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Abstract. We present the first results on the parameterized complex-
ity of reconfiguration problems, where a reconfiguration version of an
optimization problem @ takes as input two feasible solutions S and T'
and determines if there is a sequence of reconfiguration steps that can be
applied to transform S into T such that each step results in a feasible
solution to @. For most of the results in this paper, S and T are subsets
of vertices of a given graph and a reconfiguration step adds or deletes
a vertex. Our study is motivated by recent results establishing that for
most NP-hard problems, the classical complexity of reconfiguration is
PSPACE-complete.

We address the question for several important graph properties under
two natural parameterizations: k, the size of the solutions, and ¢, the
length of the sequence of steps. Our first general result is an algorithmic
paradigm, the reconfiguration kernel, used to obtain fixed-parameter al-
gorithms for the reconfiguration versions of VERTEX COVER and, more
generally, BOUNDED HITTING SET and FEEDBACK VERTEX SET, all pa-
rameterized by k. In contrast, we show that reconfiguring UNBOUNDED
HITTING SET is W[2]-hard when parameterized by k+¢. We also demon-
strate the W[l]-hardness of the reconfiguration versions of a large class
of maximization problems parameterized by k + ¢, and of their corre-
sponding deletion problems parameterized by ¢; in doing so, we show
that there exist problems in FPT when parameterized by k, but whose
reconfiguration versions are W[1]-hard when parameterized by k + .

* Research supported by the Natural Science and Engineering Research Council of
Canada.

** Research supported by JSPS Grant-in-Aid for Scientific Research, Grant Number
24.3660.



1 Introduction

The reconfiguration version of an optimization problem asks whether it is possi-
ble to transform a source feasible solution S into a target feasible solution 7" by
a sequence of reconfiguration steps such that every intermediate solution is also
feasible; other variants return a (possibly minimum-length) reconfiguration se-
quence of solutions. Reconfiguration problems model real-life dynamic situations
in which we seek to transform a solution into a more desirable one, maintain-
ing feasibility during the process. The study of reconfiguration yields insights
into the structure of the solution space of the underlying optimization problem,
crucial for the design of efficient algorithms.

Motivated by real world situations as well as by trying to understand the
structure of all feasible solutions, there has been a lot of recent interest in
studying the complexity of reconfiguration problems. Problems for which recon-
figuration has been studied include VERTEX COLOURING [3,5-8], L1ST EDGE-
COLOURING [18], INDEPENDENT SET [16, 17], CLIQUE, SET COVER, MATCHING,
MATROID BASES [17], SATISFIABILITY [13], SHORTEST PATH [4, 19], and DowmI-
NATING SET [15, 26]. Most work has been limited to the problem of determining
the existence of a reconfiguration sequence between two given solutions; for most
NP-complete problems, this problem has been shown to be PSPACE-complete.

As there are typically exponentially many feasible solutions, the length of the
reconfiguration sequence can be exponential in the size of the input instance. It
is thus natural to ask whether reconfiguration problems become tractable if we
allow the running time to depend on the length of the sequence; this approach
suggests the use of the paradigm of parameterized complexity. In this work, we
explore reconfiguration in the framework of parameterized complexity [10] under
two natural parameterizations: k, a bound on the size of feasible solutions, and /,
the length of the reconfiguration sequence. One of our key results is that for most
problems, the reconfiguration versions remain intractable in the parameterized
framework when we parameterize by ¢. It is important to note that when k is
not bounded, the reconfiguration we study become easy.

We present fixed-parameter algorithms for problems parameterized by k by
modifying known parameterized algorithms for the problems. The paradigms of
bounded search tree and kernelization typically work by exploring minimal solu-
tions. However, a reconfiguration sequence may necessarily include non-minimal
solutions. Any kernel that removes solutions (non-minimal or otherwise) may
render finding a reconfiguration sequence impossible, as the missing solutions
might appear in every reconfiguration sequence; we must thus ensure that the
kernelization rules applied retain enough information to allow us to determine
whether a reconfiguration sequence exists. To handle these difficulties, we intro-
duce a general approach for parameterized reconfiguration problems. We use a
reconfiguration kernel, showing how to adapt Bodlaender’s cubic kernel [2] for
FEEDBACK VERTEX SET, and a special kernel by Damaschke and Molokov [9]
for BOUNDED HITTING SET (where the cardinality of each input set is bounded)
to obtain polynomial reconfiguration kernels, with respect to k. These results can



be considered as interesting applications of kernelization, and a general approach
for other similar reconfiguration problems.

As a counterpart to our result for BOUNDED HITTING SET, we show that
reconfiguring UNBOUNDED HITTING SET or DOMINATING SET is W/[2]-hard
parameterized by k+ £ (Section 4). Finally, we show a general result on reconfig-
uration problems of hereditary properties and their ‘parametric duals’, implying
the W{l]-hardness of reconfiguring INDEPENDENT SET, INDUCED FOREST, and
BIPARTITE SUBGRAPH parameterized by k+ /¢ and VERTEX COVER, FEEDBACK
VERTEX SET, and ODD CYCLE TRANSVERSAL parameterized by /.

2 Preliminaries

Unless otherwise stated, we assume that each input graph G is a simple, undi-
rected graph on n vertices with vertex set V(G) and edge set E(G). To avoid
confusion, we refer to nodes in reconfiguration graphs (defined below), as distin-
guished from vertices in the input graph. We use the modified big-Oh notation
O* that suppresses all polynomially bounded factors.

Our definitions are based on optimization problems, each consisting of a
polynomial-time recognizable set of valid instances, a set of feasible solutions for
each instance, and an objective function assigning a nonnegative rational value
to each feasible solution.

Definition 1. The reconfiguration graph Rq(I,adj, k), consists of a node for
each feasible solution to instance I of optimization problem @, where the size
of each solution is at least k for Q a mazimization problem (of size at most k
for Q a minimization problem, respectively), for positive integer k, and an edge
between each pair of nodes corresponding to solutions in the binary adjacency
relation adj on feasible solutions.

We define the following reconfiguration problems, where S and T are feasible
solutions for I: Q RECONFIGURATION determines if there is a path from S to
T in Rg(I,adj, k); the search variant returns a reconfiguration sequence, the
sequence of feasible solutions associated with such a path; and the shortest path
variant returns the reconfiguration sequence associated with a path of minimum
length. For convenience, solutions paired by adj are said to be adjacent.

Using the framework developed by Downey and Fellows [10], a parameterized
reconfiguration problem includes in the input a positive integer ¢ (an upper bound
on the length of the reconfiguration sequence) and a parameter p (typically k or
). For a parameterized problem @ with inputs of the form (z,p), || = n and p
a positive integer, Q is fized-parameter tractable (or in FPT) if it can be decided
in f(p)n© time, where f is an arbitrary function and c¢ is a constant independent
of both n and p. Q is in the class XP if it can be decided in nf® time. Q has a
kernel of size f(p) if there is an algorithm A that transforms the input (z,p) to
(2’,p") such that A runs in polynomial time (with respect to |z| and p) and (z, p)
is a yes-instance if and only if (2/, p’) is a yes-instance, p’ < g(p), and |2'| < f(p).
Each problem in FPT has a kernel, possibly of exponential (or worse) size.



We introduce the related notion of a reconfiguration kernel; it follows from
the definition that a reconfiguration problem that has such a kernel is in FPT.

Definition 2. A reconfiguration kernel of an instance of a parameterized recon-
figuration problem (x,p) = (P,adj, S, T, k,¢,p) is a set of h(p) instances, for an
arbitrary function h, such that for 1 < i < h(p):

— for each instance in the set, (x;,p;) = (P,adj, S;, T;, ki, Li, pi), the values of
Si, T;, ki, £;, and p; can all be computed in polynomial time,

— the size of each x; is bounded by j(p), for an arbitrary function j, and

— (x,p) is a yes-instance if and only if at least one (x;,p;) is a yes-instance.

The main hierarchy of parameterized complexity classes is FPT C W1] C
WI2] C ... C XP, where W-hardness, shown using FPT reductions, is the
analogue of NP-hardness in classical complexity. A parameterized problem @
FPT reduces to a parameterized problem @’ if there is an algorithm A that
transforms an instance (I, p) of @ to an instance (I, p’) of Q' such that A runs
in time f(p)poly(|I|) where f is a function of k, poly is a polynomial function, and
p’ = g(p) for some function g. In addition, the transformation has the property
that (I,p) is a yes-instance of Q if and only if (I’,p’) is a yes-instance of Q’. It is
known that standard parameterized versions (are there p vertices that form the
solution?) of CLIQUE and INDEPENDENT SET are complete for the class W[1],
and DOMINATING SET is W[2]-complete. The reader is referred to [12,24] for
more on parameterized complexity.

Most problems we consider can be defined using graph properties, where a
graph property 7 is a collection of graphs, and is non-trivial if it is non-empty and
does not contain all graphs. A graph property is polynomially decidable if for any
graph G, it can be decided in polynomial time whether G is in 7. For a subset
V' CV, G[V'] is the subgraph of G induced on V', with vertex set V' and edge
set {{u,v} € E | u,v € V'}. The property 7 is hereditary if for any G € 7, any
induced subgraph of G is also in 7. Examples of hereditary properties include
graphs having no edges and graphs having no cycles. It is well-known [22] that
every hereditary property 7 has a forbidden set F, in that a graph has property
7 if and only if it does not contain any graph in F, as an induced subgraph.

For a graph property 7, we define two reconfiguration graphs, where solutions
are sets of vertices and two solutions are adjacent if they differ by the addition
or deletion of a vertex. The subset reconfiguration graph of G with respect to ,
R% (G, k), has a node for each S C V(G) such that |S| > k and G]S] has prop-
erty m, and the deletion reconfiguration graph of G with respect to w, R%, (G, k),
has a node for each S C V(@) such that |S| < k and G[V(G) \ S] has property
7. We can obtain R7, (G, |V (G)|—k) by replacing the set corresponding to each
node in R7 (G, k) by its (setwise) complement. The following is a consequence
of the fact that two nodes can differ by the deletion or addition of a single vertex.

Fact 1 The degree of each node in RY (G, k) and each node in RT, (G, k) is at
most |V (G)|.



Definition 3. For any graph property 7, graph G, positive integer k, S C V(QG),
and T C V(G), we define the following decision problems:

T-DELETION(G, k): Is there V' C V(G) such that |V'| < k and G|V (G)\V'] € w2
m-SUBSET(G, k): Is there V! C V(G) such that |V'| > k and G[V'] € 7 ?
m-DEL-RECONF (G, S, T, k,£): For S,T € V(RF, (G, k)), is there a path of length
at most £ between the nodes for S and T in RZ, (G,k)?

T-SUB-RECONF(G, S, T, k,0): For S,T € V(RE ,(G,k)), is there a path of length
at most £ between the nodes for S and T in RY,,(G,k)?

We say that 7-DELETION(G, k) and m-SUBSET(G, k) are parametric duals of
each other. Note that in m-SUBSET(G, k), we seek a set of vertices of size at least k
inducing a subgraph in 7, whereas in 7-DELETION(G, k), we seek a set of vertices
of size at most k whose complement set induces a subgraph in 7. We refer to
m-DEL-RECONF(G, S, T, k, £) and m-SUB-RECONF(G, S, T, k, ) as reconfiguration
problems for m; for example, for 7 the set of graphs with no edges, the former
is VERTEX COVER RECONFIGURATION and the latter is INDEPENDENT SET
RECONFIGURATION.

3 Fixed-Parameter Tractability Results

We first observe that for any polynomially decidable graph property, the 7-
DELETION and m-SUBSET reconfiguration versions are in X P when parameterized
by ¢; we conduct breadth-first search on the reconfiguration graph starting at
S, stopping either upon discovery of T or upon completing the exploration of ¢
levels. Fact 1 implies a bound of at most n’ vertices to explore in total.

Fact 2 For any polynomially decidable graph property =, mT-DEL-
RECONF(G, S, T,k,¢) € XP and m-SUB-RECONF(G,S,T,k,l) € XP when
parameterized by £.

For an instance (G, S,T,k,¢), we partition V(G) into the sets C = SN T
(vertices common to S and T), Sp = S\ C (vertices to be deleted from S in
the course of reconfiguration), T4 = T\ C' (vertices to be added to form T'), and
O=V(G)\(SUT)=V(G)\ (CUSpUT4,) (all other vertices). Furthermore,
we can partition C' into two sets Cr and Cj; = C'\ Cp, where a vertex is in Cp
if and only if it is in every feasible solution of size bounded by k.

The following fact is a consequence of the definitions above, the fact that «
is hereditary, and the observations that G[Sp] and G[O] are both subgraphs of
G[V(G)\ T], and G[T4] and G[O] are both subgraphs of G[V(G) \ 5].

Fact 3 For an instance m-DEL-RECONF(G, S, T, k,{) of a reconfiguration prob-
lem for hereditary property w, G[O], G[Sp], and G[Ta] all have property .

In any reconfiguration sequence, each vertex in Sp must be deleted and each
vertex in T4 must be added. We say that a reconfiguration sequence touches



a vertex v if v is either added or deleted in at least one reconfiguration step.
Any vertex that is not touched is untouched. In fact, since £ implies a bound on
the total number of vertices that can be touched in a reconfiguration sequence,
setting ¢ = |Sp| + |T4| drastically simplifies the problem.

Observation 1 For any polynomially decidable hereditary graph property
m, if |Sp| + [Ta| = £, then =-DEL-RECONF(G,S,T,k,¢) and m-SUB-
RECONF(G, S, T, k,£) can be solved in O*(2*) time, and hence are in FPT when
parameterized by L.

Proof. Since each vertex in T4 must be added and each vertex in Sp deleted,
in ¢ steps we can touch each vertex in Sp U T4 exactly once; all vertices in
V(G)\ (Sp UTy4) remain untouched.

Any node in the path between S and T in R, (G, k) represents a set C'U B
where B is a subset of SpUTa. As |Sp|+|Ta| = ¢, there are only 2¢ choices for
B. Our problem then reduces to finding the shortest path between S and T in
the subgraph of R7,,(G, k) induced on the 2¢ relevant nodes; the bound follows
from the fact that the number of edges is at most 2¢|V(G)|, a consequence of

Fact 1. The same argument holds for RT, (G, k). O

In contrast, we show in the next section that for most hereditary properties,
reconfiguration problems are hard when parameterized by £.

3.1 Bounded Hitting Set

Here, we prove the parameterized tractability of reconfiguration for certain
superset-closed k-subset problems when parameterized by k, where a k-subset
problem is a parameterized problem @ whose solutions for an instance (I, k) are
all subsets of size at most k of a domain set, and is superset-closed if any su-
perset of size at most k of a solution of @ is also a solution of ). For example,
parameterized VERTEX COVER is a superset-closed problem.

Theorem 4. If a k-subset problem Q is superset-closed and has an FPT algo-
rithm to enumerate all its minimal solutions, the number of which is bounded by
a function of k, then Q RECONFIGURATION parameterized by k is in FPT, as
well as the search and shortest path variants.

Proof. By enumerating all minimal solutions of ), we compute the set M of
all elements v of the domain set such that v is in a minimal solution to (). For
(I1,5,T,k,¢) an instance of ) RECONFIGURATION, we show that there exists a
reconfiguration sequence from S to T if and only if there exists a reconfiguration
sequence from SN M toT'N M that uses only subsets of M.

Each set U in the reconfiguration sequence from S to T is a solution, hence
contains at least one minimal solution in U N M; U N M is a superset of the
minimal solution and hence also a solution. Moreover, since any two consecutive
solutions U and U’ in the sequence differ by a single element, U N M and U' N M
differ by at most a single element. By replacing each subsequence of identical



sets by a single set, we obtain a reconfiguration sequence from SN M to TN M
that uses only subsets of M.

The reconfiguration sequence from S N M to T'N M using only subsets of
M can be extended to a reconfiguration sequence from S to T" by transforming
Sto SNMin |S\ M| steps and transforming TN M to T in |T \ M| steps.
In this sequence, each vertex in C'\ M is removed from S to form S\ M and
then readded to form T from T\ M. For each vertex v € C'\ M, we can choose
instead to add v to each solution in the sequence, thereby decreasing ¢ by two
(the steps needed to remove and then readd v) at the cost of increasing by one
the capacity used in the sequence from S N M to T'N M. This choice can be
made independently for each of these £ = |C'\ M| vertices.

Consequently, (I,S,T,k,£) is a yes-instance for ) RECONFIGURATION if and
only if one of the £+ 1 reduced instances (I, SNM, TNM,k—e,{—2(E —e)), for
0 <e<&and& = |C\M|,is a yes-instance for Q' RECONFIGURATION: we define
Q' as a k-subset problem whose solutions for an instance (I, k) are solutions of
instance (I, k) of @ that are contained in M. To show that ' RECONFIGURATION
is in FPT, we observe that the number of nodes in the reconfiguration graph for
Q' is bounded by a function of k: each solution of Q' is a subset of M, yielding
at most 2/ nodes, and | M| is bounded by a function of k. O

As a consequence, BOUNDED HITTING SET RECONFIGURATION, FEEDBACK
ARC SET RECONFIGURATION IN TOURNAMENTS RECONFIGURATION, and MIN-
IMUM WEIGHT SAT IN BOUNDED CNF FORMULAS RECONFIGUATION (where
each solution is the set of variables that are set to true in a satisfying assignment,
and the problem looks for a solution of cardinality at most k) are proved to be
in FPT when parameterized by k:

Corollary 5. BOUNDED HITTING SET RECONFIGURATION, FEEDBACK ARC
SET IN TOURNAMENTS RECONFIGURATION, and MINIMUM WEIGHT SAT IN
BoOUNDED CNF FORMULAS RECONFIGUATION parameterized by k are in FPT.

Proof. All these problems are superset-closed. Furthermore, standard techniques
give FPT algorithms to enumerate their minimal solutions, and the number of
minimal solutions is bounded by a function of k in all cases, as required by
Theorem 4. We include the proofs for completeness.

We can devise a search tree algorithm that gradually constructs minimal hit-
ting sets of instances of BOUNDED HITTING SET, producing all minimal hitting
sets of size at most k in its leaves. Consider an instance of BOUNDED HITTING
SET, where the cardinality of each set is bounded by a constant c. At each non-
leaf node, the algorithm chooses a set that is not hit, and branches on all possible
ways of hitting this set, including one of the (at most ¢) elements in the set in
each branch. Since we are not interested in hitting sets of cardinality more than
k, we do not need to search beyond depth k in the tree, proving an upper bound
of ¥ on the number of leaves, and an upper bound of O*(c*) on the enumeration
time.

For the problem FEEDBACK ARC SET IN TOURNAMENTS, a tournament is
acyclic if and only if it has a directed cycle of length three [1], and a set of arcs



is a minimal feedback arc set in a tournament if and only if reversing its arcs in
the tournament results in an acyclic tournament [25]. Therefore, at each non-leaf
node in a search tree for this problem, there is always a cycle C of length three
and every feedback arc set shares at least one arc with C. The algorithm can
thus branch on the three arcs in C, reversing one in each branch, and solve the
problem recursively. As in the previous algorithm, since we are not interested in
feedback arc sets of cardinality more than k, the search can be terminated at
depth k, proving an upper bound of 3* on the number of minimal k-feedback
arc sets in tournaments, and an upper bound of O*(3%) on the running time of
this enumeration algorithm.

Finally, Misra et al. [23] give a search tree algorithm for bounded CNF for-
mula instances of MINIMUM WEIGHT SAT, where every clause has at most ¢
literals for some constant c¢. At each node, the algorithm chooses a clause whose
literals are all positive, and branches on all possible ways of satisfying the clause,
setting one variable to true in each branch. If there is no such clause, the for-
mula is satisfied with no increase in the number of true variables, by setting every
non-assigned variable to false. As before, the algorithm stops the search when it
reaches a depth of k, proving an upper bound of ¢* on the number of satisfying
assignments, and an upper bound of O*(c¥) on the enumeration time. O

For BOUNDED HITTING SET, the proof of Theorem 4 can be strengthened
to develop a polynomial reconfiguration kernel. In fact, we use the ideas in
Theorem 4 to adapt a special kernel that retains all minimal k-hitting sets in
the reduced instances [9].

Theorem 6. BOUNDED HITTING SET RECONFIGURATION parameterized by k
has a polynomial reconfiguration kernel.

Proof. We let (G, S, T, k,£) be an instance of BOUNDED HITTING SET RECON-
FIGURATION: G is a family of sets of vertices of size at most r and each of S
and T is a hitting set of size at most k, that is, a set of vertices intersecting
each set in G. We form a reconfiguration kernel using the reduction algorithm
A of Damaschke and Molokov [9]: G’ = A(G) contains all minimal hitting set
solutions of size at most k, and is of size at most (r — 1)k" + k.

BOUNDED HITTING SET is a k-subset problem that is superset-closed. More-
over, V(G’) includes all minimal k-hitting sets, and the k-hitting sets for G’ are
actually those k-hitting sets for G that are completely included in V(G’). There-
fore, as in the proof of Theorem 4, (G, S, T, k, /) is a yes-instance for BOUNDED
HiTTING SET RECONFIGURATION if and only if one of the £41 reduced instances
(G, SNV(G), TNV(G), k—e l—2(E—e)), for 0 <e<E, is a yes-instance
for BOUNDED HITTING SET RECONFIGURATION.

Notice that unlike in the proof of Theorem 4, here we have access to an f(k)-
bounded instance G’ based on which we can solve Q' RECONFIGURATION. An-
other difference is that here the set containing all minimal solutions can be com-
puted in polynomial time, whereas Theorem 4 guarantees only a fixed-parameter
tractable procedure. a



BOUNDED HITTING SET generalizes VERTEX COVER, FEEDBACK VERTEX
SET IN TOURNAMENTS, CLUSTER DELETION, and in general any deletion prob-
lem for a hereditary property with a finite forbidden set:

Corollary 7. If w is a hereditary graph property with a finite forbidden set, then
m-DEL-RECONF(G, S, T, k, £) parameterized by k has a polynomial reconfiguration
kernel.

3.2 Undirected Feedback Vertex Set

Corollary 7 does not apply to FEEDBACK VERTEX SET, for which the associated
hereditary graph property is the collection of all forests; the forbidden set is the
set of all cycles and hence is not finite. Indeed, Theorem 4 does not apply to
FEEDBACK VERTEX SET either, since the number of minimal solutions exceeds
f(k) if the input graph includes a cycle of length f(k) 4 1, for any function f.
While it maybe possible to adapt the compact enumeration of minimal feed-
back vertex sets [14] for reconfiguration, we develop a reconfiguration kernel for
feedback vertex set by modifying a specific kernel for the problem.

We are given an undirected graph and two feedback vertex sets S and T of
size at most k. We make use of Bodlaender’s cubic kernel for FEEDBACK VERTEX
SET [2], modifying reduction rules (shown in italics) to allow the reconfiguration
sequence to use non-minimal solutions, and to take into account the roles of C,
Sp, T4, and O. In some cases we remove vertices from O only, as others may be
needed in a reconfiguration sequence.

The reduction may introduce multiple edges, forming a multigraph. Bod-
laender specifies that a double edge between vertices u and v consists of two
edges with v and v as endpoints. Since we preserve certain degree-two vertices,
we extend the notion by saying that there is a double edge between u and v if
either there are two edges with u and v as endpoints, one edge between u and
v and one path from u to v in which each internal vertex is of degree two, or
two paths (necessarily sharing only u and v) from u to v in which each internal
vertex is of degree two. Following Bodlaender, we define two sets of vertices, a
feedback vertex set A of size at most 2k and the set B containing each vertex
with a double edge to at least one vertex in A. A piece is a connected component
of G[V'\ (AU B)], the border of a piece with vertex set X is the set of vertices
in AU B adjacent to any vertex in X, and a vertex v in the border governs a
piece if there is a double edge between v and each other vertex in the border.
We introduce £ to denote how much capacity we can “free up” for use in the
reduced instance by removing vertices and then readding them.

Bodlaender’s algorithm makes use of a repeated initialization phase in which
an approximate solution A is found and B is initialized; for our purposes, we set
A =CUSpUTy in the first round and thereafter remove vertices as dictated by
the application of reduction rules. Although not strictly necessary, we preserve
this idea in order to be able to apply Bodlaender’s counting arguments. In the
following rules, v, w, and x are vertices.



Rule 1 If v has degree 0, remove v from G. If v is in Sp U T4, subtract 1 from
L. If visin C, increment € by 1.

Rule 2 If v has degree 1, remove v and its incident edge from G. If v is in
Sp UTa, subtract 1 from £. If v is in C, increment £ by 1.

Rule 3 If there are three or more edges {v, w}, remove all but two.

Rule 4 If v has degree 2 and v is in O, remove v and its incident edges from
G and add an edge between its neighbours w and z; add w (respectively, x)
to B if a double edge is formed, w (respectively, x) is not in AU B, and x
(respectively, w) is in A.

Rule 5 If v has a self-loop, remove v and all incident edges and decrease k by
1, then restart the initialization phase.

Rule 6 If there are at least k + 2 vertex-disjoint paths between v € A and any
w and there is no double edge between v and w, add two edges between v
and w, and if w ¢ AU B, add w to B.

Rule 7 If for v € A there exist at least k + 1 cycles such that each pair of
cycles has exactly {v} as the intersection, remove v and all incident edges
and decrease k by 1, then restart the initialization phase.

Rule 8 If v has at least k£ 4+ 1 neighbours with double edges, remove v and all
incident edges and decrease k by 1, then restart the initialization phase.
Rule 9 If v € AU B governs a piece with vertex set X and has exactly one

neighbour w in X, then remove the edge {v, w}.

Rule 10 If v € AU B governs a piece with vertex set X and has at least two
neighbours in X, then remove v and all incident edges and decrease k by
1, then restart the initialization phase. Replaced by the following rule: If a
piece with vertex set X has a border set'Y such that there is a double edge
between each pair of vertices in'Y , remove X.

Lemma 8. The instance (G,S,T,k,?) is a yes-instance if and only if one of
the € + 1 reduced instances (G',S",T', k —e, £ —2(E —e)), for 0 <e <&, is a
yes-instance.

Proof. We show that no modification of a reduction rule removes possible recon-
figuration sequences. This is trivially true for Rules 3 and 6.

The vertices removed by Rules 1, 2, and 4 play different roles in converting
a reconfiguration sequence for a reduced instance to a reconfiguration sequence
for the original instance. As there is no cycle that can be destroyed only by a
vertex removed from O by Rule 1, 2, or 4, none of these vertices are needed. To
account for the required removal (addition) of each such vertex in Sp (T4), we
remove all d such vertices and decrease £ by d. We can choose to leave a v € C)
in each solution in the sequence (with no impact on ¢) or to remove and then
readd v to free up extra capacity, at a cost of incrementing ¢ by two; in the
reduced instance we thus remove v and either decrement k or subtract two from
£. Since this choice can be made for each of these vertices, £ in total, we try to
solve any of £ + 1 versions (G, 5", T,k —e,{ —2(E —e)) for 0 <e < E&.

For each of Rules 5, 7, and 8, we show that the removed vertex v is in Cp;
since the cycles formed by v must be handled by each solution in the sequence,

10



the instance can be reduced by removing v and decrementing k. For Rule 5,
v € C since every feedback arc set must contain v. For Rules 7 and 8, v € Cp,
since any feedback vertex set not containing v would have to contain at least
k + 1 vertices, one for each cycle.

For Rule 9, Bodlaender’s Lemma 8 shows that the removed edge has no
impact on feedback vertex sets.

For Rule 10, we first assume that Rule 9 has been exhaustively applied, and
thus each vertex in the border has two edges to X. By Fact 3 for 7 the set of
acyclic graphs, there cannot be a cycle in G[O U {v}] for any v € Sp UT4 U O,
and hence each member of the border is in C. Lemma 9 in Bodlaender’s paper
shows that there is a minimum size feedback vertex set containing v: even if all
the neighbours of v in the border are included in a feedback vertex set, at least
one more vertex is required to break the cycle formed by v and X. There is
no gain in capacity possible by replacing v in the reconfiguration sequence, and
hence this particular piece is of no value in finding a solution. a

We first present the key points and lemmas in Bodlaender’s counting argu-
ment and then show that, with minor modifications, the same argument goes
through for our modified reduction rules and altered definition of double edge.

In Bodlaender’s proof, the size of the reduced instance is bounded by
bounding the sizes of A and B (Lemma 10), bounding the number of pieces
(Lemma 12), and bounding the size of each piece. Crucial to the proof of
Lemma 12 is Lemma 11, as the counting associates each piece with a pair of
vertices in its border that are not connected by a double edge and then counts
the number of pieces associated with each different type of pair. We use Lemma 9
in the discussion below.

Lemma 9. [2] Suppose v € AU B governs a piece with vertex set X. Suppose
there are at least two edges with one endpoints v and one endpoint in X. Then
there is a minimum size feedback vertex set in G that contains v.

Lemma 10. /2] In a reduced instance, there are at most 2k vertices in A and
at most 2k? wertices in B.

Lemma 11. /2] Suppose none of the Rules 1-10 can be applied to G. Suppose
Y C V is the border of a piece in G. Then there are two disjoint vertices v,w € Y
such that {v,w} is not a double edge.

Lemma 12. [2] Suppose we have a reduced instance. There are at most 8k® +
9k2 + k pieces.

Lemma 13. Each reduced instance has O(k3) wertices and O(k®) edges, and
can be obtained in polynomial time.

Proof. Our modifications to Rules 1-3 and 5-9 do not have an impact on the size
of the kernel. Although our Rule 4 preserves some vertices in A of degree two,
due to the initialization of A to be CUSpUTy, and hence of size at most 2k, the
bound on B and hence Lemma 10 follows from Rule 8. In essence, our extended
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definition of double edges handles the degree-two vertices that in Bodlaender’s
constructions would have been replaced by an edge.

To claim the result of Lemma 12, it suffices to show that Lemma 11 holds
for our modified rules. Bodlaender shows that if there is a piece such that each
pair of vertices in the border set is connected by a double edge, Rule 10 along
with Rule 9 can be applied repeatedly to remove vertices from the border of the
piece and thereafter Rules 2 and 1 to remove the piece entirely.

To justify Rule 10, Bodlaender shows in Lemma 9 that if v € AU B governs
a piece with vertex set X and there are at least two edges between v and X,
then there is a minimum size feedback vertex set in G that contains v. For our
purposes, however, since there may be non-minimum size feedback vertex sets
used in the reconfiguration sequence, we wish to retain v rather than removing
it. Our modification to Rule 10 allows us to retain v, handling all the removals
from the piece without changing the border, and thus establishing Lemma 11,
as needed to prove Lemma 12.

In counting the sizes of pieces, our modifications result in extra degree-two
vertices. Rule 4 removes all degree-two vertices in O, and hence the number of
extra vertices is at most 2k, having no effect on the asymptotic count. a

Theorem 14. FEEDBACK VERTEX SET RECONFIGURATION and the search
variant parameterized by k are in FPT.

Proof. Since the number of reduced instances is € +1 < |C|+1<k+1,as a
consequence of Lemmas 8 and 13, we have a reconfiguration kernel, proving the
first result.

For the search version, we observe that we can generate the reconfigura-
tion graph of the reduced yes-instance and use it to extract a reconfiguration
sequence. We demonstrate that we can form a reconfiguration sequence for
(G,S,T,k,¢) from the reconfiguration sequence o for the reduced yes-instance
(G',S",t',k —e, £ —2(E — e)). We choose an arbitrary partition of the vertices
removed from G by Rules 1 and 2 into two sets, K (the ones to keep) of size e
and M (the ones to modify) of size £ — e. We can modify o into a sequence ¢’ in
which all vertices in K are added to each set; clearly no set will have size greater
than k. Our reconfiguration sequence then consists of £ — e steps each deleting
an element of M, the sequence ¢/, and £ — e steps each adding an element of M,
for a length of at most (€ —e) + (¢ — (€ —e)) + (€ — e) < ¢, as needed. O

4 Hardness Results

The reductions presented in this section make use of the forbidden set charac-
terization of heredity properties. A w-critical graph H is a (minimal) graph in
the forbidden set F, that has at least two vertices; we use the fact that H ¢ m,
but the deletion of any vertex from H results in a graph in 7. For convenience,
we will refer to two of the vertices in a m-critical graph as terminals and the
rest as internal vertices. We construct graphs from multiple copies of H. For
a positive integer ¢, we let H be the (“star”) graph obtained from each of ¢
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copies H; of H by identifying an arbitrary terminal v;, 1 < i < ¢, from each H;;
in H} vertices v; through v, are replaced with a vertex w, the gluing vertezx of
v1 to v, to form a graph with vertex set Ui<,<.(V(H;) \ {v;}) U{w} and edge
set Ur<i<e{{u,v} € E(H;) | vi ¢ {u,v}} Ulicicc{{u, w} | {u,vi} € E(H;)} A
terminal is non-identified if it is not used in forming a gluing vertex.

In Figure 1, H is a K3 with terminals marked black and gray; Hj is formed
by identifying all the gray terminals to form w.

U1 V2 U3 Vg
Fig. 1. An example H}

Theorem 15. Let w be any hereditary property satisfying the following:

— For any two graphs G1 and Gg in w, the graph obtained by their disjoint
Union s in m.

— There exists an H € Fr such that if HY is the graph obtained from identifying
a terminal from each of ¢ copies of H, then the graph R = H}[V(H}) \
{ui,ug,...u.}] is in w, where uy,us,...u. are the non-identified terminals
in the ¢ copies of H.

Then each of the following is at least as hard as w-SUBSET(G, k):

1. T-DEL-RECONF(G, S, T, k,£) parameterized by ¢, and
2. m-SUB-RECONF(G, S, T, k,t) parameterized by k + ¢.

Proof. Given an instance of 7-SUBSET(G, k) and a m-critical graph H sat-
isfying the hypothesis of the lemma, we form an instance of #-DEL-
RECONF(G', S, T,|V(G)| + k,4k), with G', S, and T defined below. The graph
G’ is the disjoint union of G and a graph W formed from k? copies of H, where
H; ; has terminals ¢; ; and r; ;. We let a;, 1 < i < K, be the gluing vertex of
£;1 through ¢; 1, and let b;, 1 < j <k, be the gluing vertex of r ; through ry ;,
so that there is a copy of H joining each a; and b;. An example W is shown
in Figure 2, where copies of H are shown schematically as gray ovals. We let
A={a;|1<i<k},B={b; |1<j<k},S=V(G)UA,and T =V(G)U B.
Clearly |V(G")| = |[V(G)| + 2k + K2(|[V(H)| — 2) and |S| = |T| = |[V(GQ)| + k.
Moreover, each of V(G')\ S and V(G’)\ T induce a graph in 7, as each consists
of k disjoint copies of H; with one of the terminals removed from each H in Hj,.

Suppose the instance of m-DEL-RECONF(G',S,T,|V(G)| + k,4k) is a yes-
instance. As there is a copy of H joining each vertex of A to each vertex of B,
before deleting a € A from S the reconfiguration sequence must add all of B
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ay az as

by by b3

Fig.2. An example W

to ensure that the complement of each intermediate set induces a graph in 7.
Otherwise, the complement will contain at least one copy of H as a subgraph
and is therefore not in 7. The capacity bound of |V(G)| + k implies that the
reconfiguration sequence must have deleted from S a subset S’ C V(G) of size
at least k such that V(G')\ (S'\ S') = S’ U B induces a subgraph in 7. Thus,
G[9’] € m, and hence w-SUBSET(G, k) is a yes-instance.

Conversely if the instance of m-SUBSET(G, k) is a yes-instance, then there
exists V' C V(G) such that |V’| = k and G[V'] € w. We form a reconfiguration
sequence between S and T by first deleting all vertices in V'’ from S to yield a
set of size |V(G)|. G'[V(G’)\ (S\ V')] consists of the union of G'[V'(G) \ S] and
G'[V'] = G[V'], both of which are in 7. Next we add one by one all vertices of B,
then delete one by one all vertices of A and then add back one by one each vertex
in the set V' resulting in a reconfiguration sequence of length k+k+k+k = 4k.
It is clear that in every step, the complement of the set induces a graph in .

Thus we have showed that 7m-SUBSET(G, k) is a yes-instance if and only if
there is a path of length at most 4k between S and T in RZ, (G',|V(G)| +
k). Since |V(G")| — ([V(G)| + k) = k + k*(|V(H)| — 2)), this implies that 7-
SUBSET(G, k) is a yes-instance if and only if there is a path of length at most
4k between V(G') \ S and V(G')\ T in RT,,(G',k+Kk*(|V (H)| —2)). Therefore,
m-SUB-RECONF(G, S, T, k,{) parameterized by k + ¢ is at least as hard as n-
SUBSET(G, k), proving the second part. a

Corollary 16. VERTEX COVER RECONFIGURATION, FEEDBACK VERTEX SET
RECONFIGURATION, and ODD CYCLE TRANSVERSAL RECONFIGURATION pa-
rameterized by € are all W[1]-hard and INDEPENDENT SET RECONFIGURATION,
FOREST RECONFIGURATION, and BIPARTITE SUBGRAPH RECONFIGURATION
parameterized by k + ¢ are all W[1]-hard.

Proof. 1t is known that for any hereditary property 7 that consists of all edgeless
graphs but not all cliques [20], 7-SUBSET(G, k) is W[1]-hard. It is clear that the
collections of all edgeless graphs, of all bipartite graphs, and of all forests satisfy
this condition for hardness, as well as the hypothesis of Theorem 15.

For the collection of independent sets, the only H € F, is an edge both
of whose endpoints are terminals. Here identifying multiple copies of H at a
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terminal forms a star, and deleting the non-identified terminal from each of the
edges results in a single vertex, which is in 7.

For the collection of forests, and bipartite graphs, we let H € F, be a triangle.
When we identify multiple triangles at a vertex, and remove another vertex of
each of the triangles, we obtain a tree, which is in 7. a

We obtain further results for properties not covered by Theorem 15.
Lemma 17 handles the collection of all cliques, which does not satisfy the first
condition of the theorem and the collection of all cluster graphs (disjoint unions
of cliques), which satisfies the first condition but not the second. Moreover, as 7-
SUBSET(G, k) is in FPT for m the collection of all cluster graphs [20], Theorem 15
provides no lower bounds.

Lemma 17. CLIQUE RECONFIGURATION and CLUSTER SUBGRAPH RECON-
FIGURATION parameterized by k + € are W[1]-hard.

Proof. We first give an FPT reduction from ¢t-CLIQUE, known to be W[1]-hard,
to CLUSTER SUBGRAPH RECONFIGURATION. For (G, t) an instance of t-CLIQUE,
V(G) = {v1,...,v,}, we form a graph consisting of four K;’s (with vertex sets
A, B, C, and D) and a subgraph mimicking G (with vertex set X ), where there is
an edge from each vertex in X to each vertex in each K;, and each of subgraphs
induced on the following vertex sets induce a Kop: AUB, AUC, BUD, CUD.
More formally, G’ = (XUAUBUCUD, ExUETUEg), where X = {x1,...,2,},
|A| = |B| = |C| = |D| =t, Ex = {{zi,z;} | {vi,v;} € E(G)} corresponds to
the edges in G, Er = {{a,d'} | a,a’ € A,a # '} U {{b,0'} | b,V € B,b #
VYu{{ce,d} | e,d € Coe # d}U{{d,d'} | d,d € D,d # d'} forms the K,
cliques, and Ec = {{l‘, a’}v {I, b}v {l’, C}a {I, d}7 {av b}v {CL, C}a {ba d}a {Ca d} | a €
Abe B,ce C,d € D,z € X} forms the connections among the vertex setes.

We let (G', S, T,2t,6t) be an instance of CLUSTER SUBGRAPH RECONFIGU-
RATION, where S = AU B and T = C' U D. Clearly |S| = |T| = 2t and both S
and T induce cluster graphs (in fact cliques). We claim that G has a clique of
size t if and only if there is a path of length 6¢ from S to T

If G has a clique of size t, then there exists a subset Y C X forming a clique
of size t. We form a reconfiguration sequence of length 6t as follows; add the
vertices Y, remove the vertices in A, add the vertices in D, remove the vertices
in B, add the vertices in C, and remove the vertices in Y, one by one. It is not
hard to see that at every step in this sequence we maintain an induced clique in
G’ of size greater than or equal to 2¢ (and hence a cluster subgraph).

If there exists a path of length 6¢ from S to T, we make use of the fact that
no cluster subgraph contains an induced path of length three to show that G
has a clique of size t. Observe that before adding any vertex of C, we first need
to remove (at least) all of B since otherwise we obtain an induced path of length
three containing vertices in C, A, and B, respectively. Similarly, we cannot add
any vertex of D until we have removed all of A. Therefore, before adding any
vertex from 7', we first need to delete at least t vertices from S. To do so without
violating our minimum capacity of 2¢, at least ¢ vertices must be added from
X. Since every vertex in X is connected to all vertices in .S and T, if any pair
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of those t vertices do not share an edge, we obtain an induced path on three
vertices. Thus X, and hence G, must have a clique of size t.

Since in our reduction S and T are cliques and every reconfiguration step
maintains an induced clique in G’ of size greater than or equal to 2t, the same
applies to the CLIQUE RECONFIGURATION problem. Consequently, both CLIQUE
RECONFIGURATION and CLUSTER SUBGRAPH RECONFIGURATION parameter-
ized by k + ¢ are W{1]-hard. O

As neither DOMINATING SET nor its parametric dual is a hereditary graph
property, Theorem 15 is inapplicable; we instead use a construction specific to
this problem in Lemma 18, which in turn leads to Corollary 19, since DOMINAT-
ING SET can be phrased as a hitting set of the family of closed neighborhood of
the vertices of the graph.

Lemma 18. DOMINATING SET RECONFIGURATION parameterized by k + £ is
W2]-hard.

Proof. We give a reduction from t~-DOMINATING SET; for (G,t) an instance of
t-DOMINATING SET, we form G’ as the disjoint union of two graphs G} and G%.

We form G from t+2 (t+ 1)-cliques Cy (the outer cliqgue) and Cy, ..., Ciiq
(the inner cliques); V(Co) = {01, ...,0i11} and V(C;) = {w 0y, Wi 1) - - - W)}
for 1 <i <t+ 1. The edge set of G contains not only the edges of the cliques
but also {{oj, w(; j)} |1 <4 <t+1,0 < j <t}; the graph to the left in Figure 3
illustrates G for ¢ = 2. Any dominating set that does not contain all vertices in
the outer clique must contain a vertex from each inner clique.

o1 H, Hy H
02 ZZ §§03 H, g
Cl 02 03

Fig. 3. Graphs used for the dominating set reduction

To create GY, we first define GT to be the graph formed by adding a uni-
versal vertex to G, where we assume without loss of generality that V(G) =
{vr, . v} We let V(GY) = Ug<i<:V(H;), where Hy,..., Hy are t + 1
copies of GT; we use u; to denote the universal vertex in H; and v(;,5) to de-
note the copy of v; in H;, 1 < j < [V(G)], 0 < ¢ < t. The edge set consists
of edges between each non-universal vertex v ;) in Hp and, in each H;, the
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universal vertex, its image, and the images of its neighbours in G, or more for-
mally B(G3) = {{vo,ui} | 1< j < [V(G),1<i < thU{{vogvis} | 1<) <
V@)1 << thU{(og o) |15 < VG <<t (0;,00) € BG)}
The graph to the right in Figure 3 illustrates part of G, where universal vertices
are shown in white and, for the sake of readability, the only edges outside of G+
shown are those adjacent to a single vertex in Hy.

We form an instance (G', S, T, 3t+2,6t+4) of DOMINATING SET RECONFIG-
URATION, where S = {u; | 0 < ¢ <t}UV(Co) and T = {u; | 0 < i < t}U{w; ;1 |
1 <i<t+1}. Both S and T are dominating sets, as each universal vertex u;
dominates H; as well as Hy and V(G}) is dominated by the outer clique in S
and by one vertex from each inner clique in 7'. Clearly |S| = |T| = 2t + 2.

We claim that G has a dominating set of size ¢ if and only if there is a path of
length 6¢+4 from S to T. In G/, to remove any vertex from the outer clique, we
must first add a vertex from each inner clique, for a total of t+1 additions; since
k = 3t+2 and |S| = 2t+2, this can only take place after G has been dominated
using at most t vertices. In G%, a universal vertex u; cannot be deleted until H;
has been dominated. If G can be dominated with ¢ vertices, then it is possible to
add the dominating set in Hy and remove all the universal vertices, thus making
the required capacity available. If not, then none of the universal vertices, say
ui, can be removed without first adding at least ¢ + 1 vertices to dominate H;,
for which there is not enough capacity. Therefore, there exists a reconfiguration
sequence from S to some S’ such that S’ NG, has t vertices if and only if G has
a dominating set of size t. Moreover, the existence of a dominating set D of size
t in G implies a path of length 6¢ + 4 from S to T'; we add D in Hy, remove all
universal vertices, reconfigure G, add all universal vertices, and then remove
D. Consequently, there exists a reconfiguration sequence from S to 7" in 6t + 4
steps if and only if G has a dominating set of size t. O

The following is a result of there being a polynomial-time parameter-
preserving reduction from DOMINATING SET:

Corollary 19. UNBOUNDED HITTING SET RECONFIGURATION parameterized
by k + ¢ is W[2]-hard.

5 Conclusions and Directions for Further Work

Our results constitute the first study of the parameterized complexity of re-
configuration problems. We give a general paradigm, the reconfiguration ker-
nel, for proving fixed-parameter tractability, and provide hardness reductions
that apply to problems associated with hereditary graph properties. Our result
on cluster graphs (Lemma 17) demonstrates the existence of a problem that is
fixed-parameter tractable [20], but whose reconfiguration version is W-hard when
parameterized by k; this clearly implies that fixed-parameter tractability of the
underlying problem does not guarantee fixed-parameter tractability of reconfigu-
ration when parameterized by k. Since there is unlikely to be a polynomial-sized
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kernel for the problem of determining whether a given graph has a cluster of size
at least k [21], it is possible (though in our opinion, unlikely) that an underly-
ing problem having a polynomial-sized kernel is sufficient for the reconfiguration
problem to be fixed-parameter tractable when parameterized by k.

It remains open whether there exists an NP-hard problem for which the
reconfiguration version is in FPT when parameterized by /.

Our FPT algorithms for reconfiguration of BOUNDED HITTING SET and
FEEDBACK VERTEX SET have running times of O*(2°9(*18%))  Further work is
needed to determine whether the running times can be improved to O*(QO(’“)),
or whether these bounds are tight under the Exponential Time Hypothesis.

We observe connections to another well-studied paradigm, local search [11],
where the aim is to find an improved solution at distance ¢ of a given solution
S. Not surprisingly, as in local search, the problems we study turn out to be
hard even in the parameterized setting when parameterized by ¢. Other natural
directions to pursue (as in the study of local search) are the parameterized
complexity of reconfiguration problems in special classes of graphs and of non-
graph reconfiguration problems, as well as other parameterizations.
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