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Abstract. Persistent homology with coefficients in a field F coincides with the same for
cohomology because of duality. We propose an implementation of a recently introduced
algorithm for persistent cohomology that attaches annotation vectors with the simplices.
We separate the representation of the simplicial complex from the representation of the
cohomology groups, and introduce a new data structure for maintaining the annotation
matrix, which is more compact and reduces substancially the amount of matrix operations.
In addition, we propose a heuristic to simplify further the representation of the cohomology
groups and improve both time and space complexities. The paper provides a theoretical
analysis, as well as a detailed experimental study of our implementation and comparison
with state-of-the-art software for persistent homology and cohomology.

This article appeared in Algorithmica 2015 [5]. An extended abstract appeared in the
proceedings of the European Symposium on Algorithms 2013 [4].

1. Introduction

Persistent homology [14] is an algebraic method for measuring the topological features of
a space induced by the sublevel sets of a function. Its generality and stability with regard to
noise have made it a widely used tool for the study of data. A common approach is the study
of the topological invariants of a nested family of simplicial complexes built on top of the data,
seen as a set of points in a geometric space. This approach has been successfully used in various
areas of science and engineering, as for example in sensor networks, image analysis, and data
analysis where one typically needs to deal with big data sets in high dimensions. Consequently,
the demand for designing efficient algorithms and software to compute persistent homology
of filtered simplicial complexes has grown.

The first persistence algorithm [15, 23] can be implemented by reducing a matrix defined by
face incidence relations, through column operations. The running time is O(m3) where m is
the number of simplices of the simplicial complex and, despite good performance in practice,
Morozov proved that this bound is tight [21]. Recent optimizations taking advantage of the
special structure of the matrix to be reduced have led to significant progress in the theoretical
analysis [9, 19] as well as in practice [2, 8].

A different approach [11, 12] interprets the persistent homology groups in terms of their
dual, the persistent cohomology groups. The cohomology algorithm has been reported to
work better in practice than the standard homology algorithm [11] but this advantage seems
to fade away when optimizations are employed to the homology algorithms [2]. An elegant
description of the cohomology algorithm, using the notion of annotations [7], has been intro-
duced in [13] and used to design more general algorithms for maintaining cohomology groups
under simplicial maps.

In this work, we propose an implementation of the annotation-based algorithm for com-
puting persistent cohomology. A key feature of our implementation is a distinct separation
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between the representation of the simplicial complex and the representation of the cohomol-
ogy groups. Currently the simplicial complex can be represented either by its Hasse diagram
or by using the more compact simplex tree [6]. The cohomology groups are stored in a sep-
arate data structure that represents a compressed version of the annotation matrix. As a
consequence, the time and space complexities of our algorithm depend mostly on properties
of the cohomology groups we maintain along the computation and only linearly on the size of
the simplicial complex.

Moreover, maintaining the simplicial complex and the cohomology groups separately allows
us to reorder the simplices while keeping the same persistent cohomology. This significantly
reduces the size of the cohomology groups to be maintained, and improves considerably both
the time and memory performance as shown by our detailed experimental analysis on a variety
of examples. Our method compares favorably with state-of-the-art software for computing
persistent homology and cohomology.

Background: A simplicial complex is a pair K = (V, S) where V is a finite set whose elements
are called the vertices of K and S is a set of non-empty subsets of V that is required to satisfy
the following two conditions : 1. p ∈ V ⇒ {p} ∈ S and 2. σ ∈ S, τ ⊆ σ ⇒ τ ∈ S. Each
element σ ∈ S is called a simplex or a face of K and, if σ ∈ S has precisely s + 1 elements
(s ≥ −1), σ is called an s-simplex and its dimension is s. The dimension of the simplicial
complex K is the largest k such that S contains a k-simplex. We define Kp to be the set of
p-dimensional simplices of K, and note its size |Kp|. Given two simplices τ and σ in K, τ is a
subface (resp. coface) of σ if τ ⊆ σ (resp. τ ⊇ σ). The boundary of a simplex σ, denoted ∂σ,
is the set of its subfaces with codimension 1.

A filtration [14] of a simplicial complex is an order relation on its simplices which respects
inclusion. Consider a simplicial complex K = (V, S) and a function ρ : S → R. We require ρ
to be monotonic in the sense that, for any two simplices τ ⊆ σ in K, ρ satisfies ρ(τ) ≤ ρ(σ).
We will call ρ(σ) the filtration value of the simplex σ. Monotonicity implies that the sublevel
sets K(r) = ρ−1(−∞, r] are subcomplexes of K, for every r ∈ R. Let m be the number of
simplices of K, and let (ρi)i=1···n be the n different values ρ takes on the simplices of K.
Plainly n ≤ m, and we have the following sequence of n+ 1 subcomplexes:

∅ = K0 ⊆ · · · ⊆ Kn = K, −∞ = ρ0 < · · · < ρn, Ki = ρ−1(−∞, ρi]
Applying a (co)homology functor to this sequence of simplicial complexes turns
(combinatorial) complexes into (algebraic) abelian groups and inclusion into group homo-
morphisms. Roughly speaking, a simplicial complex defines a domain as an arrangement of
local bricks and (co)homology catches the global features of this domain, like the connected
components, the tunnels, the cavities, etc. The homomorphisms catch the evolution of these
global features when inserting the simplices in the order of the filtration. Let Hp(K) and
Hp(K) denote respectively the homology and cohomology groups of K of dimension p with
coefficients in a field F. The filtration induces a sequence of homomorphisms in the homology
and cohomology groups in opposite directions:

0 = Hp(K0)→ Hp(K1)→ · · · → Hp(Kn−1)→ Hp(Kn) = Hp(K)(1.1)

0 = Hp(K0)← Hp(K1)← · · · ← Hp(Kn−1)← Hp(Kn) = Hp(K)(1.2)

We refer to [14] for an introduction to the theory of homology and persistent homology. Com-
puting the persistent homology of such a sequence consists in pairing each simplex that creates
a homology feature with the one that destroys it. The usual output is a persistence diagram,
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which is a plot of the points (ρ(τ), ρ(σ)) for each persistent pair (τ, σ). It is known that be-
cause of duality the homology and cohomology sequences above provide the same persistence
diagram [12].

The original persistence algorithm [15] considers the homology sequence in Equation 1.1
that aligns with the filtration direction. It detects when a new homology class is born and
when an existing class dies as we proceed forward through the filtration. Recently, a few algo-
rithms have considered the cohomology sequence in Equation 1.2 which runs in the opposite
direction of the filtration [11, 12, 13]. The birth of a cohomology class coincides with the
death of a homology class and the death of a cohomology class coincides with the birth of a
homology class. Therefore, by tracking a cohomology basis along the filtration direction and
switching the notions of births and deaths, one can obtain all information about the persis-
tent homology of the complex. The algorithm of de Silva et al. [12] computes the persistent
cohomology following this principle which is reported to work better in practice than the orig-
inal persistence algorithm [11]. Recently, Dey et al. [13] recognized that tracking cohomology
bases provides a simple and natural extension of the persistence algorithm for filtrations con-
nected with general simplicial maps (and not simply inclusion). Their algorithm is based on
the notion of annotation [7] and, when restricted to only inclusions, is a re-formulation of the
algorithm of de Silva et al. [12]. Here we follow this annotation based algorithm.

2. Persistent Cohomology Algorithm and Annotations

In this section, we recall the annotation-based persistent cohomology algorithm of [13].
It maintains a cohomology basis under simplex insertions, where representative cocycles
are maintained by the value they take on the simplices. We rephrase the description of
this algorithm with coefficients in an arbitrary field F, and use standard field notations
〈F,+, ·,−, /, 0, 1〉.
Definition 2.1. Given a simplicial complex K, let Kp denote the set of p-simplices in K.
An annotation for Kp is an assignement ap : Kp → Fg of an F-vector aσ = ap(σ) of same
length g for each p-simplex σ ∈ Kp. We use a when there is no ambiguity on the dimension.
We also have an induced annotation for any p-chain c =

∑
i fiσi given by linear extension:

ac =
∑

i fi · aσi .
Definition 2.2. An annotation a : Kp → Fg is valid if:
1. g = rankHp(K) and 2. two p-cycles z1 and z2 have az1 = az2 iff their homology classes [z1]
and [z2] are identical.

Proposition 2.3 ([13]). The following two statements are equivalent:
1. An annotation a : Kp → Fg is valid
2. The cochains {φj}j=1···g given by φj(σ) = aσ[j] for all σ ∈ Kp are cocycles whose cohomol-
ogy classes {[φj ]}j=1···g constitute a basis of Hp(K).

A valid annotation is thus a way to represent a cohomology basis. The algorithm for com-
puting persistent cohomology consists in maintaining a valid annotation for each dimension
when inserting all simplices in the order of the filtration. Since we process the filtration in
a direction opposite to the cohomology sequence (as in Equation 1.2), we discover the death
points of cohomology classes earlier than their birth points. To avoid confusion, we still say
that a new cocycle (or its class) is born when we discover it for the first time and an existing
cocycle (or its class) dies when we see it no more.

We present the algorithm and refer to [13] for its validity. We insert simplices in the order of
the filtration. Consider an elementary inclusion Ki ↪→ Ki ∪ {σ}, with σ a p-simplex. Assume
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Figure 1. Compressed annotation matrix of a matrix with integer coefficients.

that to every simplex τ of any dimension in Ki is attached an annotation vector aτ from a
valid annotation a of Ki. We describe how to obtain a valid annotation for Ki∪{σ} from that
of Ki. We compute the annotation a∂σ for the boundary ∂σ in Ki and take actions as follows:
Case 1: If a∂σ = 0, g ← g + 1 and the annotation vector of any p-simplex τ ∈ Ki is
augmented with a 0 entry so that aτ = [f1, · · · , fg]T becomes [f1, · · · , fg, 0]T . We assign to
the new simplex σ the annotation vector aσ = [0, · · · , 0, 1]T . According to Proposition 2.3,
this is equivalent to creating a new cohomology class represented by φ(τ) = 0 for τ 6= σ and
φ(σ) = 1.
Case 2: If a∂σ 6= 0, we consider the non-zero element cj of a∂σ with maximal index j. We
now look for annotations of those (p − 1)-simplices τ that have a non-zero element at index
j and process them as follows. If the element of index j of aτ is f 6= 0, we add −f/cj · a∂σ
to aτ . Note that, in the annotation matrix whose columns are the annotation vectors, this
implements simultaneously a series of elementary row operations, where each row φi receives
φi ← φi − (a∂σ[i]/cj) × φj . As a result, all the elements of index j in all columns are now 0
and hence the entire row j becomes 0. We then remove the row j and set g ← g − 1. σ is
assigned aσ = 0. According to Proposition 2.3, this is equivalent to removing the jth cocycle
φj(τ) = aτ [j].

As with the original persistence algorithm, the pairing of simplices is derived from the
creation and destruction of the cohomology basis elements.

3. Data Structures and Implementation

In this section, we present our implementation of the annotation-based persistent cohomol-
ogy algorithm. We separate the representation of the simplicial complex from the represen-
tation of the cohomology groups.

3.1. Representation of the Simplicial Complex. We represent the simplicial complex K
in a data structure KDS equipped with the operation Compute-boundary(σ) that computes
the boundary of a simplex σ. We denote by Cp∂ the complexity of this operation where p is
the dimension of σ. Additionally, the simplices are ordered according to the filtration.

Two data structures to represent simplicial complexes are of particular interest here. The
first one is the Hasse diagram, which is the graph whose nodes are in bijection with the
simplices (of all dimensions) of the simplicial complex and an edge links two nodes representing
two simplices τ and σ iff τ ⊆ σ and the dimensions of τ and σ differ by 1. The second data
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structure is the simplex tree introduced in [6], which is a specific spanning tree of the Hasse
diagram. For a simplicial complex K of dimension k and a simplex σ ∈ K of dimension
p, the Hasse diagram has size O(k|K|) and allows to compute Compute-boundary(σ) in
time Cp∂ = O(p), whereas the simplex tree has size O(|K|) and allows to compute Compute-
boundary(σ) in time Cp∂ = O(p2Dm), where Dm is typically a small value related to the
time needed to traverse the simplex tree. Both structures can be used in our setting. For
readability, we will use a Hasse diagram in the following.

3.2. The Compressed Annotation Matrix. For each dimension p, the pth cohomology
group can be seen as a valid annotation for the p-simplices of the simplicial complex. Hence,
an annotation a : Kp → Fg can be represented as a g× |Kp| matrix with elements in F, where
each column is an annotation vector associated to a p-simplex. We describe how to represent
this annotation matrix in an efficient way.

Compressing the annotation matrix: In most applications, the annotation matrix is
sparse and we store it as illustrated in Figure 1. A column is represented as the singly-linked
list of its non-zero elements, where the list contains a pair (i, f) if the ith element of the
column is f 6= 0. The pairs in the list are ordered according to row index i. All pairs (i, f)
with same row index i are linked in a doubly-linked list.

Removing duplicate columns: (see Figure 1) To avoid storing duplicate columns, we use
two data structures. The first one, AVp, stores the annotation vectors and allows fast search,
insertion and deletion. AVp can be implemented as a red-black tree or a hash table. We denote
by CpAV the complexity of an operation in AVp. For example, if AVp contains n elements and
cmax is the length of the longest column, we have CpAV = O(cmax log(n)) for a red-black tree
implementation and CpAV = O(cmax) amortized for a hash-table. The simplices of the same
dimension that have the same annotation vector are now stored in a same set and the various
(and disjoint) sets are stored in a union-find data structure denoted UFp. UFp is encoded as
a forest where each tree contains the elements of a set, the root being the “representative”
of the set. The trees of UFp are in bijection with the different annotation vectors stored in
AVp and the root of each tree maintains a pointer to the corresponding annotation vector in
AVp. Each node representing a p-simplex σ in the simplicial complex KDS stores a pointer to
an element of the tree of UFp associated to the annotation vector aσ. Finding the annotation
vector of σ consists in getting the element it points to in a tree of UFp and then finding the
root of the tree which points to aσ in AVp. We avail the following operations on UFp:
• Create-set: creates a new tree containing one element.
• Find-root: finds the root of a tree, given an element in the tree.
• Union-sets: merges two trees.
The number of elements maintained in UFp is at most the number of simplices of dimen-

sion p, i.e. |Kp|. The operations Find-root and Union-sets on UFp can be computed in
amortized time O(α(|Kp|)), where α(·) is the very slowly growing inverse Ackermann function
(constant less than 4 in practice), and Create-set is performed in constant time. We will
refer to this data structure as the Compressed Annotation Matrix.

Operations: The compressed annotation matrix described above supports the following
operations. We define cmax to be the maximal number of non-zero elements in a column of
the compressed annotation matrix (or equivalently in an annotation vector) and rmax to be
the maximal number of non-zero elements in a row of the compressed annotation matrix,
during the computation. We will express our complexities using cmax and rmax:
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• Sum-ann(a1, a2): computes the sum of two annotation vectors a1 and a2, and returns
the lowest non-zero coefficient if it exists. The column elements are sorted by increasing row
index, so the sum is performed in O(cmax) time.
• Search-ann/Add-ann/Remove-ann (a): searches, adds or removes an annotation

vector a from AVp in O(CpAV) time.
• Create-cocycle(): implements Case 1 of the algorithm described in section 2. It

inserts a new column in AVp containing one element (inew, 1), where inew is the index of the
created cocycle. This is performed in time O(CpAV). We also create a new disjoint set in UFp
for the new column. This is done in O(1) time using Create-set. Create-cocycle() takes
O(CpAV) in total.
• Kill-cocycle(a∂σ, cj , j): implements Case 2 of the algorithm. It finds all columns with

a non-zero element at index j and, for each such column A, it adds to A the column −f/cj ·a∂σ
if f is the non-zero element at index j in A. To find the columns with a non-zero element
at index j, we use the doubly-linked list of row j. We call Sum-ann to compute the sums.
The overall time needed for all columns is O(cmax rmax) in the worst-case. Finally, we remove

duplicate columns using operations on AVp (in O(rmax Cp−1
AV ) time in the worst-case) and call

Union-sets on UFp−1 if two sets of simplices, which had different annotation vectors before
calling Kill-cocycle, are assigned the same annotation vector. This is performed in at most
O(rmax α(|Kp−1|)) time. The total cost of Kill-cocycle is O(rmax(cmax +Cp−1

AV +α(|Kp−1|))).

3.3. Computing Persistent Cohomology. Given as input a filtered simplicial complex
represented in a data structure KDS, we compute its persistence diagram.

Implementation of the persistent cohomology algorithm: We insert the simplices in
the filtration order and update the data structures during the successive insertions. The
simplicial complex K is stored in a simplicial complex data structure KDS and we maintain,
for each dimension p, a compressed annotation matrix, which is empty at the beginning of the
computation. For readability, we add the following operation on the set of data structures:
• Compute-a∂σ(σ): given a p-simplex σ in K, computes its boundary in KDS using

Compute-boundary (in O(Cp∂) time). For each of the p + 1 simplices in ∂σ, it then finds
their annotation vector using Find-root in UFp−1 (in O(pα(|Kp−1|)) time). Finally, it sums
all these annotation vectors together (with the appropriate +/− sign) using at most p + 1
calls to Sum-ann (in O(p gm) time). Note that, with the compression method, two simplices
in ∂σ may point to the same annotation vector; the computation is accelerated by adding
such annotation vector only once, with the appropriate multiplicative coefficient. The total
worst case complexity of this operation is O(Cp∂ + pα(|Kp−1|) + p gm).

Let σ be a p-simplex to be inserted. We compute the annotation vector of ∂σ using
Compute-a∂σ. Depending on the value of a∂σ, we call either Create-cocycle or Kill-
cocycle. The algorithm computes the pairing of simplices from which one can deduce the
persistence diagram. By reversing the pointers from the UFps to the simplices in KDS, one
can compute explicitly the representative cocycles of the basis classes and have an explicit
representation of the cohomology groups along the computation.

Complexity analysis: Let k be the dimension and m the number of simplices of K. Recall
that cmax and rmax represent respectively the maximal number of non-zero elements in an
annotation vector and in a row of the compressed annotation matrix, along the computation.
Recall that, in dimension p, Cp∂ is the complexity of Compute-boundary in KDS and CpAV
the complexity of an operation in AVp. α(·) is the inverse Ackermann function.
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Figure 2. Inclusion Ki ⊆ Ki+1. Left: upward traversal (in green) from sim-
plex {c}. The ordering of the maximal cofaces appears in blue. Right: down-
ward traversal (in orange) from simplex {abc}. The ordering of the subfaces
appears in blue.

The complexity for inserting σ of dimension p is:

O
(
Cp∂ + p(α(|Kp−1|) + cmax) + CpAV + rmax(cmax + Cp−1

AV + α(|Kp−1|))
)

Consequently, the total cost for computing the persistent cohomology is:

O
(
m×

[
Ck∂ + k(α(m) + cmax) + rmax(cmax + CAV + α(m))

])

Specifically, if we implement KDS as a Hasse diagram and the AVs as hash-tables, we get
Ck∂ = O(k) and CAV = O(cmax). If we consider α(m) as a small constant and remove it for
readability, we get that the total cost for computing persistent cohomology is:

O(mcmax(k + rmax))

We show in section 5 that cmax and rmax remain small in practice. Hence, the practical
complexity of the algorithm is linear in m for a fixed dimension.

4. Reordering Iso-simplices

Many simplices, called iso-simplices, may have the same filtration value. This situation is
common when the filtration is induced by a geometric scaling parameter. Assume that we
want to compute the cohomology groups Hp(Ki+1) from Hp(Ki) where Ki ⊆ Ki+1 and all
simplices in Ki+1 \Ki have the same filtration value. Depending on the insertion order of the
simplices of Ki+1 \ Ki, the dimension of the cohomology groups to be maintained along the
computation may vary a lot as well as the computing time. This may lead to a computational
bottleneck. We propose a heuristic to reorder iso-simplices and show its practical efficiency
in Section 5.

Intuitively, we want to avoid the creation of many “holes” of dimension p and want to fill
them up as soon as possible with simplices of dimension p + 1. For example, in Figure 2,
we want to avoid inserting all edges first, which will create two holes that will be filled when
inserting the triangles. To do so, we look for the maximal faces to be inserted and recursively
insert their subfaces. We conduct the recursion so as to minimize the maximum number of
holes. In addition, to avoid the creation of holes due to maximal simplices that are incident,
maximal simplices sharing subfaces are inserted next to each other. We can describe the
reordering algorithm in terms of a graph traversal. The graph considered is the graph of the
Hasse diagram of Ki+1 \ Ki, defined in section 3.1 (see Figure 2).

Let σ1 · · ·σ` be the iso-simplices of Ki+1 \ Ki, sorted so as to respect the inclusion order.
We attach to each simplex two flags, a flag Fup and a flag Fdown, set to 0 originally. When
inserting a simplex σj , we proceed as follows. We traverse the Hasse diagram upward in a
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depth-first fashion and list the inclusion-maximal cofaces of σj in Ki+1 \ Ki. The flags Fup of
all traversed nodes are set to 1 and the maximal cofaces are ordered according to the traversal.
From each maximal coface in this order, we then traverse the graph downward and order the
subfaces in a depth-first fashion: this last order will be the order of insertion of the simplices.
The flags Fdown of all traversed nodes are set to 1. We stop the upward (resp. downward)
traversal when we encounter a node whose flag Fup (resp. Fdown) is set to 1. We do not insert
either simplices that have been inserted previously.

By proceeding as above on all simplices of the sequence σ1 · · ·σ`, we define a new ordering
which respects the inclusion order between the simplices. Indeed, as the downward traversal
starts from a maximal face and is depth first, a face is always inserted after its subfaces.
Every edge in the graph is traversed twice, once when going upward and the other when going
downward. Indeed, during the upward traversal, at each node N associated to a simplex σN ,
we visit only the edges between N and the nodes associated to the cofaces of σN and, during
the downward traversal, we visit only the edges between N and the nodes associated to the
subfaces of σN . If Ki+1\Ki contains ` simplices, the reordering takes in total O(`×(C∂+Cco∂))
time, where C∂ (resp. Cco∂) refers to the complexity of computing the codimension 1 subfaces
(resp. cofaces) of a simplex in the simplicial complex data structure KDS. The reordering
of the filtration can either be done as a preprocessing step if the whole filtration is known,
or on-the-fly as only the neighboring simplices of a simplex need to be known at a time.
The reordering of a set of iso-simplices respects the inclusion order of the simplices and the
filtration, and therefore does not change the persistence diagram of the filtered simplicial
complex. This is a direct consequence of the stability theorem of persistence diagrams [10].
However, it may change the pairing of simplices.

5. Experiments

In this section, we report on the experimental performance of our implementation. The
compressed annotation matrix implementation of persistent cohomology (denoted by CAM in
the following) is part of the Gudhi library [16, 17, 18, 22].

Given a filtered simplicial complex as input, we measure the time taken by our imple-
mentation to compute its persistent cohomology, and provide various statistics. We compare
the timings with state-of-the-art software computing persistent homology and cohomology.
Specifically, we compare our implementation with the Dionysus library [20] which provides
implementation for persistent homology [15, 23] and persistent cohomology [12] (denoted
DioCoH) with field coefficients in Zp, for any prime p. We also compare our implementation
with the PHAT library (version 1.4) [1, 3] which provides an implementation of the optimized
algorithm for persistent homology [2, 8] (using the --twist option) as well as an implemen-
tation of persistent cohomology [2, 11] (using the --dualize option), with coefficients in Z2

only. DioCoH and PHAT have been reported to be the most efficient implementation in prac-
tice [2, 11]. All timings are measured on a Linux machine with 3.00 GHz processor and 32
GB RAM. Dionysus, PHAT and our implementation are written in C++ and compiled with gcc

4.6.2 with optimization level -O3. Timings are all averaged over 10 independent runs. The
symbols T∞ means that the computation lasted more than 12 hours.

We construct three families of simplicial complexes [14] which are of particular interest in
topological data analysis: the Rips complexes (denoted Rips), the relaxed witness complexes
(denoted Wit) and the α-shapes (denoted αSh). These complexes depend on a relaxation
parameter ρ. When the data points are embedded, the complexes are constructed up to
embedding dimension, with euclidean metric. They are constructed up to the intrinsic di-
mension of the space with intrinsic metric otherwise. We use a variety of both real and
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DioCoH PHAT⊥ PHAT CAM

Data Cpx |P| D d ρmax k |K| Z2 Z11 Z2 Z11 Z2 Z11 Z2 Z11

Cy8 Rips 6040 24 2 0.41 16 21× 106 420 4822 44 − 5.4 − 6.4 6.5
S4 Rips 507 5 4 0.715 5 72× 106 943 1026 96 − 3554 − 22.5 23.2
L57 Rips 4769 − 3 0.02 3 34× 106 239 240 35 − 970 − 9.3 9.5
Bro Wit 500 25 ? 0.06 18 3.2× 106 807 T∞ 6.5 − 0.88 − 2.7 2.9
Kl Wit 10000 5 2 0.105 5 74× 106 569 662 100 − 1771 − 19.7 19.9
L35 Wit 700 − 3 0.06 3 18× 106 109 110 18 − 865 − 5.1 5.1
Bud αSh 49990 3 2 ∞ 3 1.4× 106 30.0 30.9 2.5 − 0.33 − 0.7 0.7
Nep αSh 2× 106 3 2 ∞ 3 57× 106 T∞ T∞ 166 − 33 − 39.5 40.2

Figure 3. Data, timings (in seconds) and statistics.

synthetic datasets: Cy8 is a set of points in R24, sampled from the space of conformations
of the cyclo-octane molecule, which is the union of two intersecting surfaces; S4 is a set of
points sampled from the unit 4-sphere in R5; L57 and L35 are sets of points in the lens
spaces L(5, 7) and L(3, 5) respectively, which are non-embedded spaces; Bro is a set of 5× 5
high-contrast patches derived from natural images, interpreted as vectors in R25, from the
Brown database; Kl is a set of points sampled from the surface of the figure eight Klein
Bottle embedded in R5; Bud is a set of points sampled from the surface of the Happy Buddha
(http://graphics.stanford.edu/data/3Dscanrep/) in R3; and Nep is a set of points sam-
pled from the surface of the Neptune statue (http://shapes.aimatshape.net/). Datasets
are listed in Figure 3 with details on the sets of points P, their size |P|, the ambient dimen-
sion D, the intrinsic dimension d of the object the sample points belong to (if known), the
threshold ρmax, the dimension k of the simplicial complexes and the size |K| of the simplicial
complexes.

Time Performance: As Dionysus and PHAT encode explicitely the boundaries of the sim-
plices, we use a Hasse diagram for implementing KDS. We thus have the same time com-
plexity for accessing the boundaries of simplices. We use the persistent homology algo-
rithm of PHAT with options --twist --sparse pivot column and the persistent cohomology
algorithm (noted PHAT⊥) with option --twist --sparse pivot column --dualize. The
--twist algorithm is the most efficient for our experiments. The --sparse pivot column

representation for the ”pivot column” is the most efficient representation, for our experiem-
nts, that can generalize to arbitrary coefficients for persistent homology1. As illustrated in
Figure 3, the persistent cohomology algorithm of Dionysus is always several times slower
than our implementation. Moreover, DioCoH is sensitive to the field used, as illustrated in the
case of Cy8 and Bro. On the contrary, CAM shows almost identical performance for Z2 and
Z11 coefficients on all examples. The persistent cohomology algorithm PHAT⊥ performs better
than DioCoH. However, CAM is still between 2.3 and 6.9 times faster.

The persistent homology algorithm of PHAT shows good performance in the case of the
alpha shapes and on Cy8 and Bro: CAM and PHAT have close timings. However, CAM scales
better to more complex examples (such as S4, L57, Kl and L35, which have higher intrinsic
dimension and more complex topology). Indeed, the running time per simplex of CAM remains

1PHAT also contains pivot column representations specifically optimized for Z2 coefficients using low level bit
operations. These bit representations usually accelerate by a constant factor the computation of persistence
on complexes involving a lot of arithmetic operations, in particular the persistent homology algorithm PHAT on
S4 and Kl in Figure 3. They do not change the asymptotic analysis done in this paragraph.

http://graphics.stanford.edu/data/3Dscanrep/
http://shapes.aimatshape.net/
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Nep |M | #Fop.
Compression 126057 84× 106

¬Compression 574426 3860× 106

Nep average maximum
cav, cmax 0.79 18
rav, rmax 1.02 18

Bro time
Reordering 2.9 s.
¬Reordering 14.2 s.

Bro Z11 Q
MDS a∂σ Mop MDS a∂σ Mop

71% 19% 10% 67% 21% 12%

Figure 4. Statistics on the effect of the optimizations.

stable on all examples and for all field coefficients (between 2.7×10−7 and 9.1×10−7 seconds
per simplex).

Statistics and Optimization: Figure 4 presents statistics about the computation. The top
table presents, on the left, the effect of the compression (removal of duplicate columns) of the
annotation matrix on the number of elements |M | stored in the sparse representation and the
number of changes #Fop. in the matrix during the computation of the persistence diagram
of Nep. We note a reduction factor of 4.5 for the size of the matrix, and we proceed to 46
times less field operations with the compression. Considering Nep is 57 million simplices, we
proceed to less than 1.5 field operations per simplex on average. The right part of the table
shows the average and maximum number of non-zero elements in a column when proceeding
to a sum of annotation vectors (Sum-ann) and the average and maximum number of non-zero
elements in a row when proceeding to its reduction (Kill-cocycle). These values are key
variables (cmax and rmax respectively) in the complexity analysis of the algorithm. We note
that these values remain really small. The bottom table presents the effect of the reordering
strategy on the example Bro. We note that reordering iso-simplices makes the computation
4.9 faster. Finally, the right side of the table presents how the computing time is divided
into maintaining the compressed annotation matrix (noted MDS), computing the annotation
vector a∂σ and modifying the values of the elements in the compressed annotation matrix
(noted Mop). The percentage are given when computing persistent cohomology with Z11 and
Q coefficients. The computational complexity of field operations 〈F,+, ·,−, /, 0, 1〉 depends on
the field we use. For Z11, or any field of small cardinality, the operations can be precomputed
and accessed in constant time. The field operations in Q are more costly. Specifically, an
element q in Q is represented as a pair of coprime integers (r, s) such that q = r/s, and field
operations may require gcd computation to ensure that nominator and denominator remain
coprime. However, the computational time of CAM is quite insensitive to the field we use.
Specifically, as it minimizes the number of matrix changes using the compression method, the
computational time is only increased by 8% when computing persistence with Q coefficients
instead of Z11, whereas the computation involving field operations takes 34% more time.

In all our experiments, the size of the compressed annotation matrix is negligible com-
pared to the size of the simplicial complex. Consequently, combined with the simplex tree
data structure [6] for representing the simplicial complex, we have been able to compute the
persistent cohomology of simplicial complexes of several hundred million simplices in high
dimension.
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