type τ entering the megaprocessor may, for example, become
outgoing flow of type τ + n′), and how much its residual capacity is reduced by the incoming flow.

We give a more detailed description of the necessary computations in the pseudocode, which we discuss
next. However, the pseudocode does not contain all the implementation details, and is not optimized for
efficiency. It also gives the output using a megaprocessor representation. Following presentation of the

9

pseudocode, we discuss how to implement it to achieve the running times stated in Theorem 4 for the
different output representations.

Pseudocode The main part of the pseudocode is presented below as Algorithm 1. The following informa-
tion will be helpful in understanding it.

At each stage of the algorithm, the processors are partitioned into equivalence classes. The proces-
sors in each equivalence class constitute a megaprocessor. Each equivalence class consists of a contiguous
subsequence of processors in the sorted sequence On, . . . , O2, O1. We usem to denote the number of megapro-
cessors (equivalence classes). The processors in each equivalence class all have the same residual capacity.
In Step 1 of the algorithm, we partition the processors into equivalence classes according to their rate limits;
two processors are in the same equivalence class if and only if they have the same rate limit. We use Ei

to denote both the ith equivalence class and the ith megaprocessor. In some our examples, we denote a
megaprocessor containing processors {Oi, Oi+1, . . . , Oj} by Oi,i+1,...,j .

In Step 2, we compute the amount of flow t̂ that triggers one of the two stopping conditions. In order
to do this, we need to know the rate at which the residual capacity of each processor within an equivalence
class Ei will be reduced when flow is sent down the megaprocessors in the order Em, . . . , E1. We use ξ(i) to
denote the amount by which the residual capacity of the processors in Ei is reduced when one unit of flow
is sent in that order.

The equation for ξ(i) follows from the preceding lemmas and discussion. We use fj(z) to denote the
amount of flow of type j that would reach processor z, if one unit of flow were sent down the permutation
On, . . . , O1, where these are the original processors, not the megaprocessors. This is precisely equal to the
probability that random item x has exactly j 0’s in tests n, . . . , z + 1. We compute the value of fj(z) for
all z and j in a separate initialization routine, given below. The key here is noticing that if you send one
unit of flow down the megaprocessors Em, . . . , E1, the amount of flow reaching megaprocessor Ei is precisely
fj(c(i)), where c(i) is the highest index of a processor in Ei; the amount of flow reaching the megaprocessor
depends only on how many 0’s have been encountered in test n, . . . , c(i) + 1, and not on the order used to
perform those tests.

The quantity t̂1 is the amount of flow sent down Em, . . . , E1 that would cause saturation of the processors
in E1. The quantity t̂2 is the minimum amount of flow sent down Em, . . . , E1 that would cause the residual
capacities of two megaprocessors to equalize. The stopping condition holds at the minimum of these two
quantities.

MaxThroughput Initialization

fj(z)← 0, ∀z ∈ {1, . . . , n}, ∀j ∈ {0, . . . , k − 1};
f0(1)← 1;
for (z ← 2; z ≤ n; z ← z + 1) do
for (j ← 0; j ≤ k − 1; j ← j + 1) do
fj(z)← qz−1fj−1(z − 1) + pz−1fj(z − 1);

return SolveMaxThroughput(p1, . . . , pn,r1, . . . , rn);

Example We illustrate our algorithm for the CMT(k) problem on the following example. Let k = 2 and
n = 4. Suppose the probabilities are p1 = p2 = p3 = 1/2, p4 = 3/4, and the rate limits are r1 = r2 = 12,
r3 = r4 = 10.

Our algorithm first combines processors with same rate limits into megaprocessors; thus we combine O1

and O2 into megaprocessor O1,2 with rate limit 12. It routes flow through this megaprocessor by sending a
1/2 fraction of the flow in the order O1, O2, and sending the other 1/2 fraction in the order O2, O1. Similarly,
O3 and O4 have the same rate limit, so they are combined into a megaprocessor O3,4 with rate limit 10,
where a 1/3 fraction of the flow is sent along O3, O4, and the other 2/3 fraction is sent along O4, O3.

Our megaprocessor O1,2 has a higher rate limit than O3,4, consequently our algorithm routes flow in the
order O1,2, O3,4. We now show that the stopping condition is reached after sending 6 units of flow along this

10

Algorithm 1 SolveMaxThroughput(p1, . . . , pn,r1, . . . , rn)

Input: n selectivities p1, . . . , pn; n rate limits r1 ≤ . . . ≤ rn
Output: representation of solution to the MaxThroughput problem for the given input parameters

1. // form the equivalence classes Em, . . . , E1;
Let 1 ≤ ℓ1 < . . . < ℓm+1 = n+ 1 such that, for all y, y′ ∈ [ℓi−1, ℓi) and z, z′ ∈ [ℓi, ℓi+1), where i ∈ [2, n],

we have ry = ry′ < rz = rz′

Then, for i ∈ [1,m], Ei = {Oz | ℓi ≤ z < ℓi+1}, and Ri ← rℓi .

2. // calculate t̂ using the following steps;
for (i← 1; i ≤ m; i← i+ 1) do
c(i)← highest index of a processor in Ei;
b(i)← lowest index of a processor in Ei;

Recall that Xa,b =
∑b

ℓ=a(1− xℓ)

ξ(i)←
∑k−1

j=0 fj(c(i)) ·
(

∑k−j

v=1 Pr
[

Xb(i),c(i) ≥ v
]

)

/
∑c(i)

t=b(i)(1− pt);

t̂1 ←
R1

ξ(1) ;

t̂2 ← mini∈[2,...,m]

(

Ri−Ri−1

ξ(i)−ξ(i−1)

)

;

t̂← min(t̂1, t̂2);

3. // calculate the residual capacity for each processor Oℓ;
for (ℓ← 1; ℓ ≤ n; ℓ← ℓ+ 1) do
j ← index of the equivalence class Ej containing processor Oℓ;
r′ℓ ← rℓ − ξ(j)t̂;

4. // store new flow and recurse if needed
K ← ((Em, . . . , E1), t̂);
if (r′1 == 0) then // residual capacity of equivalence class E1 is 0
return K;

else

K ′ ← SolveMaxThroughput(p1, . . . , pn,r
′
1, . . . , r

′
n);

return K ◦K ′; // i.e. the concatenation of K and K ′

11

route.
The 6 units of flow decreased the capacity of processors O1, and O2 in O1,2 by 6, since k = 2 and thus

flow cannot be discarded before it has been subject to at least two tests.
We now calculate the reduction of capacity in O3 and O4 caused by the 6 units of flow sent through

O1,2, O3,4. Flow leaving O1,2 has a 1/4 probability of having failed both processors in O1,2 and exiting the
system; for flow that stays in the system to be tested by O3,4, it has a 1/4 chance of having passed the test
of both processors; it has a 1/2 chance of having passed the test of one processor and having failed the test
of the other processor. Thus, of the 6 units of flow sent into O1,2, 1/4 · 6 = 3/2 units are passed on to O3,4

as type 0 flow, and 1/2 · 6 = 3 units of flow are passed on to O3,4 as type 1 flow.
Of the 3/2 units of type 0 flow, entering O3,4, all of it must undergo both test 3 and test 4, since flow is

not discarded until it has failed two tests. Thus that flow reduces the capacity of both O3 and O4 by 3/2
units.

Of the 3 units of type 1 flow entering O3,4, 1/3 is tested first by O3, and then by O4 only if it passes test
3 (which it does with probability 1/2). The remaining 2/3 is tested first by O4, and then by O3 only if it
passes test 4 (which is does with probability 3/4). Thus of the 3 units of type 1 flow, 3 ·(1/3+2/3 ·3/4) = 5/2
units reach O3, and 3 · (2/3+ 1/3 · 1/2) = 5/2 units reach O4. Hence the 3+ 3/2 total units of flow entering
O3,4 reduce the capacities of both O3 and O4 by 5/2 + 3/2 = 4.

We have thus shown that the 6 units of flow sent first to O1,2 and then to O3,4, cause the residual
capacities of O1 and O2 to be 12− 6 = 6, and the residual capacities of O3 and O4 to be 10− 4 = 6. Thus
the residual capacities of all processors equalize, as claimed.

At this point our algorithm constructs a new megaprocessor, by combining the processors in O1,2 with
the processors in O3,4. All the processors in the resulting megaprocessor, O1,2,3,4, have a residual capacity
of 6. Using the proportional allocation of Lemma 3 to route flow sent into O1,2,3,4, we assign 1/7 of the
flow into O1,2,3,4 to permutation π1 = {1, 2, 3, 4}, 2/7 to permutation π2 = {2, 3, 4, 1}, 2/7 to permutation
π3 = {3, 4, 1, 2}, and 2/7 to permutation π4 = {4, 1, 2, 3}. By sending a total of 7 units of flow through
O1,2,3,4 according to this allocation, we send 1, 2, 2, and 2 units respectively along the four permutations,
achieving the saturating routing given in Lemma 3.

Our final routing achieves a throughput of 6 + 7 = 13 which is optimal.

Achieving the running time. Let us first consider the running time of the algorithm excluding the
computation of ξ(i) and the time it takes to construct the output representation K. It is easy to see that the
algorithm makes at most n− 1 recursive calls, because megaprocessors can only be merged a total of n− 1
times. Excluding the computation of ξ(i), the time spent in each recursive call is clearly O(n). However, we
can implement the algorithm so as to ensure this time is O(log n), as follows. First, the maintenance of the
equivalence classes can be handled in O(1) time per merge by simply taking a union of the sets of adjacent
processors in each megaprocessor, instead of recomputing these sets from scratch.

Second, we do not need to compute the residual capacity of each megaprocessor at every recursive call. In
fact, for all megaprocessors except the first one, we only need enough information about its residual capacity

to allow us to compute t̂2 ← mini∈[2,...,m]

(

Ri−Ri−1

ξ(i)−ξ(i−1)

)

. This suggests that for each megaprocessor i where

i ≥ 2, we keep the quantity Qi, where Qi =
(

Ri−Ri−1

ξ(i)−ξ(i−1)

)

instead of Ri. The megaprocessors can be stored

in a priority queue, according to their Qi values.
Consider any i where Ei or Ei−1 are not involved in a merge. Then

(Ri − ξ(i)t̂)− (Ri−1 − ξ(i − 1)t̂)

ξ(i)− ξ(i − 1)
=

Ri −Ri−1

ξ(i)− ξ(i − 1)
− t̂.

Thus following the merge, Qi is decreased by the same amount t̂ for all such i. Therefore, instead of updating
the Qi for these i in the priority queue, we can keep their current values, and maintain the sum of the t̂
values computed so far; this can be subtracted from Qi if its updated value is needed. We do need to
remove the two merged megaprocessors from the priority queue, insert the information about the resulting
new megaprocessor, and update the Qi values for megaprocessors i such that Ei or Ei−1 were involved in

12

a merge. Note that we need to change the Qi values for such megaprocessors due to the change in the ξ(·)
value of the newly formed megaprocessor. The above operations can be performed in time O(log n) time per
merge, using the priority queue.

Therefore, the running time of the algorithm excluding the computation of ξ(i) is O(n log n+ o) where o
is the time required to construct the output. In the pseudocode, the output is computed using the megapro-
cessor representation. Since there are at most n recursive calls, there are at most n pairs ((Em, . . . , E1), t̂)
in the output, and therefore o = O(n2).

If one chose to convert this representation to a permutation representation, using the combinatorial
method of Condon et al. [5], then the value of o would be O(n3).

Consider instead the following more compact output representation, which we call the compressed rep-
resentation. Suppose the algorithm outputs the initial permutation, then outputs the sequence of merges
performed, together with the t̂ values associated with the merges. In this case, we have o = O(n).

We will next show that the computation of ξ(i) throughout the algorithm can be performed in O(nk)
total time.

Computing ξ(i). Let E
(i)
k be the kth megaprocessor in the recursive call associated with the ith merge.

Let b(i, k) be the lowest index of a processor in E
(i)
k , and let c(i, k) be the highest index of a processor in

E
(i)
k . Let |E

(i)
k | denote the size of that megaprocessor, that is, the number of processors in it. Thus

|E
(i)
k | = c(i, k)− b(i, k) + 1.

Let h(i) and h(i)+1 be the indices of the megaprocessors merged by the ith merge (i.e. E
(i)
h(i) and E

(i)
h(i)+1

are the megaprocessors merged by the ith merge).

Observe that at iteration i after megaprocessor E
(i)
h(i) is merged with E

(i)
h(i)+1 we only recompute ξ(h(i)).

After the merge, we need to compute

ξ(h(i)) =

k−1
∑

j=0

fj(c(i, h(i) + 1)) ·

(

k−j
∑

v=1

Pr
[

Xb(i,h(i)),c(i,h(i)+1) ≥ v
]

)

/

c(i,h(i)+1)
∑

t=b(i,h(i))

(1− pt)

Consider the denominator
∑c(i,h(i)+1)

t=b(i,h(i)) (1 − pt) in the above expression. It is the sum of the failure

probabilities of all processors contained in E
(i)
h(i) and E

(i)
h(i)+1. To enable this computation to be performed in

constant time per recursive call, we simply store, with each megaprocessor, the sum of the failure probabilities
of all processors in it. In each recursive call, it only takes constant time to update this information. Recall
that fj(c(i, h(i) + 1)) for all j ∈ {0, . . . , k − 1} are computed in the initialization procedure. Let

Dj =

k−j
∑

v=1

Pr
[

Xb(i,h(i)),c(i,h(i)+1) ≥ v
]

.

Given Dj for j ∈ {0, . . . , k − 1}, we can compute ξ(h(i)) in O(k) time. Observe that

Dj = Dj+1 +Pr
[

Xb(i,h(i)),c(i,h(i)+1) ≥ k − j
]

.

Therefore, given Pr
[

Xb(i,h(i)),c(i,h(i)+1) ≥ v
]

for v ∈ {1, . . . , k}, we can compute {D0, . . . , Dk−1} in O(k)
time. Finally, observe that

Pr
[

Xb(i,h(i)),c(i,h(i)+1) ≥ v
]

= Pr
[

Xb(i,h(i)),c(i,h(i)+1) ≥ v + 1
]

+Pr
[

Xb(i,h(i)),c(i,h(i)+1) = v
]

.

Therefore, givenPr
[

Xb(i,h(i)),c(i,h(i)+1) = v
]

for v ∈ {1, . . . , k}, we can computePr
[

Xb(i,h(i)),c(i,h(i)+1) ≥ v
]

for all v ∈ {1, . . . , k} in O(k) time. To enable these computations, we store, with each megaprocessor, the
values Pr [Xb,c = v] for all v ∈ {1, . . . , k}, where b and c are respectively the lowest and highest indices of
the processors contained in that megaprocessor. We will analyze below the total cost of keeping these values
updated.

13

We denote by C the total cost of computing ξ(·) throughout the algorithm, using the implementation
described. Since we will have to compute ξ(·) at most n times throughout the algorithm, by the arguments
above, C is bounded by O(nk) plus the cost of computing Pr

[

Xb(i,h(i)),c(i,h(i)+1) = v
]

for all i ∈ {1, . . . , n−

1} and v ∈ {0, . . . , k}. Let us denote the cost of computing Pr
[

Xb(i,h(i)),c(i,h(i)+1) = v
]

by Ci,v. Therefore,

C = O(nk) +
∑n−1

i=1

∑k

v=0 Ci,v. We show that C = O(nk) by proving
∑n−1

i=1

∑k

v=0 Ci,v = O(nk).

Lemma 5.
∑n−1

i=1

∑k

v=0 Ci,v = O(nk).

Proof. Let E
(i)
min = E

(i)
h(i) if |E

(i)
h(i)| ≤ |E

(i)
h(i)+1| and E

(i)
min = E

(i)
h(i)+1 otherwise. Recall that when we need

to compute Pr
[

Xb(i,h(i)),c(i,h(i)+1) = v
]

, we have already computed and stored Pr
[

Xb(i,h(i)),c(i,h(i)) = v
]

and Pr
[

Xb(i,h(i)+1),c(i,h(i)+1) = v
]

for all v ∈ {0, . . . , k}.

Since Pr [Xb,c = v] = 0 for any b, c if v > c− b+1, we can compute Pr
[

Xb(i,h(i)),c(i,h(i)+1) = v
]

using
the following equality:

Pr
[

Xb(i,h(i)),c(i,h(i)+1)= v
]

=

min(v,|E
(i)

h(i)
|)

∑

j=max(0,v−|E
(i)

h(i)+1
|)

Pr
[

Xb(i,h(i)),c(i,h(i)) = j
]

·Pr
[

Xb(i,h(i)+1),c(i,h(i)+1)= v − j
]

(1)

Thus, we perform at most one multiplication and one addition for each term in Equation 1, yielding

Ci,v < 2 ·min(v + 1, |E
(i)
min|+ 1). (2)

We can now bound
∑

i,v Ci,v as follows. Each time two megaprocessors E
(i)
h(i) and E

(i)
h(i)+1 merge, we charge

the cost of computing Pr
[

Xb(i,h(i)),c(i,h(i)+1) = v
]

, for all v ∈ {0, . . . , k} to the processors in the smaller of
the two megaprocessors, distributing the cost evenly among the processors in the megaprocessor. Thus, we

charge (
∑k

v=0 Ci,v)/|E
(i)
min| to each processor Oi ∈ E

(i)
min.

Let κj(i, v) denote how much of the cost of computing Pr
[

Xb(i,h(i)),c(i,h(i)+1) = v
]

we charge to Oj

during the ith merge. Let κj(v) denote how much of the cost of computing Pr
[

Xb(i,h(i)),c(i,h(i)+1) = v
]

for
all i = {1, . . . , k− 1} we charge to processor Oj . Let κj denote the total amount we charge to processor Oj .
In other words,

κj(i, v) =

{

Ci,v/|E
(i)
min| if Oj ∈ E

(i)
min,

0 otherwise.
(3)

κj(v) =

n−1
∑

i=1

κj(i, v) (4)

κj =

k
∑

v=0

κj(v) =

n−1
∑

i=1

k
∑

v=0

κj(i, v) (5)

Then, we have
∑

i,v Ci,v =
∑n

j=1 κj . We will bound
∑

i,v Ci,v by proving an upper bound on κj.
Consider any processor Oj . We will show that κj(v) = O(1). Let i′(z) = i′(j, v, z) be the index of the

merge in which processor Oj is charged for the cost of computing Pr [Xb,c = v] for any b, c for the z th time.
Formally, let

i′(z) = i′(j, v, z) =

{

ℓ if ∃ℓ ∈ [1, n− 1] s.t. κj(ℓ, v) > 0 ∧ |{t | t < ℓ, κj(t, v) > 0}| = z − 1
0 otherwise

By Equation 2, Ci,v < 2|E
(i)
min| + 2, which implies κj(i, v) < 4 by Equation 3. Observe that by the

definition of E
(i)
min and i′(z), if i′(2) > 0, we have

|E
(i′(2))
min | ≥ |E

(i′(1))
h(i′(1))|+ |E

(i′(1))
h(i′(1))+1| ≥ v. (6)

14

Also by the definition of E
(i)
min, if i

′(z) > 0, we have

|E
(i′(z))
min | ≥ 2 · |E

(i′(z−1))
min |. (7)

Combining all these facts, and letting Z = max(x : i′(x) > 0), we have

κj(v) =

n−1
∑

i=1

κj(i, v) by definition

≤ 4 +

n−1
∑

i=2

κj(i, v) κj(i, v) < 4

= 4 +
Z
∑

z=2

κj(i
′(z), v) by definition

= 4 +

Z
∑

z=2

Ci′(z),v

|E
(i′(z))
min |

by Equation 3

< 4 +

Z
∑

z=2

2v + 2

|E
(i′(z))
min |

by Equation 2

≤ 4 +

Z
∑

z=2

2v + 2

2z−2 · |E
(i′(2))
min |

by Equation 7

< 6 +
Z
∑

z=2

2v

2z−2 · |E
(i′(2))
min |

|E
(i′(2))
min | ≥ 2

≤ 6 +

Z
∑

z=2

2

2z−2
by Equation 6

< 6 + 4

= 10.

Thus, we have κj(v) = O(1). This yields κj =
∑k

v=0 κj(v) = O(k). Since
∑n

j=1 κj ≤ n ·maxi∈{1,...,n} κi, we
have,

n−1
∑

i=1

k
∑

v=0

Ci,v =

n
∑

j=1

κj ≤ n · O(k) = O(nk)

Therefore, by Lemma 5, we have C = O(nk) +
∑n−1

i=1

∑k

v=0 Ci,v = O(nk). Thus, our algorithm runs in
total time O(n(log n+ k) + o).

5 An Ellipsoid-Based Algorithm for the SMT(k) problem

There is a simple and elegant algorithm that solves the MinCost problem for standard k-of-n testing, due
to Salloum, Breuer, and (independently) Ben-Dov [1,10,11]. It outputs a strategy compactly represented by
two permutations, one ordering the processors in increasing order of the ratio ci/(1 − pi), and the other in
increasing order of the ratio ci/pi. Chang et al. and Salloum and Breuer later gave modified versions of this
algorithm that output a less compact, but more efficiently evaluatable representation of the same strategy
[3, 12].

We now show how to combine previous techniques to obtain a polynomial-time algorithm for the SMT(k)
problem based on the ellipsoid method. The algorithm uses a technique of Despande and Hellerstein [6].

15

They showed that, for 1-of-n testing, an algorithm solving the MinCost problem can be combined with the
ellipsoid method to yield an algorithm for the MaxThroughput problem. In fact, as we see in the proof
below, their approach is actually a generic one, and can be applied to the testing of other functions.

The ellipsoid-based algorithm for k-of-n testing makes use of the dual of the LP for the CMT(k) problem,
which is as follows:

Dual of Max-Throughput LP: Given r1, . . . , rn > 0, p1 . . . , pn ∈ (0, 1), find an assignment to the variables
yi, for all i ∈ {1, . . . , n}, minimizing

F =

n
∑

i=1

riyi

subject to the constraints:

(1)
∑n

i=1 g(π, i)yi ≥ 1 for all T ∈ Tc,

(2) yi ≥ 0 for all i ∈ {1, . . . , n}.

Theorem 6. There is a polynomial-time algorithm, based on the ellipsoid method, for solving the SMT(k)
problem.

Proof. The approach of Deshpande and Hellerstein works as follows. The input consists of the pi and the
ri, and the goal is to solve the MaxThroughput LP in time polynomial in n. The number of variables
of the MaxThroughput LP is not polynomial, so the LP cannot be solved directly. Instead, the idea is
to solve it by first using the ellipsoid method to solve the dual LP. The ellipsoid method is run using an
algorithm that simulates a separation oracle for the dual in time polynomial in n. During the running of
the ellipsoid method, the violated constraints returned by the separation oracle are saved in a set M . Each
constraint of the dual corresponds to an ordering T . When the ellipsoid method terminates, a modified
version of the MaxThroughput LP is generated, which includes only the variables zT corresponding to
orderings T in M (i.e. the other variables zT are set to 0). This modified version can then be solved
directly using a polynomial-time LP algorithm. The resulting solution is an optimal solution for the original
MaxThroughput LP.

The above approach requires a polynomial-time algorithm for simulating the separation oracle for the
dual. Deshpande and Hellerstein’s method for simulating the separation oracle relies on the following observa-
tions. In the dual LP for the MaxThroughput 1-of-n testing problem, there are n! constraints correspond-
ing to the n! permutations of the processors. The constraint for permutation π is

∑n

i=1 g(T1(π), i)yi ≤ 1. If
one views y as a vector of costs, where the cost of i is yi, then

∑n

i=1 g(T, i)yi is the expected cost of testing
an item x using ordering T . Thus one can determine the ordering T that minimizes

∑n

i=1 g(T, i)yi by solving
the MinCost problem with probabilities p1, . . . , pn and cost vector y. (Liu et al.’s approximation algorithm
for generic MaxThroughput also relies on this observation [9].)

If the MinCost ordering T has expected cost less than 1, then the constraint it corresponds to is violated.
Otherwise, since the right hand side of each constraint is 1, y obeys all constraints. Thus simulating the
separation oracle for the dual on input y can be done by first running the MinCost algorithm (with
probabilities pi and costs yi) to find a MinCost ordering T . Once T is found, the values of the coefficients
g(T, i) are calculated. These are used to calculate

∑n

i=1 g(T, i), the expected cost of T . If this value is less
than 1, then the constraint

∑n

i=1 g(T, i) is returned.
To apply the above approach to MaxThroughput for standard k-of-n testing, we observe that in the

dual LP for this problem, there is a constraint,
∑n

i=1 g(T, i)yi ≤ 1, for every possible strategy T , We can
simulate a separation oracle for the dual on input y by running a MinCost algorithm for standard k-of-n
testing. We also need to be able to compute the g(T, i) values for the strategy output by that algorithm.
The algorithm of Chang et al. for the MinCost standard k-of-n testing problem is suitable for this purpose,
as it can easily be modified to output the g(T, i) values associated with its output strategy T [3].

16

References

[1] Yosi Ben-Dov. Optimal testing procedure for special structures of coherent systems. Management
Science, 27:1410–1420, 1981.

[2] Endre Boros and Tonguç Ünlüyurt. Diagnosing double regular systems. Annals of Mathematics and
Artificial Intelligence, 26(1-4):171–191, 1999.

[3] Ming-Feng Chang, Weiping Shi, and W. Kent Fuchs. Optimal diagnosis procedures for k-out-of-n
structures. IEEE Transactions on Computers, 39(4):559–564, 1990.

[4] Anne Condon, Amol Deshpande, Lisa Hellerstein, and Ning Wu. Flow algorithms for two pipelined filter
ordering problems. In Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 26-28, PODS 2006, Chicago, Illinois, USA, pages 193–202.
ACM, 2006.

[5] Anne Condon, Amol Deshpande, Lisa Hellerstein, and Ning Wu. Algorithms for distributional and
adversarial pipelined filter ordering problems. ACM Transactions on Algorithms, 5:24:1–24:34, March
2009.

[6] Amol Deshpande and Lisa Hellerstein. Parallel pipelined filter ordering with precedence constraints.
ACM Transactions on Algorithms, 8(4):41, 2012.

[7] Michael R. Garey. Optimal task sequencing with precedence constraints. Discrete Mathematics, 4:37–56,
1973.

[8] Murali S. Kodialam. The throughput of sequential testing. In Proceedings of Integer Programming
and Combinatorial Optimization, 8th International IPCO Conference, Utrecht, The Netherlands, June
13-15, 2001, volume 2081 of Lecture Notes in Computer Science, pages 280–292. Springer, 2001.

[9] Zhen Liu, Srinivasan Parthasarathy, Anand Ranganathan, and Hao Yang. A generic flow algorithm
for shared filter ordering problems. In Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2008, June 9-11, 2008, Vancouver,
BC, Canada, pages 79–88. ACM, 2008.

[10] Salam Salloum. Optimal testing algorithms for symmetric coherent systems. PhD thesis, University of
Southern California, 1979.

[11] Salam Salloum and Melvin A. Breuer. An optimum testing algorithm for some symmetric coherent
systems. Journal of Mathematical Analysis and Applications, 101(1):170 – 194, 1984.

[12] Salam Salloum and Melvin A. Breuer. Fast optimal diagnosis procedures for k-out-of-n:G systems.
IEEE Transactions on Reliability, 46(2):283 –290, June 1997.

[13] Neil Sarnak and Robert Endre Tarjan. Planar point location using persistent search trees. Communi-
cations of the ACM, 29(7):669–679, 1986.

[14] Tonguç Ünlüyurt. Sequential testing of complex systems: a review. Discrete Applied Mathematics,
142(1-3):189 – 205, 2004.

17

	1 Introduction
	2 Related Work
	3 Problem Definitions
	3.1 The MinCost problem
	3.2 The MaxThroughput problem

	4 The Algorithm for the CMT(k) problem
	4.1 The Equal Rates Case
	4.2 The Equalizing Algorithm of Condon et al.
	4.3 An Equalizing Algorithm for the CMT(k) problem

	5 An Ellipsoid-Based Algorithm for the SMT(k) problem

