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Motivated by a multitude of practical applications, many different vulnerability measures of graphs have
been introduced in the literature over the past few decades. The vertex and edge connectivity of a
graph, although undoubtedly being the most well-studied of these measures, often fail to capture the
more subtle vulnerability properties of networks that one might wish to consider, such as the number
of resulting components, the size of the largest or smallest component that remains, and the largest
difference in size between any two remaining components. The two vulnerability measures we study in
this paper, vertex integrity and component order connectivity, take into account not only the number of
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Abstract

The WEIGHTED VERTEX INTEGRITY (wVI) problem takes as input an n-vertex graph G, a weight
function w : V(G) — N, and an integer p. The task is to decide if there exists a set X C V(G) such
that the weight of X plus the weight of a heaviest component of G — X is at most p. Among other
results, we prove that:

(1) wVI is NP-complete on co-comparability graphs, even if each vertex has weight 1;
(2) wVI can be solved in O(p”*'n) time;
(3) wVI admits a kernel with at most p® vertices.

Result (1) refutes a conjecture by Ray and Deogun (J. Combin. Math. Combin. Comput. 16: 65-73,
1994) and answers an open question by Ray et al. (Ars Comb. 79: 77-95, 2006). It also complements
aresult by Kratsch et al. (Discr. Appl. Math. 77: 259-270, 1997), stating that the unweighted version
of the problem can be solved in polynomial time on co-comparability graphs of bounded dimension,
provided that an intersection model of the input graph is given as part of the input.

An instance of the WEIGHTED COMPONENT ORDER CONNECTIVITY (wCOC) problem consists
of an n-vertex graph G, a weight function w : V(G) — N, and two integers k and ¢, and the task is
to decide if there exists a set X C V(G) such that the weight of X is at most k& and the weight of
a heaviest component of G — X is at most £. In some sense, the wCOC problem can be seen as a
refined version of the wVI problem. We obtain several classical and parameterized complexity results
on the wCOC problem, uncovering interesting similarities and differences between wCOC and wVI.
We prove, among other results, that:

(4) wCOC can be solved in O(min{k, £} -n?) time on interval graphs, while the unweighted version
can be solved in O(n?) time on this graph class;

(5) wCOC is W[1]-hard on split graphs when parameterized by k or by ¢;
(6) wCOC can be solved in 201089y time;
(7) wCOC admits a kernel with at most k¢(k + £) + k vertices.

We also show that result (6) is essentially tight by proving that wCOC cannot be solved in go(klog ), O(1)
time, even when restricted to split graphs, unless the Exponential Time Hypothesis fails.
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vertices that need to be deleted in order to break a graph into pieces, but also the number of vertices in
the largest component that remains.

The vertex integrity of an unweighted graph G is defined as ¢(G) = min{|X|+n(G—-X) | X CV(G)},
where n(G — X) is the number of vertices in the largest connected component of G— X. This vulnerability
measure was introduced by Barefoot, Entringer, and Swart [BES87] in 1987. For an overview of structural
results on vertex integrity, including combinatorial bounds and relationships between vertex integrity and
other vulnerability measures, we refer the reader to a survey on the subject by Bagga et al. [BBGT92].
We mention here only known results on the computational complexity of determining the vertex integrity
of a graph.

The VERTEX INTEGRITY (VI) problem takes as input an n-vertex graph G and an integer p, and asks
whether (G) < p. This problem was shown to be NP-complete, even when restricted to planar graphs, by
Clark, Entringer, and Fellows [CEF87]. On the positive side, Fellows and Stueckle [FS89] showed that the
problem can be solved in O(p*’n) time, and is thus fixed-parameter tractable when parameterized by p.
In the aforementioned survey, Bagga et al. [BBGT92] mention that VERTEX INTEGRITY can be solved
in O(n?) time when the input graph is a tree or a cactus graph. Kratsch, Kloks, and Miiller [KKM97]
studied the computational complexity of determining the value of several vulnerability measures in classes
of intersection graphs. Their results imply that VERTEX INTEGRITY can be solved in O(n3) time on
interval graphs, in O(n*) time on circular-arc graphs, and in O(n®) time on permutation graphs and
trapezoid graphs. Kratsch et al. [KKM97] also mention that the problem can be solved in O(n2?*1) time
on co-comparability graphs of dimension at most d, provided that an intersection model of the input
graph is given as part of the input.

Ray and Deogun [RD94] were the first to study the more general WEIGHTED VERTEX INTEGRITY
(wVI) problem. This problem takes as input an n-vertex graph G, a weight function w : V(G) — N, and
an integer p. The task is to decide if there exists a set X C V(G) such that the weight of X plus the
weight of a heaviest component of G — X is at most p. Using a reduction from 0-1 KNAPSACK, Ray and
Deogun [RD94] identified several graph classes on which the WEIGHTED VERTEX INTEGRITY problem
is weakly NP-complete. In particular, their result implies that the problem is weakly NP-complete on
trees, bipartite graphs, series-parallel graphs, and regular graphs, and therefore also on superclasses such
as chordal graphs and comparability graphs. A common property of these classes is that they contain
graphs with arbitrarily many asteroidal triples and induced paths on five vertices; any graph class that
does not have this property is not covered by the result of Ray and Deogun. They conjectured that the
WEIGHTED VERTEX INTEGRITY problem can be solved in polynomial time on co-comparability graphs, a
well-known example of a class of graphs that do not contain asteroidal triples at all. More than a decade
later, Ray et al. [RKZJ06] presented a polynomial-time algorithm for WEIGHTED VERTEX INTEGRITY
on interval graphs, a subclass of co-comparability graphs. In the same paper, they pointed out that the
complexity of the problem on co-comparability graphs remained unknown.

We now turn our attention to the second vulnerability measure studied in this paper. For any positive
integer £, the £-component order connectivity of a graph G is defined to be the cardinality of a smallest
set X C V(G) such that n(G — X) < £. We refer to the survey by Gross et al. [GHIT13] for more
background on this graph parameter. Motivated by the definitions of /-component order connectivity
and the WEIGHTED VERTEX INTEGRITY problem, we introduce the WEIGHTED COMPONENT ORDER
CoNNECTIVITY (wCOC) problem. This problem takes as input a graph G, a weight function w : V(G) —
N, and two integers k and ¢. The task is to decide if there exists a set X C V(G) such that the weight
of X is at most k£ and the weight of a heaviest component of G — X is at most ¢. Observe that
the WEIGHTED COMPONENT ORDER CONNECTIVITY problem can be interpreted as a more refined
version of WEIGHTED VERTEX INTEGRITY. We therefore find it surprising that, to the best of our
knowledge, the WEIGHTED COMPONENT ORDER CONNECTIVITY problem has not yet been studied in
the literature. We do however point out that the techniques described by Kratsch et al. [KKM97] yield
polynomial-time algorithms for the unweighted version of the problem on interval graphs, circular-arc
graphs, permutation graphs, and trapezoid graphs, and that very similar problems have received some
attention recently [BAMSN13, GHIT13].

Our Contribution. In Section 3, we present our results on VERTEX INTEGRITY and WEIGHTED VER-
TEX INTEGRITY. We show that VI is NP-complete on co-bipartite graphs, and hence on co-comparability
graphs. This refutes the aforementioned conjecture by Ray and Deogun [RD94] and answers an open
question by Ray et al. [RKZJ06]. It also forms an interesting contrast with the result by Kratsch et



al. [KKM97] stating that VI can be solved in O(n??*!) time on co-comparability graphs of dimension at
most d if an intersection model is given as part of the input. We also show that even though VI can be
solved in linear time on split graphs, the problem remains NP-complete on chordal graphs. Interestingly,
we prove that unlike the unweighted variant of the problem, the wVI problem is NP-complete when
restricted to split graphs; observe that this does not follow from the aforementioned hardness result by
Ray and Deogun [RD94], as split graphs do not contain induced paths on five vertices.

Recall that Fellows and Stueckle [FS89] showed that VI can be solved in O(p®’n) time on general
graphs. We strengthen this result by showing that even the wVI problem can be solved in O(pP*1n)
time. We also show that wVI admits a kernel with at most p3 vertices, each having weight at most p.

VI wVI CcocC wCOC
general NPc [CEF8&7] NPc [CEF8T] NPc [CEF8T] NPc [CEF8T]
co-bipartite NPc NPc NPc NPc
chordal NPc NPc NPc NPc
split O(n +m) [LZZ08] NPc NPc NPc
interval O(n?) [KKM97] O(n®logn) [RKZJ06] O(n?) O(min{k, £} - n?)
complete O(n) O(n) O(n) weakly NPc

Table 1: An overview of the classical complexity results proved in this paper. Previously known results
are given with a reference.

Section 4 contains our results on COMPONENT ORDER CONNECTIVITY and WEIGHTED COMPONENT
ORDER CONNECTIVITY. The observation that there is a polynomial-time Turing reduction from VI to
COC implies that the latter problem cannot be solved in polynomial time on any graph class for which VI
is NP-complete, unless P=NP. We prove that wCOC is weakly NP-complete already on complete graphs,
while the unweighted variant of the problem, which is trivial on complete graphs, remains NP-complete
when restricted to split graphs. We find the latter result particularly interesting in light of existing
polynomial-time algorithms for computing similar (unweighted) vulnerability measures of split graphs,
such as toughness [Woe98], vertex integrity, scattering number, tenacity, and rupture degree [LZZ08].
To complement our hardness results, we present a pseudo-polynomial-time algorithm that solves the
wCOC problem in O(min{k, ¢} -n?) time on interval graphs. We then modify this algorithm to solve the
unweighted version of the problem in O(n?) time on interval graphs, thereby improving the O(n?)-time
algorithm that follows from the results by Kratsch et al. [KKM97]. Observe that the aforementioned
hardness results rule out the possibility of solving wCOC in polynomial time on interval graphs or in
pseudo-polynomial time on split graphs, unless P = NP.

In Section 4, we also completely classify the parameterized and kernelization complexity of COC and
wCOC on general graphs with respect to the parameters k, ¢, and k + ¢. We first observe that both
problems are para-NP-hard when parameterized by £ due to the fact that COC is equivalent to VERTEX
CoOVER when ¢ = 1. We then prove that if we take either k or £ to be the parameter, then COC is W([1]-
hard even on split graphs. On the positive side, we show that wCOC becomes fixed-parameter tractable
when parameterized by k + ¢. We present an algorithm for solving the problem in time 20* 12y time,
before proving that the problem cannot be solved in time 20108001 ynless the Exponential Time
Hypothesis fails. Finally, we show that wCOC admits a polynomial kernel with at most ké(k + £) + k
vertices, where each vertex has weight at most k + /.

2 Preliminaries

All graphs considered in this paper are finite, undirected, and simple. We refer to the monograph by
Diestel [Die05] for graph terminology and notation not defined here. For more information on parameter-
ized complexity and kernelization, we refer to the book by Downey and Fellows [DF99]. For definitions
and characterizations of the graph classes mentioned in this paper, as well as the inclusion relationships
between those classes, we refer to the survey by Brandstiddt, Le, and Spinrad [BLS99]. Whenever we
write that a (weighted) problem is NP-complete, we mean strongly NP-complete, unless specifically stated
otherwise.



Let G be a graph and w : V(G) — N = {0,1,...} a weight function on the vertices of G. The weight
of a subset X C V(G) is defined as w(X) = >~ -y w(v). We define we.(G) to be the weight of a heaviest
component of G, i.e., we.(G) = max{w(V(G;)) | 1 <i < r}, where Gy,...,G, are the components of G.
The weighted vertex integrity of G is defined as

U(G) = min{w(X) + wee (G — X) | X CV(G)},

where G — X denotes the graph obtained from G by deleting all the vertices in X. Any set X C V(G)
for which w(X) + wee (G — X) = +(G) is called an t-set of G. We consider the following two decision
problems:

WEIGHTED VERTEX INTEGRITY (wVI)
Instance: A graph G, a weight function w : V(G) — N, and an integer p.
Question: Is «(G) < p?

WEIGHTED COMPONENT ORDER CONNECTIVITY (wCOC)
Instance: A graph G, a weight function w : V(G) — N, and two integers k and £.
Question: Is there a set X C V(G) with w(X) < k such that we.(G — X) < £?

The unweighted versions of these two problems, where w(v) = 1 for every vertex v € V(G), are called
VERTEX INTEGRITY (VI) and COMPONENT ORDER CONNECTIVITY (COC), respectively.

A bipartite graph is a graph whose vertex set can be partitioned into two independent sets, and a
graph G is co-bipartite if its complement G is bipartite. A split graph is a graph whose vertex set can
be partitioned into a clique C and an independent set I; such a partition (C,I) is called a split partition.
A split graph G with split partition (C,I) and edge set E is denoted by G = (C, I, E). Note that, in
general, a split graph can have more than one split partition. A graph is chordal if it has no induced cycle
of length more than 3. Let F be a family of non-empty sets. The intersection graph of F is obtained by
representing each set in F by a vertex and making two vertices adjacent if and only if their corresponding
sets intersect. A graph is an interval graph if it is the intersection graph of intervals on the real line. A
comparability graph is a graph that admits a transitive orientation, that is, a graph whose edges can be
directed in such a way that whenever (u,v) and (v, w) are directed edges, then so is (u,w). A graph G
is a co-comparability graph if its complement G is a comparability graph.

It is well know that split graphs and interval graphs form two incomparable subclasses of chordal
graphs [BLS99]. Every bipartite graph is a comparability graph, as directing all the edges of a bi-
partite graph from one bipartition class to the other yields a transitive orientation. Consequently, co-
bipartite graphs form a subclass of co-comparability graphs. Interval graphs form another subclass of
co-comparability graphs; this readily follows from the fact that co-comparability graphs are exactly the
intersection graphs of continuous real-valued functions over some interval I [GRUS83].

A parameterized problem is a subset Q C ¥* x N for some finite alphabet 3, where the second part
of the input is called the parameter. A parameterized problem @ C ¥* x N is said to be fized-parameter
tractable if for each pair (z, k) € £* x N it can be decided in time f(k) |#|°() whether (z, k) € Q, for some
function f that only depends on k; here, |z| denotes the length of input x. We say that a parameterized
problem @ has a kernel if there is an algorithm that transforms each instance (z, k) in time (|z|+ &)™)
into an instance (2, k'), such that (z,k) € @ if and only if (2/,k') € Q and |2/| + k¥’ < g(k) for some
function g. If g is a polynomial, then we say that the problem has a polynomial kernel.

3 Vertex Integrity

As mentioned in the introduction, Ray et al. [RKZJ06] asked whether WEIGHTED VERTEX INTEGRITY
can be solved in polynomial time on co-comparability graphs. We show that this is not the case, unless
P = NP. In fact, we prove a much stronger result in Theorem 1 below by showing NP-completeness of
an easier problem (VERTEX INTEGRITY) on a smaller graph class (co-bipartite graphs).

Theorem 1. VERTEX INTEGRITY is NP-complete on co-bipartite graphs.

Proof. The problem is clearly in NP. To show that it is NP-hard, we give a polynomial-time reduction
from the BALANCED COMPLETE BIPARTITE SUBGRAPH problem. This problem, which is known to be
NP-complete [GJ79], takes as input a bipartite graph G = (A, B, E) and an integer k > 1, and asks



whether there exist subsets A’ C A and B’ C B such that |A’| = |B’| = k and G[A" U B’] is a complete
bipartite graph. Let (G, k) be an instance of BALANCED COMPLETE BIPARTITE SUBGRAPH, where
G = (A, B, E) is a bipartite graph on n vertices. We claim that (G, k) is a yes-instance of BALANCED
COMPLETE BIPARTITE SUBGRAPH if and only if (G,n — k) is a yes-instance of VERTEX INTEGRITY.
Suppose there exist subsets A’ C A and B’ C B such that |A’| = |B/| = k and A’ U B’ induces a
complete bipartite subgraph in G. Observe that in G, both A’ and B’ are cliques, and there is no edge
between A’ and B’. Hence, if we delete all the vertices in V(G) \ (A’ U B’) from G, the resulting graph
has exactly two components containing exactly k vertices each. Since |V(G) \ (A’ U B")| = n — 2k, it
holds that ¢(G) < n — 2k + k =n — k, and hence (G,n — k) is a yes-instance of VERTEX INTEGRITY.
For the reverse direction, suppose (G,n — k) is a yes-instance of VERTEX INTEGRITY. Then there
exists a subset X C V(G) such that |[X|+ n(G — X) < n — k. The assumption that k > 1 implies that
G — X is disconnected, as otherwise | X|+n(G—X) =V(G) =n. Let A’ = A\ X and B’ = B\ X. Since
G is co-bipartite, both A’ and B’ are cliques. Moreover, since G — X is disconnected, there is no edge
between A’ and B’. Hence, G[A'] and G[B'] are the two components of G — X . Without loss of generality,
suppose that |A’| > |B’|. Then |B'| = n— (| X|+|4'|) = n— (| X|+n(G—X)) > n—(n—k) = k and hence
|A’| > |B’| > k. This, together with the observation that A’ U B’ induces a complete bipartite subgraph
in G, implies that (G, k) is a yes-instance of BALANCED COMPLETE BIPARTITE SUBGRAPH. O

Ray and Deogun [RD94] proved that WEIGHTED VERTEX INTEGRITY is NP-complete on any graph
class that satisfies certain conditions. Without explicitly stating these (rather technical) conditions here,
let us point out that any graph class satisfying these conditions must contain graphs with arbitrarily
many asteroidal triples and induced paths on five vertices. Theorem 1 shows that neither of these two
properties is necessary to ensure NP-completeness of WEIGHTED VERTEX INTEGRITY, since co-bipartite
graphs contain neither asteroidal triples nor induced paths on five vertices.

In Theorem 2 below, we show that WEIGHTED VERTEX INTEGRITY is NP-complete on split graphs.
Since split graphs do not contain induced paths on five vertices, this graph class is not covered by the
aforementioned hardness result of Ray and Deogun [RD94].

Lemma 3.1. For every graph G and weight function w : V(G) — N, there exists an t-set X that contains
no simplicial vertices of G.

Proof. Let w : V(G) — N be a weight function of a graph G, and let X be an t-set of G containing a
simplicial vertex s. Observe that s is adjacent to at most one component of G — X. Let X’ = X \ {s}.
We claim that X’ is an t-set of G.

Let Gy, ..., G, denote the components of G— X', and without loss of generality assume that s € V(G).
The fact that s is a simplicial vertex of G implies that Ga,...,G, are components of G — X as well.
Hence wec(G;) < wee(G—X) for every i € {2,...,r}. Let us determine an upper bound on we.(Gy). If s
is adjacent to a component H in the graph G — X, then we.(G1) = wee(H) +w(8s) < wee(G — X) +w(s).
Otherwise, s is an isolated vertex in G — X', implying that we.(G1) = w(s). We find that we.(G—X') =
max{we(G;) | 1 <i <1} <we(G—X)+w(s). Consequently, w(X') + we.(G— X') < (w(X) —w(s)) +
(Wee (G = X) +w(s)) = w(X) + wee (G — X) = 1(G), where the last equality follows from the assumption
that X is an t-set of G. We conclude that X’ is an ¢-set of G. O

Given a graph G, the incidence split graph of G is the split graph G* = (C*, I*, E*) whose vertex set
consists of a clique C* = {v, | z € V(G)} and an independent set I* = {v. | e € E(G)}, and where two
vertices v, € C* and v, € I* are adjacent if and only if the vertex x is incident with the edge e in G.
The following lemma will be used in the proofs of hardness results not only in this section, but also in
Section 4.

Lemma 3.2. Let G = (V, E) be a graph, G* = (C*,I*, E*) its incidence split graph, and k < |V| a
non-negative integer. Then the following statements are equivalent:

(i) G has a clique of size k;
(i) there exists a set X C C* such that | X| <k and | X|+n(G* - X) < |V|+|E| - (g),

(iii) there exists a set X C C* such that | X| <k and n(G* — X) < |V|+ |E| — (g) — k.



Proof. Let n = |V|] and m = |E|. We first prove that (i) implies (iii). Suppose G has a clique S of size k.
Let X = {v, € C* | z € S} denote the set of vertices in G* corresponding to the vertices of S. Similarly,
let Y = {v. € I* | e € E(G[S])} denote the set of vertices in G* corresponding to the edges in G both
endpoints of which belong to S. Observe that |Y| = (g) due to the fact that S is a clique of size &k in G.
Now comnsider the graph G* — X. In this graph, every vertex of Y is an isolated vertex, while every vertex
of I*\'Y has at least one neighbor in the clique C* \ X. This implies that n(G* — X) =n+m — (g) —k.

Since (iii) trivially implies (ii), it remains to show that (ii) implies (i). Suppose there exists a set
X C C* such that |X| <k and |X|+n(G* — X) <|V|+ |E| - (g) Let Z C I* be the set of vertices in
I* both neighbors of which belong to X. Observe that |Z] < ('éﬂ) and n(G* = X)=n+m—|X| - Z|.
Hence

k X
n—+m— (2) > X +n(G —X)=n+m—|Z|>n+m— (|2|)7

which implies that (’;) < (l)z(‘). Since | X| < k by assumption, we find that |X| = k and all the above

inequalities must be equalities. In particular, we find that |Z| = (lg ‘). We conclude that the vertices
in G that correspond to X form a clique of size k in G. |

Theorem 2. WEIGHTED VERTEX INTEGRITY is NP-complete on split graphs.

Proof. We give a reduction from the NP-hard problem CLIQUE. Given an instance (G, k) of CLIQUE
with n = |V(G)| and m = |E(G)|, we create an instance (G’,w,p) of WEIGHTED VERTEX INTEGRITY as
follows. To construct G', we start with the incidence split graph G* = (C*, I*, E*) of G, and we add a
single isolated vertex z. We define the weight function w by setting w(z) = n+m— (g) —kand w(v) =1
for every v € V(G’) \ {z}. Finally, we set p=n +m — (’;) For convenience, we assume that k < n and
that (g) < m. We now claim that G has a clique of size k if and only if +(G’) < p. Since G’ is a split
graph and all the vertex weights are polynomial in n, this suffices to prove the theorem.

First suppose G has a clique S of size k. By Lemma 3.2, there exists a set X C C* such that | X| <k
and n(G*—X) <n+m-— (g) —k. Since w(z) = n+m— (g) — k and every other vertex in G’ has weight 1,
it follows that we.(G' — X) =n+m — (5) — k. Consequently, w(X) + we(G' — X) <n+m — (’;) =p,
so we conclude that «(G") < p.

For the reverse direction, suppose ((G') < p, and let X C V(G’) be an t-set of G’. Due to Lemma 3.1,
we may assume that X C C*. We claim that |X| < k. For contradiction, suppose |X| > k + 1. Then
w(X) =|X| > k+1 and wee (G'—X) > w(z) = p—k. This implies that :(G") = w(X)+we.(G'—X) > p+1,
yielding the desired contradiction. Now let H be the component of G’ — X containing the clique C*\ X.
The fact that every vertex in V(G’) \ {z} has weight 1 and the assumption that k¥ < n imply that
[V(H)| =n(G* — X) = wee (G* — X). Now observe that | X|+ n(G* — X) < | X| 4+ max{w(Z), we.(G* —
X)}=uG)<p=n+m- (g) We can therefore invoke Lemma 3.2 to conclude that G has a clique of
size k. |

The following result, previously obtained by Li et al. [LZZ08], is an easy consequence of Lemma 3.1.
Theorem 4 below shows that this result is in some sense best possible.

Theorem 3 ([LZZ08]). VERTEX INTEGRITY can be solved in linear time on split graphs.
Theorem 4. VERTEX INTEGRITY is NP-complete on chordal graphs.

Proof. We describe a slight modification of the reduction in the proof of Theorem 2. Given an instance
(G, k) of CLIQUE, we construct a graph G in the same way as we constructed the graph G’, but instead

of adding an isolated vertex z with weight n + m — (]2“) — k in the last step, we add a clique of size

n+m — (’;) —k. Weset p=n+m— (’;) as before. Using Lemma 3.2 and arguments similar to the
ones in the proof of Theorem 2, it is not hard to show that the obtained instance (G”,p) of VERTEX
INTEGRITY is a yes-instance if and only if (G, k) is a yes-instance of CLIQUE. The observation that G”
is a chordal graph completes the proof. (|

Recall that Fellows and Stueckle [FS89] proved that VERTEX INTEGRITY can be solved in time
O(p*’n). Their arguments can be slightly strengthened to yield the following result.

Theorem 5. WEIGHTED VERTEX INTEGRITY can be solved in O(pPT1n) time.



Proof. Let (G,w,p) be an instance of WEIGHTED VERTEX INTEGRITY, and let n = |V(G)| and m =
|E(G)|. We assume that every vertex in G has weight at least 1, as vertices of weight 0 can simply
be deleted from the graph. This implies in particular that |X| < w(X) for every set X C V(G). We
now show that we may also assume that m < (p — 1)n. Suppose that (G, w,p) is a yes-instance. Then
there exists a set X C V(G) such that w(X) + wee(G — X) < p. Let Gy,...,G, be the components of
G — X. Since every vertex has weight at least 1, it holds that | X UV (G;)] < w(X UV(G;)) < p for each
1€ {1,...,r}. Observe that G has a path decomposition of width at most p — 1 whose bags are exactly
the sets X UV/(G;). This implies that the pathwidth, and hence the treewidth, of G is at most p — 1. Tt
is well-known that every n-vertex graph of treewidth at most ¢ has at most tn edges [BF05]. We thus
conclude that if (G, w, p) is a yes-instance, then m < (p — 1)n. Our algorithm can therefore safely reject
the instance if m > (p — 1)n.

We now describe a simple branching algorithm that solves the problem. At each step of the algorithm,
we use a depth-first search to find a set U of at most p + 1 vertices such that G[U] is connected and
w(U) > p+ 1. If such a set does not exist, then every component of the graph under consideration has
weight at most p, so the empty set is an (-set of the graph and we are done. Otherwise, we know that any
t-set of the graph contains a vertex of U. We therefore branch into |U| < p + 1 subproblems: for every
v € U, we create the instance (G — v, w,p — w(v)), where we discard the instance in case p — w(v) < 0.
Since the parameter p decreases by at least 1 at each branching step, the corresponding search tree T'
has depth at most p. Since T is a p+ 1-ary tree, it contains O(pP) nodes in total. Due to the assumption
that m < (p — 1)n, the depth-first search at each step can be performed in time O(pn). This yields an
overall running time of O(pPpn) = O(pPT1n). O

We prove that the problem admits a polynomial kernel with respect to parameter p.

Theorem 6. WEIGHTED VERTEX INTEGRITY admits a kernel with at most p> vertices, where each
vertex has weight at most p.

Proof. We describe a kernelization algorithm for the problem. Let (G, w, p) be an instance of WEIGHTED
VERTEX INTEGRITY. We first delete all vertices of weight 0 without changing the parameter. Observe
that after this preprocessing step, the weight of every vertex is at least 1, and hence |X| < w(X) for
every set X C V(G). We apply the following two reduction rules.

Our first reduction rule starts by sorting the components of G according to their weights. Let
G1,...,G, be the components of G such that we.(G1) > wee(G2) > -+ > wee(Gr). If r > p+ 1, then
we delete the component G; for every i € {p + 2,...,7}, without changing the parameter. In other
words, we keep only the p + 1 heaviest components of G. Let G’ be the obtained graph. To see why
this rule is safe, it suffices to prove that (G, w,p) is a yes-instance if the new instance (G',w,p) is a
yes-instance, as the reverse direction trivially holds. Suppose (G',w,p) is a yes-instance. Then there
exists a set X C V(G’) such that w(X) + we.(G' — X) < p. Since | X| < w(X) < p and G’ has exactly
p—+ 1 components, there exists an index ¢ € {1,...,p+ 1} such that X does not contain any vertex from
Gi. Since weo(Gi) > wec(G;) for every j € {p+2,...,r}, it holds that we.(G — X) = we(G' — X).
Hence w(X) + wee(G — X) = w(X) 4+ wee (G — X) < p, implying that «(G) < p and that (G, w,p) is a
yes-instance.

The second reduction rule checks whether there exists a vertex v € V(G) for which w(Ng[v]) > p.
Suppose such a vertex v exists. If p — w(v) > 0, then we delete v from the graph and reduce the
parameter p by w(v). If p — w(v) < 0, then we return a trivial no-instance. To see why this is safe, it
suffices to show that if (G, w,p) is a yes-instance, then v belongs to any t-set of G. Suppose (G, w,p)
indeed is a yes-instance, and let X be an t-set of G. Then w(X) + we.(G — X) = «(G) < p. For
contradiction, suppose that v ¢ X. Consider the component H of G — X that contains v. Since every
vertex of Ng[v] belongs either to X or to component H, and w(Ng[v]) > p by assumption, we find that
w(X) 4+ wee(H) > p. But this implies that w(X) + wee(G — X) > w(X) + wec(H) > p, yielding the
desired contradiction.

Let (G',w,p’) denote the instance obtained after exhaustively applying the above reduction rules,
where w denotes the restriction of the original weight function to the vertices of G’. Observe that p’ < p.
We assume that p’ > 2, as otherwise we can trivially solve the instance (G’,w,p’). We claim that if
(G',w,p’) is a yes-instance, then |V (G")| < p3. Suppose (G’,w,p’) is a yes-instance, and let X C V(G")
be an t-set of G'. Then w(X) + we.(H) < p’ < p for every component H of G' — X. This, together
with the fact that every vertex in G’ has weight at least 1, implies that |X| < p and |H| < we.(H) <



p—w(X) <p— |X| for every component H of G’ — X. Since the first reduction rule cannot be applied
on the instance (G',w,p’), we know that G’ has at most p’ +1 < p+ 1 components. If X = (), then each
of these components contains at most p vertices, so |[V(G’)| < (p + 1)p < p3, where the last inequality
follows from the assumption that p > p’ > 2. Now suppose |X| > 1. Observe that every vertex in X
has degree at most p’ < p due to the assumption that the second reduction rule cannot be applied.
Hence, every vertex of X is adjacent to at most p components of G’ — X, implying that there are at
most p? components of G’ — X that are adjacent to X. Since G’ itself has at most p + 1 components,
at least one of which contains a vertex of X, we find that G’ — X has at most p? + p components
in total. Recall that each of these components contains at most p — | X| vertices. We conclude that
V(G| < (p* +p)(p — |X]|) + |X]| < p3, where we use the assumption that |X| > 1. Due to the second
reduction rule, each vertex in G’ has weight at most p.

It remains to argue that our kernelization algorithm runs in polynomial time. Observe that the
execution of any reduction rule strictly decreases either the number of vertices in the graph or the
parameter, so each rule is applied only a polynomial number of times. The observation that each rule
can be executed in polynomial time completes the proof. O

4 Component Order Connectivity

It is easy to see that (G,p) is a yes-instance of VERTEX INTEGRITY if and only if there exist non-
negative integers k and ¢ with k + ¢ = p such that (G, k,?) is a yes-instance of COMPONENT ORDER
CONNECTIVITY. Hence, any instance (G, p) of VERTEX INTEGRITY can be solved by making at most p
calls to an algorithm solving COMPONENT ORDER CONNECTIVITY, implying that COMPONENT ORDER
CONNECTIVITY cannot be solved in polynomial time on any graph class for which VERTEX INTEGRITY
is NP-complete, unless P=NP.

Our next two results identify graph classes for which wCOC and COC are strictly harder than wVI
and VI, respectively.

Theorem 7. WEIGHTED COMPONENT ORDER CONNECTIVITY is weakly NP-complete on complete
graphs.

Proof. We reduce from PARTITION, which is the problem of determining whether a multiset A of positive
integers can be partitioned into two subsets A; and As such that the sum of the elements in A; equals the
sum of the elements in As. This problem is well-known to be NP-complete [GJ79]. Given an instance A of
PARTITION with n elements (a1, ..., ay,), we construct an instance (G, w, k, £) of WEIGHTED COMPONENT
ORDER CONNECTIVITY as follows. We define G to be a complete graph with vertex set V- = {vy,..., v, },
and the weight function w is defined by setting w(v;) = a; for every i € {1,...,n}. Let W =1/23"" | a;.
Weset k=¢=W.

Suppose A can be partitioned into two subsets A; and As such that the sum of the elements in Ay
equals the sum of the elements in As equals W. Let X = {v; € V | a; € A1} be the subset of vertices
of G corresponding to the set A;. Since G is a complete graph and w(V') = 2W, is clear that w(X) = W
and we.(G — X) = W, implying that (G, w, k, ) is a yes-instance of WEIGHTED COMPONENT ORDER
CONNECTIVITY. The reverse direction is similar: if there exists a subset X’ C V with w(X') = W and
Wee (G — X') = W, then the partition X', V' \ X’ of V corresponds to a desired partition A, A3 of A. O

Theorem 8. COMPONENT ORDER CONNECTIVITY is NP-complete on split graphs.

Proof. We give a reduction from the NP-hard problem CLIQUE. Let (G, k) be an instance of CLIQUE
with n = |V(G)| and m = |E(G)|. Let G* = (C*,I*, E*) be the split incidence graph of G, and let
=n+m-— (g) By Lemma 3.2, there is a clique of size k in G if and only if there exists a set X C C*
such that | X| < k and n(G* — X) <n+m — (g) This immediately implies that (G, k) is a yes-instance
of CLIQUE if and only if (G*, k,{) is a yes-instance of COMPONENT ORDER CONNECTIVITY. O

We now present a pseudo-polynomial time algorithm, called wCOC, that solves WEIGHTED COMPO-
NENT ORDER CONNECTIVITY in O(kn?) time on interval graphs. We refer to Figure 1 for pseudocode
of the algorithm. Finally, we show that we can easily modify the algorithm to also run in time O(¢n?).

Given an instance (G, w, k, ), where G is an interval graph, the algorithm first removes every vertex
of weight 0. It then computes a cliqgue path of G, i.e., an ordering K1, ..., K; of the maximal cliques



Algorithm wCOC

Input: An instance (G, w, k,¢) of WEIGHTED COMPONENT ORDER CONNECTIVITY, where G is
an interval graph
Output: “yes” if (G, w,k,¥) is a yes-instance, and “no” otherwise

Remove every vertex of weight 0 from G
Construct Ky, ..., K¢t

Construct Sy, ..., St

Construct V; ; for every 0 <i < j <t

Set all elements of dp to k + 1
Set dp[0] =0

for j from 1 to ¢t do

for ¢ from j — 1 to 0 do

Let v1,..., vy, ;| be the vertices of V; ;

Let wy, = w(v,) for every p € {1,..., |V |}

if w(V;;) <k+{then
Let I = MinSup((w1, ..., wyy, ), w(V; ;) —¥£)
Let Y, = {v, € Vi, | p € I}

dplj]

dp[j] = min dpli] + w(Yi ;) +w(S; \ Si)

end
end

end

return “yes” if dp[t] < k, and “no” otherwise

Figure 1: Pseudocode of the algorithm wCOC that solves the WEIGHTED COMPONENT ORDER CON-
NECTIVITY problem on interval graphs in O(kn?) time.

of G such that for every vertex v € V(G), the maximal cliques containing v appear consecutively in
this ordering. Since G is an interval graph, such an ordering exists and can be obtained in O(n?)
time [BL76]. For convenience, we define two empty sets Ky and K¢41. The algorithm now computes the
set S; = K; N K, 41 for every ¢ € {0,...,t}. Observe that Sy and S; are both empty by construction, and
that the non-empty sets among S1,...,S;—1 are exactly the minimal separators of G (see, e.g., [HL89]).
For every q € {0,...,t+1}, we define G4 = G[JL_, K;]. Also, for any two integers 4, j with 0 < i < j <,
the algorithm computes the set

i
Vii= |J K\ (Sius)).

p=i+1
Informally speaking, the set V; ; consists of the vertices of G that lie “in between” separators S; and S;.

Let us give some intuition behind the next phase of the algorithm. Suppose (G, w,k,f) is a yes-
instance of WEIGHTED COMPONENT ORDER CONNECTIVITY, and let X be a solution for this instance.
Generally speaking, X fully contains some minimal separators of G whose removal is necessary to break
the graph into pieces, as well as additional vertices that are deleted from these pieces with the sole
purpose of decreasing the weight of each piece to at most £. The constructed clique path K,..., K;
corresponds to a linear order of the minimal separators Sy, ..., S;—1 of G. We will use this linear structure
to find a minimum solution by doing dynamic programming over the minimal separators of G.

For every ¢ € {0,...,t}, let k, denote the smallest integer such that there exists a set X C V(G)
satisfying the following three properties:

o w(X)=ky;

e S, is a subset of X;



e X is a solution for the instance (Gg, w, kq, £).

In other words, X is a “cheapest” solution for (G, w, kg, ¢) that fully contains the minimal separator Sj.
The algorithm now constructs an array dp with t+1 entries, each of which is an integer from {0, ..., k+1}.
Initially, all the elements of the array are set to k+ 1. For any ¢ € {0,...,t}, we say that the entry dp[q]
has reached optimality if

dplg] = {k kg <
k+1 otherwise.

Recall that Sy = () and that Gy = G. Hence, if dp[t] has reached optimality, then the input instance
(G,w, k,£) is a yes-instance if and only if dp[t] < k.

The algorithm uses a subroutine MinSup that, given a multiset of r weights (wi,...,w,) and a
target W such that Y, w; > W, finds a set I C {1,...,r} such that Y, ; w; is minimized with
respect to the constraint ;. ; w; > W. Note that this subroutine MinSup can be implemented to run
in time O(Wr) using the classical dynamic programming algorithm for SUBSET SuM.

Lemma 4.1. Given an instance (G, w, k,¢) of WEIGHTED COMPONENT ORDER CONNECTIVITY, where
G is an interval graph, the algorithm wCOC returns “yes” if and only if (G,w,k,¥) is a yes-instance,
and “no” otherwise.

Proof. Recall that in order to prove the lemma, it suffices to prove that by the end of the algorithm,
dplt] has reached optimality. For each j € {1,...,t}, we define P;(j) to be the statement “at the start
of iteration j of the outer loop, dp[i] has reached optimality for every ¢ < j,” and we define P»(j) to be
the statement “at the end of iteration j of the outer loop, dp[é] has reached optimality for every i < j.”

Claim 1. For any q € {1,...,t — 1}, it holds that P>(q) implies Py(q +1).
Observe that Claim 1 trivially holds. We also need the following claim.

Claim 2. For any q € {1,...,t}, it holds that Pi(q) implies P2(q).

In order to prove Claim 2, we first prove that if dp[g] < k at the end of iteration ¢, then there is
a solution of weight dp[g] for the instance (G4, w,dp[q],¢) that contains S,. Let r < ¢ be such that
dplg] = dp[r] + w(Ys,q) + w(Sy \ Sr). Due to our initialization of the table dp and the assumption
that dp[g] < k, such an r exists. Because we assume that Pj(gq) holds, dp[r] has reached optimality.
Hence, there is a set X, C V(G,) such that w(X,) = dp[r], X, contains S, and X, is a solution for
(Gr,w,dp[r],£). Consider the set Y, , that was constructed using the subroutine MinSup. Recall that
w(Yrq) > w(V; q) — £ and hence w(V, ¢) < w(Y; 4) + ¢. Furthermore, by assumption, the only component
of G4 — (X,US,) possibly of weight larger than ¢ is a component of G[V, 4]. Let X, = X, US,UY, ,. Due
to the correctness of MinSup, it holds that any component of G, — X, is of weight at most £. Hence X,
is a solution for (G4, w, dplg],¢) that contains S, and has weight dp[q].

It remains to prove that for any set X C V(Gy) such that S; C X and wec(Gq — X) < £, it holds
that w(X) > dplg]. Assume, for contradiction, that there exists a set X C V(G,) such that S, C X,
Wee(Gq — X) < ¢, and w(X) < dp[g]. Let r < g be the largest index such that S, C X. Observe that r
exists due to the fact that So = (). We claim that

w(Vyg \ X) > 0.

First consider the case where w(V, 4) >k +¢. Then w(V; o\ X) > w(V;.q) —w(X) > k+ £ —w(X) > ¢,
where the last inequality follows from the fact that w(X) < dplq] < k + 1.

Now consider the case where w(V;.4) < k+£. Then by the algorithm, dp[g] < dp[r]+w(Y; ) +w (S, \
Sy). By definition, we know that the sets V(G,), V;.4, and S, \ S, form a partition of V(G,), and hence
w(XNV(Gy)) +w(X NVeg) +w(X N(Se\Sr) =w(X) <dplg] <dp[r] +w(Yrq)+w(Sq\ Sr). Since
S, € X and Pi(gq) holds by assumption, we have that dp[r] < w(X NV(G,)). From S, C X it follows
that w(X N (S¢\Sr)) = w(Sq \ Sr) and since we know that w(X NV(G,)) > dplr] it follows immediately
that w(X NV, 4) < w(Y,4). By the correctness of MinSup it follows that w(X NV, ) < w(V,4) — £.
Hence, we find that w(V, o \ X) = w(V,q) —w(X NVig) > w(Vyq) — (W(V,4) = £) = L.

We now prove that G[V, 4 \ X] is connected. Let u and v be two distinct vertices from V, 4\ X.
We will now prove that u and v belong to the same component of G[V; 4 \ X]. If there is a maximal
clique K; of G containing both v and v, then this trivially holds. Suppose this is not the case. Let a be
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the largest number such that u € K, and b the smallest number such that v € K;. Assume without loss
of generality that a < b. By construction of V;. 4, it follows that » < a < b < ¢q. By the definition of r,
we know that S, \ X is non-empty for every z € [a,b). Consequently, the vertices in Uze[a, b) S, induce a
connected subgraph of G[V, 4\ X], and u and v are thus contained in the same component of this graph.

Recall that we.(Gy — X) < £ by the definition of X. However, G[V;., \ X] is a component of G, — X
that has weight w(V, 4 \ X) > ¢. This yields the desired contradiction, and completes the proof of
Claim 2.

We now show that P;(1) holds. In order to show this, it suffices to argue that dp[0] has reached
optimality at the start of the first iteration of the outer loop. Recall that dp[0] is set to 0 during
the initialization phase, so dp[0] equals 0 at the start of the first iteration of the outer loop. Since
So = V(Gp) = 0, it holds that ko = 0.

Since P;(1) holds, we can repeatedly apply Claims 1 and 2 to deduce that P»(t) holds. Hence, dplt]
has reached optimality by the end of the last iteration of the outer loop. [l

Theorem 9. WEIGHTED COMPONENT ORDER CONNECTIVITY can be solved in O(min{k, ¢} -n3) time
on interval graphs.

Proof. Due to Lemma 4.1, it suffices to prove that the algorithm wCOC runs in time O(sn®), where
s = min{k, ¢}. Clearly, we can remove all vertices of weight 0 in O(n?) time. It is well-known that a
clique path of an interval graph can be constructed in O(n?) time, and that an interval graph has no more
than n maximal cliques [Iba09]. Consequently, all the sets K, ..., K¢y1 and S, . . ., S¢ can be constructed
in O(n?) time. Observe that for all 0 < i < j <¢, it holds that V; ; = V; ;_1 U(V(K;)\ (S;US;)). Hence,
once the sets Ky, ..., Ky41 and Sp, ..., S; have been constructed, the sets V; ; can be computed in O(n?)
time using a straightforward dynamic programming procedure.

We claim that the body of the inner loop runs in time O (kn). Observe that the body of this loop is
only executed if w(V; ;) < k+£. Since |V; ;| <n and w(V; ;) — € < k+ £ — £ = k, the algorithm MinSup
solves the instance ({w1, ..., w)y, ;| }, w(V; ;) —£) in O(kn) time, which is therefore also the time it takes
to obtain Y; ;. Clearly, the value of dp[j] can be computed in O(n) time. Since the inner loop is executed
O(n?) times, we conclude that wCOC terminates in time O(kn?).

It remains to argue why WEIGHTED COMPONENT ORDER CONNECTIVITY can be solved in time
O(fn3) in case £ < k. Recall the following two lines from the inner loop of the algorithm wCOC,
explaining how we obtain the set Y; ;:

Let I = MinSup({w1, ..., wy, 1}, w(Vi;) —£)
Let Yij ={v, € Vi |p€ I}

The idea is to replace the subroutine MinSup by a subroutine MaxInf that, given a multiset of weights
(wy,...,w,) and a target W, finds a set I C {1,...,n} such that ), ; w; is maximized under the
constraint ) ., w; < W. It is clear that MaxInf, just like MinSup, can be solved in O(Wn) time. By
replacing the above two lines in the inner loop by the following two lines, we can obtain the exact same
set Y; ; in O(¢n) time:

Let I = MaxInf((w1,...,wv; 1), %)

Let Yij ={vp, € Vi; [p & I}

This slight modification yields an algorithm for solving WEIGHTED COMPONENT ORDER CONNECTIVITY
on interval graphs in O(¢n?) time. O

Theorem 10. COMPONENT ORDER CONNECTIVITY can be solved in O(n?) time on interval graphs.

Proof. We describe a modification of the algorithm wCOC, called uCOC, that solves the unweighted
COMPONENT ORDER CONNECTIVITY problem in O(n?) time on interval graphs. There are two reasons
why the algorithm wCOC does not run in O(n?) time: constructing all the sets V; ; takes O(n?) time in
total, and each of the O(n?) executions of the inner loop takes O(kn) time, which is the time taken by
the subroutine MinSup to compute the set Y; ; of vertices that are to be deleted.

Recall that for every j € {1,...,t} and every ¢ € {0,...,5 — 1}, the set Y;; computed by the
algorithm wCOC is defined to be the minimum-weight subset of V; ; for which the weight of the subgraph
G[V; ;] — Y;; is at most £. Also recall that once the set Y; ; is computed, the value of dp[j] is updated
as follows:
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1 _ e dpli]
dp[j] = {dp[i] +w(Yi ;) +w(S;\ Si)

When solving the unweighted variant of the problem, we can decrease the weight (i.e., order) of the
subgraph G[V; ;] to at most £ by simply deleting |V; ;| — ¢ vertices from V; ; in a greedy manner. In other
words, it is no longer important to decide which vertices to delete from V; ;, but only how many vertices
to delete. This means that we can replace the entire body of the inner loop by the following line:

o Jdpl]
dp[j] = {dp[’i] + (|Vij| =€)+ 1S5 \ Si

Hence it suffices to argue that we can precompute the values |V; ;| and |S; \ S| for every j € {1,...,¢}
and i € {0,...,j — 1} in O(n?) time in total.
Recall that Vi ; = U)_; 1, Kp \ (Si U S;) by definition, so
J
Vigl=1 U 5l = 1Si = 1S;1 + 150 851,
p=i+1

Moreover, it is clear that
155\ Sil = [5;] = 15: N 551 .

The algorithm uCOC starts by computing the sets Ko, ..., K¢r1 and Sp,...,S; as before in O(n?)
time, as well as the cardinalities of these sets. For each v € V(G), let L(v) denote the largest index 4
such that v € K;. Observe that we can compute the value L(v) for all v € V(G) in O(n?) time in total.
The algorithm then computes the value | U;:O K| for every i € {0,...,t}. Using these values, it then
computes the value

J J i J i
| U Kol =1U Kol =1 Kol + KN Kia| = || Kol = | Kol + 154
p=i+1 q=0 r=0 q=0 r=0

for every j € {1,...,t} and every i € {0,...,j — 1}. Observe that this can also be done in O(n?) time
in total since all the terms in the expression have been precomputed.

It remains to show that we can compute the value |\S; N S| for all indices 7 and j with 0 <i < j <t
in O(n?) time in total. Let us fix an index i € {0,...,t}. Since we precomputed the L-value of each
vertex and we can order the vertices in S; by increasing L-value in O(n) time, we can compute the value
|S¢ﬁSj| = |{’U €S, | L(’U) Zj+1}| = |S¢ﬂSj71| — |{’U € S; | L(’U) :j+1}| for all j € {i+1,...,t}.
Observe that the expression |[{v € S; | L(v) = j + 1}| can be computed for every j by one sweep through
S; since S; is ordered by L-values. Hence the computation of |S; N.S;|, for a fixed ¢ and every j can be
performed in O(n) time. This completes the proof. O

To conclude this section, we investigate the parameterized complexity and kernelization complexity of
COC and wCOC. As mentioned in the introduction, both problems are para-NP-hard when parameterized
by ¢ due to the fact that COMPONENT ORDER CONNECTIVITY is equivalent to VERTEX COVER when
¢ = 1. Our next result shows that when restricted to split graphs, both problems are W[1]-hard when
parameterized by k or by £.

Theorem 11. COMPONENT ORDER CONNECTIVITY is WI[1]-hard on split graphs when parameterized
by k or by L.

Proof. The fact that COMPONENT ORDER CONNECTIVITY is W[1]-hard on split graphs when param-
eterized by k readily follows from the observation that the reduction in the proof of Theorem 8 is
parameter-preserving and the fact that CLIQUE is W[1]-hard when parameterized by the size of the
solution [DF99].

To prove that the problem is W[1]-hard on split graphs when parameterized by ¢, we give a slightly
different reduction from CLIQUE. Let (G,q) be an instance of CLIQUE, and construct GT = (V1, ET),
where Vi = {v, | 2 € V(G)} U{w. | e € E(G)} and ET = {we,we, | e1,e2 € E(G)} U {v,w. |
vertex x incident to edge e in G}. Define CT = {v. | e € E(G)} and IT = VI \ CT. We also define
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k=|E(G)|— () and £ = (4) + q. We will show that (G, q) is a yes-instance of CLIQUE if and only if
(GT,k, ) is a yes-instance of COC.

First assume (G, q) is a yes-instance of CLIQUE, and let @ C V(G) be a clique of size gq. Define
Q" = {we | e = wv for u,v € Q}. Let XT = CT\ QF and consider |XT| and Gt — XT. Observe that
| XT| =|CT\ Q| = |CT| - |QT| = |[E(G)| — (9) = k. Also note that the neighborhood of Q' in IT has size
exactly ¢. Hence the component of Gt — XT containing the vertices of Q has |Qf| 4+ ¢ = (g) +q=1¢
vertices, while every other component of GT — X T contains exactly one vertex. This implies that (GT, k, £)
is a yes-instance of COC.

For the reverse direction, suppose that (GT, k, /) is a yes-instance of COC. Then there exists a set
XT C VT such that | XT| < k and n(GT — XT) < ¢; let us call such a set XT a deletion set. Without loss
of generality, assume that among all deletion sets, X' contains the smallest number of vertices from IT.
We claim that XT NIt =0, ie., Xt C CT.

For contradiction, suppose there is a vertex v € Xt N IT. If all the neighbors of v belong to X, then
X T\ {v} is a deletion set, contradicting the choice of XT. Hence we may assume that there exists a vertex
w € Ngt(v)\ XT. Let D be the component of GT — XT containing w. Observe that every component of
G'— X1 other than D has exactly one vertex, so |V (D)| = n(GT — XT). Let X’ = X1\ {v}, and let D’ be
the component of GT — X’ containing v and w. It is clear that |V (D’)| = |[V(D)|+ 1 and all components
of Gt — X’ other than D’ contain exactly one vertex. Finally, let X” = (X' \ {v}) U {w}. Then every
component of GT— X" has at most |V (D')|—1 < |V(D)] vertices, implying that n(GT—X") < n(GT—XT).
Hence X" is a deletion set, contradicting the choice of Xt. This contradiction proves that Xt C C*.

Observe that [CT\ XT| = |CT|— |XT| > |[E(G)|—k = (). Let Q be any subset of CT\ XT of size ({).
Let D be the component of G — XT containing Q. Since XT is a deletion set, |[V(D)| < £ = (§) + ¢.
This implies that QT has at most ¢ neighbors in It. By construction of G1, it holds that Q' has exactly ¢
neighbors in IT. These ¢ neighbors correspond to a clique of size ¢ in G. |

On the positive side, our next result shows that both problems become fixed-parameter tractable
when parameterized by k + £.

Theorem 12. WEIGHTED COMPONENT ORDER CONNECTIVITY can be solved in time O(¢*(k + €)n) =
20(k logﬂ)n.

Proof. Let (G,w,k,£) be an instance of WEIGHTED COMPONENT ORDER CONNECTIVITY, and let n =
|[V(G)| and m = |E(G)|. We assume that every vertex in G has weight at least 1, as vertices of weight 0
can simply be deleted from the graph. Suppose that (G, w,k,¢) is a yes-instance. Then there exists a
set X C V(G) such that w(X) < k and we.(G — X) < £. Let Gy,...,G, be the components of G — X.
We can construct a path decomposition of G by taking as bags the sets X UV (G;) for alli € {1,...,r}.
Since every vertex has weight at least 1, we know that each bag contains at most k + ¢ vertices, implying
that G has treewidth at most k + ¢ — 1. Consequently, G has at most (k + £ — 1)n edges [BF05]. We
may therefore assume that m < (k 4+ £ — 1)n, as our algorithm can safely reject the instance otherwise.
We now describe a simple branching algorithm that solves the problem. Now, at each step of the
algorithm, we use a depth-first search to find a set U C V(G) of at most ¢ + 1 vertices such that
wee(GU]) > £+ 1 and G[U] induces a connected subgraph. If such a set does not exist, then every
component of the graph has weight at most ¢, so we are done. Otherwise, we know that any solution
contains a vertex of U. We therefore branch into |U| < £+ 1 subproblems: for every v € U, we create the
instance (G —v,w, k—w(v), ), where we discard the instance in case k—w(v) < 0. Since the parameter k
decreases by at least 1 at each branching step, the corresponding search tree T has depth at most k.
Since T is an (£ + 1)-ary tree of depth at most k, it has at most ((¢ + 1)**1 —1)/((¢+1) — 1) = O(¢*)
nodes. Due to the assumption that m < (k+¢—1)n, the depth-first search at each step can be performed
in time O(n +m) = O((k + £)n). This yields an overall running time of O(¢* (k + £)n) = 20(kleg Oy

We now show that the branching algorithm in Theorem 12 is in some sense best possible. In order
to make this statement concrete, we need to introduce some additional terminology.

For k > 3, let s be the infimum of the set of all positive real numbers ¢ for which there exists an
algorithm that solves k-SAT in time O(2°"), where n denotes the number of variables in the input formula.
The Exponential Time Hypothesis (ETH) states that sx > 0 for any k& > 3 [IP99, IPZ01]. In particular,
this implies that there is no 2°")-time algorithm for solving 3-SAT, unless the ETH fails. Lokshtanov,
Marx, and Saurabh [LMS11] developed a framework for proving lower bounds on the running time of
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parameterized algorithms for certain natural problems, assuming the validity of the ETH. In order to
obtain these results, they proved lower bounds for constrained variants of some basic problems such as
the following;:

k x k CLIQUE
Instance: A graph G, and a partition X of V(G) into k sets X1,..., Xy of size k each.
Question: Does G have a clique K such that |[K N X;|=1forallie {1,...,k}?

Theorem 13 ([LMS11]). There is no 2°k1°8%) time algorithm for k x k CLIQUE, unless the ETH fails.

Recall that the WEIGHTED COMPONENT ORDER CONNECTIVITY problem can be solved in time
20(klog ) on general graphs. We now show that the problem does not admit a 20010280 _time
algorithm, even when all the vertices have unit weight and the input graph is a split graph, unless the
ETH fails.

Theorem 14. There is no 2°k108 00 time algorithm for COMPONENT ORDER CONNECTIVITY, even
when restricted to split graphs, unless the ETH fails.

Proof. For contradiction, suppose there exists an algorithm A for solving the COMPONENT ORDER
CONNECTIVITY problem in time 2°(k1°8)pO()  Let (G, X) be an instance of the k x k CLIQUE problem,
where X = {X1,..., Xi}. We assume that G contains no edge whose endpoints belong to the same set X,
as an equivalent instance can be obtained by deleting all such edges from G. Due to this assumption, it
holds that (G, X) is a yes-instance of k x k CLIQUE if and only if G contains a clique of size k.

Now let G* = (C*,I*, E*) be the incidence split graph of G, and let £ = |V(G)| + |E(G)| — (g) By
the definition of the k x k CLIQUE problem, we have that |V (G)| = k% and |E(G)| < k?(k* —1)/2. This
implies that the graph G* has at most k% + k?(k? —1)/2 < k* vertices, and that £ < k*. By Lemma 3.2,
it holds that (G*,k,{) is a yes-instance of COMPONENT ORDER CONNECTIVITY if and only if G has a
clique of size k. Hence, using algorithm A, we can decide in time 2°(Flog K 0) = go(klogk) whether or
not (G, X) is a yes-instance of k x k CLIQUE, which by Theorem 13 is only possible if the ETH fails. O

We conclude this section by showing that the WEIGHTED COMPONENT ORDER CONNECTIVITY
problem admits a polynomial kernel. The arguments in the proof of Theorem 15 are similar to, but
slightly different from, those in the proof of Theorem 6.

Theorem 15. WEIGHTED COMPONENT ORDER CONNECTIVITY admits a kernel with at most kl(k +
0) + k wvertices, where each vertex has weight at most k + €.

Proof. We describe a kernelization algorithm for the problem. Let (G, w, k, £) be an instance of WEIGHTED
COMPONENT ORDER CONNECTIVITY. We first delete all vertices of weight 0 without changing the pa-
rameters. Observe that after this first preprocessing step, the weight of every vertex is at least 1. This
implies in particular that | X| < w(X) for every set X C V(G).

We now apply the following two reduction rules. If G contains a vertex v such that w(Ng[v]) > k+¢,
then we delete v from G and decrease k by w(v), unless w(v) > k, in which case we output a trivial
no-instance. To see why this rule is safe, let us first show that v belongs to any solution for the
instance (G, w,k,¥) if such a solution exists. This follows from the observation that deleting any set
X C V(G)\ {v} with w(X) < k from G yields a graph G’ such that w(Ng/[v]) > £. For the same
reason, there exists no solution if w(v) > k. Our second reduction rule deletes any component H of
weight at most ¢ from G without changing either of the parameters. This rule is safe due to the fact that
Wee(H) < ¢ implies that no minimum solution deletes any vertex from H.

Let (G',w, k', £) denote the instance that we obtain after exhaustively applying the above reduction
rules, where w denotes the restriction of the original weight function to the vertices of G’. Observe that
k' < k, while the parameter ¢ did not change in the kernelization process. Suppose X is a solution
for this instance. Then w(X) < k'’ < k, which implies that X contains at most k vertices. For every
component H of G’ — X, it holds that |H| < we.(H) < ¢, furthermore H is adjacent to at least one vertex
of X, as otherwise our second reduction rule could have been applied. Moreover, the fact that the first
reduction rule cannot be applied guarantees that w(Ng[v]) < k + ¢ for every v € V(G’). In particular,
this implies that every vertex in X has degree at most k + ¢. We find that G — X has at most k(k + ¢)
components, each containing at most ¢ vertices. We conclude that if (G',w, k', ¢’) is a yes-instance, then
[V(G")| < kl(k+£)+ k. The observation that each vertex in G’ has weight at most &k + ¢ due to the first
reduction rule completes the proof. [l
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5 Concluding Remarks

We showed that the COMPONENT ORDER CONNECTIVITY problem does not admit a 2061080 ,,0() time
algorithm, unless the ETH fails. Can the problem be solved in time c**n®® for some constant ¢?
Similarly, it would be interesting to investigate whether it is possible to solve VERTEX INTEGRITY in
time ¢Pn®(M) for some constant ¢, that is, does there exist a single-exponential time algorithm solving
VERTEX INTEGRITY?
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