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Short sequences of improvement moves lead to approximate
equilibria in constraint satisfaction games

loannis Caragiannis Angelo Fanelii Nick Gravirt

Abstract

We present an algorithm that computes approximate pure Bastibria in a broad class of
constraint satisfaction games that generalize the wealitkncut and party affiliation games. Our
results improve previous ones by Bhalgat et al. (EC 10) imseof the obtained approximation
guarantee. More importantly, our algorithm identifies a/polmially-long sequence of improvement
moves from any initial state to an approximate equilibriumthiese games. The existence of such
short sequences is an interesting structural propertyhwylicthe best of our knowledge, was not
known before. Our techniques adapt and extend our previousfer congestion games (FOCS 11)
but the current analysis is considerably simpler.

Keywords: algorithmic game theory, complexity of equilibria, pure dlaequilibrium, potential
games, constraint satisfaction

1 Introduction

Constraint satisfaction games are generalizations of teékmown cut games and party affiliation
games. In a constraint satisfaction game, there is a setadédio variables and a set of weighted con-
straints; each constraint depends on some of these varidbdeh player controls the value of a distinct
variable and has two possible strategies: setting the \@ltige variable to eithed (false) orl (true).
The payoff (or utility) of a player is the total weight in ssfted constraints where her variable appears.
Constraint satisfaction games are potential games. Theweight of satisfied constraints serves as an
exact potential function in the sense that the differendbénpotential between two states that differ in
the strategy of a single player equals the change in theyutilithat player. Hence, pure Nash equilibria
(i.e., states in which no player has an incentive to unigiemove in order to improve her utility) can
be computed by solving the local search problem (see [14& fiveoretical treatment of local search)
of computing a local maximum of the potential function. Unifmately, this is a computationally-hard
problem [19]. In this paper, we resort to the question of Wwhetelaxed solution concepts — namely,
approximate (pure Nash) equilibria — can be computed effilsie

In particular, we consider constraint satisfaction gambere each constraint depends on the value
of at mostk variables and has the property that its value can change fats® to true by a unilateral
change in any of its variables. In general, we refer to sushegaasP,—FLIP games following the
terminology of Bhalgat et al[[3]. Particular examples dbttype of constraints include “parity” and
“not—all-equal” constraints. An odd (respectively, evpality constraint requires that the number of its
true variables is odd (respectively, even). A not-all-équastraint consists of literals (i.e., variables
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or their negations) and requires that at least two of itsditehave different values. We refer —
FLIP games consisting of parity constraints asRAy—k—FLIP games;P,—FLIP games with not-all—
equal constraints with at leaktliterals are calledVAE—(k, k)—FLIP games. Party affiliation games are
PARITY—2—FLIP games and, in particular, cut games as®& Ry —2—FLIP games with odd constraints or
NAE—(2, 2)—FLIP games whose constraints have no negative literals.

By adapting and extending our techniques(in [4] for congestjames, we present a polynomial-
time algorithm that computes approximate equilibriab3-FLIP games. The approximation guarantee
is related to the stretch of the potential function of games in a given class, definethasmaximum
over all games in the class of the maximum ratio between tkenfial values in two equilibria. As we
show, P,—FLIP games have a stretch bf+ 1; hence, for generaP,—FLIP games, the approximation
guaranted + ¢ of our algorithm improves a previous one2¥f — 1 + ¢ by Bhalgat et al.[[3] fok > 3.

By bounding the stretch ofAE—(k, k)—FLIP and RRITY—k—FLIP games, we are able to show further
improvements. FoNAE—(k, k)—FLIP games, the approximation guarantee becomese for k=2
and2 + ¢ for k > 3; these results improve a boundgf—1 + ¢ from [3]. For RRITY—k—FLIP games
with odd k, the approximation guaranteefst . The running time of the algorithm is bounded by a
polynomial of the number of players, and1/s. Our analysis follows the same general structuré lof [4]
but uses different technical arguments and is considesafipler due to the simplicity in the definition
of P,—FLIP games.

More importantly, for every initial state of the game, oug@ithm identifies a polynomially-long
sequence of improvement moves of the players that lead tp@noxdimate equilibrium. The existence
of such short sequence suggests an interesting structomnty of P.—FLIP games which, to the best
of our knowledge, was not known before. Actually, Bhalgatle{3] argue about the limitations of (un-
coordinated) improvement move sequences by presentingiaytar cut game in which any sequence
of p-moves (i.e., moves that improve the utility of the movingy@r by a factor of at leagh from some
states to any—approximate equilibrium has exponential length for any [1,21/20). This negative
result complements nicely with the structural property wa/p.

Our algorithm is simple. Players are classified into bloakthsit the players within the same block
have polynomially-related maximum utility (i.e., total ight of the constraints a player can affect).
Then, a set of phases is executed. In each phase the play@rs gonsecutive blocks are allowed to
move. The players in the block of higher maximum utility ailewsed to makep-moves and the players
of the other block are allowed to makemoves. Then, the strategies of the players that were afldave
perform p-moves within a phase are irrevocably decided at its endarylethis defines a sequence of
improvement moves by the players. We show that by settingpdinemeterg andp appropriately, the
algorithm terminates in polynomial time and, furthermdle players whose strategies are irrevocably
decided at the end of a phase will not be affected signifigdngtl later moves. In order to do so, we
select a value for parametgtthat is slightly higher than the stretch of the class of gatoesghich the
input game belongs and a value for paramettrat is very close ta.

Related work. Schaffer and Yannakakis [19] proved that the problem ofmating a pure Nash equi-
librium in constraint satisfaction games is complete fa ¢thass PLS — standing for polynomial local
search — that has been introduced by Johnson et al. [11]. @detie result of [19] covers all games
considered in the current work and have been strengtherjéd, (i3] to capture instances in which each
player participates in a constant number of constraintsoigrthe few rare non-trivial positive results
is an algorithm by Poljac [17] who shows that a local maximurthe potential function in cut games
can be computed in polynomial time when each player pagtiegpin at most three constraints.

The algorithm of{[3] for approximate equilibria iR,—FLIP games has the following structure. Play-
ers are partitioned into layers in a similar way to the bloaktifoning that we use in the current paper.
Then, a rearrangement phase moves players across blocideinto guarantee that the total weight of
constraints, in which a playérparticipates together only with players in the same blockrms having



lower maximum utility, is at least/k of playeri’s maximum utility. This can be done in such a way that,
eventually, each layer contains players with polynomiadiiated maximum utility. Then, a top-down
layer dynamics phase takes place, where players withinlegehplay(1 + £/k)-moves in a restricted
game among them until they reach @+ ¢/k)—approximate equilibrium in this restricted game. The
authors of([3] show that the state computed in this way (i8ka— 1 + )—approximate equilibrium for
the original game. They also present a variation of theiorigm for NAE—(k, k)—FLIP games that
computes(lf—f’g1 + ¢)—approximate equilibria. As the authors pf [3] emphasinegeneral, the moves
during the top-down layer dynamics phase are not improvémenes in the original game. In contrast,
our algorithm consists only of improvement moves.

Another class of potential games where the problem of coimgpain (approximate) equilibrium has
received a lot of attention is that of congestion games. Asital potential function for these games
has been defined by RosentHall[18]. Fabrikant et al. [8] ptieatecomputing a local minimum of this
function (corresponding to a pure Nash equilibrium) is Fiz8d as well. Even worse, for sufficiently
general congestion games, Skopalik and VoecKing [20] shatvdomputing @—approximate equilib-
rium is PLS-hard for every reasonable (i.e., polynomialtynputable) value gf. In our previous work,
we have presented an algorithm to compQtd )-approximate equilibria for congestion games under
mild assumptions for the structure of the game. The currapepadapts and extends the main algo-
rithmic techniques in that paper, which have also been egpbt (non-potential) weighted variants of
congestion games inl[5]. Exact or almost exact equilibrialmacomputed in several special cases (e.g.,
seel[6]8]).

We remark that, even though it is hard to compute exactlyal lmptimum of a potential function can
be approximated with extremely low precision under verydmnassumptions [15]. This does not imply
that equilibria can be approximated with a similar precisias the negative results 6f [20] show. Also,
uncoordinated move sequences have been shown to reachaftaiigh social value quickly [1,12] 7],
i.e., to states with low potential in the case Bf—FLIP games. Unfortunately, these states are not
approximate equilibria either, since some player typychis a high incentive to move.

Roadmap. The rest of the paper is structured as follows. We begin widirpinary definitions in
Sectio 2. Sectionl3 is devoted to our upper bounds on theelstoé P,.—FLIP games. The algorithm
and the statement of our main result are presented in S&ttod the analysis follows in Sectibh 5. We
conclude with open problems in Sect{an 6.

2 Preliminaries

A constraint satisfaction game consists of a 8ebf n players, a set of at least boolean variables
V = {s1,s2,...,sv|}, and a seC of constraints (henceforth called clauses) over the viasain V.
Each clause € C has a non-negative weight.. Playerj € N controls the value of a distinct variable
s; from V' and has two possible strategies: setting the value; o either0 (false), orl (true). The
variables ofl/ that are not controlled by any player (if any) are frozen tdaie boolean values. A state
S of the game is simply a snapshot of variable values (or a sfimajo$ players strategies complemented
with the fixed values of the frozen variables), i€+~ (s1, s2, ..., s|V|). Given a states' of the game, we
denote byS AT'(S) the set of satisfied clauses. For a subset of platets N, we denote bys ATr(S)
the subset ofSAT'(S) that consists of clauses in which the variable of some plépen R appears.
With some abuse of notation, we simplifyATY;,(S) to SAT;(S). The utility of a player; is the total
weight of the true clauses in which her variable appears,ui;j€S) = >~ c gz, (s) we- We also denote
by C'r the set of clauses in which at least one playeRqfarticipates and simplifg’;, to C;. We use
U; to denote the maximum possible utility that playenight have, i.e.l/; = Zcecj We.

Given a stateS’ = (s1, s2, ..., 5y) and a playey, we denote byS_;, s;) the state obtained frotfi



when playerj unilaterally changes her strategy. This is an improvementarfor simply, a move) for

player; if her utility increases, i.ex;(S—;, s%) > u;(S). We call it ap-move when the utility increases
by more than a factor o, i.e., u;(S—;,s;) > p-u;(5). A stateS is a pure Nash equilibrium (or
simply, an equilibrium) if no player has a move to make. Samyl S is a p—approximate (pure Nash)
equilibrium if no player has a-move.

We specifically consider clauses with the following propesdny false clause can become true by
changing the value of any of its variables. We will refer tangs with clauses satisfying this property
and with at most variables per clause d,—FLIP games. This class is broad enough and contains
(generalizations of) several well-studied games such aigamaes and party affiliation games. We are
particularly interested in two subclassesi@f-FLIP games. ANAE-clause contains literals (i.e., vari-
ables or their negations) and equalg and only if there are two literals with different values.ewtill
refer to games consisting ofAE-clauses with at least > 2 and mostk literals asNAE—(k, k)—FLIP
games. Observe that these gamesireFLIP games since changing the value of any variable that ap-
pears in a clause can change the value of the clause(ftorih. In PARITY—k—FLIP games, each clause
is characterized as odd or even; an odd (respectively, eélanse is true if the number of its variables
which arel is odd (respectively, even). An important property[QEFLIP games is that for any state
and any playey, it holds that; < u;(S) + u;(S-;, s}).

Given a stateS of a P,—FLIP game, we denote b$(S) the total weight of all true clauses, i.e.,
(S) = > esary(s) We- The functiond is a potential function for this game. In particular, it hbe t
remarkable property that for every two stateand(S_;, 89) differing only in the strategy of player,
the difference of the potential is equal to the differencthefutility of playerj, i.e.,®(S)—®(S-;, s%) =
u;(S) — u; (S5, 57)-

In the following, we will be often considering sequences aies in which only players in a certain
subsetkR C N are allowed to move. We can view such moves as moves in a si@bgarong the
players inR, with the set of clause€'r (each clause iUz has the same weight as in the original
game), and with fixed values for the variables that are notrolbed by players inR. Observe that any
subgame of &,—FLIP game is aP,—FLIP game as well. Similarly, any subgame afiaE—(k, k)—FLIP
(respectively, RRITY-k—FLIP) game is aNAE—(k, k)—FLIP (respectively, RRITY—k—FLIP) game as
well. The function® (S) = >~ cqar,(s) we is an exact potential function for the subgame among the
players inR. The next claim follows easily by the definitions.

Claim 2.1 For every stateS of a P,—FLIP game and any set of playefs C N, it holds that®z(S) <
> jertj(S) < k®g(S). Furthermore, for every set of playefe C R, it holds that® g/ (S) < ®r(S5).

Proof. The firstinequality follows since every clause that conttés to the sum_ .. g 47, (s) we (Which
is equal tod z(.5)) contributes at least once and at mbsimes to the sum ;. >~ .c g7 (5) we (Which
is equal to) .  u;(.5)). The second one follows trivially SincgATx (S) C SATR(S). 0

3 The stretch of P.—FLIP games

The approximation guarantee of our algorithm depends oraatiy related to the potential function of
P,—FLIP games that we call the stretch.

Definition 3.1 Givenn > 0, the (1 + n)-stretch of aP,—FLIP game is the ratio between the maximum
and the minimum value of the potential function taken oveflal n)-approximate pure Nash equilibria
of the game.

We use the term stretch as a synonymi dtretch; observe that it is simply the ratio between the
maximum and minimum potentials of (exact) equilibria. Inebhen{3.1L, we present upper bounds on



the (1 + n)—stretch ofP,—FLIP games. Note that these bounds may be of independent intieoestds
on the stretch of congestion games from our previous wdrk@E been used by Piliouras et al.|[16]
in order to quantify the price of anarchy of congestion gamesttings with uncertainty where players
have particular risk attitudes.

Theorem 3.1 For anyn > 0, the (1 + n)-stretch of P,—FLIP gamesNAE—(3, k)—FLIP gamesNAE—
(2, k)-FLiP games, andPARITY —k—FLIP games with odd is at mostk + 1 + kn, 2 + kn, 3 + kn, and
k + kn, respectively.

Proof. Consider aP.—FLIP (sub)game among players in a $&&nd with a set of claus&si. Consider
an (1 + n)-approximate pure Nash equilibriusi and letS* be a state that maximizes the potential
function. Clearly, this state is afl + n)—approximate equilibrium for every > 0. Let D C R be
the set of players that use different strategies iand S*. We denote byC? C Cj the set of clauses
that contain exactly players fromD fori = 0,1, ..., k. We useC;ﬁ to denote the subset 6f in which
player;j participates. LeS AT} (S) = SATR(S) N C'. Also, denote by\;(S) the subset o ATj(S)
consisting of the clauses that would become false by chgntie strategy of playef € D (to her
strategy inS*). Let\.(S) = [{j € D : c € A;(S)}| and\ = max.ccy, Ae(S).

Since every playej in D has no(1 + n)-move in state5, we have(l + ) - u;(S) > u; (S, s})

and, equivalently,
(I+mn)- Z W, > Z We.
ceSAT;(S) ceC\A;(S)

By adding}_ .., ;) w. to both sides, we get
(I+mn)- Z W, + Z W, > ch.
ce€SAT;(S) ceN;(S) ceCj
By summing over all players i), we obtain that
YooY G+in+rS)we = DY iw, (1)
i€[k] ce SATH(S) i€lk] ceCt

where[k] denotes the set of integefs, 2, ..., k}.
Now, the potential of staté* is not higher than the total weight of all clauses(ip \ C° plus the
weight in satisfied clauses 6f° (these clauses are satisfied in both statesd S*). Hence,

(ST < > we+ > we

ceCr\C? c€SATY(S)
= ZZ’LU}C ZZ (i — Dwe + Z We
i€[k] ceCt i€[k] ceCt ceSATR(S)
< Z Z (i +in + Ac(S Z Z (i = Dwe + Z We
i€[k] ce SATE(S) i€[k] c€ SATE(S) c€SATY(S)
=3 3 S+ 1tipuet+ Y we
i€[k] ce SATE(S) cESATY(S)
k
< A Fldkn)-d, Y we

1=0 ceSATE(S)

= A+1+kn)- Z We
cESATR(S)

= (A +1+kn)-®(S).



The second inequality in the above derivation follows fr@ipdnd from the observation thStAT}% -
C' for everyi € [k]. The last inequality follows by the definition af Now, for generalP,—FLIP games,
the theorem is obvious since< k.

In order to prove the next two statements, we need an addit&imple observation. For any true
clausec that is aNAE-clause with at least three literalscan become false by an unilateral change in at
most one variable (i.e).(S) < 1 and, consequentlyy < 1). A true NAE-clause with two literals can
become false by a unilateral change in any of its two vargafiience )\ < 2).

Finally, in order to prove the bound on the stretch aRPrY—k—FLIP games with odd:, we first
observe that a clause (SfAT]’g(S) is not satisfied inS*, since changing: (an odd number) variables
changes the parity of the whole Parity clause. Hence, weeagzaat the last derivation starting with the
stronger boun@® (S*) < ZcecR\SAT;;(S) w, and obtain the improved upper bound &f+kn)-® (S)
on®r(S*). 0

The bounds in Theorem 3.1 are tight; we show thigjfer 0 with four examples. First, lét > 2 and
consider the a unit-weight clause with the variablesrs, ..., z; that is true if and only if the number of
variables with valué is either zero or has the same parity witlit can be easily seen that this constraint
satisfies the property required By—FLIP games). There areadditional even clauses, each containing
only the variabler; fori = 1, ..., k. The state in which all players pldyis an equilibrium with potential
1 while the state in which all players pl@yhas potentiak + 1. Second, consider theae—(3, 3)—FLIP
game with two players controlling the values of the variahl@andy and two unit-weightNAE-clauses
1 = (0,z,y) andees = (y, 1, 1). The state in which the players play= 0 andy = 1 is an equilibrium
with potential1 while the state withv = 1 andy = 0 has potentiaR. Third, consider the-player
NAE—(2, k)—FLIP game with the three unit-weight clauses= (0,x), ¢; = (z,y), andes = (y, 1).
The state in which the players play= 0 andy = 1 is an equilibrium with potential while the state
with z = 1 andy = 0 has potentia8. Finally, for oddk, consider thék — 1)-player RRITY—k—FLIP
game with a unit-weight even clause= (z1,z2,...,x_1,0) andk — 1 additional unit-weight odd
clauses, each containing only the variabldor : = 1, ..., k — 1. The state in which all players playis
an equilibrium with potential while the state in which all players pldyhas potentiak.

In the following, we use the notatiah(1 + ») to denote our upper bound on tfie+ n)-stretch of
P,—FLIP games (and clarify when we refer to the stretch of particaldrclasses oP.—FLIP games).
We use simply to denote the upper bound on thetretch.

4 The algorithm

The pseudocode of our algorithm appears below as Algorithwielsupplement this formal description
with a detailed line—-by-line explanation.

The algorithm takes as inputg,—FLIP gameg with » players, an initial statéj,,, and an accuracy
parametee € (0, 1]. Starting from stateS,, it identifies a sequence of moves that lead to a sigig
this is the output of the algorithm. As we will prove latéfpyt is an approximate equilibrium. The
algorithm starts (lines 1 and 2) by setting the values ofipatars; andp. Parameteq has a value very
close tol (namely,q = 1 + 57) and parametep has a value slightly higher than thestretch of the
class to which the input game belongs (hamely; 6(q) + ¢/3). In particular, using our upper bounds
on#(q) from Theoreni 3]1p is set to bek + 1 + 2¢/3 in general,2 + 2¢/3 if G is aNAE—(3, k)—FLIP
game3 + 2¢/3 if itis a NAE—(2, k)—FLIP games, and + 2¢/3 if it is a PARITY—k game andk is odd.
The algorithm also sets the value of paramétdp be a polynomial depending en k, p, and1 /¢ (line
3). Then (lines 4-5), it implicitly partitions the playenmsto blocksBy, Bs, ..., B,, according to their
maximum utility. Denoting by/;,,.x the maximum values among all players’ maximum utilitiescll
B consists of the playerswith maximum utility U; € (UmaxA ™%, Umax A7), By the definition ofA,
the players in the same block have polynomially related manri utilities.



Input : A P,—FLIP gameG with a setV of n players, an arbitrary initial stat§,, and
e €(0,1]

Output: A stateSgytof G
1q« 1+ 3,
2 p+0(q) +¢/3;
3 A = 200p3nk/e?;
4 SetUpin + minjen Uj, Unax < maxjen Uj, andm < 1 + [1oga (Umax/Umin) |
(Implicitly) partition players intdlocks By, Bs, . .., B,,, such thay € B; implies that
Uj € (UmaxA ™", Upax A
S Sin;
while there exists a playef € By such thatu; (S, %) > ¢ - u;(S) do

‘ S (S_j,S;-);
end
10 for phasei < 1 to m — 1 such thatB; # () do
11 while there exists a playef that either belongs t@; and satisfies
u;j(S-j,8}) > p-u;(S) or belongs toB; 1 and satisfies:; (S—;, s%) > ¢ - u;(S) do

12 ‘ S+ (S_j,Sg»);
13 end
14 end
15 Sout < S;

Algorithm 1: Computing approximate equilibria iR,—FLIP games.

(]
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The sequence of moves from stalg to stateSpytis computed by the code in the lines 6-15. The
subsequence of moves described in lines 7-9 constitutese ph®during phase), the players in block
By makeg-moves. After that, each phasdor i > 1 consists ofp-moves of players in blociB; and
g-moves of players in bloclB; ;. Strategies of players in block; are irrevocably decided at the end
of phasei.

We are ready to state our main result which we will prove inrteet section.

Theorem 4.1 On input aP,—FLIP gameg with n players, an initial statej,, ande € (0, 1], Algorithm
1 computes a sequence of at most pely, 1/e) moves that starts frorfi;; and converges to & + 1+
¢)—approximate pure Nash equilibriuSpyt. The approximation guarantee is at mast  wheng is a
NAE—(3, k)—FLIP game, at mos} + ¢ when it is aNAE—(2, k)—-FLIP games, and at mo&t+ ¢ when it
is a PARITY—k—FLIP game andk is odd.

5 Proof of Theorem[4.1

Before presenting the proof of Theoréml4.1, we give sometiotubehind our analysis. The analysis
uses two properties that are formally stated in Lerima 5.1 atillis lemma essentially says is that,
during each phase, the total utility of the moving playersva#i as an increase in the potential of the
subgame among these players are small. The first propersgisin Lemma?’]3 to prove that, once the
strategy of a player is irrevocably decided, later phaseg mse only a negligible effect on her. And
since no player has @move to make at the end of the phase when her strategy isedeatle cannot
improve her utility by a factor of (almosy) until the end of the algorithm. Together with the fact that
each player's move increases her utility by some non-nigigigamount, the second property is used in
Lemmd5.4 to bound the total number of moves.
In our analysis, we denote by the state reached at the end of phase 0, i.e., Sout = S™'.

We also denote byz; the set of players that move during phas&\Ve also denote the upper boundary

7



of block B; by W; and byW,,, the lower boundary of block3,,,, i.e., W; = Upax A" for i =
1,2,...,m + 1. So, the players of block; are those with maximum utility/; € (W41, W;].

Lemma 5.1 For every phaseé > 1, it holds that
1. ZjERi Uj < 10pk:nVVZ-+1/5
2. Q)Ri(Si) — <I>RZ,(SZ'_1) < 3p27”LW/Z'+1/6.

Proof. First observe that players not iR; have the same set of strategies in staiés' and S°.
Furthermore, the total weight of clauses depending on biesathat are controlled by players from
R; N B;yq is at mosthZH Hence, by the definition of the subgame potential, we hasé tte
potential of the statéS’ ; Ri(B; ,S}'MBZ,) in which the players iR; N B; play their strategies in statg
and the remaining players play their strategies'in' satisfies

®rin5, (S Rnp Srins) > PR(ST) — Wiyt )

We will use inequality[(R) in the proof of the next claim thabpides a bound on the potentik, (S°~1)
as well as later in the current proof.

Claim 5.2 &, (S1) < 3pnWiiy /e.

Proof. We assume on the contrary thiag. (S°~1) > 3pnW;1/c and we are going to conclude that the
potential of the stateS”,, -, , St .) satisfiesbr,p, (S5 (5., Sk.ap,) > 0(q) PR, (S771). By
Theoreni 31, this would contradict the fact ti#atr ! is the output of phase— 1, i.e., ag-approximate
equilibrium of the subgame among the pIayersm'm B;, since there is anotherapproximate equi-
librium (the one that can be reached frgsi Ri(B; ,S}%mBi) with g-moves by the players iR; N B;)
with a potential that is higher that{q) times the potential at state/~!.

We denote by/(j) the utility of player; € R; N B; right after she makes her last move in phase
Then we have

Op,(5) = Tp,(S7") = (A-1/p)- D L 3)

JER;NB;

Indeed, the last move of a playgre R; N B; increases her utility by a factor of at legstand the
difference® g, (S%) — @, (S?~!) equals to the total increase in the utility of the deviatiteyprs within
the phase.

Furthermore, we claim that

S tG) Wi = Dg(SH). (4)
JER;NB;

To see why[(#) is true, observe that the right-hand side isstim of the weights of the clauses in
SATg,(S"). The termnWW,,1 is an upper bound on the total weight of the clauseSAY r,5, ., (S°).
The weight of each of the remaining ones (i.e., the clausesAfly, (S*) \ SATg;nB,,,(S")) is ac-
counted for at least once in the s@jeRmBi £(j), as part of the utility of some player frofd; N B;
after her last move.

By @) and [@) (i.e., by multiplying[{3) by and [4) byp — 1 and summing them), we obtain that

(I)Ri(Si) > p- cI)Ri(Si_l) - (p - 1)nWi+1' (5)



Hence, using (2)[{5), the definition pf and the second inequality of ClaimR.1, we obtain

(I)RimBi( iﬁ]%lif\IBﬂ SﬁlﬂBz) Z (I)Rz (Sz) - nW’i+1
> p @ (S — pnWin
> (p—¢/3) - Pp (S
> 0(q) Prnp ().
We have obtained the desired contradiction. O

Using the observation that no playeriity N B; has ag-move to make at the end of phaise 1 (i.e.,
at stateS'~1) as well as the first inequality of Claim 2.1, we obtain that

Z U; Z <uj(Si71)+uj(Si_;1,5;-))

JER;,NB; JjER;,NB;

> A+qu(sh)
JERNB;
(1 + Q)k ’ (I)RiﬂBi(Si_l)
IpknW,;y1/e.
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IN

VARVA

The proof of the first inequality in the statement of the lenfoiws by observing that the total utility
of the players inR; N B, is at mosta W, 1.

In order to prove the second inequality we use inequdlity t{® ¢-stretch bound for the subgame
among the players iR; N B;, the fact that)(¢) < p, the second inequality of Claim2.1, and the bound
on®g, (S°~1) from Claim5.2.

Op,(S') — R, (S

IN

¢RimBi (Si—?%if\lBi’ Sﬁlf\lBl) - q)Rz (Si_l) + nm+l
9(‘]) : (I)RiﬂBi(Siil) - q)Ri(Siil) + nWiJrl
(p—1)- g, (S ") + nWip

3p2nWZ—+1/€.

ININ TN

O

The first property of Lemm@a3.1 indicates that the total weafithe moving players in phases
significantly smaller than the upper boundary of bldgk In Lemmd5.B we combine this with the fact
that the upper boundary of subsequent blocks decreasesamjaily and formally prove that, after the
strategy of a player is irrevocably decided, subsequerdgshaay have only a negligible effect on her.
Recall thatf is the stretch of the class of games to which the input gamangslto and equals + 1
for P,.—FLIP games3 for NAE—(2, k)—FLIP games, an@ for NAE—(3, k)—FLIP games, and: — 1 for
PARITY—k—FLIP games with oddk.

Lemma 5.3 The stateSoytis a (¢ + ¢)—approximate pure Nash equilibrium.

Proof. By the definition of phasen — 1, the players in blocks3,, 1 and B,,, have nop-move to
make at the end of phase — 1. We will consider a playey belonging to blockB; whose strategy is
irrevocably decided at the end of phaseith ¢ < m — 2, and will show that she has rip + £/3)-move
to make at the end of phase — 1 (i.e., at stateS™~! = Sgup). The lemma will then follow since
pt+e/3=0(1+3;)+2/3=0+c¢.



Let s; be the strategy used by playgat the end of phase Using Lemma35J1 and the definition of
the block boundaries, we can bound the quaniity/", | t+12_rer, Ur- Thus, we get an upper bound on
the total weight of clauses with players that move in phaseg, .. — 1, as follows:

m—1

m—1
oD U < ) 10pnkWig/e

i=t+17€R; i=t+1

10pnkWii1 o=  _;
AL A~
— 2

IN

i=1
IOpnkWH_l
e(A-1)
Wt+1€
10p2

The last inequality follows by the definition & and the fact thath — 1 > A/2.

Now observe that since playghas nop-move at the end of phasgei.e., at stateS?), it holds that
ui(S) > u(St,,sh)/p andWHl < u](S )+ ui (S, 85) < (14 puy(SY), e, uy(Sh) > et
Furthermore, during phasest 1,. -1, the total change in the utility of playgror in the utility
player; would have by dewatmg is at moil t+1 rer, Ur- Using these observations and inequality

(@), we have

m—1
GEY 2w - 3 U,

(6)

i=t+1reR;
-1
p ¢ e/3 Wi N
> w; (SY) + — U
e AT T 2
1 Wiiie
> u; (S, 85) + ———— U,
T e S Y
1 - Witie
> ST )+ e (14 ) U,
p+e/3 i(5%5755) 5p(p +¢/3) p—|—6/3 Z;ﬁ;
1 - Witie
> i (S™ 1,5'- + U,
p+e/3 i(5%5755) 5p(p+¢/3) p+€/3ztz+1r§z
1
> ) Sm_—l /
= p+€/3uJ( —J 73])7
as desired. In the third and fifth inequalities we have usedhqualities3(1+p) < 5pandp+1+¢/3 <
2p which follow sincep > 2 ande € (0, 1]. This completes the proof of the lemma. O

We conclude the proof of Theordm ¥#.1 by bounding the runrimeg bf the algorithm.

Lemma 5.4 On input of P,.—FLIP (in particular, NAE—(k, k)—FLIP) game, the algorithm identifies a
sequence of at mo&(nk7 /e*) (in particular, O(n3k? /%)) moves.

Proof. Consider a moving player that belongs to block and letu. be her utility after she makes a
move. Since this is a move in,—FLIP game,u > U;/2. Also, since it is at least afll + 57 )-move

(and sincek > 2 ande € (0, 1]), the potential improves by at least- 1+ e > 57[{; > Evg;jl.
We will bound the total number of moves by bounding the nundlenoves in each phase sepa-

rately. Clearly, the increase in the potential during phage® g, (S°) — ®g,(Siy) < nWi. Hence,
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since only players in block; move during phase, it will end after at most W, / (%) =TnkA/Je =
1400p3k?n? /e3> moves. For phasé > 1, by Lemmal5ll, we hav@g, (S71) — &g, (S71) <

3p?nW;,1/e. Since the moving players during this phase belong to bldéskand B, 1, the increase in
the potential during each move is at Ieé@é‘,’cﬁ. Hence, the total number of moves during the phase is
at most(3p2n Wiy 1 /2) / (”Z—,;Q) = 21p?nkA Je2 = 4200p°k?n2 /<

In total, since the number of the phases that are executdetglgorithm after phadeis at mostn,

the number of moves is at ma&(n3p°kn3 /%) and the lemma follows singe € O(k) in general and
p = O(1) in particular forNAE—(k, k)—FLIP games. ]

6 Open problems

A challenging open problem is to improve the approximatioargntee of our algorithm. Our analysis
indicates that a state with lower stretch at the beginningaah phase would allow us to use an even
smaller value for parameterand, subsequently, to obtain a better approximation gtegarOne idea
that comes immediately to mind is to replace thmoves of the players of block;.; within phase

1 with the execution of an algorithm that computes states wajitproximately—optimal potential. For
example, a random assignment to player&pf; would yield a2-approximation to the potential of the
subgame among them. Furthermore, for more structiedrLiP games such as cut games, one might
think to use the famous algorithm 6f|[9] that is based on seéefirite programming. Unfortunately,
we do not see how to include these ideas into our algorithrhistpoint. The main difficulty is that
the low-stretch property should hold for the subgame ambagltayers that will move during the next
phase which we do not know in advance. An algorithm that apprates the potential of all subgames
simultaneously would be ideal here but, besides the loaaickeapproach implied by th¢-moves,
neither the random assignment nor the SDP-based algorghtisy this property.

Even if we could bypass these obstacle, our technique h#stioms since computing states with
low-stretch inP,—FLIP games includes famous hard-to-approximate problems &g./[10]). So, in
order to compute almost exact equilibria, we need new teclasi. Of course, we have no idea whether
this is at all possible. To put the question differently, ligre some inapproximability threshold for
approximate equilibria? We remark that such negative rstames are not known in the literature: the
only known negative results are either specific to exactliégiai (such as the PLS-hardness results of
[8.[19]) or rule out any reasonable approximation guaraint@@mes with very general structure (e.g.,
in [20]). We believe that such questions that are relateea@bmputational complexity of approximate
pure Nash equilibria deserve further attention.
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