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Abstract

We study the exponential time complexity of approximate counting
satisfying assignments of CNFs. We reduce the problem to deciding sat-
isfiability of a CNF. Our reduction preserves the number of variables of
the input formula and thus also preserves the exponential complexity of
approximate counting.

Our algorithm is also similar to an algorithm which works particular
well in practice for which however no approximation guarantee was known.
Towards an analysis of our reduction we provide a new inequality similar
to the Bonami-Beckner hypercontractive inequality.

1 Introduction

We analyze the approximation ratio of an algorithm for approximately counting
solutions of a CNF. The idea of our algorithm goes back to Stockmeyer. Stock-
meyer [18] shows that approximately counting witnesses of any NP-relation
is possible in randomized polynomial time given access to a Σ2P-oracle. It
is known that we only need an NP-oracle if we apply the Left-Over Hashing
Lemma of Impagliazzo, Levin, and Luby [12] which we discuss below. The use
of an NP-oracle is necessary, unless P = NP. Stockmeyer’s result and its im-
provement provides us with a first relation between deciding satisfiability and
approximately counting solutions, a seemingly harder problem.

1.1 Exponential Time Complexity

The motivation of our results comes from exponential time complexity. Im-
pagliazzio, Paturi, and Zane [13] develop a structural approach to classify NP-
complete problems according to their exact time complexity. They formulate
and prove the Sparsification Lemma for k-CNFs. This lemma allows us to use al-
most all known polynomial time reductions from the theory of NP-completeness

∗This work was partially done during the authors doctoral studies at ETH Zurich [20] and
supported by the Swiss National Science Foundation SNF under project 200021-118001/1.
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to obtain exponential hardness results. There are however problems for which
the sparsification lemma and standard NP-reductions do not yield meaningfull
results. Relating the exact complexity of approximately counting CNF solutions
and the complexity of SAT is such a problem. We show:

Let c > 0 and assume there is an algorithm for SAT with running time

Õ(2cn). For any δ > 0, there is an algorithm which outputs with high probability

in time Õ(2(c+δ)n) the approximation s̃ for the number of solutions s of an input

CNF such that

(1− 2−αn) s ≤ s̃ ≤ (1 + 2−αn) s

with α = Ω( δ2

log( 1
δ )
).

It is not clear if this approximation problem is in BPPNP because of the
super-polynomially small approximation error. An improvement of the approx-
imation error would yield a similar reduction from #SAT to SAT.

A further application of our algorithm is to sample a solution approximately
uniformly from the set of all solutions [14]. The approximation error is again
subexponentially small in n. The reduction in [14] preserves the number of
variables.

We can get also a result similar to Stockmeyer’s result. For any problem
in parameterized SNP [13] – an appropriate refinement and subset of NP – we
can define its counting version. Every such problem reduces by our result and
the sparsification lemma to SAT at the expense of an increase of n to O(n)
variables. Here, n may be the number of vertices in the graph coloring problem
or a similar parameter [13]. We just have to observe that the sparsification
lemma preserves the number of solutions.

1.2 A Practical Algorithm

Stockmeyer’s idea was implemented in [11]. Gomes et al. [11] provide an im-
plementation of a reduction which uses a SAT-solver to answer oracle queries.
The algorithm of Gomes et al. [11] is almost the same as our algorithm. It pre-
serves the number of variables and the maximum clause width is small. These
properties seem to be crucial for a fast implementation, in particular, for the
SAT-solver to work fast.

Gomes et al. [11] compare empirically the running time of their algorithm to
the running time of exact counting algorithms. Their algorithm performs well on
the tested hard instances and actually outperforms exact counting algorithms.
The output values seem to be good approximations. The reason for this is not
understood by theoretical means yet. A bound on the approximation ratio is
not known.

Because there are only small differences between our algorithm and the al-
gorithm of Gomes et al. [11], our bound on the approximation guarantee may
be considered as a theoretical justification for the quality of the algorithm of
Gomes et al. [11]. We do not attempt here to explain why the SAT-solver is
able to handle the generated instances well.
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Another algorithm for the k-CNF case with theoretical bounds was proposed
by Thurely [19].

1.3 Comparison to the Left-Over Hashing Lemma

A possible reduction from approximate counting to satisfiability testing works
roughly as follows. We assume to have a procedure which takes as input a CNF
F with n variables and a parameter m. It outputs a CNF F ∧ Gm such that
the number of solutions of F ∧ Gm times 2m is approximately the number of
solutions of F . We apply this procedure for m = 1, ..., n and stop as soon as
F ∧ Gm is unsatisfiable. Using the information when the algorithm stops we
can get a good approximation.

The construction of Gm reduces to the following randomness extraction
problem. We have given a random point x ∈ {0, 1}n and want a function
h : {0, 1}n → {0, 1}m such that h(x) is almost uniform. We think of h as m
functions (h1, ..., hm) and additionally require that each hi depends only on few
coordinates. We use the later property to efficiently encode h as a CNF in
such a way that the encoding and the input CNF F have the same number of
variables. Stockmeyer’s result and its improvement can not be adapted easily
to get such an efficient encoding. The crucial difference of our approach to
the original approach are the bounds on the locality of the hash function. Our
analysis is Fourier-analytic whereas the proof of Left-Over Hashing Lemma [12]
uses probabilistic techniques.

Impagliazzo et al. [12] show that any pairwise independent1 family Hind

of functions of the form {0, 1}n → {0, 1}m satisfies the following extraction

property: Fix a distribution f over the cube {0, 1}n with bounded min-entropy2

Ω(m+ log(1/ε)) and y ∈ {0, 1}m. Then,

Pr
h∼Hind

(| Pr
x∼f

(h(x) = y)− 2−m| ≤ ε 2−m) ≥ 0.1.

This result, in a slightly more general form [12], is called the Left-Over Hashing

Lemma. We want for our applications that h, seen as a random function, has
besides the extraction property a couple of additional properties. The most im-
portant being that hi is a Boolean function depending on at most k coordinates.
This is what we call a local hash function. These hash functions are however
not necessarily pairwise independent. This leads to a substantial problem. The
proof of the Left-Over Hashing Lemma relies on pairwise independence since it
allows an application of Chebyshev’s Inequality. In its proof we define the ran-
dom variable X = X(h) := Prx∼f (h(x) = y). Its expected value is 2−m. This
still holds in our situation. Its variance can be however too large for an applica-
tion of Chebyshev’s Inequality. To circumvent the use of Chebyshev’s Inequality
we formulate the problem in terms of Fourier analysis of Boolean functions. We

1Pairwise independence means here that Prh∼Hind
(h(x1) = y1, h(x2) = y2) = 2−2m for

any x1, x2 ∈ {0, 1}n, x1 6= x2, and y1, y2 ∈ {0, 1}m. A Bernoulli matrix with bias 1

2
induces

a for example a pairwise independent family.
2See Sec. 2.
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make use of a close connection between linear hash functions attaining the ex-
traction property and the Fourier spectrum of probability distributions over the
cube {0, 1}n.

1.4 Further related work

Calabro et al. [5] give a probabilistic construction of a ”local hash function”
without the extraction property. They obtain a similar reduction as the Valiant-
Vazirani reduction [22]. The extraction property is not necessary for this pur-
pose. Gavinsky et al. [9] obtain a local hash function via the Bonami-Beckner
Hypercontractive Inequality. However only for |A| ≥ 2n−O(

√
n). We remark

that the motivations and applications in [9] are different from ours.
We lend the term extraction property from Goldreich &Wigderson [10]. The

goal in [10] is to find small families of hash functions to reduce the amount of
random bits needed to sample the hash function. In a more restrictive setting
motivated by problems in cryptography also locality plays an important role.
Vadhan [21] studies locally computable extractors. A locally computable ex-
tractor is essentially the same as a local hash function but with the difference
that the functions h1, ..., hm which constitute the hash function may depend
in total on O(m) coordinates. A notion of locality (for pseudorandom genera-
tors) which is closer to ours is studied in the context of cryptography [1] and
inapproximability [2].

The Bonami-Beckner Hypercontractive Inequality, credited to Bonami [4]
and Beckner [3], found several diverse applications. See [8, 17] for further refer-
ences.

2 Preliminaries

We make the following conventions. We assume uniform sampling if we sample
from a set without specifying the distribution. We also use a special O(·) nota-
tion for estimating the running time of algorithms. We suppress a polynomial
factor depending on the input size by writing Õ(·). As an example, SAT can be
solved in time Õ(2n). We denote the logarithm with base 2 by log(·) and the
logarithm naturalis by ln(·).

A κ-junta is a Boolean function which depends on at most κ out of n co-
ordinates. We extend this notion to functions h : {0, 1}n → {0, 1}m, h =
(h1, ..., hm), by requiring that hi is a κ-junta for every i ∈ [m]. A Boolean
function f : {0, 1}n → R is a distribution iff all values of f are non-negative and
sum up to 1. It has min-entropy t iff t is the largest r with f(x) ≤ 2−r for all
x ∈ {0, 1}n. The relative min-entropy t̃ is defined as t̃ := t/n. A distribution f
is t-flat iff f(x) = 2−t or f(x) = 0 for all x ∈ {0, 1}n.

Definition 1. Let 0 < p1, p2 ≤ 1. Let D be a distribution over functions of the
form {0, 1}n → {0, 1}m. A random function h is called κ-local with probability
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p1 iff

Pr
h∼D

(h is κ-local) ≥ p1.

It is called a (t0, ε)-hash function (for flat distributions) with probability p2 iff

Pr
h∼D

(| Pr
x∼f

(h(x) = y)− 2−m| ≤ ε 2−m) ≥ p2

for every y ∈ {0, 1}m and every (flat) distribution f of min-entropy t with
t0 ≤ t ≤ n.

3 Local Hash functions: Construction and Anal-

ysis

We start with the definition/construction of the two hash functions h and h
c.

After this we discuss a basic connection between Fourier coefficients of distribu-
tions and the special case of linear hash functions with a one-dimensional range.
We generalize this finally to functions with the high-dimensional range {0, 1}m.

Construction of h: For i = 1, ...,m: Choose a set Si ∼ µp. Define hi(x) :=⊕
j∈Si

xj . The hash function is h := (h1, ..., hm).

In other words, h is the linear map given by a Bernoulli matrix with bias p.

Construction of h
c: Fix k. For i = 1, ...,m: Choose a set Si ∼ {S : S ⊆

[n], |S| = k}. Define hci (x) :=
⊕

j∈Si
xj . The hash function is hc := (hc1, ..., h

c
m).

3.1 Hashing, Randomness Extraction, and the discrete

Fourier transform

We start with recalling basics from Fourier analysis of Boolean functions. The
Fourier transform of Boolean functions is a functional which maps f : {0, 1}n →
R to f̂ : 2[n] → R and which we define by f̂(S) := Ex∼{0,1}n(f(x) (−1)

⊕
i∈S xi),

S ⊆ [n]. We will study the following normalized Fourier transform given by

f̃(S) := 2n−1 f̂(S). We call the values of f̂ Fourier coefficients and the collection
of Fourier coefficients the Fourier spectrum of f .

We can rewrite normalized Fourier coefficients to see the connection to hash-
ing and randomness extraction. We define

⊕
i∈{} xi := 0.

Lemma 1. Let f : {0, 1}n → R be a distribution. For any S ⊆ [n],

f̃(S) = Pr
x∼f

(
⊕

i∈S

xi = 0)− 1

2
=

1

2
− Pr

x∼f
(
⊕

i∈S

xi = 1).

5



We may think of
⊕

i∈S xi as a single bit which we extract from f . We
are interested in how close to a uniformly distributed bit it is. There is also
a combinatorial interpretation of randomness extraction which we are going to
use subsequently. We define for non-empty A ⊆ {0, 1}n the flat distribution
fA(x) := 1

|A| if x ∈ A and 0 otherwise. We want a random hash function

h : {0, 1}n → {0, 1} such that for every not too small A ⊆ {0, 1}n and b ∈ {0, 1},
Prh

(∣∣Prx∼fA(h(x) = b)− 1
2

∣∣ is small
)
is large. This is the same as saying that

the probability of the event |A ∩ {x ∈ A : h(x) = b}| ≈ |A|
2 should be large. In

words, the hyperplane in Fn
2 induced by h separates A in roughly equal sized

parts.

3.2 Analysis of Local Hash Function

In this section we describe our technical tools for analyzing linear local hash
functions. We show how to apply them on the example of the two functions h

and h
c. The first result we need is an inequality similar to the hypercontractive

inequality for Boolean functions. We prove actually a more general inequality.
It allows us to analyze linear and local hash functions with a one-dimensional
range. For the generalization to functions with a high-dimensional range we use
a different technique.

3.2.1 An Inequality

We give an outline of the proof. The support of a function g : {0, 1}n → R is
the set of all points with a non-zero value and denoted by Supp(g). The norms
below are w.r.t. the counting measure. Define

A(α, p) := sup
0≤x≤1

‖(1− 2 p x, 1− 2 p (1− x))‖ 1
αp

‖(x, 1− x)‖ 1
1−αp

.

Lemma 2. Let f, g : {0, 1}n → {−1, 0, 1}, 0 < p ≤ 1
2 , and 0 < α ≤ 1. Let

Ã(α, p) be such that max(A(α, p), (1 − p) 4αp) ≤ Ã(α, p). Then,

ES∼µp(f̂(S) ĝ(S)) ≤ 4−n Ã(α, p)n (|Supp(f)| · |Supp(g)|)1−αp.

The previous lemma is shown by induction over n. In its proof we work
explicitly with the Bernoulli distribution S is chosen from and avoid entirely
the use of the (noise) operator as in [3]. The purpose is to decompose in the
induction step the n-dimensional functions f and g into (n − 1)-dimensional
functions with the same range {−1, 0, 1}. Preserving the range seems to be an
interesting benefit of our new proof.

The following estimation is the reason why it makes sense to introduce the
new quantity α which does not occur in [3]. Setting for example α = 1/ log(n)
will make Ã(α, p) already reasonable small.

Lemma 3. It holds that A(α, p) ≤
(
1 + 2−1/α+8

)αp
for 0 < α ≤ 1

9 , 0 < p ≤ 1
2 .
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Finally, we arrive at the result we need. Its an application of the previous
results together with a result of Chor & Goldreich [6]. It seems that the Bonami-
Beckner Inequality is too weak for proving it.

Lemma 4. Let f : {0, 1}n → R be a distribution of relative min-entropy t̃,

2t̃n ∈ {1, ..., 2n}, and 0 < p ≤ 1
2 . Then,

ES∼µp(|f̃(S)|) ≤
1

2

√
2
−p·n·t̃/ log(512/t̃)

.

Applying the Bonami-Beckner hypercontractive inequality we get

Lemma 5. Let f : {0, 1}n → R be a distribution of min-entropy t with 2t ∈
{1, ..., 2n}, k be a positive integer, and 0 < ζ < 1. Then,

E
S∼([n]

k )
(|f̃(S)|) ≤ 1

2
n−(1−ζ)k/2 2(n−t) k n−ζ

.

3.2.2 High-Dimensional Range

Our technique for analyzing hash functions of the form {0, 1}n → {0, 1}m works
as follows. Assume f has min-entropy t. Conditioning on an event E ⊆ {0, 1}n
yields a new distribution f ′ with min-entropy t′. We can not say much about the
relation of t and t′ in general. If E is however a hyperplane (in the vector space
Fn
2 ) induced by

⊕
i∈S xi then our inequality from above tells us that t′ ≈ t−1 in

the expectation, S ∼ µp. Iterating this step and keeping control of the entropy
decay we get our result. This process works as long as we reach some threshold
t0 which is essentially determined by the bias p.

Formally, the proof is an induction over m and the induction step an ap-
plication of Lemma 4. We apply it to distributions fi which we define in-
ductively for concrete h∗ : {0, 1}n → {0, 1}m. For i = 0, f0 := f . For
i > 0, fi is fi−1 conditioned on the event {x ∈ {0, 1}n : h∗

i (x) = yi}, i.e.,
fi(z) := Prx∼fi−1(x = z | h∗

i (x) = yi). The function fi is not well defined for
every h∗ since Prx∼fi−1(h

∗
i (x) = yi) = 0 is possible. If this is the case we define

fj to be 0 on all points and for all j ≥ i. The following condition excludes this
case if η < 1.

∀1 ≤ i ≤ m : | Pr
x∼fi−1

(h∗
i (x) = yi)− 1/2| ≤ η/2 (1)

The next lemma allows us to bound the error of approximation, in particular,
how far Prx∼f(h

∗(x) = y) is from the optimal value 2−m.

Lemma 6. Let 0 < η < 1. If Cond. 1 holds for h∗, then

1. (1− η)j 2−j ≤ Prx∼f(h
∗
1(x) = y1, ..., h

∗
j (x) = yj) ≤ (1 + η)j 2−j , j = 1, ...,m,

2. |Prx∼f (h
∗(x) = y)− 2−m| ≤ 2−m ((1 + η)m − 1).

In the proof of our main lemma we establish the desired extraction property
for h and h

c.
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Lemma 7 (Main Lemma). Let 0 < ε < 1, 0 < p ≤ 1
2 . Define

P (t̃) :=
m

ε

√
2
−pnt̃/ log(512/t̃)

.

Hash Function h. If there exists t̃0 such that P = P (t̃0) < 1 and t̃0n+m+1 ≤
n, then h is a (t̃0n+m+1, ε)-hash function for flat distributions with probability
at least (1 − P )m > 0.

Let 0 < ε < 1, 0 < ζ < 1. Let k be a positive integer. Define

Q(t) :=
m

ε
n−(1−ζ)k/2 2(n−t) k n−ζ

.

Hash Function h
c. If there exists t0 such that Q = Q(t0) < 1 and t0+m+1 ≤

n, then h
c is a (t0+m+1, ε)-hash function for flat distributions with probability

at least (1 −Q)m > 0.

We argue next that the restriction p = Ω( log(m)
n ) and that the trade-off

between the entropy of the distribution and the bias p are essentially optimal.
In other words, we can only expect small improvements of the Main Lemma.

3.2.3 Rank of Bernoulli Matrices

We recall the combinatorial idea behind hashing. Let M be a Bernoulli matrix
with bias p and let y ∈ {0, 1}m. The preimage of M , y intersects any large
enough subset A ⊆ {0, 1}n in approximately |A| · 2−m points. Let us assume
m = n. If especially A = {0, 1}n we expect that the linear system Mx = y has
one solution in Fn

2 . This is is the case iff M has full rank. The threshold for this

property is around Θ( log(n)n ) [7]. In particular, the probability that M has full
rank can get very small and in which caseM fails to have the extraction property
with high probability. With respect to this consideration it is not surprising that

our probabilistic construction becomes efficient only if p = Ω( log(n)n ).

3.2.4 The Isolation Problem

We will argue next that also the trade-off between the size of A, i.e. the min-
entropy of the corresponding flat distribution, and p is close to optimal. Actu-
ally, we can restrict A to be the solution set of a k-CNF. The following result
is due to Calabro et al. [5]: For any distribution D of k-CNFs over n vari-
ables, there is a satisfiable k-CNF F such that PrF ′∼D(|sol(F )∩ sol(F ′)| = 1) ≤
2−Ω(n/k), where sol(F ) (sol(F ′)) refers to the set of solutions of F (F ′). The
corresponding problem of computing F ′ is the Isolation Problem for k-CNFs [5].
We show how the Main Lemma relates to a solution of this problem. Let G be
a k-CNF and let p = k

n , k = Θ(κ log(κ) log(n)). The Main Lemma guarantees
just that |sol(G) ∩ sol(G′)|, G′ the CNF-encoding of h, is with high probability
within a small interval around v = 2O(n/κ). We need to define an appropriate

8



Input: CNF F over n variables and a parameter k.

1. Set p := k+1

2n
.

2. For l = 1, ..., n+ 1:
3. Repeat 8⌈log(n)⌉ times:
4. Construct h. Select b ∼ {0, 1}l.
5. If |Si| > k for some i ∈ [l] then stop.
6. Let G be the k-CNF encoding of h(x) = b.
7. Record if F ∧G is satisfiable.
8. If unsatisfiability was recorded more than 4⌈log(n)⌉ times
9. then output 2l−1 and stop.
10. Output 0.

Figure 1: Algorithm acount with access to a SAT-oracle

distribution D0 to apply the mentioned result. Chernoff’s Inequality guaran-
tees that h is encodable as a k-CNF G′′ with high probability. We extend G′′

by constraints (literals) which encode xi = 0 or xi = 1 as follows. Uniformly
at random select a set of log(v) variables. Uniformly at random set the value
of these variables. This defines our distribution D0. With probability at least
2−O(n·log(κ)/κ) we get a O(k)-CNF G′ such that |sol(G) ∩ sol(G′)| = 1. The
reason for this is the following simple to prove fact (Exercise 12.2, pg. 152 in
[15]): Let B ⊆ {0, 1}n be non-empty. There exists a set of coordinates I ⊆ [n]
and b ∈ {0, 1}I such that |I| ≤ log(|B|) and |{x ∈ B : xi = bi ∀i ∈ I}| = 1. Note
that the construction of D0 depends only on the parameters n, k, and m, but
not on the input k-CNF G. We can thus apply the result of Calabro et al. [5].
Comparing the lower and and upper bound we see that we are off by a factor
O(log(k)2 log(n)) in the exponent.

4 Complexity of Approximate Counting

The algorithm is depicted in Fig. 1. It is similar to the algorithm of Gomes et al.
[11]. One difference is the construction of h which is a Bernoulli matrix with bias
p in our case. Gomes et al. [11] select uniformly at random a linear function
which depends on exactly k coordinates for every row. Another difference is
the output. We output an approximation for the number of solutions. The
algorithm of Gomes et al. [11] outputs a lower and an upper bound. Besides
the experimental results, they can show that with high probability the output
lower bound is indeed smaller than the number of solutions. They give however
no estimation for the quality of the output bounds which would be necessary
for bounding the approximation ratio.

We define algorithm acount-constant similar to acount but with the
only difference that it constructs hc. We stress the fact that our algorithms are
easy to implement and that we can amplify the success probability further by
repeating the inner loop appropriately.

9



Theorem 1. 1. (Complexity of Approximate Counting) Let c > 0 and
assume there is an algorithm for SAT with running time Õ(2cn). For any δ > 0,
there is an algorithm which outputs with high probability in time Õ(2(c+δ)n)
the approximation s̃ for the number of solutions s of an input CNF such that

(1− 2−αn) s ≤ s̃ ≤ (1 + 2−αn) s

with α = Ω( δ2

log( 1
δ )
).

2. (Algorithm Analysis) Let k be such that 4 log(16n) ≤ k + 1 ≤ n
and let κ be such that k + 1 = κ log(512κ) 4 log(16n). Let s be the number
of solutions of F . The probability that algorithm acount outputs in time
O(n · log(n) · (n2 + 2k · k · n+ size(F ))) the approximation s̃ such that

1

4
2−n/κ s ≤ s̃ ≤ 4 s

is at least 1/4.

For constant k ≥ 5, the probability that algorithm acount-constant out-
puts the approximation s̃ such that

1

4
2−n+ log(n)

k n1−4/k

s ≤ s̃ ≤ 4 s

is at least 1/4.
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Appendix

A Proof of Lemma 1

Proof. Let I be the image of f and Xp := {x ∈ {0, 1}n : f(x) = p}, p ∈ I. Let
E := {x ∈ {0, 1}n :

⊕
i∈S xi = 1}.

f̃(S) = 2n−1Ex(f(x) (−1)
⊕

i∈S xi) =

= 2n−1
∑

p∈I

p

(
Pr
x
(f(x) = p,

⊕

i∈S

xi = 0)− Pr
x
(f(x) = p,

⊕

i∈S

xi = 1)

)
=

= 2n−1
∑

p∈I

p

(
Pr

x∼{0,1}n
(f(x) = p)− 2 · Pr

x∼{0,1}n
(f(x) = p, x ∈ E)

)
=

=
∑

p∈I

p

(
1

2
|Xp| − |Xp ∩ E|

)
=

1

2

∑

p∈I, x∈Xp

p−
∑

p∈I

∑

x∈Xp∩E

p =

=
1

2
− Pr

x∼f
(
⊕

i∈S

xi = 1) = Pr
x∼f

(
⊕

i∈S

xi = 0)− 1

2
.

B Proof of Lemma 2

Proof. The proof is by induction on n. Let n = 1. If f or g is the constant
0 function then the claim holds. There are 8 remaining functions of the form
{0, 1} → {−1, 0, 1}. We start with functions with range {0, 1}. Let h1 be the
identity function, h2 be the function which maps 0 to 1, 1 to 0, and let h3 be
the constant 1 function. Their Fourier coefficients in order (ĥi({}), ĥi({1})) are
(12 ,− 1

2 ), (
1
2 ,

1
2 ), and (1, 0). Avoiding symmetric cases we have 6 combinations

to check. We start our case analysis with f = g = h3:

1− p ≤ 4−1 Ã(α, p) 41−αp = Ã(α, p) 4−αp.

This inequality holds by definition of Ã(α, p). For the cases f = h1, g = h3 and
f = h2, g = h3 we have (1− p)12 on the left-hand side of the inequality:

(1− p)
1

2
≤ 4−1 21−αp =

1

2
2−αp ≤ Ã(α, p)

1

2
2−αp

since Ã(α, p) ≥ 1. The cases f = g = h1 and f = g = h2 are immediate since
the left-hand sides are at most 1

4 . Let h4 be the function which maps 0 to −1

and 1 to 1. Its Fourier coefficients are (ĥ4({}), ĥ4({1})) = (0,−1). The claim is
thus clearly true for f = g = h4. We reduce the remaining cases to the previous
ones by using the linearity of the Fourier transform (multiplying with −1).
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Assume that the induction hypothesis holds for n − 1. For h : {0, 1}n →
{−1, 0, 1}, let h′

b(x) be 1 if h(x) = 1 and xn = b, b ∈ {0, 1}, and 0 otherwise.
Let hb be the restriction of h′

b to first n − 1 coordinates. Let T ⊆ [n − 1]. It
holds that

ĥ′
b(T ) =(−1)b ĥ′

b(T ∪ {n}) (2)

ĥb(T ) =
ĥ′
b(T )

2
. (3)

In what follows, S is chosen from [n] according to µp and S′ is chosen from
[n− 1] also according to µp.

ES(f̂(S) ĝ(S)) =

pES(f̂(S ∪ {n}) ĝ(S ∪ {n}) |n ∈ S ) + (1 − p) ES(f̂(S) ĝ(S) |n 6∈ S ).

By the linearity of the Fourier transform (in particular, ĥ0 + h1 = ĥ0 + ĥ1) and
by Eq. 2 and 3,

ES(f̂ ĝ) =
1

4

(
ES′(f̂0ĝ0) + ES′(f̂1ĝ1) + (1− 2p)(ES′(f̂0ĝ1) + ES′(f̂1ĝ0))

)
.

Define xb := |Supp(fb)|, yb := |Supp(gb)|, c := 1 − αp, d1 := 1 − 2p, and
d2 := Ã(α, p). By the induction hypothesis,

ES(f̂ ĝ) ≤ 4−n dn−1
2 ((x0y0)

c + (x1y1)
c + d1 ((x0y1)

c + (x1y0)
c)).

We are left with showing that

(x0y0)
c + (x1y1)

c + d1 ((x0y1)
c + (x1y0)

c) ≤ d2 ((x0 + x1)(y0 + y1))
c.

This inequality becomes trivial if at least 2 variables are 0 since d1 ≤ 1 ≤ d2.
We assume w.l.o.g. that x0, x1, y0 > 0, define r := y1

y0
, s := x1

x0
, and divide the

inequality by x0y0. This yields

1 + d1 (s
c + rc) + (rs)c ≤ d2 (1 + r)c (1 + s)c.

We define z(r, s, c) := d2 (1+ r)c (1+ s)c− 1− (rs)c− d1 (s
c+ rc). We are going

to show that there exist one r0 ≥ 0 such that ∂z
∂r (r0) = 0 first and ∂z

∂2r (r0) > 0
for all s ≥ 0 subsequently. This proves that r0 is a minimum. Finally, we show
that z(r0, s, p) ≥ 0. Differentiating z in r and dividing by c rc−1 yields

d2 (r
−1 + 1)c−1 (1 + s)c − sc − d1 = 0.

Resolving for r we get

r0 =

((
d1 + sc

d2 (1 + s)c

)1/(c−1)

− 1

)−1

.
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Define t := d1+sc

d2 (1+s)c . Since s > 0 and p ≤ 1
2 we conclude that t > 0. We also

need to show that t < 1 to conclude that r0 is a positive real. By definition of
d2 (

|1− 2 p x| 1
1−c + |1− 2 p (1− x)| 1

1−c
)1−c ≤ d2

(
|x| 1c + |1− x| 1c

)c
.

We get this inequality also by multiplying

(
(1 + d1 s

c)
1

1−c + (d1 + sc)
1

1−c

)1−c ≤ d2 (1 + s)c (4)

with (1 + sc)−1. Then, 0 < x = sc

1+sc < 1. Note that d2 depends only on α and

p and not on x. Since 1+d1 sc

d2 (1+s)c > 0 we conclude that t < 1.

Next, dividing ∂z
∂2r by c (c − 1) rc−1 and noting that c (c − 1) < 0 it holds

that ∂z
∂2r (r0) > 0 iff

d2 (1 + r−1
0 )−2+c (1 + s)c − d1 − sc < 0

iff

(1 + r−1
0 )−2+c = t

c−2
c−1 < t.

This inequality holds since c−2
c−1 > 1 by definition and 0 < t < 1 as observed

above. We are left with showing that z(r0, s, p) ≥ 0. It holds that z(r0, s, p) ≥ 0
iff

(t1/(c−1) − 1)c (1 + d1 s
c) + sc + d1 ≤ d2 (1 + s)c tc/(c−1).

Dividing by d2 (1 + s)c yields

(t1/(c−1) − 1)c
1 + d1 s

c

d2 (1 + s)c
≤ tc/(c−1) − sc + d1

d2 (1 + s)c
= t (t1/(c−1) − 1)

iff

(t1/(c−1) − 1)c−1 ≤ d1 + sc

1 + d1 sc
.

Dividing by d1 + sc and rewriting we get Eq. 4.

C Proof of Lemma 3

Lemma 8. 1. Let r ∈ R and q ≥ 1. The function ηr,q(x) = ‖(1−rx, 1−r(1−
x))‖q is convex in R and symmetric around 1

2 , i.e., ηr,q(
1
2−y) = ηr,q(

1
2+y).

2. A(α, p) ≥ 1 for every 0 < α ≤ 1 and 0 < p ≤ 1
2 .
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Proof. We begin with the first claim. Let 0 ≤ t ≤ 1 and x, y ∈ R. By
Minkoswki’s inequality

t η(x) + (1− t) η(y) =

‖t (1− rx, 1 − r(1 − x))‖q + ‖(1− t) (1− ry, 1− r(1 − y))‖q ≥
‖t (1− rx, 1 − r(1 − x)) + (1− t) (1− ry, 1 − r(1 − y))‖q =
‖(1− r(t x + (1− t) y), 1− r(t (1 − x) + (1− t) (1− y))‖q =

‖(1− r(t x + (1− t) y), 1− r(1 − (t x+ (1− t) y))‖q = η(t x+ (1− t) y).

For the second claim, we have to find x0 such that

‖(1− 2 p x0, 1− 2 p (1− x0))‖ 1
αp

≥ ‖(x0, 1− x0)‖ 1
1−αp

.

Set x0 = 0. It holds that ‖(1, 1− 2 p)‖ 1
αp

≥ 1 = ‖(0, 1)‖ 1
1−αp

.

The following proposition is known as Bernoulli’s inequality except for the
inequality 1 + rx

2 ≤ (1 + x)r . It can be seen by showing that (1 + x)r − 1− rx
2

is monotone increasing in [0, 1].

Proposition 1. 1. If r ≥ 1 and x ≥ −1 then (1 + x)r ≥ 1 + rx.

2. If 0 < x, r ≤ 1 then 1 + rx
2 ≤ (1 + x)r ≤ 1 + rx.

We will also use the standard estimate (1 − 1
x )

x ≤ 1
e ≤ (1 − 1

x+1 )
x, x ≥ 1,

without explicitly mentioning it.

Proof. Let l(x) := ‖(1− 2 p x, 1− 2 p (1− x))‖ 1
αp

and u(x) := ‖(x, 1− x)‖ 1
1−αp

.

Both functions are symmetric around x = 1
2 , Lemma 8. It suffices thus to show

the claim for x ∈ [0, 12 ]. We simplify the upper bound first. The function u
attains its minimum 2−αp at x0 = 1

2 , Lemma 8. Together with Proposition 1,

(
1 + 2−1/α+8

)αp
u(x) ≥ u(x) + u(x)αp 2−1/α+7 ≥ u(x) + αp 2−1/α+6.

Define q := 1
1−αp and u0 := αp 2−1/α+6. By Proposition 1,

u(x) + u0 ≥ xq + (1 − x)q + u0 ≥ xq + 1− qx+ u0 =: v(x).

The function v is convex and monotone decreasing in [0, 1
2 ] since

∂v
∂x = q xq−1 −

q ≤ 0 and ∂v
∂2x = q(q − 1)xq−2 ≥ 0 for x ∈ (0, 1

2 ]. The idea now is to find a
tangent t of u′ which lies above l. Since l is convex, Lemma 8, we can show the
latter by comparing l and t at x = 0 and x = 1

2 . The function v has slope −p

at x0 = (1− (1− αp) p)
1−αp
αp ,

exp

(
− (1 − αp)2

α (1− (1− αp)p)

)
≤ x0 ≤ exp

(
− (1− αp)2

α

)
.

We define t(x) := (v(x0) + px0)− px.
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Case l(0) ≤ t(0): l(0) = (1+ (1− 2p)
1
αp )αp ≤ 1+αp exp(− 2

α ). On the other
side t(0) = xq

0+1−qx0+u0+px0 ≥ xq
0+1−qx0+u0 ≥ xq

0+1−(1+2αp)x0+u0

where we used that −q ≥ −(1+2αp). Since 1−αp ≥
√

1
log(e) , exp(−

(1−αp)2

α ) ≤
2−

1
α . It suffices thus to show that

0 ≤ exp

(
− 1− αp

α (1− (1 − αp)p)

)
− exp

(
− (1− αp)2

α

)
+ 61αp2−1/α

if

0 ≤ exp

(
−1− αp+ 2p

α

)
− exp

(
−1− 2αp

α

)
+ 61αp2−1/α.

We used 1 − αp + 2p ≥ 1−αp
1−(1−αp)p here. Multiplying with exp( 1

α − 2p) and

rearranging yields

1− e−p− 2p
α ≤ 61 e−2p e

1
α 2−

1
α αp.

Noting that 1
3 ≤ e−2p and using the estimates e−p− 2p

α ≥ 1−p− 2p
α and 1+ 2

α ≤ 3
α

we conclude the claim from

3

α
≤ 61

3
e

1
α 2−

1
α α.

Case l(12 ) ≤ t(12 ): l(
1
2 ) = 2αp (1−p) ≤

(
2α

e

)p
. By Proposition 1

(
1− p

2

)1/p ≥
1
2 and hence

(
2α

e

)p ≤ 1− p
2 . It suffices thus to show v(x0) + px0 ≥ 1. With the

the same simplifications as above we get

0 ≤ exp

(
− 1− αp

α (1 − (1− αp)p)

)
− exp

(
− (1− αp)2

α

)
+ 62αp2−1/α.

D Proof of Lemma 4

We need the following fact due to Chor & Goldreich [6].

Proposition 2 (Convexity of distributions of bounded min-entropy). Let t be
such that 2t ∈ {1, ..., 2n}. A distribution f : {0, 1}n → R has min-entropy t iff it
is a convex combination of t-flat distributions f1, ..., fL, i.e., f = λ1f1+...+λLfL
for some positive λi’s with λ1 + ...+ λL = 1.

Proof. Assume f is a t-flat distribution. Define s := |{x : f(x) 6= 0}| and
gf := ⌈f⌉, i.e., f rounded up point wise. The range of gf is {0, 1}. Applying

Lemma 2 and 3 and using the fact that f̃(S) = 2n

2s · ĝf (S), S ⊆ [n],

ES∼µp(f̃(S)
2) = (2 s)−2 4n ES∼µp(ĝf (S)

2) ≤ (2 s)−2 (1 + 2−
1
α+8)αpn s2(1−αp) ≤

≤ 2−2 exp

(
(2−

1
α+8)αpn

)
s−2αp.
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By Jensen’s Inequality,

ES∼µp(|f̃(S)|) ≤
1

2
exp

(
1

2
(2−

1
α+8)αpn

)
s−αp.

Define α := 1/ log(512/t̃). Note that s = 2t = 2t̃n and α ≤ 1
9 . Thus,

ES∼µp(|f̃(S)|) ≤ 2αpnt̃
(

log(e)
4 −1

)
−1 ≤ 1

2

√
2
−αpnt̃

.

Let f be a distribution of min-entropy t now. Using the convexity of distri-
butions of bounded min-entropy, Proposition 2, and the fact that the normalized
Fourier transform is a linear functional

ES∼µp(|f̃(S)|) = ES∼µp

(∣∣∣∣∣

L∑

i=1

λi f̃(S)

∣∣∣∣∣

)
≤

L∑

i=1

λi ES∼µp(|f̃(S)|) ≤
1

2

√
2
−αpt̃n

.

E Proof of Lemma 5

Proposition 3 (Kahn et al. [16]). Let f : {0, 1}n → {−1, 0, 1} and 0 ≤ δ ≤ 1.
Then,

∑

S⊆[n]

δ|S|f̂(S)2 ≤ Pr
x
(f(x) 6= 0)

2
1+δ .

Proof. Assume f is a t-flat distribution. Define p := Prx(f(x) 6= 0). Let
gf := ⌈f⌉, i.e., f rounded up pointwise. Applying Proposition 3 and using the

fact that f̃(S) = 1
2p · ĝf (S), S ⊆ [n],

∑

S∈([n]
k )

f̃(S)2 = (2 p)−2
∑

S∈([n]
k )

g̃f (S)
2 ≤ (2 p)−2 δ−k p

2
1+δ .

We recall that for a point r ∈ Rd,
∑d

i=1 |ri| ≤
√
d
∑d

i=1 r
2
i . This implies

∑

S∈([n]
k )

|f̃(S)| ≤ 1

2

(
n

k

)1/2

δ−k/2 p−
δ

1+δ .

The claim for t-flat distributions follows since p = 2−(n−t) and since S is chosen
uniformly at random from

(
[n]
k

)
. The generalization to distributions of bounded

min-entropy follows then from Proposition 2 and the linearity of the Fourier
transform. We set δ = k/nζ and use the estimation |Sk| ≥ (n/k)k. Finally, we
set δ = k/nζ and use the estimation

(
n
k

)
≥ (n/k)k.
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F Proof of Lemma 6

Proof. Define pi := Prx∼fi−1(h
∗
i (x) = yi) and qi := Prx∼f (h

∗
1(x) = y1, ..., h

∗
i (x) =

yi). From Cond. 1, (1 − η)/2 ≤ pi ≤ (1 + η)/2 for 1 ≤ i ≤ m. In particular,
pi 6= 0 and qi 6= 0 for 1 ≤ i ≤ m. Thus,

qj = pj qj−1 = pj pj−1 qj−2 = ... = pj · ... · p1.

The first claim follows. Define q0 := 1. By the triangle inequality,

|qm − 2−m| ≤
m∑

i=1

|qi −
qi−1

2
| · 2−(m−i).

Furthermore, 1
qi−1

· |qi − qi−1

2 | = |pi − 1
2 |. Thus,

|qm − 2−m| ≤
m∑

i=1

|pi − 1/2| · qi−1

2m−i
≤ η

2

m∑

i=1

qi−1

2m−i
≤

≤ η

2

m∑

i=1

(1 + η)i−1 2−(i−1)

2m−i
= η

m∑

i=1

(1 + η)i−1

2m
.

Finally,

|qm − 2−m| ≤ 2−m η
m∑

i=1

(1 + η)i−1 = 2−m ((1 + η)m − 1),

where we used η
∑m

i=1(1 + η)i−1 = (1 + η)m − 1.

G Proof of Lemma 7

Proof. Let f be a flat distribution of min-entropy t with t0 = t̃0n ≤ t ≤ n.
We define η := ε

2m . We show that h satisfies Cond. 1 with probability at least
(1 − P )m. The induction is over i = 1, ...,m. For i = 1, we need to show
that |Prx∼f (h1(x) = y1) − 1/2| ≤ η holds with probability at least 1 − P .

From Lemma 1, |Prx∼f (h
∗
1(x) = y1) − 1/2| = |f̃(S∗

1 )| where S∗
1 defines h

∗
1.

By Markov’s Inequality and Lemma 4, PrS∼µp(|f̃(S)| ≥ η) ≤ P . Note that
1− P > 0.

Assume the induction hypothesis holds for i < m. We condition on the
fact that (h∗1, ..., h

∗
i ) satisfy Cond. 1. By Lemma 6 and observing that flat

distributions are closed under conditioning we get that fi is a flat distribution.
We need to show that |Prx∼fi(hi+1(x) = yi+1)−1/2| ≤ η holds with probability

at least 1 − P . Again |Prx∼fi(h
∗
i+1(x) = yi+1) − 1/2| = |f̃i(S∗

i+1)| where S∗
i+1

defines h
∗
i+1. We want to apply Lemma 4 again. We need to verify that the

min-entropy of fi is not too small. Equivalently, fi(z) should not be too large
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for any z ∈ {0, 1}n. By Lemma 6,

fi(z) = Pr
x∼f

(x = z | h1(x) = y1, ..., hi(x) = yi)

= Pr
x∼f

(x = z, h1(x) = y1, ..., hi(x) = yi) Pr
x∼f

(h1(x) = y1, ..., hi(x) = yi)
−1

≤ 2−t 2i (1− η)−i ≤ 2−t+i+2.

The min-entropy of fm is thus at least t− i − 2 ≥ t− (m− 1)− 2 ≥ (t0 +m+
1)−m− 1 = t0. Applying Lemma 4 finishes the proof of the claim.

We showed that h satisfies Cond. 1 with probability at least (1−P )m. This
implies that Prh(|Prx∼f (h

∗(x) = y)− 2−m| ≤ ε 2−m) ≥ (1 − P )m by Lemma 6
and since (1 + η)m − 1 ≤ ε. This finishes the analysis of h. The analysis for hc

is the same as for h but we use Lemma 5.

H Proof of Theorem 1

Proof. Claim 2 (non-constant case). Let A be the solution set of F . As-
sume A is non-empty and fix l. Define B := A ∩ {x : h(x) = b}, h from the l-th
iteration of acount.

Case |A|2−l−1 > 2n/κ. Define fA(x) :=
1
|A| if x ∈ A and 0 otherwise. By the

Main Lemma

Pr
h,b

(∣∣∣∣ Prx∼fA
(h(x) = b)− 2−l

∣∣∣∣ ≤ ε 2−l

)
≥ 7

8
,

i.e.,
||B| − |A| · 2−l| ≤ |A| · ε · 2−l. (5)

We have to calculate P to see this. Set ε := 1
2 . First,

p =
k + 1

2n
=

2 κ log(512κ) log(16n)

n
.

Thus,

P =
l

ε
2− log(16n2)κ log(512κ) t̃/ log(512/t̃) ≤ 1

8n

with t̃ = log(|A|)/n in our setting and since κ log(512κ) t̃/ log(512/t̃) ≥ 1. The
latter holds since t̃ ≥ 1

κ by assumption. By the Main Lemma (t̃0 = 1
κ and

l ≤ n− n
κ − 1 since n

κ ≤ log(|A|)− l − 1 by assumption)

(1− P )n ≥
(
1− 1

8n

)n

≥ 7/8.

We estimate the probability that h is k-local next. Let |Vi| denote the number
of variables hi depends on. By Chernoff’s Bound

Pr
hi

(|Vi| ≥ 2pn) = Pr(|Vi| ≥ k + 1) ≤ (e/4)pn ≤ 1

16n
.
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Thus,

Pr
h

(∀i : |Vi| ≤ k) ≥
(
1− 1

16n

)n

≥ 7/8.

The joint probability that Eq. 5 holds and h is k-local is thus at least 2· 78−1 = 3
4 .

The inner loop amplifies this probability to 1− 1/n.

Case |A|2−l+3 < 1. Let X = X(h, b) be |B|. Let Xx indicate whether h(x) = b.
Then, E(Xx) = 2−l and thus E(X) = |A|2−l. By Markov’s Inequality,

Pr
h,b

(X < 1) ≥ 7/8.

This implies that the joint probability that B = {} and h is k-local is at least
3
4 . The inner loop amplifies this probability to 1− 1/n.

Eq. 5 implies B 6= {} if A 6= {}. Assume the algorithm stops at l = l0 ∈ [n].
It outputs 2l0−1. From the first case, we get that l0 ≥ log(|A|) − n

κ − 1
with probability (w.p.) at least (1 − 1/n)n+1 because the algorithm contin-
ues if l0 < log(|A|) − n

κ − 1 w.p. at least 1 − 1/n per step. From the second
case, l0 ≤ log(|A|) + 3 w.p. at least 1 − 1/n because the algorithm stops if
l0 > log(|A|) + 3 w.p. at least 1− 1/n.

We do not know how the algorithm behaves in the range Ω(1) ≤ log(|A|) ≤
n
κ +O(1). This causes the approximation error. We can overcome this problem
using a simply technique to prove the second claim.

Claim 2 (constant case). This analysis remains the same as in the non-
constant case. We are just have to show (1 − Q)m ≥ 1/4 which follows from

Q ≤ 1
m and ε := 1

2 , ζ := 1− 4
k , t0 := n− log(n)

k n1−4/k.

Claim 1. We note that we can count the number of solutions exactly in time
Õ(2(c+δ)n) if |A| ≤ 2δn. This follows from the self-reducibility of SAT and the
prerequisites. Set δ := 1

κ . If p ≤ δ
2 we know that h is with high probability

(δn)-local. We can encode a (δn)-local hash function in time Õ(2δn) as a CNF.
We adapt acount in the following way: If the input CNF F has more than
⌊2δn⌋ solutions we construct h for l = 1, ..., ⌈(1 − δ)n⌉ and continue as long as
F ∧ G has at least ⌊2δn⌋ solutions. We output the exact number of solutions
of F ∧ G times 2l. The analysis goes as follows. We observe that as soon as
|A| 2−l < ⌊2δn⌋ we know it and the approximation error is thus determined by
Eq. 5. Rewriting Eq. 5 we get

(1− ε) |A| ≤ |B| 2l ≤ (1 + ε) |A|.
For some p = O(δ) and t̃ ≥ δ we get from the Main Lemma

P = 2−O(δ2n/ log(1/δ)−log( 1
ε ))

which is small enough for some log(1ε ) = Ω(δ2n/ log(1/δ)).
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