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Abstract
This article is motivated by the following satisfiability question: pick uniformly at random an and{or Boolean

expression of length n, built on a set of kn Boolean variables. What is the probability that this expression is
satisfiable? asymptotically when n tends to infinity?

The model of random Boolean expressions developed in the present paper is the model of Boolean Catalan
trees, already extensively studied in the literature for a constant sequence pknqně1. The fundamental break-
through of this paper is to generalise the previous results for any (reasonable) sequence of integers pknqně1,
which enables us, in particular, to solve the above satisfiability question.

We also analyse the effect of introducing a natural equivalence relation on the set of Boolean expressions. This
new quotient model happens to exhibit a very interesting threshold (or saturation) phenomena at kn “ n{ln n.

Keywords: Boolean formulas/functions; Catalan trees; Equivalence relation; Probability distribution; Satisfi-
ability; Analytic combinatorics.

1 Introduction
For several decades, satisfiability problems have been extensively studied by computer scientists and probabilists,
as well as statistical physicists. In this paper, we focus on the probabilistic version of satisfiability problems: what
is the probability that a random Boolean expression is satisfiable? The answer to this question obviously depends
on the distribution considered on the set of Boolean expressions.

One of the most studied satisfiability problems is the 3–sat problem. It consists in choosing uniformly at
random an expression among conjunctions of n clauses, each clause being a disjunction of three literals - where
literals are chosen among a set of kn variables and their negations. What is the probability that such a random
Boolean expression is satisfiable? when n tends to infinity?

This question is already partially answered – see for example [1]: the following phase transition is proven. If the
ratio kn{n is small enough, then the random expression is satisfiable with probability tending to 1 when n tends to
infinity, whereas if the ratio kn{n is large enough, then, this probability tends to 0. Refining this statement is the
challenging aim of a large literature.

There are many other satisfiability problems. The K–sat problem is for example the object of a recent break-
through by Coja-Oghlan and Panagiotou [5] and Coja-Oghlan [4], who obtained the existence of a sharp threshold
when K tends to infinity. The 2-xorsat problem is studied by Daudé and Ravelomanana [6], using Analytic
Combinatorics to exhibit and describe precisely a phase transition phenomenon.

The aim of the present paper is to define and study a new satisfiability model (i.e. a new distribution on the
set of Boolean expressions) inspired by the literature on quantitative logics.

Quantitative logics, which origin might go back to the work of Woods [20], aims at answering this question:
Which Boolean function does a random Boolean expression represent? Once again, the answer to this question
deeply depends on the model of randomness chosen for Boolean expressions.
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The Catalan tree model, first studied by Lefmann and Savický [15], is defined as follows: A Boolean tree is a
binary plane rooted tree (i.e. a Catalan tree) whose internal nodes are labelled by the connectives and or or and
whose leaves are labelled by k variables and their negations. Pick up uniformly at random a tree among Boolean
trees of size n, and denote by Pn,k the distribution it induces on the set of Boolean functions. Lefmann and Savický
first proved the existence of a limiting probability distribution Pk on Boolean functions when the size n of the
random Boolean expression tends to infinity.

Since the seminal paper by Chauvin et al. [2], the Analytic Combinatorics’ community aims at understanding
better the Catalan tree distribution Pk (and similarly defined distributions) on the set of Boolean functions. In
particular, Kozik [14] proves, in the Catalan tree model, an asymptotic (when k tends to infinity) relation between
the probability of a given function and its complexity (i.e. the complexity of a Boolean function being the size
of the smallest tree representing it). His powerful approach, the pattern theory, easily classifies and counts large
expressions according to specific structural constraints. It will be generalised in the present paper.

Remark that in the Catalan tree model defined above, the size n of the Boolean expressions tend to infinity
while the number k of literals labelling them is fixed. For technical reasons, k is then sent to infinity in order to
obtain an asymptotic estimate of the probability of a given Boolean function. It means that the trees we consider
have a lot of repetitions in their leaves: it is legitimate to ask if this bias the distribution induced on the set of
Boolean functions. Genitrini and Kozik [12, 11] have proposed another model where random Boolean expressions
are built on an infinite set of variables. This approach avoids the bias induced by letting n tend to infinity while k
stays fixed.

Our paper extends the Catalan model in order both (1) to let n and k tend to infinity together and (2) to fit in
the satisfiability context.

Following the extended abstract [13], we also look at the influence of a natural notion of equivalence on the set
of Boolean expressions and functions. Roughly speaking, we say that two expressions or functions are equivalent
if the second one can be obtain from the first one by renumbering the variables. As an example, the expressions
px1 and x2q and px12 and x3q are equivalent.

We will describe and study in parallel these two models (with an without equivalence classes) where the number
of variables and the size of expressions jointly tend to infinity. Since the proofs will be very similar in both models,
we will try general notations that fit both models. The model without equivalence classes will permit, as a corollary
to answer the satisfiability problem in the context of Catalan Boolean expressions. It will be very interesting to
see that, although the proofs are completely similar for both models, the probability distributions induced on the
set of Boolean functions behave differently: the introduction of equivalence classes gives birth to an interesting and
quite mysterious threshold phenomenon.

The paper is organised as follows. In Section 2 we define our two new models: the generalised model where the
number of variables depends on the size of the considered trees and the quotient model where we introduce a natural
equivalence relation on Boolean trees and functions. Section 3 is devoted to stating and discussing our three main
results: the satisfiability question for random Catalan expressions; the link between the probability of a Boolean
function (resp. a class of Boolean functions) and its complexity, both in the generalised and the quotient models.
Section 4 and Section 5 contain the technical core of the paper: Section 4 is an analytic part focusing mainly on
the difficulties arising from the introduction of the equivalence relation, while Section 5 concerns both models and
discusses Kozik’s pattern theory. Finally Section 6 contains the proofs of our main results.

2 Description of the two models
2.1 Contextual definitions
A Boolean function is a mapping from t0, 1uN into t0, 1u. The two constant functions pxiqiě1 ÞÑ 1 and pxiqiě1 ÞÑ 0
are respectively called true and false.

An and{or tree is a binary plane tree whose leaves are labelled by literals, i.e. by elements of txi, x̄iuiPN, and
whose internal nodes are labelled by the connective and or the connective or, respectively denoted by ^ and _. We
will say that xi and x̄i are two different literals but they are respectively the positive and the negative version of the
same variable xi. Every and{or tree is equivalent to a Boolean expression and thus represents a Boolean function:
for example, the tree in Fig. 1 is equivalent to the expression prx1_p x1_x2qs_x3q_px4^x1q, where  x “ 1´x
for all x P t0, 1u, and represents the constant function true.

The size of an and{or tree is its number of leaves: remark that, for all n ě 1, there is infinitely many and{or
trees of size n. Finally we define the tree-structure of an and{or tree to be the and{or tree where the labels of the
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Figure 1: An and{or tree computing the constant function true.

leaves (but not of the internal nodes) have been removed.
Definition 1. The complexity of a non constant Boolean function f , denoted by Lpfq, is defined to be the size
of its minimal trees, i.e. the size of the smallest trees computing f . The complexity of true and false is defined to
be 0.

Although a Boolean function is defined on an infinite set of variables, it may actually depend only on a finite
subset of essential variables.
Definition 2. Given a Boolean function f , we say that the variable x is essential for f if, and only if, f|xÐ0 ı
f|xÐ1 (where f|xÐα is the restriction of f to the subspace where x “ α). We denote by Epfq the number of essential
variables of f .

Remark that the complexity and the number of essential variables of a Boolean function are related by the
following inequalities: Epfq ď Lpfq ď 2Epfq`2 (see e.g. [7, p. 77–78] for the second inequality). Note that,
asymptotically when Epfq tends to infinity a tight asymptotic upper-bound is 2Epfq

{Epfq, as proved by Lupanov [16]
for the upper bound and Lutz [17] for the lower bound.

In the whole paper, our models propose a way to make n and k tend to infinity together:
Definition 3. Let pknqně1 be an increasing sequence of integers such that kn tends to infinity when n tends to
infinity.

2.2 The generalised Catalan tree model
Let us recall the definition of the Catalan tree model defined and studied by Paris et al. [18], Lefmann & Savický [15],
Chauvin et al. [2] and Kozik [14]. In those papers, the authors fix an integer k ě 1 and consider the uniform
distribution on and{or trees of size n whose leaf-labels are constrained to be in tx1, x̄1, . . . , xk, x̄ku. They study the
induced distribution on the set of Boolean variables and prove that this distribution converges to a limit distribution
pk when the size n of the trees tends to infinity. Given a Boolean function f , they then prove asymptotic theorems
for pkpfq when k tends to infinity. In this approach, the order of the two limits (on n and then on k) is a priori
important.

We define first the generalised Catalan tree model, that is a natural extension of the previous model.

The model pGq is defined as follows:
(1) consider the uniform distribution on and{or trees of size n which leaf-labels belong to tx1, x̄1, . . ., xkn

, x̄kn
u,

(2) denote by Pn the distribution it induces on the set of Boolean functions, and call this new distribution the
generalised Catalan tree distribution.

Remark that there are An and{or trees of size n labelled with kn variables, with

An “ 2n´1p2knqn ¨ Catn, where Catn “
1
n

ˆ

2n´ 2
n´ 1

˙

, (1)

i.e. Catn is the number of binary plane trees having n leaves.
For all Boolean function f , we denote by Anpfq the number of and{or trees of size n labelled with kn variables

that compute f . Thus, by definition,
Pnpfq “

Anpfq

An
.

3



2.3 The quotient Catalan tree model
A second natural generalisation of the Catalan tree model is obtained by introducing equivalence classes of Boolean
trees and functions. The idea is the following: the functions pxiqiě1 ÞÑ x1^x2 and pxiqiě1 ÞÑ x38^ x̄12 can be seen
as two realisations of the function conjunction.

Informally, two and{or trees are equivalent if the leaves of the first one can be relabelled (and negated) without
collision in order to obtain the second tree. We define formally this equivalence relation as follows.

Definition 4. Let A and B be two and{or trees. Trees A and B are equivalent if

(i) their tree-structures are identical;

(ii) two leaves are labelled by the same variable in A if and only of they are labelled by the same variable in B;

(iii) two leaves are labelled by the same literal in A if and only of they are labelled by the same literal in B.

This equivalence relation on Boolean trees induces straightforwardly an equivalence relation on Boolean functions.
Note that all functions of an equivalence class have the same complexity and the same number of essential variables.
In the following, we will denote by xfy the equivalence class of the function f . We denote by Lxfy “ Lpfq (resp.
Exfy “ Epfq) the common complexity (resp. number of essential variables) of the elements of xfy.

Definition 5. Let xfy be a class of Boolean functions. The multiplicity of the class xfy, is given by

Rxfy “ Lxfy ´ Exfy.

It corresponds to the number of repetitions of variables in a minimal tree of a function from xfy.

Recall that pknqně1 is an increasing sequence of integers that tends to infinity when n tends to infinity. In the
following, we only consider equivalence classes of trees having at least one element whose leaf-labels are in tx1, x̄1,
. . ., xkn

, x̄kn
u. It means that we restrict ourselves to trees of size n labelled by at most kn different variables. Note

that if kn ě n for all n ě 1, this is not a restriction because a tree of size n cannot contain more that n different
leaf-labels.

The model pEq is defined as follows:

(1) consider the uniform distribution on classes of equivalence of trees of size n (labelled with at most kn different
variables),

(2) the distribution it induces on the set of equivalence classes of Boolean function is denoted by Pn and called the
quotient Catalan tree distribution.

We denote by An the number of equivalence classes of trees of size n (in which at most kn different variables
appear as leaf-labels). Given a class of Boolean functions xfy, we denote by Anxfy the number of equivalence classes
of trees of size n (labelled with at most kn different variables) that compute a function of xfy. We thus have

Pnxfy “
Anxfy

An
.

Proposition 1. The number of classes of trees of size n satisfies:

An “ Catn ¨
kn
ÿ

p“1

"

n

p

*

22n´1´p,

where Catn is the number of (unlabelled) binary planar trees having n leaves (cf. Equation (1)), and where
 

n
p

(

is
the Stirling number of the second kind.1

Proof. An equivalence class of and{or trees can be seen as

• a binary plane tree (factor Catn)

• whose internal nodes are labelled by and and or connectives (factor 2n´1),
1In Proposition 1,

 n
p

(

is the number of partitions of n objects in p non-empty subsets (see e.g. [7, p. 735–737]).
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• whose leaves are partitioned onto 1 ď p ď kn parts (factor
 

n
p

(

),

• each of these parts being then partitioned onto two parts (one on them being possibly empty: factor 2n´p).

Remark on notations: We have already used the notation An to define the model pGq. We will keep the same
notation for these two distinct objects because they will have the same role in the proofs. But formally, we have

ApGqn “ Catn ¨ 22n´1 ¨ knn and ApEqn “ Catn ¨
kn
ÿ

p“1

"

n

p

*

22n´1´p.

3 Main results and discussion
We have defined the two models we are interested in: the generalised and the quotient Catalan trees distributions.
Both distributions are called Pn for simplicity’s sake, but we will use PpGqn and PpEqn when the precision is needed.
The aim of this paper is to study the behaviour of both distributions when the size n of the considered trees tends
to infinity.

Let us remark that the distribution induced by pGq is based on an uniform distribution among trees of the same
size. But the distribution induced by pEq lies on an uniform distribution among classes of trees of the same size.
Obviously both induced distributions on Boolean functions are distinct.
Theorem 1 (Model pGq). Let pknqně1 be an increasing sequence of integers tending to infinity when n tends to
infinity. For all Boolean functions f , there exists a positive constant αpGqf such that, asymptotically when n tends to
infinity,

Pnpfq „ α
pGq
f ¨

ˆ

1
kn

˙Lpfq`1
.

This result has an interesting corollary concerning the Catalan-sat problem: recall that a Boolean expression
is said satisfiable if it does not represent the constant function false.
Corollary 1 (Catalan-sat). Let pknqně1 be an increasing sequence of integers tending to infinity when n tends
to infinity. Pick up uniformly at random an and{or tree of size n with leaf-labels in tx1, x̄1, . . ., xkn

, x̄kn
u. This

random and{or tree is equivalent to a Boolean expression that is satisfiable with probability tending to 1 when n
tends to infinity.

Theorem 2 (Model pEq). Let pknqně1 be an increasing sequence of integers tending to infinity when n tends to
infinity. There exists a sequence pMnqně1 such that Mn „nÑ8

n
lnnand such that, for all fixed equivalence classes

of Boolean functions xfy, there exists a positive constant αpEq
xfy satisfying:

(i) if, for all sufficiently large n, kn ďMn, then, asymptotically when n tends to infinity,

Pnxfy „ α
pEq
xfy ¨

ˆ

1
kn`1

˙Rxfy`1
;

(ii) if, for all sufficiently large n, kn ěMn, then, asymptotically when n tends to infinity,

Pnxfy „ α
pEq
xfy ¨

ˆ

lnn
n

˙Rxfy`1
.

First note, that we could give some corollary about satisfiability for the second model pEq too. However, in the
classical context of SAT problems, there are no quotient formulas. So we omit this by-product.

Let us discuss these results in view of the classical Catalan tree distribution studied by [2] and [14]: let us recall
briefly its definition. Let k ě 1 be an integer. We denote by Tn,k the number of trees of size n, with leaf-labels in
tx1, x̄1, . . . , xk, x̄ku. Given a Boolean function f , we denote by Tn,kpfq the number of such trees computing f . The
Catalan distribution is thus defined by, for all Boolean functions f ,

pkpfq :“ lim
nÑ`8

Tn,kpfq

Tn,k
.

The existence of the above limit is proved in [15] or [2]. Kozik proved:

5



Theorem 3 (Kozik [14]). Let k be a fixed positive integer. For all Boolean functions f , there exists a positive
constant cf such that

pkpfq „kÑ8 cf ¨

ˆ

1
k

˙Lpfq`1
.

As one can see Theorems 1 and 3 are very similar, and we will see that their proofs are also very similar after
having observed a simple but fundamental trick: one has to consider separately the tree-structure of an and{or
tree and its leaf-labelling. It was not clear before this work how to generalise Kozik’s proof in order to tackle the
Catalan-sat problem (cf. Corollary 1).

Introducing equivalence classes makes things different, and an interesting threshold effect appears (see Theo-
rem 2). We still have no intuition for this threshold. Obviously we will see in the proof where it comes from.

In the classical Catalan tree model, each Boolean function is studied separately instead of being considered among
its equivalence class. We can translate the result obtained by Kozik in terms of equivalence classes by summing
over all Boolean functions belonging to a given equivalence class: note that there are

`

k
Epfq

˘

2Epfq functions in the
equivalence class of f . Therefore, the result of Kozik is equivalent to: for all classes xfy, there exists a constant cxfy
such that, asymptotically when k tends to infinity,

lim
nÑ`8

pn,kxfy „ cxfy

ˆ

1
k

˙Lpfq´Epfq`1
“ cxfy

ˆ

1
k

˙Rxfy`1
.

The classical Catalan tree distribution can be seen as a degenerate case of our model where there exists a fixed
integer k such that kn “ k for all n ě 1. Recall that we assume in the present paper that kn tends to infinity when
n tend to infinity: the case kn “ k is thus not a particular case of our results, but only a degenerate one.

Once again, the proof of Theorem 2 relies on similar ideas as Kozik’s proof of Theorem 3. To emphasise the
similarities between the proof of our two main theorems (Theorems 1 and 2), we will develop their proofs together
in Section 6.

4 Technical key point
As we already mentioned, the key idea of this paper is to separate the tree-structure of an and{or tree and its
leaf-labelling. Recall that

ApGqn “ 2n´1Catn ¨ p2knqn and ApEqn “ 2n´1Catn ¨
kn
ÿ

p“1

"

n

p

*

2n´p.

For all m,n ě 1, let us denote by

Labn,m :“

$

’

’

’

&

’

’

’

%

p2mqn in model pGq;

2n ¨
m
ÿ

p“1

"

n

p

*

2´p in model pEq.

In both models, Labn,m corresponds to the number of ways to label the n leaves with m variables, thus

An “ 2n´1Catn ¨ Labn,kn
.

Finally, let us introduce the key quantity
ratn :“ Labn´1,kn

Labn,kn

.

Note that in the model pGq, the quantity 1{ratn “ 2kn corresponds to the number of the possible labellings of
the pn ` 1qth leaf once the other leaves are already labelled. In the model pEq, the leaf-labellings are not longer
independent and this quantity 1{ratn is thus less explicit. A detailed analysis of this quantity is needed in the
following. This section is devoted to its asymptotic analysis.

Proposition 2. Let pknqně1 be an increasing sequence of integer tending to infinity when n tends to infinity.

6



pGq For all integer p,
Labn´p,kn

Labn,kn

“
1

p2knqp
.

pEq There exists a sequence pMnqně1 with Mn „nÑ8
n

lnn and such that, for all integer p, asymptotically when n
tends to infinity,

Labn´p,kn

Labn,kn

“

$

’

&

’

%

1`op1q
p2knqp

if kn ďMn for large enough n;

p1` op1qq
` lnn

2n
˘p if kn ěMn for large enough n.

In particular, taking p “ 1 gives

Proposition 3. Let pknqně1 be an increasing sequence of integer tending to infinity when n tends to infinity.

pGq ratn “
1

2kn
.

pEq There exists a sequence pMnqně1 with Mn „nÑ8
n

lnn and such that, asymptotically when n tends to infinity,

ratn “

$

&

%

1`op1q
2kn

if kn ďMn for large enough n;

p1` op1qq lnn
2n if kn ěMn for large enough n.

Remark that, with this definition of ratn, Theorems 1 and 2 can be rephrased as: for all Boolean functions f ,
there exists constants

PpGqn pfq „ λf ¨ ratLpfq`1
n ,

and
PpEqn xfy „ λxfy ¨ ratRxfy`1

n .

The proof of Proposition 3 pGq is obvious and the rest of this section is devoted to the more technical proof of
Proposition 3 pEq.

The following proposition, which can be seen as some particular case of Bonferroni inequalities allows to exhibit
bounds on Labn,kn

.

Proposition 4 (cf. for example [19]). For all n ě 1, for all p P t1, . . . , nu,

pn

p! ´
pp´ 1qn
pp´ 1q! ď

"

n
p

*

ď
pn

p! .

In view of these inequalities and of the expression of Labn,kn
, both the following sequences naturally appear:

Lemma 1. Let n be a positive integer.

(i) The following sequence is unimodal:
´

apnqp

¯

pPt1,...,nu
“

ˆ

pn

p! 2´p
˙

pPt1,...,nu
,

i.e. there exists an integer Mn such that
´

a
pnq
p

¯

p
is strictly increasing on t1, . . . ,Mnu and strictly decreasing

on tMn ` 1, . . . , nu.

(ii) Moreover, the sequence pMnqn is increasing and asymptotically satisfies:

Mn „nÑ8
n

lnn.

7



Proof. (i) Let us prove that the sequence
´

a
pnq
p

¯

1ďpďn
is log-concave, i.e. that the sequence

ˆ

a
pnq
p`1

a
pnq
p

˙

1ďpďn´1
is

decreasing. Let p be an integer in t1, . . . , n´ 1u. By Definition of apnqp :

a
pnq
p`1

a
pnq
p

“

ˆ

p` 1
p

˙n

¨
1

2pp` 1q ,

and consequently, for all n ě 0,

a
pnq
p`1

a
pnq
p

ą 1 ðñ n ln
ˆ

p` 1
p

˙

´ lnp2p` 2q ą 0.

The function φn : p ÞÑ n ln
´

p`1
p

¯

´ lnp2p ` 2q is strictly decreasing. Note that both φnp1q and φnpn ´ 1q are
tending to infinity when n tends to infinity. Then, for all n large enough, there exists a unique Mn such that
´

a
pnq
p

¯

p
is strictly increasing on t1, . . . ,Mnu and strictly decreasing on tMn ` 1, . . . , nu. Let us suppose n large

enough for the rest of the proof.

(ii) Let us denote by xn the single solution of equation:
ˆ

x` 1
x

˙n

¨
1

2px` 1q “ 1, when it exists. (2)

First remark that the sequence pxnqně1 is increasing. We indeed know: φnpxnq “ 0 and φn`1pxn`1q “ 0, which
implies that φnpxn`1q “ ´ ln

´

1` 1
xn`1

¯

ă 0. Therefore, since for each n, the function φn is decreasing, we have
that xn`1 ě xn, for all large enough n. Therefore, the sequence pMnqně1 is asymptotically increasing.

Since, asymptotically when n tends to infinity,
ˆ n

lnn ` 1
n

lnn

˙n

¨
1

2p n
lnn ` 1q „

lnn
2 ,

we have that n{ lnn ď xn and therefore, xn tends to infinity. Thus, Equation (2) evaluated in xn is equivalent to

n ln
ˆ

1` 1
xn

˙

“ ln 2` lnpxn ` 1q, (3)

which implies xn ln xn „ n, when n tends to infinity. We easily deduce from this asymptotic relation that ln xn „ lnn
and that xn „ n

lnn when n tends to infinity. Since Mn “ txnu, we conclude that Mn „ n{lnn, when n tends to
infinity.

We are now ready to understand the asymptotic behaviour of Labn,kn{2n: roughly speaking, asymptotically, the
sum Labn,kn{2n does essentially only depend on the terms around Mn.

Lemma 2. Let punqně1 be an increasing sequence such that un ď n for all integer n ě 1 and un tends to infinity
when n tends to infinity.

(i) If, for all large enough n, un ďMn, then, for all sequences pδnqně1 such that δn “ opunq and un

?
lnun?
n

“ opδnq,
we have, asymptotically when n tends to infinity,

Labn,un

2n “ p1` op1qq
un
ÿ

p“un´δn

pn

p! 2´p. (4)

(ii) If, for large enough n, un ě Mn, then, for all sequences pδnqně1 such that δn “ opunq and un

?
lnun?
n

“ opδnq,

for all sequences pηnqně1 such that ηn “ opMnq, limnÑ`8
η2

n

Mn
“ `8 and

a

Mn lnpun ´Mnq “ opηnq, we
have, asymptotically when n tends to `8,

Labn,un

2n “ p1` op1qq
mintMn`ηn,unu

ÿ

p“Mn´δn

pn

p! 2´p. (5)

8



Proof of Lemma 2 (i). Via Proposition 4, we can bound Labn,un

2n : for all n ě 1,

1
2 ¨

un´1
ÿ

p“1

pn

p! 2p `
unn

un! 2un
ď

Labn,un

2n ď

un
ÿ

p“1

pn

p! 2p . (6)

Let us assume that un ďMn for all large enough n, and let us prove that the two bounds of Equations (6) are
of the same asymptotic order when n tends to infinity.

Denote, for all integer m ě 1, Sm “
řm
p“1 a

pnq
p . Thus Equations (6) implies

Sun

2 ď
Labn,un

2n ď Sun
.

Let us split the sum Sun into two parts: the last δn summands, and the rest.

Sun
“ Sun´δn´1 `

un
ÿ

p“un´δn

apnqp .

By assumption, δn “ opunq and we therefore can choose n large enough such that un ą δn. Let us prove that
Sun´δn´1 is negligible in front of aun

, and thus in front of
řun

p“un´δn
a
pnq
p . Recall that

´

a
pnq
p

¯

pě1
is increasing on

t1, . . . ,Mnu, which implies
Sun´δn´1 ď un ¨ aun´δn

.

For all large enough n, via Stirling formula, we deduce:

aun´δn

aun

“ 2δn

ˆ

un ´ δn
un

˙n
un!

pun ´ δnq!
“

ˆ

2un
e

˙δn
ˆ

un ´ δn
un

˙n´un`δn´
1
2

p1` op1qq

“ exp
„

δn ln
ˆ

2un
e

˙

`

ˆ

n´ un ` δn ´
1
2

˙

ln
ˆ

1´ δn
un

˙

` op1q


.

Since δn “ opunq, we get ln
´

1´ δn

un

¯

“ ´ δn

un
´

δ2
n

2u2
n
` o

´

δ2
n

u2
n

¯

. Moreover, un ďMn thus,

aun´δn

aun

“ exp
„

δn ln 2` δn ln un ´
nδn
un

´
nδ2
n

2u2
n

` o

ˆ

nδ2
n

u2
n

˙

.

Therefore, by using un ďMn, and Equation (3), we deduce n
Mn

ě ln 2` lnMn,

aun´δn

aun

ď exp
„

δn ln 2` δn lnMn ´
nδn
Mn

´
nδ2
n

2u2
n

` o

ˆ

nδ2
n

u2
n

˙

ď exp
„

´
nδ2
n

2u2
n

` o

ˆ

nδ2
n

u2
n

˙

.

From the assumption un

?
lnun?
n

“ opδnq, we deduce ln un “ o
´

nδ2
n

u2
n

¯

, thus we can conclude

Sun´δn´1
aun

ď un
aun´δn

aun

ď exp
„

ln un ´
nδ2
n

2u2
n

` o

ˆ

nδ2
n

u2
n

˙

“ op1q.

And consequently, we get Sun „nÑ8
řun

p“un´δn
a
pnq
p .

Proof of Lemma 2, (ii). Assume that un ěMn for all large enough n. Let us split the sums of the lower and upper
bounds of Equations (6) into three parts: the first from index 1 to Mn ´ δn ´ 1, the second from index Mn ´ δn to
Mn` ηn, and the third from index Mn` ηn` 1 to un. Remark that, if un ďMn` ηn, then the third part is empty
and the second one is truncated:

Sun
“ SMn´δn´1 `

Mn`ηn
ÿ

p“Mn´δn

apnqp `

un
ÿ

p“Mn`ηn`1
apnqp .

9



By arguments similar to those developed in the proof of assertion (i), we can prove that SMn´δn´1 is negligible in
front of apnqMn

, and thus in front of
řMn`ηn

p“Mn´δn
a
pnq
p . Therefore, if un ďMn ` ηn, assertion (ii) is proved. Let us now

assume that un ěMn` ηn` 1: to end the proof, we prove that
řun

p“MN`ηn`1 a
pnq
p is negligible in front of apnqMn

, and
thus in front of

řMn`ηn

p“Mn´δn
a
pnq
p .

In view of Lemma 1, we have
un
ÿ

p“Mn`ηn`1
apnqp ď pun ´Mn ´ ηnq ¨ a

pnq
Mn`ηn

.

Via Stirling formula,

a
pnq
Mn`ηn

a
pnq
Mn

“ 2´ηn

ˆ

Mn ` ηn
Mn

˙n
Mn!

pMn ` ηnq!
“

ˆ

2pMn ` ηnq

e

˙´ηn
ˆ

Mn ` ηn
Mn

˙n´Mn´
1
2

p1` op1qq

“ exp
„

´ηn ln
ˆ

2pMn ` ηnq

e

˙

`

ˆ

n´Mn ´
1
2

˙

ln
ˆ

1` ηn
Mn

˙

` op1q


.

Since ln
´

1` ηn

Mn

¯

ď
ηn

Mn
, we get:

a
pnq
Mn`ηn

a
pnq
Mn

ď exp
„

´ηn ln 2` ηn ´ ηn lnpMn ` ηnq `
ηn
Mn

pn´Mn ´
1
2 q ` op1q



“ exp
„

´ηn ln 2´ ηn lnpMn ` ηnq `
nηn
Mn

` op1q


.

Our assumption states ηn

Mn
“ op1q, thus

a
pnq
Mn`ηn

a
pnq
Mn

ď exp
„

´ηn ln 2´ ηn lnMn ´ ηn ln
ˆ

1` ηn
Mn

˙

`
nηn
Mn

` op1q


“ exp
„

´ηn ln 2´ ηn lnMn ´
η2
n

Mn
`
nηn
Mn

`O
ˆ

η3
n

M2
n

˙

Since Mn “ txnu, we have

n ln
ˆ

1` 1
xn

˙

“ n

ˆ

1
Mn

´
1

2M2
n

`O
ˆ

1
M3
n

˙˙

,

therefore
ln 2` lnpxn ` 1q “ ln 2` lnMn `O

ˆ

1
Mn

˙

.

Equation (3) implies:

n

Mn
“ ln 2` lnMn `

n

2M2
n

`O
ˆ

n

M3
n

˙

`O
ˆ

1
Mn

˙

“ ln 2` lnMn `
n

2M2
n

`O
ˆ

n

M3
n

˙

,

because 1
Mn

“ op n
M3

n
q. Thus, we conclude

a
pnq
Mn`ηn

a
pnq
Mn

ď exp
„

´
η2
n

Mn
`O

ˆ

η3
n

M2
n

˙

`O
ˆ

nηn
M3
n

˙

“ exp
„

´
η2
n

Mn
` o

ˆ

η2
n

Mn

˙

,

because, from assumption:
a

Mn lnpun ´Mnq “ opηnq, we deuce
?
Mn “ opηnq. Finally we get

řun

p“Mn`ηn`1 a
pnq
p

a
pnq
Mn

ď pun ´Mn ´ ηnq
a
pnq
Mn`ηn

a
pnq
Mn

ď exp
„

lnpun ´Mnq ´
η2
n

Mn
` o

ˆ

η2
n

Mn

˙

“ op1q,

10



since, by assumption,
a

Mn lnpun ´Mnq “ opηnq. Therefore, asymptotically when n tends to infinity,

Sun
„

Mn`ηn
ÿ

p“Mn´δn

apnqp ,

which concludes the proof.

We are now ready for the proof of Proposition 2: let us decompose this proof in the two following Lemmas 3
and 4:

Lemma 3. Let pknqně1 be a sequence of integerssuch that kn ď Mn for large enough n, then, for all integer p,
asymptotically when n tends to infinity,

Labn´p,kn

Labn,kn

“ p1` op1qq
ˆ

1
p2knqp

˙

.

Proof. (i) Let us first assume that kn ď Mn´p. Let pδnqně1 an integer-valued sequence such that δn “ opknq

and kn

?
ln kn?
n

“ opδnq when n tends to infinity. Lemma 2 applied to un “ kn gives, asymptotically when n tends to
infinity,

Labn,kn

2n “ p1` op1qq
kn
ÿ

i“kn´δn

a
pnq
i .

Moreover, since kn ď Mn´p, and since the sequence pδnqně1 satisfies δn “ opknq and kn

?
ln kn?
n´p

“ opδnq, applying
Lemma 2 to the sequence un “ kn gives us, asymptotically when n tends to infinity,

Labn´p,kn

2n´p “ p1` op1qq
kn
ÿ

i“kn´δn

a
pn´pq
i .

Therefore,
Labn´p,kn

Labn,kn

“ p2´p ` op1qq
řkn

i“kn´δn
a
pn´pq
i

řkn

i“kn´δn
a
pnq
i

.

We have

pkn ´ δnq
p

kn
ÿ

i“kn´δn

a
pn´pq
i ď

kn
ÿ

i“kn´δn

ipa
pn´pq
i “

kn
ÿ

i“kn´δn

a
pnq
i “

kn
ÿ

i“kn´δn

ipapn´pqp ď kpn

kn
ÿ

p“kn´δn

apn´pqp ,

which implies
Labn´p,kn

Labn,kn

„
1

p2knqp
when nÑ `8.

(ii) Now assume that Mn´p ă kn ď Mn. Let pδnqně1 be an integer-valued sequence such that δn “ opknq and

kn

?
ln kn?
n´p

“ opδnq. Let pηnqně1 be an integer-valued sequence such that ηn “ opMn´pq, and
a

Mn´p lnpkn ´Mn´pq “

opηnq. Applying Lemma 2 (ii) to the sequence un “ kn, we obtain

Labn´p,kn

2n´p “ p1` op1qq
mintMn´p`ηn,knu

ÿ

i“Mn´p´δn

a
pn´pq
i .

Moreover, since δn “ opknq and kn

?
ln kn?
n

“ opδnq, via Lemma 2 (i),applied to the sequence un “ kn,

Labn,kn

2n “ p1` op1qq
kn
ÿ

i“kn´δn

a
pnq
i .

Let us remark, as above, that

pkn ´ δnq
p

kn
ÿ

i“kn´δn

a
pn´pq
i ď

Labn,kn

2n ď kpn

kn
ÿ

i“kn´δn

a
pn´pq
i .

11



Moreover, since kn ąMn´p, using similar arguments as those developed to prove Lemma 2 (i),

kn
ÿ

i“kn´δn

a
pn´pq
i „

mintkn,Mn´p`ηnu
ÿ

i“kn´δn

a
pn´pq
i „

Labn´p,kn

2n´p .

Therefore, since δn “ opknq, we get
Labn´p,kn

Labn,kn

“ p1` op1qq 1
p2knqp

,

which concludes the proof.

Lemma 4. Let pknqně1 be a sequence of integers that tends to infinity when n tends to infinity. Let us assume that
kn ěMn for large enough n, then, for all integer p, asymptotically when n tends to infinity,

Labn´p,kn

Labn,kn

“ p1` op1qq
ˆ

lnn
2n

˙p

.

Proof. By assumption, kn ě Mn, which implies kn ě Mn´p. Let pδnqně1 be a sequence of integers such that
δn “ opMn´pq and Mn

?
lnMn?
n

“ opδn`pq. Let pηnqně1 be another sequence of integers such that ηn “ opMn´pq,
and

a

Mn lnpkn ´Mnq “ opηn`pq. We thus can apply Lemma 2 (ii) to un “ kn and conclude that, asymptotically
when n tends to infinity,

Labn´p,kn

2n´p “ p1` op1qq
mintMn´p`ηn,knu

ÿ

i“Mn´p´δn

a
pn´pq
i .

Moreover, since the sequence pδnqně1 verifies δn “ opMn´pq “ opMnq and Mn

?
lnMn?
n

“ opδn`pq “ opδnq, and since
the sequence pηnqně1 verifies ηn “ opMn´pq “ opMnq, and

a

Mn lnpkn ´Mnq “ opηn`pq “ opηnq, we have,

Labn,kn

2n “ p1` op1qq
mintMn`ηn,knu

ÿ

i“Mn´δn

a
pnq
i .

Let us note that

pMn ´ δnq
p

mintMn`ηn,knu
ÿ

i“Mn´δn

a
pn´pq
i ď

Labn,kn

2n ď pMn ` ηnq
p

mintMn`ηn,knu
ÿ

i“Mn´δn

a
pn´pq
i .

Since kn ěMn ěMn´p, via similar arguments to those developed for the proof of Lemma 2 (ii), we get

mintMn`ηn,knu
ÿ

i“Mn´δn

a
pn´pq
i „

mintMn´p`ηn,knu
ÿ

i“Mn´δn

a
pn´pq
i .

We thus have to compare

Sn “

mintMn´p`ηn,knu
ÿ

i“Mn´δn

a
pn´pq
i

and

Tn “

mintMn´p`ηn,knu
ÿ

i“Mn´p´δn

a
pn´pq
i ,

and to prove that those two sums are equivalent when n tends to infinity. Decompose Sn as follows:

Sn “ Tn `

mintMn`ηn,knu
ÿ

i“mintMn´p`ηn,knu

a
pn´pq
i ´

Mn´δn
ÿ

i“Mn´p´δn

a
pn´pq
i .

12



Arguments from the proof of Lemma 2 (ii) imply that the second summand is negligible in front of the first. Let
us assume that the third term is non-zero, i.e. Mn ´ δn ą Mn´p ´ δn (note that if this term is zero then Sn „ Tn
is already proved). Via Lemma 1, since Mn

Mn´p
“ 1` op 1

Mn
q, we have

Mn´δn
ÿ

i“Mn´p´δn

a
pn´pq
i ď pMn ´ δn ´Mn´p ` δnqa

pn´pq
Mn´p´δn

“ op1q apn´pqMn´p´δn
“ o

´

a
pn´pq
Mn´p

¯

,

in view of Lemma 2 (i). Therefore, since apn´pqMn´p
ď Tn, we have Sn „ Tn when n tends to infinity, which implies,

since ηn “ opMnq and δn “ opMnq,

Labn´p,kn

Labn,kn

“ p1` op1qq 1
p2Mnq

p
“ p1` op1qq

ˆ

lnn
2n

˙p

.

Finally, this fundamental technical part allows us to use Kozik’s key ideas in order to describe the probability
distribution induced on Boolean functions, in our two new models.

5 Adjustment of Kozik’s pattern language theory
In 2008, Kozik [14] introduced a quite effective way to study Boolean trees: he defined a notion of pattern that
permits to easily classify and count large trees according to some constraints on their structures. Kozik applied
this pattern theory to study the classical Catalan tree distribution. We recall the definitions of patterns, illustrate
them on examples and then extend Kozik’s paper results in order to use them in our new models. This part will
extensively use Analytic Combinatorics (generating functions, symbolic methods, singularity analysis): we refer the
reader to Flajolet & Sedgewick’s book [7] for an introduction to these methods.

Definition 6. (i) A pattern is a binary tree with internal nodes labelled by ^ or _ and with external nodes
labelled by ‚ or �. Leaves labelled by ‚ are called pattern leaves and leaves labelled by � are called place-
holders. A pattern language is a set of patterns.

(ii) Given a pattern language L and a family of trees M, we denote by LrMs the family of all trees obtained by
replacing every place-holder in an element from L by a tree fromM.

(iii) We say that L is unambiguous if, and only if, for any familyM of trees, any tree of LrMs can be built from
a unique pattern from L into which trees fromM have been plugged.

The generating function of a pattern language L is `px, yq “
ř

d,p Lpd, pqx
dyp, where Lpd, pq is the number of

elements of L with d pattern leaves and p place-holders.

Definition 7. We define the composition of two pattern languages LrP s to be the pattern language of trees which
are obtained by replacing every place-holder of a tree from L by a tree from P .

Given an integer i and a pattern L, the pattern Lpiq is defined by the following recursion: Lp1q “ L and
Lpi`1q “ LpiqrLs.

Definition 8. A pattern language L is sub-critical for a family M if the generating function mpzq of M has a
square-root singularity τ , and if `px, yq is analytic in some set tpx, yq : |x| ď τ ` ε, |y| ď mpτq` εu for some positive
ε.

Definition 9. Let L be a unambiguous pattern language, M be a family of trees and Γ a subset of txiuiě1, which
cardinality does not depend on n. Given an element of LrMs,

(i) the number of its L-repetitions is the number of its L-pattern leaves minus the number of different variables
that appear in the labelling of its L-pattern leaves.

(ii) the number of its pL,Γq-restrictions is the number of its L-pattern leaves that are labelled by variables from
Γ, plus the number of its L-repetitions.

Definition 10. Let I be the family of the trees with internal nodes labelled by a connective and leaves without
labelling, i.e. the family of tree-structures.
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∨
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x1 x̄3

∧

x̄1 ∧

x3 x3

x1

∨

x̄2 ∧

x3 ∧

x2 x̄3

Figure 2: The tree computes the function x1 _ x2.

∨

∨

∧

∨

• •

�

•

∨

• ∧

• �

Figure 3: The pattern is an element of the pattern language N .

The generating function of I satisfies Ipzq “ z ` 2Ipzq2, that implies Ipzq “ p1 ´
?

1´ 8zq{4 and thus its
dominant singularity is 1{8. Let In be the n-th coefficient of Ipzq.

We can, for example, define the unambiguous pattern language N by induction as follows: N “ ‚|N _N |N ^�,
meaning that a pattern from N is either a single pattern leaf, or a tree rooted by _ which two sub-trees are patterns
from N , or a tree rooted by ^ which left sub-tree is a pattern from N and which right sub-tree is a place-holder.
An element of N is represented in Fig 3. Its generating function verifies npx, yq “ x ` npx, yq2 ` ynpx, yq and is
equal to npx, yq “ 1

2 p1´ y ´
a

p1´ yq2 ´ 4xq. It is thus sub-critical for I.
The tree depicted in Fig. 2 is built from the pattern of Fig. 3. It has 5 N -pattern leaves, 2 N -repetitions

and 4 pN, tx1, x2uq-restrictions. It is also built from the pattern of Fig. 4 and has 2 N rN s-pattern leaves, and 2
pN rN s, tx1, x2uq-restrictions.

The following key lemma is a generalization of the corresponding lemma of Kozik [14, Lemma 3.8].

Lemma 5. Let L be an unambiguous pattern, sub-critical for the tree-structures family I. Let r be a fixed positive
integer.

pGq Let Arrsn (resp. Arěrsn ) be the number of labelled (with at most kn variables) trees of LrIs of size n and with r
L-repetitions (resp. at least r L-repetitions).

pEq Let Arrsn (resp. A
rěrs
n ) be the number of equivalence classes of labelled (with at most kn variables) trees of

LrIs of size n and with r L-repetitions (resp. at least r L-repetitions).

∨

∨

∧

∨

• •

∧

• �

•

∨

• ∧

• ∧

• �

Figure 4: The pattern is an element of the pattern language N rN s.
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Then, asymptotically when n tends to infinity, in both models,

A
rrs
n

An
“ O pratrnq and A

rěrs
n

An
“ O pratrnq .

Proof. First recall that An “ In ¨ Labn,kn
in both models.

Model pGq. The number of labelled trees of LrIs of size n and with at least r L-repetitions is given by:

Arěrsn “

n
ÿ

d“r`1
Inpdq ¨ Labpn, kn, d, rq,

where Inpdq is the number of tree-structures with d L-pattern leaves (among the n number of leaves) and
Labpn, kn, d, rq corresponds to the number of leaf-labellings of these trees giving at least r L-repetitions. The
following enumeration contains some multi-counting and we therefore get an upper bound:

Labpn, kn, d, rq ď 2n ¨
r
ÿ

j“1

ˆ

d

r ` j

˙"

r ` j

j

*

knpkn ´ 1q ¨ ¨ ¨ pkn ´ j ` 1qkn´r´jn .

The factor 2n corresponds to the polarity of each leaf (whether the literal is positive or negative); the index j stands
for the number of different variables involved in the r repetitions; the binomial factor corresponds to the choices
of the pattern leaves that are involved in the r repetitions; the Stirling number corresponds to the partition of the
r ` j leaves into j parts; the factor knpkn ´ 1q ¨ ¨ ¨ pkn ´ j ` 1q stand for the choice of the repeated variables, from
left to right; finally, the factor kn´r´jn corresponds to the choices of the variables assigned to all remaining leaves.
We have

Labpn, kn, d, rq ď 2nkn´rn ¨

r
ÿ

j“1

ˆ

d

r ` j

˙"

r ` j

j

*

,

in other terms,

Labpn, kn, d, rq ď 2rLabn´r,kn ¨

r
ÿ

j“1

ˆ

d

r ` j

˙"

r ` j

j

*

,

since Labn,m “ p2mqn (in model pGq), and

Arěrsn ď 2r ¨ Labn´r,kn

r
ÿ

j“1

"

r ` j

j

* n
ÿ

d“r`j

Inpdq

ˆ

d

r ` j

˙

. (7)

Let `px, yq be the generating function of the pattern L. Note that xp

p! B
p
1` corresponds to pointing p distinct pattern

leaves (without order) in the L-patterns (where B1 stands for the derivative according to the first coordinate). Then,
for all p ě 0,

zp

p! B
p
1`pz, Ipzqq “

8
ÿ

n“1

8
ÿ

d“p

Inpdq

ˆ

d

p

˙

zn.

Thus,
A
rěrs
n

An
ď

2rLabn´r,kn

Labn,kn

r
ÿ

j“1

"

r ` j

j

*

rznszr`jBr`j1 `pz, Ipzqq

rznsIpzq
.

Since Br`j1 `pz, Ipzqq and Ipzq have the same dominant singularity because of the sub-criticality of the pattern L
according to I, the previous sum tends to a constant (because r is fixed) when n tends to infinity and so we conclude,
using Propositions 2 and 3:

A
rrs
n

An
ď
A
rěrs
n

An
“ O

ˆ

Labn´r,kn

Labn,kn

˙

“ O pratrnq .

Model pEq. The number of equivalence classes of labelled trees of LrIs of size n and with at least r L-repetitions
is given by:

Arěrsn “

n
ÿ

d“r`1
Inpdq ¨ Labpn, kn, d, rq,
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where Inpdq is the number of tree-structures with d L-pattern leaves and Labpn, kn, d, rq corresponds to the number of
leaf-labellings of these trees giving at least r L-repetitions. The following enumeration contains some multi-counting
and we therefore get an upper bound:

Labpn, kn, d, rq ď 2n ¨
r
ÿ

j“1

ˆ

d

r ` j

˙"

r ` j

j

*

Labn´r,kn

2n´r .

The factor 2n corresponds to the polarity of each leaf (whether the literal is positive or negative); the index j stands
for the number of different variables involved in the r repetitions; the binomial factor corresponds to the choices of
the pattern leaves that are involved in the r repetitions; the Stirling number corresponds to the partition of r ` j
leaves into j parts; finally, the factor Labn´r,kn

corresponds to the rest of the partition. Therefore,

Arěrsn ď 2r ¨ Labn´r,kn

r
ÿ

j“1

"

r ` j

j

* n
ÿ

d“r`j

Inpdq

ˆ

d

r ` j

˙

.

Applying the same reasoning as for model pGq starting from Equation (7) permits to conclude the proof.

We have finally adapted Kozik’s theory in order to apply it in the new contexts. Since we have extended the
pattern theory, we are able to use in the following the same key-ideas to describe the probability distributions we
are interested in.

6 Behaviour of the probability distribution
Once we have adapted the pattern theory to our model and proved the central Lemma 5, we are ready to prove our
main results, namely Theorems 1 and 2. A first step consists to understand the asymptotic behaviour of PpGqn ptrueq
and PpEqn xtruey.

It is natural to focus on this “simple” function before considering a general class xfy; and it happens to be essential
for the continuation of the study. In addition, the methods used to study tautologies (mainly pattern theory) will
also be the core of the proof for a general function (model pGq) or a general equivalence class (model pEq).

First, let us introduce some measure in the context of Boolean expressions. Given a family G of and{or trees
(resp. equivalence classes of and{or trees), we define its ratio µnpGq as follows: let Gn be the number of elements
of G of size n,

µnpGq :“ Gn
An

.

6.1 Tautologies
First note that true is the unique element of its equivalence class xtruey.

A tautology is an and{or tree that represents the Boolean function true. By symmetry, the functions true and
false have the same probability in both models. Let T be the family of tautologies. In this part, we prove that the
probability of true is asymptotically equal to the ratio of a simple subset of tautologies.

Definition 11 (cf. Fig. 5). A simple tautology is an and{or tree that contains two leaves labelled by a variable x
and its negation x̄ and such that all internal nodes from the root to both these leaves are labelled by _-connectives.
We denote by S the family of simple tautologies.

Proposition 5. The ratio of simple tautologies verifies

µnpSq „
3
2 ¨ ratn, when n tends to infinity.

Moreover, asymptotically when n tends to infinity, almost all tautologies are simple tautologies, meaning that

µnpT q „ µnpSq, when n tends to infinity.
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_

_

_

¨ ¨ ¨ _

x ¨ ¨ ¨

¨ ¨ ¨

_

¨ ¨ ¨ _

x̄ ¨ ¨ ¨

Figure 5: A simple tautology.

Proof. The proof is divided in two steps. The first one is dedicated to the computation of the ratio µnpSq. The
second part of the proof shows that almost all tautologies are simple tautologies.

Let us consider the non-ambiguous pattern language M “ ‚|M _M |�^ �. Remark that a tree such that two
M -pattern leaves are labelled by a variable and its negation, is a simple tautology. The generating function of M
is mpx, yq “ 1

2 p1´
a

1´ 4px` y2qq. It is sub-critical for I.
The generating function Ĩpzq “ 1

2
B

2
{Bx2pmpxz, Ipzqq|x“1 enumerates and{or trees with two marked distinct leaves

linked to the root by or-nodes. Therefore, DCn “ Ĩn ¨ Labn´1,kn is the number of simple tautologies where simple
tautologies realized by a unique pair of leaves are counted once, those that are realized by two pairs of leaves are
counted twice, and so on. We have

DCn
An

“
Ĩn ¨ Labn´1,kn

In ¨ Labn,kn

,

and using a consequence of [7, Theorem VII.8] (cf. a detailed proof in [11]):

lim
nÑ8

Ĩn
In
“ lim
zÑ 1

8

Ĩ 1pzq

I 1pzq
.

Note that
Ĩpzq “

z2

p1´ 4pz ` Ipzq2qq3{2
,

and thus,
Ĩ 1pzq

Ipzq
“

2z
p1´ 4pz ` Ipzq2qq3{2

`
p1` 2I 1pzqIpzqq

I 1pzq

6z2

p1´ 4pz ` Ipzq2qq5{2
.

Note that, when z Ñ 1{8, I 1pzq Ñ `8. Moreover, Ip1{8q “ 1{4. Thus,

Ĩ 1pzq

Ipzq
„

3{82

p1´ 4p1{8` 1{16qq
5{2
“

3
2 when z Ñ 1

8 .

Thus, we get the upper bound 3{2¨ratn for the ratio of simple tautologies: it remains to deal with the double-counting
in order to compute a lower bound.

In DCn, simple tautologies realized by a unique pair of leaves are counted once, those that are realized by two
pairs of leaves are counted twice, and so on. Let us denote by ST in the number of simple tautologies counted at
least i times in DCn: we have DCn “

ř

iě1 ST
piq
n .

Our aim is to remove from DCn the tautologies that have been over-counted. Therefore, we count simple
tautologies realized by three M -pattern leaves labelled by α{α{ᾱ where α is a literal, and the tautologies realized
by four M -pattern leaves labelled by α{ᾱ{β{β̄ where α and β are two different literals. Let us denote by

I3pzq “
1
3!
B3

Bx3mpxz, Ipzqq|x“1

the generating function of tree-structures in which three M -pattern leaves have been pointed and

I4pzq “
1
4!
B4

Bx4mpxz, Ipzqq|x“1
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the generating function of tree-structures in which four M -pattern leaves have been pointed. Then, let

DCp3qn “ 3 ¨ Labn´2,kn
rznsI3pzq and DCp4qn “ 3 ¨ Labn´2,kn

rznsI4pzq.

The integer DCp3qn (resp. DCp4qn ) counts (possibly with multiplicity) the trees in which three (resp. four)M -pattern
leaves have been pointed, one of them labelled by a literal and the two others by its negation (resp. two of them
labelled by two literals associated to two different variables and the two others by their negations). Remark that a
tree having six M -pattern leaves labelled by α{α{ᾱ{β{β{β̄ is counted twice by DCp3qn and four times by DCp4qn .

For all integer i, a simple tautology counted at least i times by DCn is counted at least pi ´ 1q times by
DC

p3q
n `DC

p4q
n . Therefore,

STn ě DCn ´ pDC
p3q
n `DCp4qn q.

In view of Lemma 5,
DC

p3q
n

Tn
ď c3 ¨

Labn´2,kn

Labn,kn

and DC
p4q
n

Tn
ď c4 ¨

Labn´2,kn

Labn,kn

,

where c3 and c4 are positive constants. Then, asymptotically when n tends to infinity, in view of Propositions 2
and 3: µnpFq “ µnpDCq ` o pratnq „ 3{2 ¨ ratn.

Let us now turn to the second part of the proof: asymptotically, almost all tautologies are simple tautologies.
Let us consider the pattern N “ ‚|N _ N |N ^ �. This pattern is unambiguous, its generating function satisfies
npx, yq “ x` npx, yq2 ` y ¨ npx, yq and is thus equal to 1

2 p1´ y ´
a

p1´ yq2 ´ 4xq. Consequently, N is sub-critical
for the family I of tree-structures.

A tautology has at least one N rN s-repetition. Otherwise, we can assign all its N -pattern leaves to false and,
the whole tree computes false: impossible for a tautology.

Consider a tautology t with exactly one N rN s-repetition. this repetition must be a x|x̄ repetition and must
occur among the N -pattern leaves, using the same kind of argument than above.

Then, let us assume that there is an ^-node denoted by ν between the N -pattern leaf x and the root of the
tree. This node ν has a left sub-tree t1 and a right sub-tree t2. Necessarily the leaf x appears in t1. Then, one can
assign all the N -pattern leaves of t2 (which are N rN s-pattern leaves of t) to false, since there is no more repetition
among the N rN s-pattern leaves of t. Also assign all the N rN s-pattern leaves of t minus the sub-tree rooted at ν to
false. Then, we can see that t computes false: impossible. We have thus shown that t is a simple tautology.

In a nutshell, tautologies with exactly one N rN s-repetition are simple tautologies, a tautology must have at
least one N rN s-repetition and, thanks to Lemma 5, tautologies with more than one N rN s-repetitions have a ratio
of order o pratnq, which is negligible in front of the ratio of simple tautologies.

The latter proposition gives us for free the proof for the satisfiability problem. In fact, both dualities between the
two connectives and positive and negative literals transform expressions computing true to expressions computing
false, which implies PpGqn pfalseq “ 3{2 ¨ ratn. Moreover, the only expressions that are not satisfiable compute the
function false and PpGqn pfalseq “ 3{2 ¨ ratn tends to 0 as n tends to infinity, which proves Corollary 1.

6.2 Proofs of Theorems 1 and 2
This last section is devoted to the general result, i.e. to the study of the behaviour of PpGqn pfq and PpEqn xfy for all
non constant Boolean function f . The main idea of this part is that, roughly speaking, a typical tree computing a
Boolean function f is a minimal tree of f into which a single large tree has been plugged.

In the following, f (resp. xfy) is fixed,we denote by r “ Lpfq its complexity, and by Γf the set of the essential
variables of f . We also fix t to be an and{or tree computing f .

Moreover, we will need the folowing patterns:

N “ ‚|N _N |N ^�,

P “ ‚|P _�|P ^ P,
and (see Definition 7 where the composition of patterns is defined)

R “ N pr`1qrN ‘ P s and R̄ “ N pr`1qrpN ‘ P q2s,
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where the language N ‘ P is defined such that the N ‘ P -pattern leaves of a tree are its N -pattern leaves plus its
P pattern leaves. It is proved in [14] that this pattern language is indeed non-ambiguous and sub-critical for I if
N and P are non-ambiguous and sub-critical for I.

We have already noticed that assigning all N -pattern leaves of a Boolean tree to false make the whole tree
calculate false. The pattern P has the dual property that: assigning all the P -patterns leaves of a tree to true make
the whole tree calculate true. This is why these two patterns are so useful in the proof of our main result.

Proposition 6. A tree t computing f (define r :“ Lpfq) with at least one leaf on the pr`2qth level of the R-pattern
must have at least r ` 1 pR,Γf q-restrictions.

Proof. Let us assume that t computes f , and has at least one leaf on the pr`2qth level of the R pattern but has less
than r R-repetitions. Let i be the smallest integer (smaller than r`2) such that the number of pN piq,Γf q-restrictions
is equal to the number of pN pi´1q,Γf q-restrictions.

There must be either a repetition or an essential variable in the first level: if there is none, then we can assign
all the N pattern leaves to false and this operation does not changes the represented function. This function is then
the constant function false, which is impossible; so i ď r ` 1.

First case: Let us assume that there are strictly less than r pN piq,Γf q-restrictions. There is no repetition and
no essential variable in the pattern leaves at level i. Therefore, we can assign them all to false and make the place-
holders of the level i´ 1 compute false. Let us replace those place-holders by false in the tree. Furthermore, replace
by false all the non-essential remaining variables. And simplify the obtained tree to simplify all the constant leaves
false and true. We obtain a tree t‹, which still computes f , and whose leaves are all former N pi´1q pattern leaves of
t labelled by essential variables. The tree t‹ therefore contains strictly less than r leaves, which is impossible since
the complexity of f is r.

Second Case: Let us assume that t has exactly r pN piq,Γf q-restrictions. Since i ď r` 1, there is no restriction
in the place-holders of the level r`2. Therefore, we can replace the place-holders by wild-cards ‹, which means that
those wild-cards can be evaluated to true or false independently from each other and without changing the function
computed by t. We can also replace the remaining leaves labelled by non-essential and non-repeated variables by
such wild-cards.

We simplify those wild-cards. Such a simplification has to delete at least one non-wild-card leaf. If we deleted
a non-repeated essential variable, then the tree t‹ does not depend on this essential variable and computes f : this
is impossible. Thus, we deleted a repetition: t‹ has strictly less than Rpfq repetitions and computes f . It is
impossible.

Remark that in Lemma 5, we only count repetitions and not restrictions as it was done in the original lemma
by Kozik. Though, we will need to consider essential variables and the following lemma permits to handle them.
An expansion of a tree t is a tree obtained by replacing a sub-tree s of t by s ˛ te (or te ˛ s) where ˛ P t^,_u.

Lemma 6. Let L be an unambiguous pattern, sub-critical for I. Let f be a fixed Boolean function, Γf the set
of its essential variables, and Mf the set of minimal trees computing f . Let E be the family of trees obtained by
expanding once a tree of Mf by trees having exactly p pL,Γf q-restrictions. Then, there exists a constant αpGq ą 0
(resp. αpEq ą 0) such that

µnpEq „ αpGq ¨ ratLpfq`pn in model pGq,

resp.
µnpEq „ αpEq ¨ ratRxfy`pn in model pEq.

Proof. Let En be the number of (resp. equivalence classes of) trees of size n in E . We will denote by i the number
of leaves that are involved in the p pL,Γf q-restrictions of the expansion tree: p` 1 ď i ď 2p. Let γf be the cardinal
of Γf .

In the model pGq, for all large enough n,

µnpEq “
En
An

ď cstf
2p
ÿ

i“p`1
rzn´Lpfqs

Bi

i!Bxi p`pxz, Ipzqqq|x“1
p2γf qpp2pkn ´ γf qqn´Lpfq´p

Inp2knqn
,

where cstf “ 2Lpfq ¨ |Mf | is an upper bound for the different places in a minimal tree of f where an expansion
can be plugged in. Since L is sub-critical for I, there exists a positive constant α such that

2p
ÿ

i“p`1

rzn´LpfqsB
i
{i!Bxi p`pxz, Ipzqqq|x“1

In
„ α ¨

In´Lpfq

In
„ α

ˆ

1
8

˙Lpfq

ą 0
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˛

te υ

Figure 6: An expansion at node υ. Note that the expansion tree te could have been on the right size of the
˛-connective instead of its left side.

asymptotically when n tends to infinity. Therefore, in view of Section 4, we have

µnpEq „ α ¨ ratLpfq`pn .

In the model pEq, we have, with the same reasoning:

µnxEy “
En
An

ď cstf
2p
ÿ

i“p`1
rzn´Lpfqs

Bi

i!Bxi p`pxz, Ipzqqq|x“1
2p`Rxfy ¨ Labn´p´Rxfy,kn

In ¨ Labn,kn

,

from which we state the same conclusion as for the model pGq.

Consider the family E of trees obtained by replacing a sub-tree s by s ^ te where te is a simple tautology into
a minimal tree of f . Since a simple tautology has at least one S-repetition, thanks to Lemma 6, there exists two
positive constants αpGq and αpEq such that

µpGqn pEq „ αpGq ¨ ratLpfq`1
n in model pGq,

and
µpEqn xEy „ αpEq ¨ ratRxfy`1

n in model pEq.

Thanks to Lemma 5, we know that terms computing f with more than Rpfq ` 2 repetitions are negligible in
front of the above family. Therefore, since trees with no leaf on the pr ` 2qth level are negligible, we have proved
weaker versions of Theorems 1 and 2, where the equivalent for the probabilities is replaced by an upper and a lower
bounds of the same order. The rest of the proofs consists in sharpening both bounds.

The key point of the proof of Theorems 1 and 2 is that a typical tree computing a function f is a minimal tree
of this function which has been expanded once. In the following, we will only consider two different expansions:

Definition 12 (cf. Figure 6). Recall that an expansion of a tree t is a tree obtained by replacing a sub-tree s of t
by s ˛ te (or te ˛ s) where ˛ P t^,_u.

An expansion is a T-expansion if the expansion tree te is a simple tautology and the connective ˛ is ^ (or a
simple contradiction and the connective ˛ is _).

An expansion is a X-expansion if the expansion tree te has a leaf linked to the root by a ^-path (resp. a _-path)
and the ˛ connective is a _ (resp. ^).

Corollary 2. The ratio of the (resp. equivalence class of) minimal trees of f expanded once satisfies that there
exists two positive constant λf and λxfy such that asymptotically when n tends to infinity:

µpGqn pErMf sq “ λf ¨ ratLpfq`1
n ` o

´

ratLpfq`1
n

¯

,

µpEqn xErMf sy “ λxfy ¨ ratRxfy`1
n ` o

´

ratRxfy`1
n

¯

.

This corollary is a direct consequence of Lemma 6.
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Lemma 7. Let f be a fixed Boolean function andMf the set of minimal trees of f .

PpGqn pfq „ µpGqn pErMf sq when nÑ `8,

and
PpEqn xfy „ µpEqn xErMf sy when nÑ `8.

Proof. Let t be a tree computing f . Such a tree must have at least Rpfq ` 1 R̄-repetitions. Moreover, thanks to
Lemma 5, trees with at least Rpfq ` 2 R̄-repetitions are negligible. We will show that a tree with exactly Rpfq ` 1
R̄-repetitions is in fact a minimal tree expanded once.

The term t must also have Rpfq ` 1 R-repetitions and therefore, there is no additional repetition when we
consider the pr ` 3qth level of the R̄-pattern.

Let i be the first level such that the number of pN piq,Γf q-restrictions is equal to the number ofN pi´1q-restrictions.
Since there must be a restriction on the first level, i ď r ` 1.

First Case: Assume that an essential variable α appears on the pattern leaves of the pr`3qth level. Therefore,
t has at most Lpfq pN piq,Γf q-restrictions. Let us replace the place-holders of the pi´ 1qth level by false and assign
all the remaining non-essential variables to false. Simplify the tree to obtain a new and/or tree denoted by t‹. The
leaves of this tree are former N pi´1q-pattern leaves of t, labelled by essential variables and t‹ still computes f . But
the variable α is essential for f : thus it must still appear in the leaves of t‹, and by deleting its occurrence in the
leaves of the pr`3qth level, we deleted one repetition. Therefore, t‹ has at most Lpfq´1 leaves which is impossible!

Second Case: There is no essential variable among the the pattern leaves of the pr ` 3qth level. Since there is
also no repetition at this level, we can replace the place-holders of the level pr`3q to wild-cards. We also replace the
remaining non essential and non-repeated variables by wild-cards. We then simplify the wild-cards and obtained
a simplified tree t‹, computing f , with no wild-cards and which leaves are former leaves of the trees t, essential or
repeated. During the simplification process, we have deleted at least one of these leaves and therefore t‹ has at
most Lpfq leaves: it is a minimal tree of f .

Let us consider the following fact: The lowest common ancestor of all the wild-cards in t has been suppressed
during the simplification process. Assume that this fact is false: then two wild-cards have been simplified indepen-
dently during the simplification process, and thus, at least two essential or repeated variables have been deleted.
The tree t‹ has thus at most Lpfq´ 1 leaves and computes f , which is impossible since Lpfq is the complexity of f .
Let us denote by te the sub-tree rooted at υ the lowest common ancestor of the wild-cards. Thus a typical tree
computing f is a minimal tree of f in which we have plugged a specific expansion tree te.

Lemma 8. Let t be a typical tree computing f . The expansion tree te is either a simple tautology (or simple
contradiction), or an x-expansion - i.e. a tree with one ^-leaf (resp. _-leaf) labelled by an essential variable of f .

Proof. As shown in the former lemma, a typical tree computing f is a minimal tree of f on which has been plugged
an expansion tree te.

First Case: Let us assume that te has no pN‘P q-repetition and no essential variable among its pN‘P q-pattern
leaves. Then, we can replace te by a wild-card and simplify this wild-card. This simplification suppresses at least
one other leaf of the tree: the obtained tree is then smaller than the original minimal tree, and still computes f . It
is impossible.

Second Case: Let us assume that te has at least two ppN ‘ P q2,Γf q-restrictions. Thanks to Lemma 6, this
family of expanded trees is negligible.

Third Case: Let us assume that te has exactly one ppN ‘P q2,Γf q-restriction. Then it must be a pN ‘P,Γf q-
restriction (see First Case).

• if it is a repetition, than one can show that it must be a simple tautology or a simple contradiction.

• if it is an essential variable, one can show that it must be an X-expansion.
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7 Conclusion
In this paper, we have generalised the Catalan tree distribution on Boolean functions following two directions:

• letting the number of variables and the size of the Boolean trees tend to infinity together. It has allowed us
to answer a fundamental satisfiability problem;

• the natural equivalence relation on Boolean trees and functions that we have introduced exhibits a very
interesting threshold/saturation phenomenon for which we have no intuitive explanation up to now.

It is interesting to see that these two models can be analysed with very similar methods, namely, the ones used in
the literature to study the classical Catalan tree model: Analytic Combinatorics and Kozik’s pattern theory. The
key idea that permitted to generalise those methods to our two new models was to dissociate the shapes of the trees
and their leaf-labelling.

We strongly believe that our methods could be generalised further, for example to other logical systems (as the
implication model, see e.g. [9, 11]), or to non-binary or non-planar uniform trees (see [10]). Our confidence rely on
the fact that those models, in the pknqně1 constant case, can be analysed with analytic combinatorics and pattern
theory (or tools based on the same key ideas) as well, and we have shown here how to generalise those methods to
a more general sequence pknqně1.

A more challenging generalisation would be to consider different probability distributions on binary plane trees.
For example, in view of [8, 3] we conjecture that the random binary search tree of size n, labelled with pknqně1
variables defines a very interesting satisfiability problem, with a phase transition à la K–sat. It would be very
interesting (but, we expect, non trivial) to prove such a conjecture. Even more challenging would be to ask what
effect the introduction of the equivalence relation has on this phase transition?
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