
ar
X

iv
:1

41
2.

23
00

v1
 [

cs
.C

G
]

 7
 D

ec
 2

01
4

Minimizing the Aggregate Movements for Interval Coverage

Aaron M. Andrews and Haitao Wang

Department of Computer Science
Utah State University, Logan, UT 84322, USA

aaron.andrews@aggiemail.usu.edu, haitao.wang@usu.edu

Abstract. We consider an interval coverage problem. Given n intervals of the same length on a line
L and a line segment B on L, we want to move the intervals along L such that every point of B is
covered by at least one interval and the sum of the moving distances of all intervals is minimized.
As a basic geometry problem, it has applications in mobile sensor barrier coverage in wireless sensor
networks. The previous work solved the problem in O(n2) time. In this paper, by discovering many
interesting observations and developing new algorithmic techniques, we present an O(n log n) time
algorithm. We also show an Ω(n log n) time lower bound for this problem, which implies the optimality
of our algorithm.

1 Introduction

In this paper, we consider an interval coverage problem. Given n intervals of the same length on a
line L and a line segment B on L, we want to move the intervals along L such that every point of B
is covered by at least one interval and the sum of the moving distances of all intervals is minimized.

The problem has applications in barrier coverage of mobile sensors in wireless sensor networks.
For convenience, we will introduce and discuss the problem from the barrier coverage point of view.
Given a set of n points S = {s1, s2, . . . , sn} on L, say, the x-axis, each point si represents a sensor.
Let xi be the coordinate of si on L for each 1 ≤ i ≤ n. For any two coordinates x and x′ with x ≤ x′,
we use [x, x′] to denote the interval of L between x and x′. The sensors of S have the same covering
range, denoted by z, such that for each 1 ≤ i ≤ n, sensor si covers the interval [xi − z, xi + z]. Let
B be a line segment of L and we call B a “barrier”. We assume that the length of B is no more
than 2z · n since otherwise B could not be fully covered by these sensors. The problem is to move
all sensors along L such that each point of B is covered by at least one sensor of S and the sum
of the moving distances of all sensors is minimized. Note that although sensors are initially on L,
they may not be on B. We call this problem the min-sum barrier coverage, denoted by MSBC.

The problem MSBC has been studied before and Czyzowicz et al. [7] gave an O(n2) time
algorithm. In this paper, we present an O(n log n) time algorithm and we show that our algorithm
is optimal.

1.1 Related Work

A Wireless Sensor Network (WSN) uses a large number of sensors to monitor some surrounding
environmental phenomena [1]. Each sensor is equipped with a sensing device with limited battery-
supplied energy. The sensors process data obtained and forward the data to a base station. Intrusion
detection and border surveillance constitute a major application category for WSNs. A main goal
of these applications is to detect intruders as they cross the boundary of a region or domain.
For example, research efforts were made to extend the scalability of WSNs to the monitoring of
international borders [9,10]. Unlike the traditional full coverage [12,16,17] which requires an entire

http://arxiv.org/abs/1412.2300v1

target region to be covered by the sensors, the barrier coverage [3,4,7,8,10] only seeks to cover the
perimeter of the region to ensure that any intruders are detected as they cross the region border.
Since barrier coverage requires fewer sensors, it is often preferable to full coverage. Because sensors
have limited battery-supplied energy, it is desired to minimize their movements.

If the sensors have different ranges, the Czyzowicz et al. [8] proves that the problem MSBC is
NP-hard.

The min-max version of MSBC has also been studied, where the objective is to minimize the
maximum movement of all sensors. If the sensors have the same range, Czyzowicz et al. [7] gave an
O(n2) time algorithm, and later Chen et al. presented an O(n log n) time solution [5]. If sensors have
different ranges, Czyzowicz et al. [7] left it as an open question whether the problem is NP-hard,
and Chen et al. [5] answered the open problem by giving an O(n2 log n) time algorithm.

Mehrandish et al. [13,14] considered another variant of the one-dimensional barrier coverage
problem, where the goal is to move the minimum number of sensors to form a barrier coverage.
They [13,14] proved the problem is NP-hard if sensors have different ranges and gave polynomial
time algorithms otherwise. In addition, Li et al. [11] considers the linear coverage problem which
aims to set an energy for each sensor to form a coverage such that the cost of all sensors is minimized.
There [11], the sensors are not allowed to move, and the more energy a sensor has, the larger the
covering range of the sensor and the larger the cost of the sensor. Another problem variation is
considered in [2], where the goal is to maximize the barrier coverage lifetime subject to the limited
battery powers.

Bhattacharya et al. [3] studied a two-dimensional barrier coverage in which the barrier is a circle
and the sensors, initially located inside the circle, are moved to the circle to minimize the sensor
movements; the ranges of the sensors are not explicitly specified but the destinations of the sensors
are required to form a regular n-gon on the circle. Algorithms for both min-sum and min-max
versions were given in [3] and subsequent improvements were made in [6,15].

Some other barrier coverage problems have been studied. For example, Kumar et al. [10] pro-
posed algorithms for determining whether a region is barrier covered after the sensors are deployed.
They considered both the deterministic version (the sensors are deployed deterministically) and
the randomized version (the sensors are deployed randomly), and aimed to determine a barrier
coverage with high probability. Chen et al. [4] introduced a local barrier coverage problem in which
individual sensors determine the barrier coverage locally.

1.2 Our Approaches

If the covering intervals of all sensors intersect the barrier B, we call this case the containing case.
If the sensors whose covering intervals do not intersect B are all in one side of B, then it is called
the one-sided case. Otherwise, it is the general case.

In Section 2, we introduce notations and briefly review the algorithm in [7]. Based on the
algorithm in [7], by using a different implementation and designing efficient data structures, we
give an O(n log n) time algorithm for the containing case in Section 3.

To solve the one-sided case, the containing case algorithm does not work and we have to develop
different algorithms. To do so, we discover a number of interesting observations on the structure
of the optimal solution, which allows us to have an O(n log n) time algorithm. The one-sided case
algorithm uses the containing case algorithm as a first step and apply a sequence of so-called
“reverse operations”. The one-sided case is discussed in Section 4.

2

o
g g g

g oo

B

Fig. 1. Illustrating gaps (denoted by g) and overlaps (denoted by o).

In Section 5, we solve the general case in O(n log n) time. To this end, we generalize the tech-
niques for solving the one-sided case. For example, we show a monotonicity property of one-sided
case (in Section 4), which is quite useful for the general case. We also discover new observations
on the solution structures. These observations help us develop efficient algorithmic techniques. All
these efforts lead to the O(n log n) time algorithm for the general case.

Section 6 concludes the paper, where we prove the Ω(n log n) time lower bound (even for the
containing case) by an easy reduction from sorting.

We should point out that although the paper is relatively long, the algorithm itself is simple
and easy to implement. In fact, the most complicated data structure used in the algorithm is
the balanced binary search trees! The lengthy (and sometimes tedious) proofs are all devoted to
discovering the observations and showing the correctness, which eventually lead to a simple, elegant,
efficient, and optimal algorithm. Discovering these observations turns out to be quite challenging
and is actually one of our main contributions.

2 Preliminaries

In this section, we introduce some notations and sketch the algorithm given by Czyzowicz et al.
[8]. Below we will use the terms “line segment” and “interval” interchangeably, i.e., a line segment
of L is also an interval and vice versa. Let β denote the length of B. Without loss of generality, we
assume the barrier B is the interval [0, β]. For short, sensor covering intervals are called sc-intervals.

We assume the sensors of S are already sorted, i.e., x1 ≤ x2 ≤ · · · ≤ xn (otherwise we sort them
in O(n log n) time). For each sensor si, we use I(si) to denote its covering interval. Recall that z

is the covering range of each sensor and the length of each sc-interval is 2z. We assume 2z < β

since otherwise the solution would be trivial. An easy but important observation given in [8] is
the following order preserving property: there always exists an optimal solution where the order of
the sensors is the same as that in the input. Note that this property does not hold if sensors have
different ranges.

Sensors will be moved during the algorithm. For any sensor si, suppose its location at some
moment is yi; the value xi− yi is called the displacement of si (here we use xi− yi instead of yi−xi
in the definition in order to ease the discussions later). Hence, if the displacement of si is positive
(resp., negative), then it is to the left (resp., right) of its original location in the input.

In the sequel, we define two important concepts: gaps and overlaps, which were also used in [8].

A gap refers to a maximal sub-segment of B such that each point of the sub-segment is not
covered by any sensors (e.g., see Fig. 1). Each endpoint of any gap is an endpoint of either an sc-
interval or B. Specifically, consider two adjacent sensors si and si+1 such that xi + z < xi+1 − z. If
0 ≤ xi+z and xi+1−z ≤ β, then the interval [xi+z, xi+1−z] is on B and defines a gap, and si and
si+1 are called the left and right generators of the gap, respectively. If xi+z < 0 < xi+1−z ≤ β, then
[0, xi+1−z] is a gap and si+1 is the only generator of the gap. Similarly, if 0 ≤ xi+z < β < xi+1−z,

3

B

β0

a b

c d

I(si)

I(si+1)

Fig. 2. I(si) ∩ I(si+1) contains 0 in its interior. In this case, we consider si and si+1 together defining an overlap
[c, b] and si itself defining an overlap [a, 0].

then [xi + z, β] is a gap and si is the only generator. For any gap g, we use |g| to denote its length.
For simplicity, if a gap g has only one generator si, then the left/right generator of g is si.

To solve the problem MSBC, the essential task is to move the sensors to cover all gaps by
eliminating overlaps, defined as follows. Consider two adjacent sensors si and si+1. The intersection
I(si) ∩ I(si+1) ∩ B defines an overlap if it is not empty (e.g., see Fig. 1), and we call si and si+1

the left and right generators of the overlap, respectively. Consider any sensor si. If I(si) is not
completely on B, then the sub-interval of I(si) that is not on B defines an overlap and si is its only
generator (e.g., see Fig. 1). A subtle situation appears when I(si) ∩ I(si+1) contains an endpoint
of B in its interior. Refer to Fig. 2 as an example, where 0 is in the interior of I(si) ∩ I(si+1)
with I(si) = [a, b] and I(si+1) = [c, d]. According to our definition, si and si+1 together define an
overlap [0, b]; si itself defines an overlap [a, 0]; si+1 itself defines an overlap [c, 0]. However, to avoid
some tedious discussions, we consider the union of [c, 0] and [0, b] as a single overlap [c, b] defined
by si and si+1 together, but si still itself defines the overlap [a, 0]. Symmetrically, if I(si)∩ I(si+1)
contains β in its interior, then we consider I(si)∩ I(si+1) as a single overlap defined by si and si+1,
and si+1 itself defines an overlap that is the portion of I(si+1) outside B.

For any overlap o, we use |o| to denote its length. For simplicity, if an overlap o has only one
generator si, then the left/right generator of o is si. We should point out that according to our
above definition on overlaps, if an overlap has two different generators, then these two generators
must be two adjacent sensors (e.g., si and si+1 for some i). In other words, if the sc-intervals of two
non-adjacent sensors (e.g., si and si+2) intersect, their intersection does not define any overlap.

Clearly, the total number of overlaps and gaps is O(n).

To solve MSBC, the goal is to move the sensors to cover all gaps by eliminating overlaps. We
say a gap/overlap go1 is to the left (resp., right) of another gap/overlap go2 if the left generator of
go1 is to the left (resp., right) of the left generator of go2 (in the case of Fig. 2, where overlaps [c, b]
and [a, 0] have the same left generator si, [a, 0] is considered to the left of [c, b]).

For any two indices i and j with i ≤ j, let S(i, j) = {si, si+1, . . . , sj}.
Below we sketch the O(n2) time algorithm in [8] on the containing case where every sc-interval

intersects B. The algorithm “greedily” covers all gaps from left to right one by one. Suppose the
first i− 1 gaps have just been covered completely and the algorithm is about to cover the gap gi.

Let ori (resp., oli) be the closest overlap to the right (resp., left) of gi. We will cover gi by using
either ori or oli. To determine using which overlap to cover gi, the costs C(ori) and C(oli) are defined
as follows. Let Sr(gi) be the set of sensors between the right generator of gi and the left generator
of ori . Define C(ori) to be |Sr(gi)|. The intuition of this definition is that suppose we shift all sensors
of Sr(gi) to the left for an infinitesimal distance ǫ > 0 (such that the gap gi becomes ǫ shorter),
then the sum of the moving distances of all sensors of Sr(gi) is ǫ ·C(ori). As will be clear later, the
current displacement of each sensor in Sr(gi) may be positive but cannot be negative. For C(oli), it
is defined in a slightly different way. Let Sl(gi) be the set of sensors between the left generator of gi
and the right generator of oli, and let S′

l(gi) be the subset of sensors of Sl(gi) whose displacements

4

are positive. If we shift all sensors in Sl(gi) to the right for an infinitesimal distance ǫ > 0, although
the sum of the moving distances of all sensors of Sl(gi) is ǫ · |Sl(gi)|, the total moving distance
contributed to the sum of the moving distances of all sensors of S is actually ǫ ·(|Sl(gi)|−2 · |S′

l(gi)|)
because the sensors of S′

l(gi) are moved towards their original locations. Hence, the cost C(oli) is
defined to be |Sl(gi)| − 2 · |S′

l(gi)|. Note that the sensors in Sr(gi) or Sl(gi) are consecutive in their
index order.

If C(ori) < C(oli), we move each sensor in Sr(gi) leftwards by distance min{|ori |, |gi|}, and we
call this a left-shift process. Note that if there is any gap gj between two sensors in Sr(gi), then
the above shift process will move gj leftwards as well, but the size and the generators of gj do
not change, and thus in the later algorithm we can still use gj without causing any problems. If
|gi| ≤ |ori |, then after the left-shift process gi is covered completely and we proceed on the next gap
gi+1. Otherwise, ori is eliminated and gi is only partially covered. We proceed on the remaining gi.

If C(ori) ≥ C(oli), we move each sensor in Sl(gi) rightwards by distance min{|oli|, |gi|, α}, where
α is the smallest displacement of the sensors in S′

l(gi), and we call this a right-shift process. If α
is the smallest among the three values, then the process makes the displacement of at least one
sensor in S′

l(gi) become zero and we call the process as a positive-displacement-removal right-shift
process (or PDR process for short). After the process, if gi is only partially covered, we proceed on
the remaining gi; otherwise we proceed on the next gap gi+1.

The algorithm finishes after all gaps are covered. To analyze the running time, there are O(n)
shift processes in total. To see this, each shift process covers a gap completely, or eliminates an
overlap, or is a PDR process. An observation is that if the displacement of a sensor si was positive
but is made to zero during a PDR process, then the displacement of si will never become positive
again because all uncovered gaps are to the right of si. Therefore, the number of PDR processes is
at most n. Since the number of gaps and overlaps is O(n), the total number of shift processes in
the algorithm is O(n). Each shift process can be done in O(n) time, and thus the algorithm runs
in O(n2) time.

3 The Containing Case

In this section, we present our algorithm that solves the containing case of MSBC in O(n log n)
time. The high-level scheme of our algorithm is the same as the O(n2) time algorithm [8] described
in Section 2, but we design efficient data structures such that each shift process can be implemented
in O(log n) amortized time. More specifically, our algorithm maintains an overlap tree To, a position
tree Tp, a left-shift tree Tl, and a global variable γ.

3.1 The Overlap Tree To

We store each gap/overlap by recording its generators. Consider any gap gi (which may have been
partially covered previously). Our algorithm needs to compute the two overlaps oli and ori . To this
end, we maintain all overlaps in a balanced binary search tree To, called overlap tree, using the
indices of the left generators of the overlaps as “keys”. We can find the two overlaps oli and ori
in O(log n) time by searching To with the index of the left generator of gi. The tree To can also
support each deletion of any overlap in O(log n) time if the overlap is eliminated.

Furthermore, To can help us to compute the costs C(oli) and C(ori) in the following way. After
ori is found, we have |Sr

i | = a − b + 1, where a is the index of the left generator of ori and b is
the index of the right generator of gi. Hence, C(ori) = |Sr(gi)| can be computed in O(log n) time.

5

Similarly, we can obtain |Sl(gi)|. However, to compute C(oli), we also need to know the size |S′
l(gi)|,

which will be discussed later.

3.2 The Position Tree Tp

Recall that the algorithm needs to do the left or right shift processes, each of which moves a
sequence of consecutive sensors by the same distance. To achieve the overall O(n log n) time for the
algorithm, we cannot explicitly move the involved sensors for each shift process. Instead, we use
the following position tree Tp to perform each shift implicitly in O(log n) time.

The tree Tp is a complete binary tree of n leaves and O(log n) height. The leaves from left to
right correspond to the sensors in their index order. For each 1 ≤ j ≤ n, leaf j (i.e., the j-th leaf
from the left) stores the original location xj of sensor sj. Each node of Tp (either an internal node
or a leaf) is associated with a shift value. Initially the shift values of all nodes of Tp are zero. At any
moment during the algorithm, the actual location of each sensor sj is xj plus the sum of the shift
values of the nodes in the path from the root to leaf j (actually this sum of shift values is exactly
the negative value of the current displacement of sj), which can be obtained in O(log n) time.

Now suppose we want to do a right-shift process that moves a sequence of sensors in S(j, k) for
j ≤ k rightwards by a distance δ. We first find a set Vjk of O(log n) nodes of Tp such that the leaves
of the subtrees of all these nodes correspond to exactly the sensors in S(j, k). Specifically, Vjk is
defined as follows. Let w be the lowest common ancestor of leaves i and j. Let π′

j be the path from
the parent of leaf j to w. For each node v in π′

j , if the right child of v is not in π′
j , then the right

child of v is in Vjk. Leaf j is also in Vjk. The rest of the nodes of Vjk are defined in a symmetric
way on the path from the parent of leaf k to w. The set Vjk can be easily found in O(log n) time
by following the two paths from the root to leaf j and leaf k. For each node in Vjk, we increase its
shift value by δ. This finishes the right-shift process, which can be done in O(log n) time. Similarly,
each left-shift process can also be done in O(log n) time.

After the algorithm finishes, we can use Tp to obtain the locations for all sensors in O(n log n)
time.

3.3 The Left-Shift Tree Tl and the Global Variable γ

It remains to compute the size |S′
l(gi)| and the smallest displacement of the sensors in S′

l(gi). Our
goal is to compute them in O(log n) time. This is one main difficulty in our containing case algo-
rithm. We propose a left-shift tree Tl to maintain the displacement information of the sensors that
have positive displacements (i.e., their current positions are to the left of their original locations).

The tree Tl is a complete binary tree of n leaves and O(log n) height. The leaves from left to
right correspond to the n sensors. For each leaf j, denote by πj the path in Tl from the root to the
leaf. Each node v of Tl is associated with the following information.

1. If v is a leaf, then v is associated with a flag, and v.f lag is set to “valid” if the current
displacement of si is positive and “invalid” otherwise. Initially all leaves are invalid. If the flag
of leaf j is valid/invalid, we also say the sensor sj is valid/invalid. Thus, S

′
l(gi) is the set of valid

sensors of Sl(gi).
2. As in the position tree Tp, regardless of whether v is an internal node or a leaf, v maintains a

shift value v.shift. At any moment during the algorithm, for each leaf j, the sum of all shift
values of the nodes in the path πj is exactly the negative value of the current displacement of
the sensor sj.

6

3. Node v maintains a min value v.min, which is equal to d minus the sum of the shift values of
the nodes in the path from v to the root, where d is the smallest displacement among all valid
leaves in the subtree rooted at v, and further, the index of the corresponding sensor that has
the above smallest displacement d is also maintained in v as v.index.

If no leaves in the subtree of V are valid, then v.min = +∞ and v.index = 0.

4. Node v maintains a num value v.num, which is the number of valid leaves in the subtree of v.
Initially v.num = 0 for all nodes.

The tree Tl can support the following operations in O(log n) time each.

set-valid Given a sensor sj , the goal of this operation is to set the flag of the j-th leaf valid.

To perform this operation, we first find the leaf j, denoted by u. We set u.f lag = valid,
u.min = 0, u.index = j. Next, we update the min and index values of the other nodes in the
path πj in a bottom-up manner. Beginning from the parent of u, for each node v in πj , we
set v.min = min{vl.min + vl.shift, vr.min + vr.shift} where vl and vr are the left and right
child of v, respectively, and we set v.index to vl.index if vl gives the above minimum value and
vr.index otherwise.

Finally, we update the num values for all nodes in the path πj by increasing v.num by one for
each node v ∈ πj.

Hence, the set-valid operation can be done in O(log n) time.

set-invalid Given a sensor sj, the goal of this operation is to set the flag of the j-th leaf invalid.
We first find leaf j, set it invalid, set its min value to +∞, and set its num value to 0. Then,
we update the min, index, and num values of the nodes in the path πj similarly as in the above
set-valid operation. We omit the details. The set-invalid operation can be done in O(log n) time.

left-shift Given two indices j and k with j ≤ k, as well as a distance δ, the goal of this operation is
to move each sensor in S(j, k) leftwards by δ. It is required that δ is small enough such that any
valid (resp., invalid) sensor before the operation is still valid (resp., invalid) after the operation.

The operation can be performed in a similar way as we did on the position tree Tp, with the
difference that we also need to update the shift, min, and index values of some nodes. Specifically,
we first compute the set Vjk of O(log n) nodes, as defined in the position tree Tp, and then for
each node v of V , we increase its shift value by δ.
Next, we update the min and index values. An easy observation is that only those nodes on the
two paths πj and πk need to have their min and index values updated. Specifically, for πj, we
follow it from leaf j in a bottom-up manner, for each node v, we update v.min and v.index in
the same way as we did in the set-valid operations. We do the similar things for the path πk.
The time for performing this operation is O(log n).

right-shift Given two indices j and k with j ≤ k, as well as a distance δ, the goal of this operation
is to move each sensor in S(j, k) rightwards by δ. Similarly, δ is small enough such that any
valid (resp., invalid) sensor before the operation is still valid (resp., invalid) after the operation.

This operation can be performed in a symmetric way as the above left-shift operation and we
omit the details.

find-min Given two indices j and k with j ≤ k, the goal is to find the smallest displacement and
the corresponding sensor among all valid sensors in S(j, k).

We first find the set Vjk of O(log n) nodes as before. For each node v ∈ Vjk, we compute the
smallest displacement among all valid nodes in its subtree, which is equal to v.min plus the
shift values of the nodes in the path from v to the root. These smallest displacements for all

7

nodes in Vjk can be computed in O(log n) time in total by traversing the two paths πj and πk
in the top-down manner. The smallest displacement among all valid sensors in S(j, k) is the
minimum among all above O(log n) smallest displacements, and the corresponding sensor for
the smallest displacement can be immediately obtained by using v.index associated with each
node of Vjk. Thus, each find-min operation can be done in O(log n) time.

find-num Given two indices j and k with j ≤ k, the goal is to find the number of valid sensors in
S(j, k).

We first find the set Vjk of O(log n) nodes as before, and then return the sum of the values
v.num for all nodes v ∈ Vjk. Hence, O(log n) time is sufficient for performing the operation.

In addition, our algorithm maintains a global variable γ that is the rightmost sensor that has
ever been moved to the left. We will use γ to determine whether we should do a set-valid operation
on a sensor in the left-shift tree Tl and make sure the total number of set-valid operations on Tl in
the entire algorithm is at most n. Initially, γ = 0. As will be clear later, the variable γ will never
decrease during the algorithm.

3.4 The O(n logn) Time Algorithm

Using the three trees To, Tp, Tl, and the global variable γ, we implement the algorithm [8] described
in Section 2 in O(n log n) time, as follows.

The initialization of these trees can be easily done in O(n log n) time. Suppose the algorithm
is about to consider gap gi. We assume the three trees and γ have been correctly maintained. We
first use use the overlap tree To to find the two overlaps ori and oli in O(log n) time, as discussed
earlier. The two numbers |Sl(gi)| and |Sr(gi)|, as well as the cost C(ori), are also determined. Next,
we find |S′

l(gi)| by doing a find-num operation on Tl using the index of the right generator of oli
and the index of the left generator of gi. The cost C(ori) is thus obtained. Depending on whether
C(ori) < C(oli), we have two main cases.

Case C(or
i) < C(ol

i) If C(ori) < C(oli), we do a left-shift process that moves all sensors in Sr(gi)
leftwards by distance δ = min{|gi|, |o

r
i |}. Note that Sr(gi) = S(j, k) with j being the index of the

right generator of gi and k being the index of the left generator of ori . To implement the above
left-shift process, we first do a left shift on the position tree Tp, as described earlier. Then, we
update the left-shift tree Tl and the variable γ in the following way.

Since ori is an overlap and the gaps that have been covered are all to the left of ori , no sensor
to the right of ori has ever been moved. Specifically, sensor st has never been moved, for any t > k.
This implies that γ ≤ k.

If γ < j, then for each sensor st with j ≤ t ≤ k, we first do a set-valid operation on Tl on st
and then do a left-shift operation on Tl on st with distance δ.

If j ≤ γ < k, we have the following lemma.

Lemma 1. If j ≤ γ < k, then right before the above left-shift process, all sensors in S(j, γ) have
positive displacements and thus are valid.

Proof: We consider the situation right before the above left-shift process.

First of all, we claim that the displacement of sγ must be positive. Indeed, according to the
definition of γ, if the displacement of sγ is not positive, then there must be a shift process previously

8

in the algorithm that moved sγ rightwards. However, since the gaps that have been considered by
the algorithm are all to the left of gi and thus to the left of sγ , sγ never had any chance to be
moved rightwards. The claim thus follows. Hence, if j = γ, the lemma is trivially true.

If j < γ, assume to the contrary that there is a sensor st with j ≤ t < γ whose displacement
is not positive. Since the displacement of sγ is positive, the above situation can only happen if the
algorithm covered a gap between st and sγ , which contradicts with the fact that all gaps that have
been covered by the algorithm are to the left of gi and thus to the left of sj. Thus, the lemma
follows. ✷

If j ≤ γ < k, for each t with γ < t ≤ k, we first do a set-valid operation on st and then do a
left-shift operation on st with distance δ in Tl. Finally, we do a left-shift operation for the sensors
in S(j, γ) on Tl with distance δ. Based on Lemma 1, the tree Tl is now correctly updated.

Note that during the above left-shift process, we did multiple set-valid operations and each of
them is followed immediately by a left-shift operation. An observation is that the total number of
set-valid operations in the entire algorithm is at most n, because the sensors that are set to valid
during this left-shift processes have never been set to valid before as their indices are larger than
γ. The number of left-shift operations immediately following these set-valid operations is thus also
at most n.

Finally, we update γ to k.

If |gi| < |ori |, we proceed on the next gap gi+1. Otherwise, ori is eliminated and we delete it from
the overlap tree To. Since gi is only partially covered, we proceed on the remaining gi with the same
approach (in the special case |gi| = |ori |, we proceed on gi+1).

Case C(or
i) ≥ C(ol

i) If C(ori) ≥ C(oli), we perform a right-shift process that moves all sensors
in Sl(gi) rightwards by distance δ = min{|gi|, |o

l
i|, α}, where α is the smallest displacement of the

sensors in S′
l(gi). Let j be the index of the right generator of oli and k be the index of the left

generator of gi. Hence, Sl(gi) = S(j, k).

To implement the right-shift process, we first do a find-min operation on Tl with indices j and k

to compute α. Then, we update the position tree Tp by doing a right-shift operation for the sensors
in S(j, k) with distance δ. Since no sensor is moved leftwards in the above process, we do not need
to update γ.

Next, we update the other two trees To and Tl, depending on which of the three values |gi|, |o
l
i|,

and α is the smallest.

If δ = α, we do a right-shift operation with indices j and k for distance δ = α on Tl. Recall
that the find-min operation can also return the sensor that gives the sought smallest displacement.
Suppose the above find-min operation on Tl returns st whose displacement is α, with j ≤ t ≤ k.
Since the displacement of st now becomes zero, we do a set-invalid operation on st in Tl. Note that
although it is possible that γ = t, we do not need to update γ.

We should point out a subtle situation where multiple sensors in S′
l(gi) had displacements equal

to α. For handling this case, we do another find-min operation on Tl with indices j and k. If the
smallest displacement found by the operation is zero, then we do the set-invalid operation on Tl

on the sensor returned by this find-min operation. We keep doing the find-min operations until the
smallest displacement found above is larger than zero. Although there may be multiple set-invalid
and find-min operations during the above procedure, the total number of these operations is O(n)
in the entire algorithm. To see this, it is sufficient to show that the number of set-invalid operations
is O(n) because there is exactly one find-min operation following each set-invalid operation. After

9

each set-invalid operation, say, on a sensor st, we claim that the sensor st will never be set to valid
again in the algorithm. Indeed, since the displacement of st was positive, according to the definition
of γ, we have t ≤ γ. Since each set-valid operation is only on sensors with indices larger than γ and
the value γ never decreases, st will never be set to valid again in the algorithm. In fact, st will never
be moved leftwards in the algorithm because st is to the left gi and all gaps that will be covered in
the algorithm are to the right of gi and thus are to the right of st.

This finishes the discussion for the case α = δ. Below we assume δ < α.
We do the right-shift operation with indices j and k for distance δ on Tl. Since δ < α, no valid

sensor in S′
l(gi) will become invalid due to the right-shift. If δ = |oli|, we delete |oli| from To since oli

is eliminated. If δ = |gi|, we proceed on the next gap gi+1; otherwise, we proceed on the remaining
gi.

The algorithm finishes after all gaps are covered. The above discussion also shows that the
running time of the algorithm is bounded by O(n log n).

4 The One-Sided Case

In this section, we solve the one-sided case in O(n log n) time, by using our algorithm for the
containing case in Section 3 as an initial step. In the one-sided case, the sensors whose covering
intervals do not intersect B are all in one side of B, and without loss of generality, we assume it is
the right side. Specifically, we assume 0 ≤ x1+ z holds. We assume at least one sc-interval does not
intersect B since otherwise it would become the containing case. Note that this implies β < xn− z.

We use configuration to refer to a specification of where each sensor is located. For example, in
the input configuration, each sensor si is located at xi.

A sequence of consecutive sensors si, si+1, . . . sj are said to be in attached positions if for each
i ≤ k ≤ j − 1 the right endpoint of the covering interval I(sk) of sk is at the same position as the
left endpoint of I(sk+1).

4.1 Observations

First, we show in the following lemma that a special case where no sc-interval intersects B, i.e.,
β < x1 − z, can be easily solved in O(n) time.

Lemma 2. If β < x1 − z, we can find an optimal solution in O(n) time.

Proof: If β < x1−z, then all sensor covering intervals are strictly to the right side of B. According
to the order preserving property, in the optimal solution I(s1) must have its left endpoint at 0
(i.e., s1 is at z). Note that we need at least ⌈ β

2z
⌉ sensors to fully cover B. Since all sensors have

their covering intervals strictly to the right side of B and no sensor intersects B, in the optimal
solution sensors in S(1, ⌈ β

2z
⌉) must be in attached positions. Therefore, the optimal solution has a

very special pattern: s1 is at z, sensors in S(1, ⌈ β
2z
⌉) are in attached positions, and other sensors

are at their original locations. Hence, we can compute this optimal solution in O(n) time. ✷

In the following, we assume β ≥ x1 − z, i.e., I(s1) intersects B. Let m be the largest index
such that I(sm) intersects B. Note that m < n due to β < xn − z. To simplify the notation, let
SI = S(1,m) and SR = S(m+ 1, n).

Our containing case algorithm is not applicable here and one can easily verify that the cost
function we used in the containing case do not work for the sensors in SR. More specifically,

10

suppose we want to move a sensor si in SR leftwards to cover a gap; there will be an “additive”
cost xi − z − β, i.e., I(si) has to move leftwards by that distance before it touches B. Recall that
the cost we defined on overlaps in the containing case is a “multiplicative” cost, and the above
additive cost is not consistent with the multiplicative cost. To overcome this difficulty, we have to
use a different approach to solve the one-sided case.

Our main idea is to somehow transform the one-sided case to the containing case so that we can
use our containing case algorithm. Let Dopt be any optimal solution for our problem. By slightly
abusing notation, depending on the context, a “solution” may either refer to the configuration of
the solution or the sum of moving distances of all sensors in the solution. If no sensor of SR is moved
in Dopt, then we can compute Dopt by running our containing case algorithm on the sensors in SI .
Otherwise, let m∗ be the largest index such that sensor sm∗ ∈ SR is moved in Dopt. If we know
m∗, then we can easily compute Dopt in O(n log n) time as follows. First, we “manually” move all
sensors in S(m + 1,m∗) leftwards to β + z such that the left endpoints of their covering intervals
are at β. Then, we apply our containing case algorithm on all sensors in S1m∗ , which now all have
their covering intervals intersecting B (which is an instance of the containing case), and let D(m∗)
be the solution obtained above. Based on the order preserving property, the following lemma shows
that D(m∗) is Dopt.

Lemma 3. D(m∗) is Dopt.

Proof: Since sm∗ is moved in Dopt, I(sm∗) must intersect B in Dopt. Based on the order preserving
property, for each m+ 1 ≤ i ≤ m∗, I(si) intersects B in Dopt, which implies that the location of si
in Dopt must be to the left of β + z. On the other hand, since no sensor si with i > m∗ is moved,
sensors in S(m∗ + 1, n) are useless for computing Dopt. Therefore, Dopt is essentially the optimal
solution for the containing case on S(1,m∗) after each sensor in S(m + 1,m∗) is moved leftwards
to β + z, i.e., Dopt = D(m∗). The lemma thus follows. ✷

By the above discussion, one main task of our algorithm is to determine m∗.
For each j with m < j ≤ n, let Ds(j) =

∑j
i=m+1

(xi − z − β), i.e., the sum of the moving
distances for “manually” moving all sensors in S(m + 1, j) leftwards to β + z, and we use Fj to
denote the configuration after the above manual movement and we let Fj contain only the sensors
in S(1, j) (i.e., sensors in S(j + 1, n) do not exist in Fj). Let Ds(m) = 0 and Fm be the input
configuration but containing only sensors in S(1,m). For each m ≤ j ≤ n, suppose we apply our
containing case algorithm on Fj and denote by Dc(j) the solution (in the case where β > 2zj, we
let Dc(j) = +∞), and further, let D(j) = Ds(j) +Dc(j).

The above discussion leads to the following lemma.

Lemma 4. Dopt = minm≤j≤nD(j) and m∗ = argminm≤j≤nD(j).

4.2 The Algorithm Description and Correctness

Lemma 4 leads to a straightforward O(n2 log n) time algorithm for the one-sided case, by computing
D(j) in O(n log n) time for each j with m ≤ j ≤ n, as suggested above. In the sequel, by exploring
the solution structures, we present an O(n log n) time solution. The algorithm itself is simple, but
it is not trivial to discover the observations behind the scene.

Our algorithm will compute D(j) for all j = m,m+1, . . . , n. Recall that D(j) = Ds(j)+Dc(j).
Since it is easy to compute all Ds(j)’s in O(n) time, we focus on computing Dc(j)’s. The main
idea is the following. Suppose we already have the solution Dc(j − 1), which can be considered as

11

being obtained by our containing case algorithm. To compute Dc(j), since we have an additional
overlap defined by sj at β + z, i.e., the sc-interval I(sj), we modify Dc(j − 1) by “reversing” some
shift processes that have been performed in the containing algorithm when computing Dc(j − 1),
i.e., using I(sj) to cover some gaps that were covered by other overlaps in Dc(j − 1). The details
are given below.

We first compute Dc(m) on the configuration Fm. If 2zm < β, then Dc(j) = +∞ for each
m ≤ j < ⌈ β

2z
⌉; in this case, we can start from computing Dc(⌈

β
2z
⌉) and use the similar idea as the

following algorithm. To make it more general, we assume m ≥ ⌈ β
2z
⌉, and thus Dc(m) < +∞.

Consider our containing case algorithm for computing Dc(m). Recall that our containing case
algorithm consists of shift processes and each shift process covers a gap using an overlap. Let
p1, p2, . . . , pq be the shift processes performed in the algorithm in the inverse order of time (e.g., p1
is the last process), where q is the total number of processes in the algorithm. For each 1 ≤ i ≤ q,
let gi be the gap covered in the process pi by using/eliminating an overlap, denoted by oi. Note
that each gap/overlap above may not be an original gap/overlap in the input configuration but
only a subset of an original gap/overlap. It holds that |oi| = |gi| for each 1 ≤ i ≤ q. We call
G = {g1, g2, . . . , gq} the gap list of Dc(m). For each i, we use C(oi) to denote the cost of oi when
the algorithm uses oi to cover gi in the process pi. Note that the above process information can be
explicitly stored during our containing case algorithm without affecting the overall running time
asymptotically. We will use these information later. Note that according to our algorithm the gaps
in G are sorted from right to left.

Next, we compute Dc(m+1), by modifying the configuration Dc(m). Comparing with Fm, the
configuration Fm+1 has an additional overlap defined by sm+1 at β + z, and we use o(sm+1) to
denote it. We have the following lemma.

Lemma 5. Dc(m + 1) = Dc(m) holds if one of the following happens: (1) the coordinate of the
right endpoint of I(sm) is strictly larger than β; (2) o1 is to the right of g1; (3) o1 is to the left of
g1 and the cost C(o1) is not greater than the number of sensors between g1 and sm+1.

Proof: We prove Case (3) first.
Suppose that we run our containing case algorithm on both Fm and Fm+1 simultaneously.

We use Am to denote the algorithm on Fm and use Am+1 to denote the algorithm on Fm+1.
Below we will show that every shift process of Am and Am+1 is exactly the same, which proves
Dc(m+ 1) = Dc(m).

Consider any shift process pj. We assume the processes before pj on both algorithms are the
same, which holds for j = q. In Am, the process covers gap gj by using overlap oj.

If oj is to the right of gj , then since o(sm+1) is the rightmost overlap in Fm+1, algorithm Am+1

also uses oj to cover gj , which is the same as Am.
If oj is to the left of gj , then depending on whether o(sm+1) is the only overlap to the right of

gj , there are two cases.

1. If o(sm+1) is not the only overlap to the right gj , then let o be the closest overlap to gj among
the overlaps to the right of gj . According to our containing algorithm, the current process of
the algorithm only depends on the costs of the two overlaps oj and o. Hence, algorithm Am+1

uses the same shift process to cover gj as that in Am, i.e, use oj to cover gj .
2. If o(sm+1) is the only overlap to the right gj, then the current process of algorithm Am+1

depends on the costs of the two overlaps oj and o(sm+1). In the following, we show that C(oj) ≤
C(o(sm+1)), and thus algorithm Am+1 also uses oj to cover gj , as in Am.

12

Recall that the list of gaps g1, g2, . . . , gq are sorted from right to left by their generators. Thus,
the gaps gj , gj−1, . . . , g1 are sorted from left to right. Since o(sm+1) is the only overlap to the
right gj in Am+1, there is no overlap in Am to the right of gt for any t with j ≥ t ≥ 1. Hence,
algorithm Am will have to uses the overlaps to the left of gt to cover gt for each t with j ≥ t ≥ 1.
In other words, all overlaps oj, oj−1, . . . , o1 are to the left of all gaps gj , gj−1, . . . , g1, which implies
that the above list of overlaps are sorted from right to left and C(oj) ≤ C(oj−1) ≤ · · · ≤ C(o1).

Since g1 is to the right of gj , the cost C(o(sm+1)), which is the number of sensors between gj and
sm+1, is no less than the number of sensors between g1 and sm+1. Since in Case (3) the number
of sensors between g1 and sm+1 are at least C(o1), we obtain that C(o(sm+1)) ≥ C(o1) ≥ C(oj).

The above shows that every shift process of Am and Am+1 is the same, which proves that
Dc(m+ 1) = Dc(m) holds for Case (3).

The proofs of the first two cases are similar to the above, and we only sketch them below.

Case (1) means that sensor sm still defines an overlap, say o, to the right of B. If we run our
containing case algorithm on Fm+1 to compute Dc(m+1), sensor sm+1 will not be moved since the
overlap o(sm+1) is to the right of o. Hence, Dc(m+ 1) = Dc(m) holds.

Case (2) means the last shift process covers g1 using o1 that is to the right of g1. If we run our
containing case algorithm on Fm+1, overlap o(sm+1) will never have any chance to be used to cover
any gap, because o(sm+1) is the rightmost overlap of Fm+1. Hence, Dc(m+ 1) = Dc(m) holds. ✷

To compute Dc(m+1), we first check whether one of the three cases in Lemma 5 happens, which
can be done in constant time by the above process information stored when computing Dc(m). If
any of the three cases happens, we are done for computing Dc(m + 1). Below, we assume none of
the cases happens.

Let C(sm+1, g1) be the number of sensors between g1 and sm+1, which would be the cost
of the overlap o(sm+1) if it were there right before we cover g1. Note that since we know the
generators of g1, C(sm+1, g1) can be computed in constant time (e.g., if g1 has two generators,
C(sm+1, g1) = m+ 1− a+ 1, where a is the index of the right generator of g1).

Define R(g1) to be C(sm+1, g1)−C(o1). We can consider R(g1) as the “unit revenue” (or savings)
if we use o(sm+1) to cover g1 instead of using o1. Note that R(g1) > 0 otherwise the third case
of Lemma 5 would happen. Hence, it is possible to obtain a better solution than Dc(m) by using
o(sm+1) to cover g1 instead of o1. Note that |g1| ≤ 2z and |o(sm+1)| = 2z.

If |o(sm+1)| = |g1|, then we use o(sm+1) to cover g1. Specifically, we move all sensors in S(a,m+
1) leftwards by distance |g1|, where a is the index of the right generator of the overlap o1. The above
essentially “restores” the overlap o1 and covers g1 by eliminating o(sm+1). We refer to it as a reverse
operation (i.e., it reverses the shift process that covers g1 by using o1 in the algorithm for computing
Dc(m)). Due to |o(sm+1)| = |g1|, after the reverse operation, g1 is fully covered by o(sm+1) and
o(sm+1) is eliminated. We will show later in Lemma 6 that the current configuration is Dc(m+1).
Note that Dc(m+1) = Dc(m)−R(g1) · |g1|. Again, o1 is restored in Dc(m+1). Finally, we remove
g1 from the list G.

If |g1| < |o(sm+1)|, then we do a revere operation by using o(sm+1) to cover g1 and restore o1,
after which o(sm+1) is not eliminated but becomes shorter. We remove g1 from G and proceed on
the next gap g2.

In general, suppose we have covered gaps g1, g2, . . . , gk by using o(sm+1) and the overlap o(sm+1)
still partially remains (i.e.,

∑k
t=1

|gi| < 2z). The above gaps have all been removed from G. Let F ′

denote the current configuration. If G is now empty, then we are done with computing Dc(m+ 1),
which is equal to Dc(m)−

∑k
t=1

R(gt) · |gt|; otherwise, we consider gap gk+1, as follows.

13

Similar to Lemma 5, we will show later in Lemma 6 that F ′ is Dc(m+1) if one of the following
two cases happens: (1) ok+1 is to the right of gk+1; (2) ok+1 is to the left of gk+1 but C(ok+1) is not
greater than the number of sensors between gk+1 and sm+1. If one of the above two cases happens,
then we are done with computing Dc(m+1), which is equal to Dc(m)−

∑k
t=1

R(gt) · |gt|. Otherwise,

we do the following. Note that the length of o(sm+1) in F ′ is 2z−
∑k

t=1
|gt|. Depending on whether

|o(sm+1)| ≥ |gk+1|, there are two cases. As for g1, we define C(sm+1, gk+1) as the number of sensors
between gk+1 and sm+1, and define R(gk+1) = C(ok+1)− C(sm+1, gk+1).

1. If |o(sm+1)| ≥ |gk+1|, then we do a reverse operation to cover gk+1 by using o(sm+1). If
|o(sm+1)| = |gk+1|, we are done with computing Dc(m + 1), which is equal to Dc(m) −∑k+1

t=1
R(gt) · |gt|; otherwise, we proceed on the next gap gk+2. In either case, we remove gk+1

from G, and the reverse operation restores the overlap ok+1.
2. If |o(sm+1)| < |gk+1|, then o(sm+1) is not long enough to cover gk+1. We do a reverse operation

to use o(sm+1) to partially cover gk+1 of length |o(sm+1)|, and the remaining part of gk+1 is
still covered by ok+1. We are done with computing Dc(m + 1), which is equal to Dc(m) −∑k

t=1
R(gt) · |gt| − R(gk+1) · |o(sm+1)|. Since gk+1 still partially remains in Dc(m + 1), we do

not remove gk+1 from G but change its size accordingly. In addition, overlap ok+1 is partially
restored in Dc(m+ 1) because its size is |o(sm+1)|, which is smaller than its original size.

The algorithm stops after Dc(m+ 1) is obtained.

Lemma 6. The solution obtained in the above algorithm is Dc(m+ 1).

Proof: Let F be the configuration obtained by our algorithm. Below we show that F is Dc(m+1).
If one of the three cases in Lemma 5 happens, then by Lemma 5, F is Dc(m+1). Below we assume
none of the three cases in Lemma 5 happens.

Suppose that we run our containing case algorithm on both Fm and Fm+1 simultaneously. Let
Am be the algorithm on Fm and let Am+1 be the algorithm on Fm+1.

Consider any shift process pi of Am. We assume the processes before pi on both algorithms are
the same, which holds for i = q. By the proof of Lemma 5, pi may not be the same in Am and
Am+1 only if for each process pj after pi (i.e., j ≤ i since the order of processes follows the reverse
order the time), oj is to the left of gj , i.e., pj is a right-shift process. Therefore, we only need to
consider the right-shift processes after the last left-shift process in Am.

Let k be the smallest index with 0 ≤ k ≤ q − 1 such that ok+1 is to the right of gk+1, i.e.,
p1, p2, . . . , pk are the right-shift processes after the last left-shift process in Am. Note that k 6= 0
since otherwise Case (2) of Lemma 5 would happen. Hence, the process pi with k+1 ≤ i ≤ q is the
same in both Am and Am+1.

Since none of the cases in Lemma 5 happens, C(o1) > C(sm+1, g1). Let t be the largest index
such that C(ot) > C(sm+1, gt). For each process pi with k ≤ i ≤ t+ 1, since C(oi) ≤ C(sm+1, gi),
the process is the same in both Am and Am+1. In summary, the above shows that if q ≥ i ≥ t+ 1,
the process pi is the same in both Am and Am+1, i.e., the first (q− t+1) processes in both Am and
Am+1 are the same.

Consider the next process pt, which covers gap gt by using ot in Am. In Am+1, however, using
o(sm+1) to cover it can give a better solution. Depending on whether

∑t
i=1

|gi| ≤ 2z, there are two
cases.

1. If
∑t

i=1
|gi| ≤ 2z = |o(sm+1)|, then since o(sm+1) is long enough, Am+1 will use o(sm+1) to cover

all gaps from gt to g1 and thus obtain Dc(m+1). Let sh be the left generator of gt and let x(sh)

14

be the location of sh in the configuration right after the process pt+1. Since the algorithm Am+1

uses o(sm+1) to cover all gaps from gt to g1, the location of sh does not change, which implies
that the locations of sh in both Dc(m+ 1) and Dc(m) are the same, i.e., x(sh). Similarly, each
sensor in S(1, h) has the same location in both Dc(m + 1) and Dc(m). Further, since o(sm+1)
is the only overlap to the right of gt, all sensors in S(h,m + 1) are in attached positions in
Dc(m+ 1).
Now consider the configuration F obtained by our algorithm using the reverse operations.
According to our algorithm, only gaps from g1 to gt will be covered by o(sm+1). Hence, the left
generator sh of gt does not change its location. In other words, the position of sh is the same
as that in Dc(m), which is x(sh). Also, each sensor in S(1, h) has the same location in both
Dc(m) and F . On the other hand, since gaps from g1 to gt are covered by o(sm+1), the sensors
in S(h,m+ 1) are in attached positions in F .
The above discussion shows that each sensor of S(1,m + 1) has the same location in both F

and Dc(m+ 1), which implies that F is Dc(m+ 1).
2. If

∑t
i=1

|gi| > 2z, then o(sm+1) is not long enough to cover all gaps from g1 to gt. Algorithm
Am+1 will use o(sm+1) to cover these gaps in the order gt, gt−1, . . . until o(sm+1) is eliminated
(i.e., sm+1 is at β − z). Consider the configuration right before Am+1 covers gt. Recall that the
algorithm Am uses the gaps o1, o2, . . . , ot to cover all these gaps. Let d =

∑t
i=1

|gi|, which is∑t
i=1

|oi|.
In Am+1, according to our discussion above, o(sm+1) will be used first to cover these overlaps
for a total length of 2z, and then the above overlaps (in the order from right to left) will be
used to cover the remaining gaps, whose total length is d− 2z. Let h be the smallest index such
that

∑t
i=h |oi| ≥ d− 2z. Then, Am+1 will use the overlaps from ot to oh to cover the remaining

of the above gaps. Hence, for each gap oi, if h+ 1 ≤ i ≤ t, then oi does not exist in Dc(m+ 1);
if i ≤ h−1, then oi exists there; if i = h, then if

∑t
i=h |oi| = d−2z, oh does not exist, otherwise

oh still exits but become shorter. Let o1h be the subset of oh that is eliminated and let o2h be the
rest of oh that still exists in Dc(m+1). Thus, |o1h|+

∑t
i=h+1

|oi| = d− 2z. Due to d =
∑t

i=1
|oi|,

it holds that |o2h|+
∑h−1

i=1
|oi| = 2z.

Now consider the configuration F obtained by our algorithm using reverse operations. Since
C(oi) > C(sm+1, gi) for each 1 ≤ i ≤ t, the gaps g1, g2, . . . will be covered in this order until
o(sm+1) is eliminated, implying that overlaps in o1, o2, . . . will be restored in this order until
o(sm+1) is eliminated. Due to |o2h| +

∑h−1

i=1
|oi| = 2z, oi exists in F for each 1 ≤ i ≤ h − 1 and

oh is partially restored to o2h in F .
Therefore, in both configurations F and Dc(m + 1), overlaps of o1, o2, . . . , oh−1 exist and oh
partially exits as o2h. Hence, the two configurations are exactly the same.

The lemma thus follows. ✷

Lemma 6 shows that Dc(m + 1) is computed correctly. Next, we use the same approach to
compute Dc(m + 2) by using the remaining gaps in G. Let Gm denote the remaining G. In order
to correctly compute Dc(m+2), one may wonder that we should use the corresponding gap list of
Dc(m + 1) (i.e., the gap list of the containing case algorithm if we apply it on Fm+1 to compute
Dc(m + 1)), which may not be the same as Gm. However, we prove in Lemma 7 that the result
obtained using Gm is Dc(m + 2), and further, this can be generalized to the next solution until
Dc(n), i.e., we can use the same approach to compute Dc(m + 3),Dc(m + 4), . . . ,Dc(n) by using
the remaining gaps.

15

Lemma 7. If we do the reverse operations on Dc(m + 1) and sensor sm+2 by using the gaps in
Gm, then the solution obtained is Dc(m+2). Similarly, this can be generalized to the next solution
Dc(m+ 3) and so on until Dc(n).

Proof: Suppose we apply our containing case algorithm on the configuration Fm+1 to compute
Dc(m+ 1) and let G′ be the list of gaps covered in the right-shift processes after the last left-shift
process of the algorithm. Then, using G′, we can compute Dc(m + 2) by doing reverse operations
on Dc(m+ 1) and sensor sm+2, and the correctness can be proved similarly to Lemma 6. Hence, if
Gm is exactly the same as G′, then the lemma trivially follows. However, G′ may be the same as
Gm, as shown below.

We follow the notations defined in the proof of Lemma 6. Let Am+1 be our containing case algo-
rithm on Fm+1 above. Consider the gap list G = {g1, g2, . . . , gk} for our containing case algorithm
on Fm. Again, G only contains the gaps in the right-shift processes after the last left-shift process.
Let t be the largest index such that C(ot) > C(sm+1, gt). As in the proof of Lemma 6, depending
on whether

∑t
i=1

|gi| ≤ 2z, there are two cases.

1. If
∑t

i=1
|gi| ≤ 2z, then as analyzed in Lemma 6, algorithm Am+1 will use the overlap o(sk+1) to

cover all gaps g1, g2, . . . , gt, after which the solution Dc(m+ 1) is obtained. Therefore, the last
shift process of Am+1 is a right-shift process, implying that G′ = ∅. Thus, if we do the reverse
operations on Dc(m + 1) and sm+2, according to our algorithm, it holds that Dc(m + 2) =
Dc(m+ 1) (similar to Case (2) of Lemma 5).

On the other hand, the gap list of Gm is {gt+1, gt+2, . . . , gk}.
If

∑t
i=1

|gi| < 2z, then the coordinate of the right endpoint of I(sm+1) is strictly larger than β

in Dc(m+ 1). According to our reverse operation algorithm (Case (1) of Lemma 5), we obtain
Dc(m+ 2) = Dc(m+ 1).

Otherwise, the right endpoint of of I(sm+1) is exactly at β inDc(m+1). We claim that C(ot+1) <
C(sm+2, gt+1). To see this, by the definition of t, it holds that C(ot+1) ≤ C(sm+1, gt+1). Note
that C(sm+2, gt+1) = C(sm+1, gt+1) + 1, because the right endpoint of I(sm+1) is exactly at β.
Therefore, C(ot+1) < C(sm+2, gt+1). According to our reverse operation algorithm (Case (3) of
Lemma 5), we obtain Dc(m+ 2) = Dc(m+ 1).

Therefore, in this case, the solution obtained by our algorithm is Dc(m+ 2).

2. If
∑t

i=1
|gi| > 2z, then as analyzed in Lemma 6, algorithm Am+1 will use o(sk+1) to cover gaps

g1, g2, . . . , gh−1 and g1h. Therefore, the list G′ is {g2h, gh+1, . . . , gt}.
On the other hand, the gap list ofGm is {g2h, gh+1, . . . , gt, gt+1, . . . , gk}, which isG′∪{gt+1, . . . , gk}.
Note that in this case, the right endpoint of of I(sm+1) is exactly at β in Dc(m+ 1).

We claim that if we do reverse operations on Dc(m+1) and sensor sm+2, we can obtain the same
result using either Gm or G′. Intuitively, due to C(ot+1) < C(sm+2, gt+1), which has been proved
in the above first case, the gaps in {gt+1, gt+2, . . . , gk} are useless for computing Dc(m+2). The
detailed proof for the claim is given below.

Indeed, the reverse operations consider the gaps one by one from the first gap g2h. The result
can be different only if all gaps of {g2h, gh+1, . . . , gt} are covered by o(sm+2), i.e., the overlap
defined by sm+2, and o(sm+2) has not been fully eliminated yet. If this happens, for G′, it now
becomes empty and thus according to our reverse operation algorithm the current configuration
isDc(m+2). For Gm, the next gap gt+1 is considered. Due to C(ot+1) < C(sm+2, gt+1), according
to our reverse operation algorithm, the current solution is Dc(m+ 2).

Therefore, in this case, the solution obtained by our algorithm is Dc(m+ 2).

16

The above proves that we can compute Dc(m+2) by applying the reverse operations on Dc(m+
1) and sm+2 with Gm. Using similar arguments, we can keep computing Dc(m+3) and so on until
Dc(n), by using the remaining gaps in G. The lemma thus follows. ✷

4.3 The Algorithm Implementation

Our algorithm can be easily implemented in O(n log n) time to compute the solutions Dc(i) for all
i = m,m+ 1, . . . , n. First, we can compute Dc(m) in O(n log n) time by using our containing case
algorithm. During the algorithm, we explicitly record the information of each shift process pi, as
discussed earlier. In fact, as shown in the proofs of Lemmas 5 and 6, we only need to record all
right-shift processes after the last left-shift process of the algorithm, and let G be the gap list for
the above right-shift processes (i.e., for each gap gi in G, oi is to the left of gi).

Next, we apply the reverse operations on G to compute solutions Dc(j) for m + 1 ≤ j ≤ n

one by one. To this end, we only need to use the position tree Tp (the other two trees are not
necessary). Each reverse operation can be done in O(log n) time using Tp because the operation
essentially moves a sequence of consecutive sensors leftwards by the same distance. If G becomes
∅ at any moment during the algorithm, then the current configuration is the solution we seek.
The overall time for computing all solutions Dc(j) for m + 1 ≤ j ≤ n is O(K · log n), where K is
the total number of reverse operations in the entire algorithm. Note that each reverse operation
either covers completely a gap of G or eliminates an overlap o(sj) for m + 1 ≤ j ≤ n. Therefore,
K ≤ |G|+ n−m = O(n).

In summary, we can compute the solutions Dc(j) for all m ≤ j ≤ n in O(n log n) time, after
which the value D(j) for all j = m,m + 1, . . . , n as well as the index m∗ can be obtained in
additional linear time. Thus, the one-sided case is solved in O(n log n) time.

4.4 A Unimodal Property of the Solutions D(j)’s

If there is more than one index j ∈ [m,n] such that D(j) = Dopt, then we let m∗ refer to the
smallest such index. The following lemma, which will be useful in Section 5 for solving the general
case, shows a unimodal property of the values D(j) for j = m,m+ 1, . . . , n.

Lemma 8. As j increases from m to n, the value D(j) first strictly decreases until D(m∗) and
then strictly increases except that D(m∗) = D(m∗ +1) may be possible. Formally, D(j− 1) > D(j)
for any m < j ≤ m∗; D(m∗) ≤ D(m∗ + 1); D(j − 1) < D(j) for any m∗ + 2 < j ≤ n.

Proof: To avoid tedious discussion, we make a general position assumption that no two sensors
are at the same position in the input configuration.

Consider any index j with m < j ≤ n. We have the following.

D(j)−D(j − 1) = [Ds(j) +Dc(j)] − [Ds(j − 1) +Dc(j − 1)]

= [Ds(j) −Ds(j − 1)] + [Dc(j) −Dc(j − 1)]

= (xj − z − β) + [Dc(j) −Dc(j − 1)].

Define f(j) = Dc(j)−Dc(j − 1). We have the following claim.

Claim: f(j) ≤ 0 and f(j) is nondecreasing as j increases.

In the sequel, we first prove the lemma by using the above claim and then prove the claim.

17

As j increases, since xj−z−β is strictly increasing and f(j) is nondecreasing, D(j)−D(j−1) is
strictly increasing. If j = m∗, then according to the definition ofm∗, we have D(m∗)−D(m∗−1) < 0.
Hence, when j ≤ m∗, D(j) −D(j − 1) < 0. On the other hand, we have D(m∗ + 1)−D(m∗) ≥ 0,
and thus, when j > m∗ + 1, D(j)−D(j − 1) > 0. The lemma thus follows.

In the sequel, we prove the above claim.

We first prove f(j) ≤ 0. Recall that Dc(j) is the solution obtained on configuration Fj and
Dc(j−1) is the solution obtained on configuration Fj−1. Comparing with Fj−1, Fj has an additional
overlap defined by sj at β + z, and thus, it holds that Dc(j) ≤ Dc(j − 1). Hence, f(j) ≤ 0.

Next, we show f(j) ≤ f(j + 1). Let |f(j)| and |f(j + 1)| be the absolute values of f(j) and
f(j + 1), respectively. Below we prove |f(j)| ≥ |f(j + 1)|.

Comparing Dc(j − 1) with Dc(j), we may consider the value |f(j)| as the “marginal revenue”
after having one more overlap defined by sensor sj at β+z. Intuitively, if we have more sensors, the
marginal revenue will become less and less, i.e., as j increases, |f(j)| is monotonically decreasing,
and thus |f(j)| ≥ |f(j +1)|. A detailed proof is given below, which may be skipped if the reader is
confident in the above intuition.

Let G = {g1, g2, . . . , gk} be the gap list of the right-shift processes after the last left-shift process
of our containing algorithm on Dc(m). We assume the list in G are sorted by the inverse time order,
e.g., g1 is the gap covered by the last process. Let O = {o1, o2, . . . , ok} be the corresponding overlap
list, and for each 1 ≤ i ≤ h, let C(oi) be the cost of oi during the containing case algorithm. As
analyzed in the proofs of Lemmas 5 and 6, it holds that C(o1) ≥ C(o2) ≥ · · · ≥ C(ok).

Recall that we obtain all solutions Dc(i) for m + 1 ≤ i ≤ n by doing the reverse operations
with G. More specifically, let Gj−1 be the list of remaining gaps of G right after Dc(j − 1) is
obtained. To compute Dc(j), we do reverse operations on Dc(j − 1) with sj and Gj−1. Let Gj−1 =
{gh, gh+1, . . . , gk}. Let Gj be the gap list right after we obtain Dc(j). According to our algorithm,
Gj is obtained from Gj−1 by removing the first several gaps that are covered by o(sj), i.e., the
overlap defined by sj at β + z. We assume Gj = {gt, gt+1, . . . , gk} and thus, o(sj) has covered
the gaps gh, gh+1, . . . , gt−1 completely. Note that depending on whether o(sj) is used to cover gt
partially in Dc(j− 1), the gt in Gj may only be a subset of the gt in Gj−1 (i.e., they have the same
generators but their lengths are different). For simplicity of discussion, we assume o(sj) does not
partially cover gt.

Our algorithm computes Dc(j + 1) by doing reverse operations on Dc(j) with sensor sj+1 and
Gj .

If the coordinate of the right endpoint of I(sj) is strictly larger than β in the configuration
Dc(j), then according to our algorithm (Lemma 5), we have Dc(j+1) = Dc(j). Hence, f(i+1) = 0,
implying that |f(i)| ≥ |f(i+ 1)|.

In the following, we assume the coordinate of the right endpoint of I(sj) is no greater than β,
and thus it is exactly β since sj is the rightmost sensor in the configuration Fj . In this case, the total
length of the gaps of Gj−1 covered by the overlap o(sj) is 2z. Recall that the gaps of Gj−1 covered
by o(sj) in Dc(j) are gh, gh+1, . . . , gt−1. Thus, we have

∑t−1

i=h |gi| = 2z. According to our algorithm,
it holds that Dc(j) = Dc(j − 1) −

∑t−1

i=hR(gi) · |gi|, where R(gi) = C(oi) − C(sj, gi). Therefore,
|f(i)| =

∑t−1

i=hR(gi) · |gi|. Since gaps in Gj−1 are sorted from right to left, an easy observation
is that C(sj, gi) ≥ C(sj, gi−1) for any h + 1 ≤ i ≤ t − 1, i.e., as i increases, C(sj, gi) increases.
Recall that as i increases, C(oi) decreases. Thus, as i increases, R(gi) decreases. We obtain that
2z ·R(gh) ≥ |f(i)| ≥ 2z · R(gt−1).

18

Now consider the solution Dc(j + 1) obtained by doing reverse operations on Dc(j) with sj+1

and Gj . Without of loss of generality, suppose o(sj+1) is used to cover gaps from gt to gt′ in Gj .
With the similar analysis as above, we can obtain |f(j +1)| ≤ 2z ·R(gt), regardless of whether the
right endpoint of I(sj+1) is at β in Dc(j+1). Note that R(gt) ≤ R(gt−1). To see this, on one hand,
it holds that C(ot) ≤ C(ot−1). On the other hand, since gt is to the left of gt−1 and sj+1 is to the
right of sj, the number of sensors between gt and sj+1 is larger than that of the sensors between
gt−1 and sj, i.e., C(sj+1, gt) > C(sj, gt−1). Hence R(gt) ≤ R(gt−1) holds.

The above discussion leads to |f(i)| ≥ 2z · R(gt−1) ≥ 2z · R(gt) ≥ |f(j + 1)|.
The claim thus follows. ✷

5 The General Case

In this section, we consider the general case where sensors may be everywhere on L. We present an
O(n log n) time algorithm by generalizing our algorithmic techniques for the one-sided case.

We assume there is at least one sensor whose covering interval intersects B. The case where this
assumption does not hold can be solved using similar but simpler techniques and we will handle
this case at the end of this section in Lemma 18.

Let sl (resp., sr) be the leftmost (resp., rightmost) sensor whose covering interval intersects B.
We assume 1 < l and r < n, since otherwise it becomes the one-sided case. Let SL = S(1, l − 1),
SI = S(l, r), and SR = S(r + 1, n).

We first give some intuition on how the problem can be solved. Suppose Dopt is an optimal
solution. If no sensors of SL have been moved in Dopt, then we can compute Dopt by solving a
one-sided case on the sensors in S(l, n). Similarly, if no sensors of SR have been moved in Dopt,
then we can compute Dopt by solving a one-sided case on the sensors in S(1, r). Otherwise, there
are sensors in both SL and SR that have been moved in Dopt. For this case, our main effort will be
finding l∗, where l∗ is the smallest index such that sensor sl∗ has been moved in Dopt. Note that
l∗ ≤ l − 1. By the definition of l∗, sensors in S(1, l∗ − 1) are useless for computing Dopt. Further,
due to the order preserving property, the sc-intervals of sensors of S(l∗, l − 1) must all intersect B
in Dopt. Hence, after we have l∗, Dopt can be computed as follows. We first “manually” move each
sensor si for l∗ ≤ i ≤ l − 1 rightwards to −z and then apply our one-sided case algorithm on the
sensors in S(l∗, n), and the obtained solution is Dopt.

5.1 Observations

Let λ = ⌈ β
2z
⌉, i.e., the minimum number of sensors necessary to fully cover B.

We introduce a few new definitions. Consider any i with 1 ≤ i ≤ l and any j with r ≤ j ≤ n

such that j − i+ 1 ≥ λ. If i 6= l, define DL
s (i, j) =

∑l−1

t=i (−z − xt), i.e., the total sum of the moving
distances for “manually” moving all sensors in S(i, l − 1) rightwards to −z (such that the right
endpoints of their covering intervals are all at 0); otherwise, DL

s (l, j) = 0. Similarly, if j 6= r, define
DR

s (i, j) =
∑j

t=r+1
(xt − z − β); otherwise, DR

s (i, r) = 0. Let Ds(i, j) = DL
s (i, j) + DR

s (i, j). Let
F (i, j) denote the configuration after the above manual movements and including only sensors in
S(i, j). Hence, F (i, j) is an instance of the containing case on sensors in S(i, j). Let Dc(i, j) be
the solution obtained by applying our containing case algorithm on F (i, j). Finally, let D(i, j) =
Dc(i, j)+Ds(i, j). For simplicity, for any i and j with j− i+1 < λ, we let D(i, j) = +∞, as S(i, j)
does not have enough sensors to fully cover B.

19

For each i with 1 ≤ i ≤ l, define f(i) to be the index in [r, n] such that D(i, f(i)) =
minr≤j≤nD(i, j). Similarly, for each j with r ≤ j ≤ n, define f(j) to be the index in [1, l] such that
D(f(j), j) = min1≤i≤l D(i, j).

Let Dopt denote the optimal solution. We have the following lemma.

Lemma 9. Dopt = min1≤i≤l,r≤j≤nD(i, j) = min1≤i≤l D(i, f(i)) = minr≤j≤nD(f(j), j).

Proof: We assume at least one sensor in SL and at least one sensor in SR are moved in Dopt, since
other cases can be proved similarly (but in a simpler way).

Let l∗ be the index of the leftmost sensor in SL that is moved in Dopt, and let r∗ be index of
the rightmost sensor in SR that is moved in Dopt. Clearly, the covering intervals of sl∗ and sr∗ must
intersect B in Dopt. By the order preserving property, all sensors in S(l∗, l − 1) are moved such
that their covering intervals in Dopt all intersect B, and similarly, all sensors in S(r + 1, r∗) are
moved such that their covering intervals in Dopt all intersect B. Therefore, we can obtain Dopt by
first manually moving sensors in S(l∗, l − 1) rightwards to −z and moving sensors in S(r + 1, r∗)
leftwards to β + z, and then apply our containing case algorithm on S(l∗, r∗) (and the obtained
solution is Dopt). According to our definition of D(i, j), we have Dopt = D(l∗, r∗).

Therefore, it holds that Dopt = min1≤i≤l,r≤j≤nD(i, j). The definitions of f(i) and f(j) imme-
diately lead to Dopt = min1≤i≤l D(i, f(i)) = minr≤j≤nD(f(j), j). The lemma thus follows. ✷

Let l∗ and r∗ be the indices with 1 ≤ l∗ ≤ l and r ≤ r∗ ≤ n such that D(l∗, r∗) = Dopt. It is
easy to see that l∗ = f(r∗) and r∗ = f(l∗).

To compute Dopt, if we know either l∗ or r∗, then Dopt can be computed in additional O(n log n)
time, as follows. Suppose l∗ is known to us. We first “manually” move each sensor si for l

∗ ≤ i ≤ l−1
rightwards to −z (this step is not necessary for the case l∗ = l) and then apply our one-sided case
algorithm on S(l∗, n) (the obtained solution is Dopt). Hence, the key is to determine l∗ or r∗.

5.2 The Case |SI | ≥ λ

First, we show that if |SI | ≥ λ, then we can easily compute l∗ and r∗ in O(n log n) time by using
the following lemma.

Lemma 10. If |SI | ≥ λ, then it holds that f(i) = r∗ for any i ∈ [1, l] and f(j) = l∗ for any
j ∈ [r, n].

Proof: We only prove the former case since the latter case can be proved similarly. Due to |SI | ≥ λ,
we have 2z · |SI | ≥ β. Hence, we can run our containing case algorithm on SI to obtain a solution
that covers B fully, which is Dc(l, r) according to our definition. Depending on whether 2z ·|SI | = β,
there are two cases. In the following, we first prove the case with 2z · |SI | > β.

If 2z · |SI | > β, there must exist an overlap, denoted by o, in the configuration of Dc(l, r). Note
that o may be a subset of an original overlap in the input. In the following, we assume o has two
generators since the case where o has only one generator can be proved similarly but in a much
simpler way. Let sk and sk+1 be the generators of the overlap o.

To compute f(l), we can apply our one-sided case algorithm on the sensors S(l, n). Recall the
our one-sided case algorithm works by doing the reverse processes on the configuration Dc(l, r) and
considering sensors in SR one by one from left to right. Consider any j with r+1 ≤ j ≤ n. According
to the reverse operations, since o is an overlap in Dc(l, r), comparing the two configurations Dc(l, r)
and Dc(l, j), sensors in S(r + 1, j) are used to cover some gaps of Dc(l, r) that are to the right of

20

the overlap o. Hence, for each sensor in S(l, k), its locations in Dc(l, r) and Dc(l, j) are the same,
and in other words, Dc(l, j) is determined by the locations of the sensors of S(k + 1, r) in Dc(l, r).
This implies that the index f(i) is only determined by the locations of the sensors of S(k+1, r) in
Dc(l, r).

Consider the configuration Dc(l− 1, r). Comparing with Dc(l, r), we have one more sensor sl−1

on the left side of B. Hence, sk and sk+1 still define an overlap in Dc(l − 1, r): Although sk in
Dc(l − 1, r) may be strictly to the right of its location in Dc(l, r) (in this case, the new overlap is
longer than o), the sensor sk+1 has the same position in Dc(l, r) and Dc(l− 1, r). This also implies
that each sensor of S(k + 1, r) has the same position in Dc(l, r) and Dc(l − 1, r).

We have shown that the index f(l) is only determined by the locations of the sensors of S(k +
1, r). Since each sensor of S(k+1, r) has the same location in Dc(l, r) and Dc(l− 1, r), and sk and
sk+1 define an overlap in both configurations, if we do reverse operations on Dc(l− 1, r) and SR to
compute f(l− 1), we will obtain the same result as that for Dc(l, r) and SR, i.e., f(l − 1) = f(l).

By similar analysis, we can show that f(l) = f(l − 1) = · · · = f(1), which leads to the lemma
for the case where 2z · |SI | > β.

In the following, we prove the case with 2z · |SI | = β. The proof is similar in spirit to the first
case.

In this case, all sensors in the configuration of Dc(l, r) has to be in attached positions. If sensors
in S(l, r) do not define any overlap in the input configuration, then these sensors must be in attached
positions and exactly cover B, implying that Dopt = 0 and f(i) = r∗ for each 1 ≤ i ≤ l, and thus the
lemma follows. Otherwise, suppose we apply our containing case algorithm on S(l, r) to compute
Dc(l, r) and let o be the overlap used to cover a gap g in the last shift process of the algorithm.
Note that |o| = |g| due to 2z · |SI | = β.

We assume o has two generators since the case where o has only one generator can be proved
similarly (but in a simpler way). Let sk and sk+1 be the left and right generators of o, respectively.
Another way to think of o is that if the length of B was β − ǫ for an infinitesimal value ǫ, then
there would be an overlap defined by sk and sk+1 in Dc(l, r).

According to the one-sided case algorithm, we can obtain f(l) by doing reverse operations on
Dc(l, r) and considering the sensors in SR from left to right. One observation is that each sensor
si in S(l, k) has the same location in Dc(l, r) and Dc(l, f(l)). To see this, according to our reverse
operations, if sensors in S(r+1, f(l)) are used to cover some gaps of Dc(l, r), then these gaps must
be to the right of o since o is used to cover the last gap g, and after these reverse operations, some
sensors to the right of o may have been moved leftwards but no sensor to the left of o is moved.
In other words, the index f(l) is determined only by the locations of sensors of S(k + 1, r) in the
configuration Dc(l, r).

Now consider the solution Dc(l− 1, r). Similarly to the analysis in the first case, for each sensor
in S(l, k), its location in Dc(l−1, r) may be strictly to the right of its location in Dc(l, r). However,
each sensor in S(k + 1, r) has the same location in Dc(l, r) and Dc(l − 1, r). Therefore, if we do
reverse operations on Dc(l−1, r) and SR to compute f(l−1), we will obtain the same result as that
for Dc(l, r) and SR, i.e., f(l−1) = f(l). Similar analysis can prove that f(l) = f(l−1) = · · · = f(1).

The lemma thus follows. ✷

By Lemma 10, if |SI | ≥ λ, then it holds that f(1) = r∗, which can be easily computed in
O(n log n) time by applying our one-sided case algorithm on S(1, n) after moving sensors in SL

rightwards to the position −z.

21

In the following discussion, we assume |SI | < λ. Note that |S(l∗, r∗)| ≥ λ always holds. Since
both |S(l∗, r∗)| and λ are integers, either |S(l∗, r∗)| ≥ λ + 1 or |S(l∗, r∗)| = λ. We have different
algorithms for these two subcases.

5.3 The Case |SI | < λ and |S(l∗, r∗)| ≥ λ + 1

The subcase |S(l∗, r∗)| ≥ λ+ 1 can be easily handled due to the following lemma, which is proved
based on the unimodal property described in Lemma 8.

Lemma 11. If |S(l∗, r∗)| ≥ λ+ 1, then f(i) = r∗ holds for any i with 1 ≤ i < l∗.

Proof: We assume 1 < l∗ < l and r < r∗ < n since other cases can be proved using similar
techniques but in simpler ways. Recall that r∗ = f(l∗).

Since |S(l∗, r∗)| ≥ λ + 1, |S(l∗, r∗ − 1)| ≥ λ holds, and thus, Dc(l
∗, r∗ − 1) 6= +∞. We can

obtain the solution Dc(l
∗, r∗) by doing reverse operations on Dc(l

∗, r∗ − 1) with sensor sr∗. Let
R(l∗, sr∗) = Dc(l

∗, r∗−1)−Dc(l
∗, r∗), and as in Section 4, we can consider R(l∗, sr∗) as the revenue

or savings incurred by sr∗ on Dc(l
∗, r∗ − 1). For any sensor sj ∈ SR, let d(sj) = xj − z − β. By

the definition of f(l∗) (= r∗), if we consider finding an optimal solution for the one-sided case on
S(l∗, r∗ − 1) after sensors in S(l∗, l− 1) are moved to −z and sensors in S(r+ 1, r∗ − 1) are moved
to β + z, then we have R(l∗, sr∗) ≥ d(sr∗).

Similarly, we can also obtain Dc(l
∗, r∗+1) by doing reverse operations on Dc(l

∗, r∗) with sensor
sr∗+1, and let R(l∗, sr∗+1) = Dc(l

∗, r∗)−Dc(l
∗, r∗ + 1). Again, by the definition of f(l∗) (= r∗), it

holds that R(l∗, sr∗+1) ≤ d(sr∗+1).
In the following, we first prove f(l∗ − 1) = r∗.
Similarly as above, define R(l∗−1, sr∗) = Dc(l

∗−1, r∗−1)−Dc(l
∗−1, r∗) and R(l∗−1, sr∗+1) =

Dc(l
∗−1, r∗)−Dc(l

∗−1, r∗+1). By the unimodal property in Lemma 8, to prove f(l∗−1) = r∗, it is
sufficient to show that D(l∗−1, sr∗)−D(l∗−1, sr∗−1) ≤ 0 and D(l∗−1, sr∗)−D(l∗−1, sr∗+1) ≤ 0.
Note that D(l∗ − 1, sr∗) − D(l∗ − 1, sr∗−1) = d(sr∗) − R(l∗ − 1, sr∗) and D(l∗ − 1, sr∗) − D(l∗ −
1, sr∗+1) = R(l∗ − 1, sr∗+1) − d(sr∗+1). Therefore, to prove f(l∗ − 1) = r∗, it suffices to show that
R(l∗ − 1, sr∗) ≥ d(sr∗) and R(l∗ − 1, sr∗+1) ≤ d(sr∗+1). To this end, in the sequel we show that
R(l∗ − 1, sr∗) = R(l∗, sr∗) and R(l∗ − 1, sr∗) = R(l∗, sr∗), which will lead to the lemma.

The proof techniques are similar to those used in the proof of Lemma 10. We first prove R(l∗−
1, sr∗) = R(l∗, sr∗). Since |S(l∗, r∗)| = r∗ − l∗ + 1 ≥ λ+ 1, it holds that 2z(r∗ − l∗) ≥ β. As in the
proof of Lemma 10, depending on whether 2z(r∗ − l∗) > β or 2z(r∗ − l∗) = β, there are two cases.

1. If 2z(r∗− l∗) > β, then the configuration Dc(l
∗, r∗−1) must have an overlap o. We assume o has

two generators sk and sk+1 since the other case where it has only one generator can be proved
similarly but in a simpler way. Consider the two configurations Dc(l

∗, r∗−1) and Dc(l
∗, r∗). We

can obtain Dc(l
∗, r∗) by doing reverse operations on Dc(l

∗, r∗ − 1) and sensor sr∗ .
As in the proof of Lemma 10, due to the overlap o, each sensor of S(l∗, k) has the same location
in Dc(l

∗, r∗ − 1) and Dc(l
∗, r∗). Hence, the value R(l∗, sr∗) only depends on the locations of the

sensors of S(k + 1, r∗ − 1) in Dc(l
∗, r∗ − 1).

As in Lemma 10, sensors sk and sk+1 still define an overlap in Dc(l
∗ − 1, r∗ − 1). Hence, each

sensor of S(k+1, r∗−1) has the same location in Dc(l
∗−1, r∗−1) and Dc(l

∗, r∗−1). Similarly,
the value R(l∗ − 1, sr∗) only depends on the locations of the sensors of S(k + 1, r∗ − 1) in
Dc(l

∗ − 1, r∗ − 1).
Therefore, R(l∗ − 1, sr∗) = R(l∗, sr∗) holds.

22

2. If 2z(r∗ − l∗) = β, then in the configuration Dc(l
∗, r∗ − 1) all sensors of S(l∗, r∗ − 1) are in

attached position. Suppose we compute Dc(l
∗, r∗ − 1) by using our containing case algorithm;

as in Lemma 10, let o be the overlap used to cover a gap g in the last shift process of the
algorithm. Again, we assume o has two generators sk and sk+1.
As the analysis in Lemma 10 and the above case, the value R(l∗, sr∗) only depends on the
locations of the sensors of S(k+1, r∗−1) in Dc(l

∗, r∗−1) and R(l∗−1, sr∗) only depends on the
locations of the sensors of S(k+1, r∗−1) inDc(l

∗−1, r∗−1). Further, each sensor of S(k+1, r∗−1)
has the same location in Dc(l

∗ − 1, r∗ − 1) and Dc(l
∗, r∗ − 1). Thus, R(l∗ − 1, sr∗) = R(l∗, sr∗)

holds.

The above proves that R(l∗ − 1, sr∗) = R(l∗, sr∗).
To prove R(l∗ − 1, sr∗+1) = R(l∗, sr∗+1), we can use the similar techniques. Note that since

|S(l∗, r∗)| ≥ λ+1, we have 2z · (r∗ − l∗ +1) > β, and thus we only need to consider the above first
case. We omit the details.

The lemma is thus proved. ✷

By Lemma 11, if |S(l∗, r∗)| ≥ λ+1, then it holds that f(1) = r∗, which can be easily computed
in O(n log n) time by applying our one-sided case algorithm on S(1, n) after moving sensors in SL

rightwards to the position −z.

5.4 The Case |SI | < λ and |S(l∗, r∗)| = λ

It remains to handle the case where |S(l∗, r∗)| = λ. Due to l∗ ≤ l and r∗ ≥ r, we have max{1, r−λ+
1} ≤ l∗ ≤ min{l, n−λ+1}. In the following, for simplicity of discussion, we assume r−λ+1 > 1 and
l < n−λ+1 since the other cases can be solved similarly. Let l′ = r−λ+1. Thus, we have l′ ≤ l∗ ≤ l,
and for any i with i ≥ 0 and r+i ≤ n, |S(l′+i, r+i)| = λ. Clearly, Dopt = min0≤i≤l−l′ D(l′+i, r+i).
Let l′′ = l − l′.

In the following, we present an O(n log n) time algorithm that can compute the solutions D(l′+
i, r + i) for all i = 0, 1, . . . , l′′. Recall that D(l′ + i, r + i) = Dc(l

′ + i, r + i) +Ds(l
′ + i, r + i). We

can easily compute Ds(l
′ + i, r+ i) for all i = 0, 1, . . . , l′′ in O(n) time. Therefore, it is sufficient to

compute the solutions Dc(l
′ + i, r + i) for all i = 0, 1, . . . , l′′ in O(n log n) time, which is our focus

below. To simplify the notation, we use Dc(i) to represent Dc(l
′ + i, r + i).

In the following discussion, unless otherwise stated, we assume all sensors in S(1, l − 1) are at
−z and all sensors in S(r + 1, n) are at β + z; sensors in S(l, r) are in their original locations as
input. In other words, we work on the configuration F (1, n).

The case λ = β

2z
We first consider a special case where λ = β

2z
, i.e., β

2z
is an integer. In this case,

for each 0 ≤ i ≤ l′′, the configuration Dc(i) has a very special pattern: sensors in S(l′ + i, r+ i) are
in attached positions with sl′+i at z. The following lemma gives an O(n log n) time algorithm for
this special case.

Lemma 12. If |S(l∗, r∗)| = λ and λ = β
2z
, we can compute Dopt in O(n log n) time.

Proof: For any configuration F , we define its aggregate-distance as the sum of the distances of all
sensors between their locations in F and their locations in F (1, n). Note that in F (1, n), sensors of
S(1, l − 1) have been moved to −z and sensors of S(r + 1, n) have been moved to β + z.

We first compute Dc(0), i.e., Dc(l
′, r), which can be done in O(n) time. Dc(1) can be obtained

from the configuration Dc(0) by moving each sensor in S(l′, r + 1) leftwards by distance 2z. In

23

general, for each l′ ≤ i ≤ l′′, we can obtain the configuration Dc(i+ 1) from Dc(i) by moving each
sensor in S(l′ + i, r + i + 1) leftwards by distance 2z. To compute the value Dc(i + 1) efficiently,
however, we need to do the above movement carefully, as follows.

Let Sn be the set of sensors of S(l′, r) whose displacements in the configuration Dc(0) are
negative with respect to their locations in F (1, n) (i.e., their locations in Dc(0) are strictly to the
right of their locations in F (1, n)), and let kn = |Sn|. Since the displacement of sr+1 is not negative,
the number of sensors of S(l′, r + 1) with non-negative displacements in Dc(0) is λ+ 1− kn. If we
move all sensors of S(l′, r + 1) leftwards by an infinitesimal distance δ such that the displacement
of each sensor in Sn is still negative after the movement, then the aggregate-distance of the new
configuration is Dc(0) + δ · (λ + 1 − kn − 2kn). If we keep moving, then the displacements of
some sensors in Sn will become zero, at which moments we should update the value kn for later
computation. We stop the algorithm after δ becomes 2z, at which moment Dc(1) is obtained.

We can use the similar idea to obtain Dc(2) and so on until Dc(l
′′). By careful implementation,

we can compute all these solutions in O(n log n) time as follows.

First, we compute Dc(0) and obtain the set Sn and kn. Let A be the set of the absolute values
of the displacements of sensors in Sn. Furthermore, let A = A ∪ {2z · i | 1 ≤ i ≤ l′′}. For simplicity
of discussion, we assume no two values in A are the same.

We sort the values in A in increasing order. Starting from the configuration Dc(0), our algorithm
“sweeps” a value δ from zero to 2z · l′′ and δ represents the total leftwards movement made so far
by our algorithm. Note that after moving the distance of 2z · l′′, we will obtain the configuration
Dc(l

′′).

During the algorithm, when δ is equal to any value in A, an event happens and we need to
update the value kn accordingly. In general, suppose we have computed the aggregate-distance
M(δ1) of the current configuration at distance δ = δ1 and we also know the current value kn(δ1).
Initially, M(0) = Dc(0) and kn(0) is known. Consider the next event δ = δ2. First, we compute
the aggregate-distance M(δ2) = M(δ1) + (δ2 − δ1) · (λ+ 1− 3kn(δ1)). If δ2 is equal to the absolute
displacement of a sensor in Sn, then we update kn(δ2) = kn(δ1)− 1. Otherwise, δ2 = 2z · i for some
1 ≤ i ≤ l′′, and in this case, we obtain Dc(i) = M(δ2) and kn(δ2) = kn(δ1).

In this way, each event takes O(1) time. There are O(n) events. Hence, we can compute Dc(i)
for i = 0, 1, . . . , l′′ in O(n log n) time.

Since we already have the values Ds(i) for i = 0, 1, . . . , l′′, we can obtain the values D(i) for all
i = 0, 1, . . . , l′′ and Dopt in additional O(n) time. ✷

The case λ 6= β

2z
In the following, we assume λ 6= β

2z
, i.e., β

2z
is not an integer. This implies that

there must be an overlap in any solution Dc(i) for 0 ≤ i ≤ l′′.

We first use our containing case algorithm to compute Dc(0) on the configuration F (l′, r) with
sensors in S(l′, r). Below, we present an algorithm that can compute Dc(1) by modifying the
configuration Dc(0). The algorithm consists of two main steps.

The first main step is to compute Dc(l
′, r+1) by doing reverse operations on Dc(l

′) with sensor
sr+1 at β + z. This is done in the same way as in our one-sided case algorithm.

The second main step is to compute Dc(1) by modifying the configuration Dc(l
′, r + 1), as

follows.

Note that Dc(1) is on the configuration F (l′ + 1, r + 1) with sensors in S(l′ + 1, r + 1) while
Dc(l

′, r+1) is on F (l′, r+1) with sensors in S(l′, r+1). Hence, sl′ is not used in Dc(1) but may be
used in Dc(l

′, r+1). If in Dc(l
′, r+1), sl′ covers some portion of B that is not covered by any other

24

sensor in S(l′+1, r+1), then we should move sensors of S(l′+1, r′ +1) to cover the above portion
and more specifically, that portion should be covered by eliminating some overlaps in Dc(l

′, r+1).
The details are given below.

Consider the configuration Dc(l
′, r+ 1). If sl′ is at −z, then I(sl′) ∩B = ∅ and B is covered by

sensors of S(l′ + 1, r + 1), implying that Dc(1) = Dc(l
′, r + 1).

If sl′ is not at −z, then let g = I(sl′) ∩ B. The following lemma implies that sl′ is the only
sensor that covers g in Dc(l

′, r + 1).

Lemma 13. No sensor in S(l′ + 1, r′ + 1) covers g in Dc(l
′, r + 1).

Proof: Recall that all sensors in S(l′, l − 1) are initially at −z. Since |S(l′, r)| = λ, sl′ must be
strictly to the right of −z in Dc(l

′) (i.e., sl′ has been moved rightwards). Due to the order preserving
property, sensors in S(l′, l) must be in attached positions in Dc(l

′). When we compute Dc(l
′, r+1),

sensor sl′ may be moved leftwards due to the reverse operations, in which case all sensors in S(l′, l)
must be moved leftwards by the same amount because they were in attached positions in Dc(l

′).
Hence, sensors in S(l′, l) are also in attached positions in Dc(l

′, r+1), which implies that g is only
covered by sl′ in Dc(l

′, r + 1). ✷

To obtain Dc(l
′+1), we first remove sl′ and then cover g by eliminating overlaps of Dc(l

′, r+1)
from left to right until g is fully covered. Specifically, let o1, o2, . . . , ok be the overlaps of Dc(l

′, r+1)
sorted from left to right. We move the sensors between g and o1 leftwards by distance min{|g|, |o1|}.
This movement can be done in O(log n) time by updating the position tree Tp. If |g| ≤ |o1|, then
we are done. Otherwise, we consider the next overlap o2. We continue this procedure until g is fully
covered. Note that since |S(l′ + 1, r + 1)| = λ, it holds that

∑k
i=1

|oi| ≥ |g|, implying that g will
eventually be fully covered. Let D be the obtained configuration. The following lemma shows that
D is Dc(1).

Lemma 14. D is Dc(1).

Proof: Suppose we run our containing case algorithm on both configurations F (l′ + 1, r + 1) and
F (l′, r+1) simultaneously by considering the sensors in the two sets in the order from right to left,
to compute Dc(1) and Dc(l

′, r+1), respectively. Let the algorithm on F (l′ +1, r+1) be Al′+1 and
let the algorithm on F (l′, r + 1) be Al′ .

Let g1 be the first gap such that Al′ and Al′+1 use different overlaps to cover it. Let F be the
configuration in Al′ including only sensors in S(l′ + 1, r + 1) right before g1 is considered. Hence,
Al′+1 has the same configuration as F right before g1 is considered. Below, if the context is clear,
we use F to refer to the configurations in both Al′ and Al′+1.

Since the only difference of F (l′ +1, r+1) and F (l′, r+1) is that F (l′, r+1) has an additional
overlap o of size 2z defined by sl′ at −z, g1 must be covered by o in Al′ while g1 is covered by other
overlaps in Al′+1. Since o is the leftmost overlap in F (l′, r+1), there are no overlaps between o and
g1 in F . Since both algorithms consider the gaps from right to left, the remaining gaps in F are all
to the left of g1, and let G denote the set of the remaining gaps in F and let dG denote the total
sum of the lengths of all these gaps.

In algorithm Al′+1, all overlaps are to the right of g1 in F , and thus, according to our containing
case algorithm, these overlaps will be used from left to right to cover the gaps of G until all gaps
are covered and the total sum of the overlaps eliminated is exactly dG. The obtained solution is
Dc(l

′ + 1).

25

In algorithm Al′ , however, depending on the costs, we can use either the overlaps to the right of
g1 or use o to cover the gaps of G. Consider the configuration F (l′, r+1). Recall that in F (l′, r+1),
I(sl′) covers a portion of B, denoted by g, which is not covered by any sensor of S(l′ + 1, r + 1).
This means that in algorithm Al′ the overlap o eventually covers some gaps of G of total length
|g| and the rest of the gaps of G, whose total length is dG − |g|, are covered by the overlaps to the
right g1 in the order from left to right.

Now consider our algorithm for computing D based on Dc(l
′, r+1). The overlaps of Dc(l

′, r+1)
are to the right of g, and we obtain D by eliminating these overlaps from left to right until g is
fully covered (thus the total length of the overlaps eliminated is |g|).

Combining the discussion of the last two paragraphs, it is equivalent to say that D is obtained
from F by covering the gaps of G by eliminating the overlaps of F from left to right with a total
length of dG−|g|+ |g| = dG. Therefore, the configuration D is exactly the same as the configuration
Dc(l

′ + 1).

The lemma thus follows. ✷

The above gives a way to compute Dc(1) from Dc(0). In general, for each 0 ≤ i ≤ l′′, if we
know Dc(i), we can use the same approach to compute Dc(i + 1) and the proof of the correctness
is similar as in Lemma 14.

We say a solution Dc(i) for i ∈ [0, l′′] is trivial if the coordinate of the right endpoint of I(sr+i)
is strictly larger than β. By using the similar algorithm as in Lemma 12, we have the following
lemma.

Lemma 15. Suppose k is the smallest index in [0, l′′] such that Dc(k) is a trivial solution; then we
can compute Dc(i) for all i = k, k + 1, . . . , l′′ in O(n log n) time.

Proof: Let k be the index specified in the lemma statement. Let x be the coordinate of the right
endpoint of I(sr+i) in the configuration Dc(k). Since x > β, sensor sr+k defines an overlap [β, x] in
Dc(k).

We can obtain Dc(l
′ + k, r + k + 1) by doing the reverse operations on Dc(k) and sensor

sr+k+1. Since sr+k already defines an overlap [β, x] that is to the right of β, the configuration
Dc(l

′+k, r+k+1) is exactly the same as Dc(k) except that Dc(l
′+k, r+k+1) includes [β, β+2z]

as an overlap defined by sensor sr+k+1.

As the way we compute Dc(1) from Dc(l
′, r + 1), we can compute Dc(k + 1) by modifying the

configuration Dc(l
′ + k, r + k + 1) in the following way. Let g = I(sl′+k) ∩B. To obtain Dc(k + 1),

we remove sl′+k and cover g by eliminating the overlaps of Dc(l
′ + k, r + k + 1) from left to right

until g is covered.

The above computes Dc(k + 1) from Dc(l
′ + k, r + k + 1) . Next, we show that Dc(k+ 1) has a

very special pattern: sensors of S(l′ + k + 1, r+ k+ 1) are in attached positions and sensor sl′+k+1

is at z (i.e., the left endpoint of I(sl′+k+1) is at 0).

Indeed, let do be the sum of the lengths of all overlaps in Dc(k). Note that |S(l
′+k, r+k)| = λ.

Since 2z · (λ− 1) < β, sensors in S(l′ + k+1, r+ k) are not enough to fully cover B, which implies
that |g| > do. Recall that the two configurations Dc(k) and Dc(l

′+k, r+k+1) are the same except
that the latter one has an additional overlap [β, β + 2z]. Consider the procedure for covering g by
eliminating the overlaps of Dc(l

′ + k, r + k + 1) from left to right. Since |g| > do, all overlaps of
Dc(l

′+ k, r+ k+1) except that last one [β, β+2z] will be eliminated, and the moment right before
the overlap [β, β + 2z] is used, sensors in S(l′ + k + 1, r + k + 1) must be in attached positions.
Finally, Dc(k + 1) is obtained after sensors of S(l′ + k + 1, r + k + 1) are moved leftwards to cover

26

g completely, which implies that all sensors of S(l′ + k + 1, r + k + 1) are in attached positions in
Dc(k + 1) and sl′+k+1 is at z. Further, since 2z · λ > β, the right endpoint of I(sr+k+1) is strictly
to the right of β, implying that Dc(k + 1) is a trivial solution.

Since Dc(k+1) is also a trivial solution, by using the similar analysis, we can show that for each
k + 2 ≤ i ≤ l′′, Dc(i) is a trivial solution and has the following pattern: sensors in S(l′ + i, r + i)
are in attached positions with sl′+i at z.

Therefore, after Dc(k + 1) is computed, we can obtain all solutions Dc(i) for k + 2 ≤ i ≤ l′′ by
moving sensors leftwards. We can use a similar sweeping algorithm as in Lemma 12 to compute all
these solutions Dc(i) for k + 2 ≤ i ≤ r in O(n log n) time (we omit the details).

The lemma thus follows. ✷

In the following, we compute solutions Dc(i) for all i = 0, 1, . . . , l′′ in O(n log n) time. Our
algorithm will compute the solutions Dc(i) in the order from 0 to l′′ until either Dc(l

′′) is obtained,
or we find a trivial solution and then we apply the algorithm in Lemma 15.

First, we compute Dc(0) in O(n log n) time by applying our containing case algorithm on the
configuration F (l′, r). As in our one-sided case algorithm, we also maintain the process infor-
mation of the right-shift processes after the last left-shift process in the above algorithm. Let
P = {p1, p2, . . . , pq} be the above process list in the inverse time order (i.e., p1 is the last pro-
cess of the algorithm), where q is the number of these processes. Let G = {g1, g2, . . . , gq} and
O = {o1, o2, . . . , oq} be the corresponding gap list and overlap list, i.e., for each 1 ≤ i ≤ q, process
pi covers gi by eliminating oi. For each 1 ≤ i ≤ q, we also maintain the cost C(oi) of the overlap oi.
As discussed in Section 4, the gaps of G are sorted from right to left while the overlaps of O are
sorted from left to right. In addition, we maintain an extra overlap list O′ = {o′1, o

′
2, . . . , o

′
h}, which

are the overlaps in the configuration Dc(0) sorted from left to right. The list O′ will be used in the
second main step for computing each Dc(i). According to their definitions, all overlaps of O′ are to
the left of the overlaps of O. As in the one-sided case algorithm, we only need to use the position
tree Tp in the following algorithm.

To compute Dc(1), the first main step is to compute Dc(l
′, r+1) by doing the reverse operations

on Dc(0) with sr+1. This step is the same as that in the one-sided case algorithm. Let o(sr+1) be
the overlap [β, β + 2z] defined by sr+1 at β + z. In general, suppose during the reverse operations
g1, g2, . . . , gt−1 are the gaps fully covered by o(sr+1) and gt is only partially covered by a length of
dt. Then, gaps g1, g2, . . . , gt−1 are removed from G, and gt is still in G but its length is changed
to its original length minus dt. Correspondingly, the overlaps o1, o2, . . . , ot−1 are restored and ot is
partially restored with length dt in Dc(l

′, r + 1). We append o1, o2, . . . , ot at the end of O′. Since
overlaps of O′ are to the left of overlaps of O and overlaps of the two lists O and O′ are both
sorted from left to right, after the above “append” operation, the overlaps of the new list O′ are
still sorted from left to right.

The second main step is to compute Dc(1) from Dc(l
′, r+1), by eliminating overlaps of O′ from

left to right until I(sl′) ∩B is covered, as discussed earlier. For each overlap that is eliminated, we
remove it fromO′, which can be done in constant time. Note that eliminating an overlap is essentially
to move a subset of consecutive sensors leftwards by the same distance, which takes O(log n) time
to update the position tree Tp. Hence, the running time for this step is O((t′ +1) log n), where t′ is
the number of overlaps that are eliminated and the additional one is for the case where an overlap
is not completely eliminated while I(sl′) ∩B is fully covered (at which moment we obtain Dc(1)).

If Dc(1) is a trivial solution, we are done. Otherwise, we continue to compute Dc(2), again by
first computing Dc(l

′ + 1, r+ 2) and then computing Dc(2). Let G1 be the remaining gap list of G

27

after Dc(1) is computed. To compute Dc(l
′ + 1, r + 2), we use G1 to do the reverse operations on

Dc(1) with sr+2. Although G1 may not be the corresponding gap list for Dc(1), Lemma 16 shows
that the obtained result using G1 is Dc(2), and further, this can be generalized to Dc(3),Dc(4), . . .
until Dc(l

′′).

Lemma 16. Suppose Dc(1) is not a trivial solution; then if we do the reverse operations on Dc(1)
with sensor sr+2 by using the gap list G1, the solution obtained is Dc(l

′ + 1, r + 2).

Proof: Consider the configuration Dc(l
′, r+1). Since Dc(1) is not a trivial solution, we claim that

the right endpoint of I(sr+1) in Dc(l
′, r+1) must be at β. Indeed, if this is not true, then according

to the order preserving property, since sr+1 is the rightmost sensor in S(l′, r+1), the right endpoint
of I(sr+1) must be strictly to the right of β, which implies that I(sr+1) defines an overlap o to the
right of B. Recall that our algorithm for computing Dc(1) from Dc(l

′, r + 1) is to cover I(sl′) ∩B

by eliminating overlaps of Dc(l
′, r + 1) from left to right until I(sl′) ∩ B is fully covered. Since o

is the rightmost overlap of Dc(l
′, r + 1) and S(l′ + 1, r + 1) = λ > β

2z
, the overlap o cannot be

fully eliminated in Dc(1), which implies that Dc(1) is a trivial solution, incurring contradiction.
Therefore, the above claim is proved.

According to our previous discussion, we can compute Dc(l
′ + 1, r + 2) based on Dc(0) in the

following way. Suppose we have already computed Dc(0) and its gap list G. First, we compute
Dc(l

′, r + 1) by doing reverse operations on Dc(l
′) and G with sensor sr+1, and G1 is the list of

remaining gaps of G. Second, we compute Dc(l
′, r+2) by doing reverse operations on Dc(l

′, r+ 1)
and G1 with sensor sr+1. Third, we remove sl′ and cover I(sl′) ∩ B by eliminating the overlaps of
Dc(l

′, r+2) from left to right until I(sl′)∩B is fully covered. The obtained solution isDc(l
′+1, r+2).

Note that the correctness of the first two steps is based on our one-sided case algorithm, and that
of the third step is similar to Lemma 14. We use A to denote the above algorithm for computing
Dc(l

′ + 1, r + 2).
Let D be the configuration obtained after we do reverse operations on Dc(1) and sensor sr+2

with the gap list G1. In summary, we obtain D in the following way. Suppose we have already
computed Dc(0) and its gap list G. First, we compute Dc(l

′, r + 1) by doing reverse operations on
Dc(l

′) and G with sensor sr+1, and G1 is the list of remaining gaps of G. Second, we remove sl′

and cover I(sl′)∩B by eliminating the gaps of Dc(l
′, r+1) from left to right until I(sl′)∩B is fully

covered. The obtained solution is Dc(1). Third, we do reverse operations on Dc(1) and sr+2 with
G1, and the obtained solution is D. Let A′ denote our algorithm above.

Our goal is to prove that D is Dc(l
′ + 1, r + 2). To this end, we show that each sensor of

S(l′ + 1, r + 2) has the same location in D and Dc(l
′ + 1, r + 2).

Both algorithms compute Dc(l
′, r + 1) after their first steps. Let o′ be the rightmost overlap in

Dc(l
′, r + 1). Recall that we have proved that the right endpoint of I(sr+1) in Dc(l

′, r + 1) is at β.
Hence, o′ cannot be an overlap to the right of β. Below, we assume o′ has two generators gk and
gk+1 since the case where o′ has only one generator can be proved similarly but in a simpler way.
In the following discussion, in some configurations, the size of o′ may be changed but its generators
are always gk and gk+1; for simplicity of discussion, we always use o′ to refer to the overlap defined
by gk and gk+1 in any configuration.

The second step of algorithm A computes Dc(l
′, r+2) by doing reverse operations on Dc(l

′, r+1)
with sr+2. As in the proof of Lemma 10, since o′ is an overlap in Dc(l

′, r+1), the result of the above
reverse operations only depends on the locations of the sensors of S(k + 1, r + 1) in Dc(l

′, r + 1),
i.e., for each sensor si ∈ S(k + 1, r + 2), its location in Dc(l

′, r + 2) only depends on the locations
of the sensors of S(k + 1, r + 1) in Dc(l

′, r + 1).

28

The second step of algorithm A′ computes Dc(1) by removing sl′ and covering I(sl′) ∩ B by
eliminating the gaps of Dc(l

′, r + 1) from left to right. We claim that the location of the sensor
sk+1 is the same in Dc(l

′, r + 1) and Dc(1). Indeed, since |S(l′, r + 1)| = λ + 1, λ > β
2z
, and

2z · |S(l′, r + 1)| > β + 2z, the total length of the overlaps in S(l′, r + 1) is strictly larger than 2z.
Note that |I(sl′) ∩ B| ≤ 2z. Since we cover I(sl′) ∩ B by eliminating the overlaps of Dc(l

′, r + 1)
from left to right (to obtain Dc(1)) and o′ is the rightmost overlap of Dc(l

′, r + 1), o′ will not be
fully eliminated in Dc(1), which implies that sk+1 will not be moved during the above procedure
for covering I(sl′) ∩ B, i.e., sk+1 has the same location in Dc(l

′, r + 1) and Dc(1). Further, due to
the order preserving property, each sensor of S(k + 1, r + 1) has the same location in Dc(l

′, r + 1)
and Dc(1).

With the above discussion, we prove below that each sensor of S(l′ + 1, r + 2) has the same
location in D and Dc(l

′ + 1, r + 2), which will lead to the lemma.

1. The second step of algorithm A computes Dc(l
′, r+2) by doing reverse operations on Dc(l

′, r+1)
with sr+2 and G1; the third step of algorithm A′ computes D by doing reverse operations on
Dc(1) with sr+2 and G1. We have discussed above that the result of the reverse operations only
depend on the locations of the sensors of S(k + 1, r + 1). Now that the locations of the sensors
of S(k + 1, r + 1) are the same in Dc(l

′, r + 1) and Dc(1), and o′ exists in both configurations,
the location of each sensor of S(k + 1, r + 2) must be the same in both Dc(l

′, r + 2) and D.

2. As discussed before, after the third step of algorithm A′ computes D by doing reverse operations
on Dc(1) with sr+2, only sensors in S(k + 1, r + 2) possibly change their locations. Therefore,
each sensor of S(l′ + 1, k) has the same location in Dc(1) and D.

3. Since o′ exists in Dc(1), o
′ must exist in Dc(l

′ +1, r+2). Indeed, we can obtain Dc(l
′+1, r+2)

by doing reverse operations on Dc(1) and sr+2. Hence, o
′ must exit in Dc(l+1, r+2) although

it may become longer (i.e., sk+1 may be moved leftwards, but sk does not change its location).

After the second step of algorithm A computes Dc(l
′, r + 2) by the reverse operations, o′ must

exist in Dc(l
′, r + 2) although it may become longer that before. Hence, each sensor of S(l′, k)

has the same location in Dc(l
′, r+2) and Dc(l

′, r+1). The second step of algorithm A′ computes
Dc(1) by covering I(sl′) ∩ B by only moving the sensors in S(l′ + 1, k) (because o′ still exists
in Dc(1)). The third step of algorithm A computes Dc(l

′ + 1, r + 2) by covering I(sl′) ∩ B by
eliminating overlaps of Dc(l

′, r + 2) from left to right, in exactly the same way as A′ computes
Dc(1). Since o′ exists in Dc(l

′ + 1, r + 2) and each sensor of S(l′, k) has the same location in
Dc(l

′, r+2) and Dc(l
′, r+1), algorithm A can cover I(sl′)∩B using the same sensors as does in

A′. This means that each sensor of S(l′+1, k) has the same location inDc(1) andDc(l
′+1, r+2).

4. The third step of algorithm A computes Dc(l
′ + 1, r + 2) by covering I(sl′) ∩B by eliminating

overlaps of Dc(l
′, r+2) from left to right. Since o′ exists in both Dc(l

′, r+2) and Dc(l
′+1, r+2),

each sensor of S(k+1, r+2) does not change its location in the above algorithm for computing
Dc(l

′ + 1, r + 2), and in other words, each sensor of S(k + 1, r + 2) has the same location in
Dc(l

′, r + 2) and Dc(l
′ + 1, r + 2).

To summarize our above discussion, we have obtained the following: (1) each sensor of S(k+1, r+
2) has the same location in Dc(l

′, r+2) and D; (2) each sensor of S(l′+1, k) has the same location
in Dc(1) and D; (3) each sensor of S(l′ +1, k) has the same location in Dc(1) and Dc(l

′ +1, r+2);
(4) each sensor of S(k + 1, r + 2) has the same location in Dc(l

′, r + 2) and Dc(l
′ + 1, r + 2).

By the above (1) and (4), we obtain that each sensor of S(k + 1, r + 2) has the same location
in D and Dc(l

′ + 1, r + 2); by the above (2) and (3), we obtain that each sensor of S(l′ + 1, k) has

29

the same location in D and Dc(l
′ +1, r+2). Therefore, each sensor of S(l′ +1, r+2) has the same

location in D and Dc(l
′ + 1, r + 2). The lemma thus follows. ✷

After we obtain Dc(l
′ + 1, r + 2), we can use the same approach to compute Dc(2) (i.e., cover

I(sl′+1) ∩ B by eliminating the overlaps of Dc(l
′ + 1, r + 2) from left to right). We continue the

same algorithm to compute Dc(i) for i = 3, 4, . . . , l′′, until we find a trivial solution or Dc(l
′′) is

computed. We show in the following lemma that the entire algorithm takes O(n log n) time.

Lemma 17. It takes O(n log n) time to compute Dc(i) for i = 0, 1, . . . , l′′, until we find a trivial
solution or Dc(l

′′) is computed.

Proof: First, computing Dc(0) can be done in O(n log n) time by our containing case algorithm.
We can also obtain the sets G, O, and O′. Next, we use the algorithm discussed above to compute
each Dc(i), which consists of two main steps.

On the one hand, recall that the first main step of computing each Dc(i) is to do reverse
operations. Each reverse operation can be performed in O(log n) time by updating the position tree
Tp. Recall that q is the number of gaps in the gap list G of Dc(0). The total number of the reverse
operations in the entire algorithm is at most l′′ + q, because after each reverse operation, either a
gap is removed from G or a solution Dc(l

′+ i, r+ i+1) is obtained (as the overlap defined by sr+i+1

is eliminated during the operation). Since l′′ + q = O(n), the total time of the first main steps in
the entire algorithm is O(n log n).

On the other hand, the second main step of computing each Dc(i) is to cover I(sl′+i−1)∩B by
eliminating the overlaps in the current list of O′ from left to right. As discussed earlier, eliminating
each overlap takes O(log n) time by updating Tp. Hence, the total time of the second main steps in
the entire algorithm is O((l′′ + no) log n), where no is the total number of overlaps that have ever
appeared in O′. Note that no ≤ n1

o +n2
o, where n

1
o is the number of overlaps in Dc(0) and n2

o is the
number of overlaps restored due to the reverse operations in the entire algorithm. Clearly, n1

o ≤ n.
Each reverse operation restores at most one overlap. Hence, we have n2

o = O(n). Thus, the total
time of the second main steps in the entire algorithm is O(n log n).

The lemma thus follows. ✷

Recall that in the beginning of this section we made an assumption that at least one sensor
must intersect B. In the case where the assumption does not hold, we can use similar but much
easier techniques to find an optimal solution in O(n log n) time, as shown in the lemma below.

Lemma 18. If the covering interval of every sensor of S does not intersect B, then we can find
an optimal solution in O(n log n) time.

Proof: Suppose sensors in S(1, k) are on the left side of B and sensors in S(k + 1, n) are on the
right side of B. Hence, xk + z < 0 and β + z < xk+1.

Since no covering interval intersects B in the input configuration, due to the order preserving
property, there must be an optimal solution Dopt that uses a subset S(l∗, r∗) of consecutive sensors
to cover B and the sensors of S(l∗, r∗) are in attached positions. Further, sensors of S \ S(l∗, r∗)
are at their original locations.

Consider the configuration Dopt. Since sensors of S(l∗, r∗) are in attached positions and the
covering interval of each sensor of S(l∗, r∗) intersects B, the size of |S(l∗, r∗)| is either λ or λ+1. We
claim that |S(l∗, r∗)| cannot be λ+1. Indeed, assume to the contrary that |S(l∗, r∗)| = λ+1. Clearly,
either |S(1, k) ∩ S(l∗, r∗)| ≤ |S(k+1, n)∩S(l∗, r∗)| or |S(1, k) ∩ S(l∗, r∗)| > |S(k+1, n)∩S(l∗, r∗)|
holds. Without loss of generality, we assume the former one holds. Imagine that we shift all sensors

30

of S(l∗, r∗) rightwards. Since |S(l∗, r∗)| = λ+1, during the above shift, at some moment the barrier
B will be covered by the sensors in S(l∗, r∗ − 1), i.e., sensor sr∗ is redundant. Further, due to
|S(1, k) ∩ S(l∗, r∗)| ≤ |S(k + 1, n) ∩ S(l∗, r∗)|, the above shift will not increase the value of Dopt.
Once sr∗ becomes redundant, we stop the shift and move sr∗ back to its original location in the
input, which strictly decreases the value Dopt. This means that we obtain a solution that is strictly
smaller than Dopt, contradicting with that Dopt is an optimal solution.

Therefore, we obtain that |S(l∗, r∗)| = λ. The above analysis can also show that there exists an
optimal solution Dopt with |S(l∗, r∗)| = λ such that either the left endpoint of I(sl∗) is at 0 or the
right endpoint of I(l∗, r∗) is at β. Indeed, with loss of generality, we assume |S(1, k) ∩ S(l∗, r∗)| ≤
|S(k + 1, n) ∩ S(l∗, r∗)| holds. If the left endpoint of I(sl∗) is not at 0 in Dopt, then we can always
shift all sensors of S(l∗, r∗) rightwards without increasing the value Dopt until the left endpoint of
I(sl∗) is at 0, at which moment we obtain an optimal solution in which the left endpoint of I(sl∗)
is at 0.

Hence, there is an optimal solution with the following pattern: (1) only sensors of S(l∗, r∗) are
moved and |S(l∗, r∗)| = λ; (2) sensors of S(l∗, r∗) are in attached positions; (3) either sl∗ is at z or
sr∗ is at β − z.

For any configuration F , here we define its aggregate-distance as the sum of the distances of all
sensors between their locations in F and their original locations in the input.

In light of the above discussion, to find an optimal solution, we can do the following. First, we
compute the aggregate-distances of the configurations for all i = 1, 2 . . . , n−λ+1 such that sensors
of S(i, i+λ−1) are in attached positions with si at z. All these values can be computed in O(n log n)
time by a “sweeping” algorithm similar to the one in Lemma 12. Next, we compute the aggregate-
distances of the configurations for all i = 1, 2 . . . , n − λ+ 1 such that sensors of S(i, i + λ− 1) are
in attached positions with si+λ−1 at β − z. Similarly, this can be done in O(n log n) time. Finally,
the configuration with the smallest aggregate-distance is an optimal solution to our problem. ✷

The proof of the following theorem summarizes our algorithm for solving the general case.

Theorem 1. The general case is solvable in O(n log n) time.

Proof: We first check whether |SI | ≥ λ. If yes, by Lemma 10, it holds that r∗ = f(1). We
can compute f(1) by applying our one-sided case algorithm on S(1, n) after moving sensors in SL

rightwards to −z. After having r∗, as discussed earlier, we can find an optimal solution in additional
O(n log n) time, again by using our one-sided case algorithm.

Below we assume |SI | < λ. If |SI | = ∅, then we find an optimal solution by Lemma 18. Otherwise,
we will compute two candidate solutions sol1 and sol2, and the smaller one is our optimal solution.

Solution sol1 corresponds to the case in Lemma 11, i.e., |S(l∗, r∗)| ≥ λ + 1. By Lemma 11,
we have f(1) = λ∗. Hence, we first compute f(1) as above. Then, we apply our one-sided case
algorithm on the sensors of S(1, f(1)) after sensors in S(r + 1, f(1)) are moved leftwards to β + z,
and the obtained solution is sol1.

Solution sol2 corresponds to the case |S(l∗, r∗)| = λ. If λ = β
2z
, then we use the algorithm for

Lemma 12 to compute a solution of smallest value and the obtained solution is sol2. Otherwise,
we compute all solutions D(i) for i = 0, 1, . . . , l′′ and return the smallest one as sol2, which takes
O(n log n) time by Lemmas 15 and 17.

Therefore, the total running time for computing sol1 and sol2 is O(n log n).

The theorem thus follows. ✷

31

6 Concluding Remarks

In this paper, we present an algorithm that can solve the MSBC problem in O(n log n) time. To
develop the algorithm, we discover many interesting observations and propose new algorithmic
techniques. Since the MSBC problem is a fundamental geometry problem, we suspect that our
algorithm can find other applications as well. Moreover, the observations we discovered and algo-
rithmic techniques we proposed in this paper may be useful for solving other problems related to
interval coverage.

We can easily prove the Ω(n log n) time lower bound for the MSBC problem (even for the
containing case) by a reduction from the sorting problem. Consider sorting a set of numbers A =
{a1, a2, . . . , an}. In O(n) time, we can create an instance for the MSBC problem as follows. Let
S = {s1, s2, . . . , sn} be a set of n sensors on the x-axis L, and for each 1 ≤ i ≤ n, the coordinate of
si is ai and we say si corresponds to ai. Let a

′ be the smallest number in A and a′′ be the largest
number in A. The barrier B is the interval [a′, a′′] on L. The covering range z is set to be a′′−a′

2n
.

Clearly, this is an instance of the containing case of the MSBC problem. Since 2z · n is exactly
equal to the length of the barrier, the optimal solution has the following pattern: all sensors are in
attached positions and the leftmost sensor is at z. Due to the order preserving property, the left-
to-right order of the sensors in the optimal solution corresponds to the small-to-large order of the
numbers in A. Therefore, once we have the optimal solution, we can obtain the sorted list of A in
additional O(n) time. Since the sorting problem has Ω(n log n) time lower bound (in the algebraic
decision tree model), the problem MSBC (even for the containing case) also has Ω(n log n) lower
bound on the time complexity.

References

1. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: A survey. Computer
Networks, 38(4):393–422, 2002.

2. A. Bar-Noy, D. Rawitz, and P. Terlecky. Maximizing barrier coverage lifetime with mobile sensors. In Proc. of
the 21st European Symposium on Algorithms (ESA), pages 97–108, 2013.

3. B. Bhattacharya, B. Burmester, Y. Hu, E. Kranakis, Q. Shi, and A. Wiese. Optimal movement of mobile sensors
for barrier coverage of a planar region. Theoretical Computer Science, 410(52):5515–5528, 2009.

4. A. Chen, S. Kumar, and T. Lai. Designing localized algorithms for barrier coverage. In Proc. of the 13th Annual
ACM International Conference on Mobile Computing and Networking, pages 63–73, 2007.

5. D.Z. Chen, Y. Gu, J. Li, and H. Wang. Algorithms on minimizing the maximum sensor movement for barrier
coverage of a linear domain. Discrete and Computational Geometry, 50:374–408, 2013.

6. D.Z. Chen, X. Tan, H. Wang, and G. Wu. Optimal point movement for covering circular regions. Algorithmica,
2013. Online First, DOI 10.1007/s00453-013-9857-1.

7. J. Czyzowicz, E. Kranakis, D. Krizanc, I. Lambadaris, L. Narayanan, J. Opatrny, L. Stacho, J. Urrutia, and
M. Yazdani. On minimizing the maximum sensor movement for barrier coverage of a line segment. In Proc. of
the 8th International Conference on Ad-Hoc, Mobile and Wireless Networks, pages 194–212, 2009.

8. J. Czyzowicz, E. Kranakis, D. Krizanc, I. Lambadaris, L. Narayanan, J. Opatrny, L. Stacho, J. Urrutia, and
M. Yazdani. On minimizing the sum of sensor movements for barrier coverage of a line segment. In Proc. of the
9th International Conference on Ad-Hoc, Mobile and Wireless Networks, pages 29–42, 2010.

9. S. Hu. ‘Virtual Fence’ along border to be delayed. Washington Post, February 28, 2008.
10. S. Kumar, T. Lai, and A. Arora. Barrier coverage with wireless sensors. Wireless Networks, 13(6):817–834, 2007.
11. M. Li, X. Sun, and Y. Zhao. Minimum-cost linear coverage by sensors with adjustable ranges. In Proc. of the

6th International Conference on Wireless Algorithms, Systems, and Applications, pages 25–35, 2011.
12. X. Li, H. Frey, N. Santoro, and I. Stojmenovic. Localized sensor self-deployment with coverage guarantee. ACM

SIGMOBILE Mobile Computing and Communications Review, 12(2):50–52, 2008.
13. M. Mehrandish. On Routing, Backbone Formation and Barrier Coverage in Wireless Ad Doc and Sensor Net-

works. PhD thesis, Concordia University, Montreal, Quebec, Canada, 2011.

32

14. M. Mehrandish, L. Narayanan, and J. Opatrny. Minimizing the number of sensors moved on line barriers. In
Proc. of IEEE Wireless Communications and Networking Conference (WCNC), pages 653–658, 2011.

15. X. Tan and G. Wu. New algorithms for barrier coverage with mobile sensors. In Proc. of the 4th International
Workshop on Frontiers in Algorithmics, pages 327–338, 2010.

16. S. Yang, M. Li, and J. Wu. Scan-based movement-assisted sensor deployment methods in wireless sensor networks.
IEEE Trans. Parallel Distrib. Syst., 18(8):1108–1121, 2007.

17. Y. Zou and K. Chakrabarty. A distributed coverage and connectivity-centric technique for selecting active nodes
in wireless sensor networks. IEEE Trans. Comput., 54(8):978–991, 2005.

33

	Minimizing the Aggregate Movements for Interval Coverage

