Skip to main content
Log in

Efficient Algorithms for Clique-Colouring and Biclique-Colouring Unichord-Free Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The class of unichord-free graphs was recently investigated in the context of vertex-colouring (Trotignon and Vušković in J Graph Theory 63(1): 31–67, 2010), edge-colouring (Machado et al. in Theor Comput Sci 411(7–9): 1221–1234, 2010) and total-colouring (Machado and de Figueiredo in Discrete Appl Math 159(16): 1851–1864, 2011). Unichord-free graphs proved to have a rich structure that can be used to obtain interesting results with respect to the study of the complexity of colouring problems. In particular, several surprising complexity dichotomies of colouring problems are found in subclasses of unichord-free graphs. In the present work, we investigate clique-colouring and biclique-colouring problems restricted to unichord-free graphs. We show that the clique-chromatic number of a unichord-free graph is at most 3, and that the 2-clique-colourable unichord-free graphs are precisely those that are perfect. Moreover, we describe an O(nm)-time algorithm that returns an optimal clique-colouring of a unichord-free graph input. We prove that the biclique-chromatic number of a unichord-free graph is either equal to or one greater than the size of a largest twin set. Moreover, we describe an \(O(n^2m)\)-time algorithm that returns an optimal biclique-colouring of a unichord-free graph input. The clique-chromatic and the biclique-chromatic numbers are not monotone with respect to induced subgraphs. The biclique-chromatic number presents an extra unexpected difficulty, as it is not the maximum over the biconnected components, which we overcome by considering additionally the star-biclique-chromatic number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bacsó, G., Gravier, S., Gyárfás, A., Preissmann, M., Sebő, A.: Coloring the maximal cliques of graphs. SIAM J. Discrete Math. 17(3), 361–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chudnovsky, M., Lo, I.: Decomposing and clique-colouring diamond, odd-hole)-free graphs, manuscript 2015

  4. Défossez, D.: Complexity of clique-coloring odd-hole-free graphs. J. Graph Theory 62(2), 139–156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dias, V.M.F., de Figueiredo, C.M.H., Szwarcfiter, J.L.: Generating bicliques of a graph in lexicographic order. Theor. Comput. Sci. 337(1–3), 240–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dias, V.M.F., de Figueiredo, C.M.H., Szwarcfiter, J.L.: On the generation of bicliques of a graph. Discrete Appl. Math. 155(14), 1826–1832 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Filho, H.B.M., Machado, R.C.S., Figueiredo, C.M.H.: Clique-colouring and biclique-colouring unichord-free graphs. In: Proceedings of the Latin American International Conference on Theoretical Informatics, Lecture Notes in Computer Science, vol. 7256, pp. 530–541. Springer, Berlin, Heidelberg (2012)

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., San Francisco (1979)

    MATH  Google Scholar 

  9. Gaspers, S., Kratsch, D., Liedloff, M.: On independent sets and bicliques in graphs. Algorithmica 62(3–4), 637–658 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Groshaus, M., Soulignac, F.J., Terlisky, P.: Star and biclique coloring and choosability. J. Graph Algorithms Appl. 18(3), 347–383 (2014)

    Article  MATH  Google Scholar 

  11. Groshaus, M., Szwarcfiter, J.L.: Biclique graphs and biclique matrices. J. Graph Theory 63(1), 1–16 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holton, D.A.: The Petersen Graph. Cambridge Univertsity Press, Cambridge (1973)

    MATH  Google Scholar 

  13. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms 6(3), 434–451 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kratochvíl, J., Tuza, Z.: On the complexity of bicoloring clique hypergraphs of graphs. J. Algorithms 45(1), 40–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Machado, R.C.S., de Figueiredo, C.M.H.: Total chromatic number of square, unichord-free graphs. In: Proceedings of the International Symposium on Combinatorial Optimization (ISCO), Electronics Notes in Discrete Mathematics, vol. 36, pp. 671–678 (2010)

  17. Machado, R.C.S., de Figueiredo, C.M.H.: Total chromatic number of unichord-free graphs. Discrete Appl. Math. 159(16), 1851–1864 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Machado, R.C.S., de Figueiredo, C.M.H., Vušković, K.: Chromatic index of graphs with no cycle with a unique chord. Theor. Comput. Sci. 411(7–9), 1221–1234 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maffray, F., Preissmann, M.: On the NP-completeness of the \(k\)-colorability problem for triangle-free graphs. Discrete Math. 162(1–3), 313–317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marx, D.: Complexity of clique coloring and related problems. Theor. Comput. Sci. 412(29), 3487–3500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. McDiarmid, C.J.H., Sánchez-Arroyo, A.: Total colouring regular bipartite graphs is NP-hard. Discrete Math. 124(1–3), 155–162 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inform. Process. Lett. 71(5–6), 199–204 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nourine, L., Raynaud, O.: A fast incremental algorithm for building lattices. J. Exp. Theor. Artif. Intell. 14(2–3), 217–227 (2002)

    Article  MATH  Google Scholar 

  24. Prisner, E.: Bicliques in graphs. I. Bounds on their number. Combinatorica 20(1), 109–117 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Trotignon, N., Vušković, K.: A structure theorem for graphs with no cycle with a unique chord and its consequences. J. Graph Theory 63(1), 31–67 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing (San Diego, CA, 1978), pp. 253–264. ACM, New York (1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. S. Machado.

Additional information

An extended abstract containing partial results of this paper has been published in Proceedings of 10th Latin American Symposium on Theoretical Informatics (LATIN’12), Lecture Notes in Comput. Sci., vol. 7256, Springer, 2012, pp. 530–541. Research partially supported by FAPERJ–APQ1/Cientistas do Nosso Estado, and by CNPq–Universal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filho, H.B.M., Machado, R.C.S. & de Figueiredo, C.M.H. Efficient Algorithms for Clique-Colouring and Biclique-Colouring Unichord-Free Graphs. Algorithmica 77, 786–814 (2017). https://doi.org/10.1007/s00453-015-0106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-0106-7

Keywords

Mathematics Subject Classification

Navigation