
ar
X

iv
:1

40
9.

48
43

v4
 [

cs
.D

S
]

3
A

ug
 2

01
6

Improved Algorithms for Distributed Entropy Monitoring∗

Jiecao Chen
Indiana University Bloomington

jiecchen@umail.iu.edu

Qin Zhang†

Indiana University Bloomington
qzhangcs@indiana.edu

Abstract

Modern data management systems often need to deal with massive, dynamic and inherently dis-
tributed data sources. We collect the data using a distributed network, and at the same time try to
maintain a global view of the data at a central coordinator using a minimal amount of communication.
Such applications have been captured by the distributed monitoring model which has attracted a lot of
attention in recent years. In this paper we investigate the monitoring of the entropy functions, which are
very useful in network monitoring applications such as detecting distributed denial-of-service attacks.
Our results improve the previous best results by Arackaparambil et al. [2]. Our technical contribution
also includes implementing the celebrated AMS sampling method (by Alon et al. [1]) in the distributed
monitoring model, which could be of independent interest.

1 Introduction

Modern data management systems often need to deal with massive, dynamic, and inherently distributed data
sources, such as packets passing through the IP backbone network, loads of machines in content delivery
service systems, data collected by large-scale environmental sensor networks, etc. One of the primary goals
is to detect important and/or abnormal events that have happened in networks and systems in a timely man-
ner, while incurring a minimal amount of communication overhead. These applications led to the study
of (continuous) distributed monitoring, which has attracted a lot of attention in the database and network
communities in the past decade [3, 7, 8, 12, 13, 15, 16, 22, 23,27–30]. The model was then formalized by
Cormode, Muthukrishnan and Yi [10] in 2008, and since then considerable work has been done in theory,
including tracking heavy hitters and quantiles [21, 34], entropy [2], frequency moments [10, 32], and per-
forming random sampling [11, 31]. Some of these problems have also been studied in the sliding window
settings [6, 11, 14]. We note that a closely related model, called thedistributed streamsmodel, has been
proposed and studied earlier by Gibbons and Tirthapura [17,18]. The distributed streams model focuses
on one-shot computation, and is thus slightly different from the (continuous) distributed monitoring model
considered in this paper.

In this paper we focus on monitoring the entropy functions. Entropy is one of the most important
functions in distributed monitoring due to its effectiveness in detecting distributed denial-of-service attacks
(the empirical entropy of IP addresses passing through a router may exhibit a noticeable change under an
attack), clustering to reveal interesting patterns and performing traffic classifications [24, 25, 33] (different

∗Work supported in part by NSF CCF-1525024, IIS-1633215, andIUs Office of the Vice Provost for Research through the
Faculty Research Support Program.

†Corresponding author.

1

http://arxiv.org/abs/1409.4843v4

values of empirical entropy correspond to different trafficpatterns), which are central tasks in network
monitoring. Previously the entropy problem has also been studied extensively in the data stream model [4, 5,
19, 20, 25]. Arackaparambil, Brody and Chakrabarti [2] studied the Shannon and Tsallis entropy functions
in the distributedthresholdmonitoring setting, where one needs to tell whether the entropy of the joint
data stream≥ τ or ≤ τ(1 − ǫ) for a fixed thresholdτ at any time step. They obtained algorithms using
Õ(k/(ǫ3τ3))1 bits of communication wherek is the number of sites. Note that this bound can be arbitrarily
large whenτ is arbitrarily small. In this paper we design algorithms that can track these two entropy
functions continuously using̃O(k/ǫ2 +

√
k/ǫ3) bits of communication. Our results work for allτ ≥ 0

simultaneously, and have improved upon the results in [2] byat least a factor ofmin{
√
k, 1/ǫ} (ignoring

logarithmic factors), even for a constantτ . Another advantage of our algorithms is that they can be easily
extended to the sliding window cases (the approximation error needs to be an additiveǫ whenτ is small).

As a key component of our algorithms, we show how to implementthe AMS sampling, a method initially
proposed by Alon, Matias and Szegedy [1] in the data stream model, in distributed monitoring. Similar as
that in the data stream model, this sampling procedure can beused to track general (single-valued) functions
in the distributed monitoring model, and should be of independent interest.

We note that the techniques used in our algorithms are very different from that in [2]. The algorithm in
[2] monitors the changes of the values of the entropy function over time, and argue that it has to “consume”
many items in the input streams for the function value to change by a factor ofΘ(ǫτ) (ǫ is the approximation
error andτ is the threshold). We instead adapt the AMS sampling framework to the distributed monitoring
model, as we will explain shortly in the technique overview.We also note that using the AMS sampling
for monitoring the entropy function has already been conducted in the data stream model [5], but due to the
model differences it takes quite some non-trivial efforts to port this idea to the distributed monitoring model.

In the rest of this section, we will first define the distributed monitoring model, and then give an overview
of the techniques used in our algorithms.

The Distributed Monitoring Model. In the distributed monitoring model, we havek sitesS1, . . . , Sk and
one central coordinator. Each site observes a streamAi of items over time. LetA = (a1, . . . , am) ∈ [n]m

be the joint global stream (that is, the concatenation ofAi’s with items ordered by their arrival times). Each
aℓ is observed by exactly one of thek sites at timetℓ, wheret1 < t2 < . . . < tm. Let A(t) be the set of
items received by the system until timet, and letf be the function we would like to track. The coordinator
is required to reportf(A(t)) at any time stept. There is a two-way communication channel between each
site and the coordinator. Our primary goal is to minimize thetotal bits of communication between sites and
the coordinator in the whole process, since the communication cost directly links to the network bandwidth
usage and energy consumption.2 We also want to minimize the space usage and processing time per item at
each site. Generally speaking, we want the total communication, space usage and processing time per item
to besublinearin terms of input sizem and the item universe sizen.

We also consider two standardsliding windowsettings, namely, thesequence-basedsliding window and
thetime-basedsliding window. In the sequence-based case, at any time steptnow the coordinator is required
to report

f(Aw(tnow)) = f(aL−w+1, . . . , aL),

wherew is the length of the sliding window andL = max{ℓ | tℓ ≤ tnow}. In other words, the coordinator
needs to maintain the value of the function defined on the mostrecentw items continuously. In the time-
based case the coordinator needs to maintain the function onthe items that are received in the lastt time

1Õ(·) ignores all polylog terms; see Table 2 for details.
2It is well-known that in sensor networks, communication is by far the biggest battery drain. [26]

2

function type window approx (total) comm. space (site) time (site) ref.
Shannon threshold infinite multi. Õ(k/(ǫ3τ3)) Õ(ǫ−2) – [2]
Tsallis threshold infinite multi. Õ(k/(ǫ3τ3)) Õ(ǫ−2) – [2]
Shannon continuous infinite multi. Õ(k/ǫ2 +

√
k/ǫ3) Õ(ǫ−2) Õ(ǫ−2) new

Shannon continuous sequence mixed Õ(k/ǫ2 +
√
k/ǫ3) Õ(ǫ−2) Õ(ǫ−2) new

Shannon continuous time mixed Õ(k/ǫ2 +
√
k/ǫ3) Õ(ǫ−2) Õ(ǫ−2) new

Tsallis continuous infinite multi. Õ(k/ǫ2 +
√
k/ǫ3) Õ(ǫ−2) Õ(ǫ−2) new

Tsallis continuous sequence mixed Õ(k/ǫ2 +
√
k/ǫ3) Õ(ǫ−2) Õ(ǫ−2) new

Tsallis continuous time mixed Õ(k/ǫ2 +
√
k/ǫ3) Õ(ǫ−2) Õ(ǫ−2) new

Table 1: Summary of results.Sequenceand time denote sequence-based sliding window and time-based
sliding window respectively. The correctness guarantees for the sliding window cases are different from
the infinite-window case:multi. stands for(1 + ǫ, δ)-approximation; andmixed stands for(1 + ǫ, δ)-
approximation when the entropy is larger than1, and (ǫ, δ)-approximation when the entropy is at most
1. In the threshold monitoring model,τ is the threshold value.

steps, that is, onAt = A(tnow)\A(tnow − t). To differentiate we call the full stream case theinfinite
window.

Our results. In this paper we study the following two entropy functions.

• Shannon entropy (also known as empirical entropy).For an input sequenceA of lengthm, the Shan-
non entropy is defined asH(A) =

∑

i∈[n]
mi
m log m

mi
wheremi is the frequency of theith element.

• Tsallis entropy.Theq-th (q > 1) Tsallis entropy is defined asTq(A) =
1−

∑
i∈[n](

mi
m

)q

q−1 . It is known
that whenq → 1, theq-th Tsallis entropy converges to the Shannon entropy.

We sayQ̂ is (1 + ǫ, δ)-approximation ofQ iff Pr[|Q− Q̂| > ǫQ] ≤ δ, andQ̂ is (ǫ, δ)-approximation ofQ
iff Pr[|Q− Q̂| > ǫ] ≤ δ. Our results are summarized in Table 1. Note thatlog(1/δ) factors are absorbed in
theÕ(·) notation.

Technique Overview. We first recall the AMS sampling method in the data stream model. Let A =
{a1, . . . , am} ∈ [n]m be the stream. The AMS sampling consists of three steps: (1) pick J ∈ [m] uniformly
at random; (2) letR = |{j : aj = aJ , J ≤ j ≤ m}| be the frequency of the elementaJ in the rest of
the stream (call itaJ ’s tail frequency); and (3) setX = f(R) − f(R − 1). In the rest of the paper we

will use (aJ , R)
AMS∼ A to denote the first two steps. Given(m1,m2, . . . ,mn) as the frequency vector of

the data streamA, letting f̄(A) = 1
m

∑

i∈[n] f(mi), it has been shown thatE[X] = f̄(A) [1].3 By the
standard repeat-average technique (i.e. run multiple independent copies in parallel and take the average of
the outcomes), we can use sufficient (possibly polynomial inn, but for entropy this is̃O(1/ǫ2)) i.i.d. samples
of X to get a(1 + ǫ)-approximation off̄(A).

A key component of our algorithms is to implement(aJ , R)
AMS∼ A in distributed monitoring. Sampling

aJ can be done using a random sampling algorithm by Cormode et al. [11]. CountingR seems to be easy;
however, in distributed monitoringΩ(m) bits of communication are needed if we want to keep track ofR

3To see this, note thatE[X] =
∑

j∈[m] E[X|aJ = j]Pr[aJ = j] =
∑

j∈[m] (E[f(R)− f(R − 1)|aJ = j] ·mj/m), and

E[f(R)− f(R − 1)|aJ = j] =
∑

k∈[mj]
f(k)−f(k−1)

mj
=

f(mj)

mj
.

3

exactly at any time step. One of our key observations is that a(1+ ǫ)-approximation ofR should be enough
for a big class of functions, and we can use any existing counting algorithms (e.g., the one by Huang et
al. [21]) to maintain such an approximation ofR. Another subtlety is that the sampleaJ will change over
time, and for every change we have to restart the counting process. Fortunately, we manage to bound the
number of updates ofaJ byO(logm).

To apply the AMS sampling approach to the Shannon entropy functions efficiently, we need to tweak
the framework a bit. The main reason is that the AMS sampling method works poorly on an input that
has a very frequent element, or equivalently, when the entropy of the input is close to0. At a high level,
our algorithms adapt the techniques developed by Chakrabarti et al. [5] for computing entropy in the data
stream model where they trackpmax as the empirical probability of the most frequent elementimax, and
approximatef̄(A) by

(1− pmax)f̄(A\imax) + pmax log
1

pmax
,

where for a universe elementa, A\a is the substream ofA obtained by removing all occurrences ofa in
A while keeping the orders of the rest of the items. But due to inherent differences between (single) data
stream and distributed monitoring, quite a few specific implementations need to be reinvestigated, and the
analysis is also different since in distributed monitoringwe primarily care about communication instead
of space. For example, it is much more complicated to track(1 − pmax) up to a(1 + ǫ) approximation in
distributed monitoring than in the data stream model , for which we need to assemble a set of tools developed
in previous work [9, 21, 34].

Notations and conventions.We summarize the main notations in this paper in Table 2. We differentiate
itemandelement; we useitem to denote a token in the streamA, andelementto denote an element from the
universe[n]. We refer toǫ asapproximation error, andδ asfailure probability.

Roadmap. In Section 2 we show how to implement the AMS sampling in the distributed monitoring model,
which will be used in our entropy monitoring algorithms. We present our improved algorithms for monitor-
ing the Shannon entropy function and the Tsallis entropy function in Section 3 and Section 4, respectively.
We then conclude the paper in Section 5.

2 AMS Sampling in Distributed Monitoring

In this section we extend the AMS sampling algorithm to the distributed monitoring model. We choose to
present this implementation in a general form so that it can be used for tracking both the Shannon entropy
and the Tsallis entropy. We will discuss both the infinite window case and the sliding window cases.

Roadmap. We will start by introducing some tools from previous work, and then give the algorithms for
the infinite window case, followed by the analysis. We then discuss the sliding window cases.

2.1 Preliminaries

Recall the AMS sampling framework sketched in the introduction. DefineEst(f,R, κ) = 1
κ

∑

i∈[κ]Xi,
where{X1, . . . ,Xκ} are i.i.d. sampled from the distribution ofX = f(R) − f(R − 1). The following
lemma shows that for a sufficiently largeκ, Est(f,R, κ) is a good estimator ofE[X].

4

k number of sites
[n] [n] = {1, 2, . . . , n}, the universe
−i −i = [n]\i = {1, . . . , i− 1, i+ 1, . . . , n}
s ∈R S the process of samplings from setS uniformly at random
log x, lnx log x = log2 x, lnx = loge x

A A = (a1, . . . , am) ∈ [n]m is a sequence of items
A\z subsequence obtained by deleting all the occurrences ofz from A

mi mi = |{j : aj = i}| is the frequency of elementi in A

pi pi =
mi
m , the empirical probability ofi

~p ~p = (p1, p2, . . . , pn)

H(A) ≡ H(~p) H(A) ≡ H(~p) =
∑

i∈[n] pi log p
−1
i is the Shannon entropy ofA

m−i m−i =
∑

j∈[n]\imj

f̄(A) f̄(A) = 1
|A|
∑

i∈[n] f(mi)

H(A), fm fm(x) = x log m
x andH(A) ≡ f̄m(A)

(1 + ǫ, δ)-approx. Q̂ is (1 + ǫ, δ)-approximation ofQ iff Pr[|Q− Q̂| > ǫQ] ≤ δ

(1 + ǫ)-approx. simplified notation for(1 + ǫ, 0)-approximation

(ǫ, δ)-approx. Q̂ is (ǫ, δ)-approximation ofQ iff Pr[|Q− Q̂| > ǫ] ≤ δ

ǫ-approx. simplified notation for(ǫ, 0)-approximation

Õ(·) Õ suppresses poly(log 1
ǫ , log

1
δ , log n, logm)

Est(f,R, κ) defined in Section 2.1
λf,A see Definition 1
λ whenf andA are clear from context,λ is short forλf,A

Table 2: List of notations

Lemma 1 ([5]) Leta ≥ 0, b > 0 such that−a ≤ X ≤ b, and

κ ≥ 3(1 + a/E[X])2ǫ−2 ln(2δ−1)(a+ b)

(a+E[X])
. (1)

If E[X] > 0, thenEst(f,R, κ) gives a(1 + ǫ, δ)-approximation toE[X] = f̄(A).

We will also make use of the following tools from the previouswork in distributed monitoring.

CountEachSimple. A simple (folklore) algorithm for counting the frequency ofa given element in distri-
bution monitoring is the following: Each siteSi maintains a local countercti, initiated to be1. Every time
cti increases by a factor of(1 + ǫ), Si sends a message (say, a signal bit) to the coordinator. It is easy to
see that the coordinator can always maintain a(1 + ǫ)-approximation of

∑

i cti, which is the frequency of
the element. The total communication cost can be bounded byO(k · log1+ǫm) = O(k/ǫ · logm) bits. The
space used at each site isO(logm) bits and the processing time per item isO(1). We denote this algorithm
by CountEachSimple(e, ǫ), wheree is the element whose frequency we want to track.

The pseudocode ofCountEachSimpleis presented in Appendix C.

CountEach. Huang et al. [21] proposed a randomized algorithmCountEachwith a better performance. We
summarize their main result in the following lemma.

5

Lemma 2 ([21]) Given an elemente, CountEach(e, ǫ, δ) maintains a(1 + ǫ, δ)-approximation toe’s fre-

quency at the coordinator, usingO
(

(k +
√
k
ǫ) log 1

δ log
2 m
)

bits of communication,O(logm log 1
δ) bits

space per site and amortizedO(log 1
δ) processing time per item.

For V ⊆ [n], CountEach(V, ǫ, δ) maintains a(1 + ǫ, δ)-approximation ofmV =
∑

i∈V mi, the total fre-
quencies of elements inV . Similarly, CountEachSimple(V, ǫ) maintains a(1 + ǫ)-approximation ofmV .

2.2 The Algorithms

To describe the algorithms, we need to introduce a positive “constant”λ which depends on the property of
the function to be tracked. As mentioned that different fromthe streaming model where we can maintain
R exactly, in distributed monitoring we can only maintain an approximation ofS’s tail frequencyR. For a
functionf , recall thatf̄(A) = E[X] = E[f(R)−f(R−1)]. The observation is that, if̂X = f(R̂)−f(R̂−1)
is very close toX = f(R)− f(R− 1) whenR̂ is close toR, thenEst(f, R̂, κ) will be a relatively accurate
estimation ofEst(f,R, κ) (henceE[X]). To be more precise, if̂R ∈ Z

+ is a(1 + ǫ)-approximation toR,
we hope|X − X̂| can be bounded by

|X − X̂| ≤ λ · ǫ ·X. (2)

Unfortunately, for some functions there is no suchλ. For example, let us considerf(x) = x log m
x

(the function for the Shannon entropy) andA = {1, 1, . . . , 1}. If (2) holds for some positiveλ, we have
E[|X − X̂|] ≤ λ · ǫ ·E[X] = λ · ǫ · f̄(A) = 0, which is clearly not possible.

To fix above issue, we can get rid of “bad inputs” (we can handlethem using other techniques) by putting
our discussion ofλ under a restricted input class. That is, the constantλ depends on both the functionf and
the set of possible inputsA. Formally, we introduceλf,A (the subscript emphasizes thatλ depends on both
f andA) as following,

Definition 1 (λf,A) Given a functionf : N→ R
+ ∪ {0} with f(0) = 0 and a class of inputsA, we define

λf,A be the smallestλ that satisfies the following:

• λ ≥ 1,

• for anyA ∈ A, let (S,R)
AMS∼ A, for any positive numberǫ ≤ 1/4 and anyR̂ that is a(1 + ǫ)-

approximation ofR, we have
|X − X̂| ≤ λ · ǫ ·X, (3)

whereX andX̂ equalf(R)− f(R− 1) andf(R̂)− f(R̂− 1) respectively.

Whenf andA are clear from the context, we often writeλf,A asλ. λ measures the approximation
error introduced by using the approximation̂R when estimatingE[X] = f̄(A) under theworst-caseinput
A ∈ A. We will see soon that the efficiency of our AMS sampling algorithm is directly related to the value
of λ.

Remark 1 Directly calculatingλ based onf andA may not be easy, but for the purpose of bounding the
complexity of the AMS sampling, it suffices to calculate a relatively tight upper bound ofλf,A; examples
can be found in Section 3.5 and Section 4 when we apply this algorithm framework to entropy functions.

6

We now show how to maintain a single pair(S, R̂)
AMS∼ A (we useR̂ because we can only trackR

approximately). The algorithms are presented in Algorithm1 and 2.

Algorithm 1: Receive an item at a site

1 intializeS =⊥, r(S) = +∞;
2 foreach e receiveddo
3 sampler(e) ∈R (0, 1);
4 if r(e) < r(S) then send(e, r(e)) to the coordinator ;

Algorithm 2: Update a sample at the coordinator

1 foreach (e, r(e)) receiveddo
2 updateS ← e, r(S)← r(e);

3 restartR̂← CountEachSimple(S, ǫ
3λ);

4 broadcast new(S, r(S)) to all sites and each site updates their local copy.

• MaintainS: Similar to that in [11], we randomly associate each incoming itema with a real number4

r(a) ∈ (0, 1) as its rank. We maintainS to be the item with the smallest rank inA(t) at any time
stept. Each site also keeps a record ofr(S), and only sends items with ranks smaller thanr(S) to the
coordinator. Each timeS getting updated, the coordinator broadcasts the newS with its rankr(S) to
all thek sites.

• MaintainR: OnceS is updated, we useCountEachSimple(S, ǫ
3λ) to keep track of its tail frequencyR

up to a factor of(1 + ǫ
3λ).

To present the final algorithm, we need to calculateκ, the number of copies of(S, R̂)
AMS∼ A we should

maintain at the coordinator. Consider a fixed functionf and an input classA. Recall that in Lemma 1,a, b
andE[X] all depend on the input streamA ∈ A because the distribution ofX is determined by the input
stream. To minimize the communication cost, we want to keepκ as small as possible while Inequality (1)
holds for all input streams inA. Formally, given an input streamA ∈ A, we defineπ(A) as

minimize
a,b

3(1 + a/E[X])2(a+ b)

(a+E[X])

subject to a ≥ 0,

b > 0,

− a ≤ X ≤ b (∀X).

(4)

Thenκ takes the upper bound ofǫ−2 ln(2δ−1)π(A) overA ∈ A, that is,

κ(ǫ, δ,A) = ǫ−2 ln(2δ−1) · sup
A∈A

π(A). (5)

One way to computesupA∈A π(A), as we will do in the proof of Lemma 8, is to find specific values
for a and b such that under arbitrary streamA ∈ A, −a ≤ X ≤ b holds for allX. We further set

E = infA∈AE[X], then an upper bound ofsupA∈A π(A) is given byO((1+a/E)2(a+b)
(a+E)).

4In practice, one can generate a random binary string of, say,10 logm bits as its rank, and w.h.p. all ranks will be different.

7

Our algorithm then maintainsκ = κ(ǫ2 , δ,A) copies of(S, R̂)
AMS∼ A at the coordinator. At each time

step, the coordinator computesEst(f, R̂, κ). We present the main procedure in Algorithm 3.

Algorithm 3: TrackF (ǫ, δ): Track f̄(A) at the coordinator

/* (S, R̂)
AMS∼ A are maintained via Algorithm 1, 2 */

1 trackκ(ǫ2 , δ,A) (defined in Equation (5)) copies of(S, R̂)
AMS∼ A in parallel;

2 return the average of all
(

f(R̂)− f(R̂− 1)
)

;

2.3 The Analysis

We prove the following result in this section.

Theorem 1 For any functionf : N → R
+ ∪ {0} with f(0) = 0 and input classA, Algorithm 3 maintains

at the coordinator a(1 + ǫ, δ)-approximation tof̄(A) for anyA ∈ A, using

O

(

k/ǫ3 · λ · sup
A∈A

π(A) · log 1

δ
log2 m

)

(6)

bits of communication,O
(

κ(ǫ2 , δ,A) · logm
)

bits space per site, and amortizedO
(

κ(ǫ2 , δ,A)
)

time per
item, whereπ(A), κ(ǫ2 , δ,A) are defined in (4) and (5) respectively.

We first show the correctness of Algorithm 3, and then analyzethe costs.

Correctness. The following lemma together with the property ofR̂ gives the correctness of Algorithm 3.

Lemma 3 For any f : N → R
+ ∪ {0} with f(0) = 0 and input classA, setκ = κ(ǫ2 , δ,A). If R̂ is a

(1 + ǫ
3λ)-approximation toR, thenEst(f, R̂, κ) is a (1 + ǫ, δ)-approximation tof̄(A),∀A ∈ A.

Proof: By Definition 1, the fact “̂R is a(1 + ǫ
3λ)-approximation toR” implies |X − X̂ | ≤ ǫ

3X, hence

|Est(f,R, κ)− Est(f, R̂, κ)| ≤ ǫ

3
Est(f,R, κ) (7)

By Lemma 1, our choice forκ ensures thatEst(f,R, κ) is a (1 + ǫ/2, δ)-approximation toE[X], that is,
with probability at least1− δ, we have

|Est(f,R, κ) −E[X]| ≤ ǫ

2
E[X]. (8)

Combining (7) and (8), we obtain

|Est(f, R̂, κ)−E[X]| ≤
((

1 +
ǫ

2

)(

1 +
ǫ

3

)

− 1
)

E[X] ≤ ǫE[X].

We thus conclude thatEst(f, R̂, κ) is a(1 + ǫ, δ)-approximation toE[X] for any input streamA ∈ A. �

8

Costs. By CountEachSimple, trackingR̂ as a(1+ǫ)-approximation toR for each sampleS costsO(kǫ logm)
bits. We show in the following technical lemma (whose proof we deferred to Appendix A) that the total num-
ber of updates ofS is bounded byO(logm) with high probability. Thus the total bits of communicationto
maintain one copy of̂R can be bounded byO(kǫ log

2 m).

Lemma 4 Let U1, . . . , Um be random i.i.d samples from(0, 1). Let J1 = 1; for i ≥ 2, let Ji = 1 if
Ui < min{U1, . . . , Ui−1} andJi = 0 otherwise. LetJ =

∑

i∈[m] Ji. ThenJ1, J2, . . . , Jm are independent,

andPr[J > 2 logm] < m−1/3.

We will ignore the failure probabilitym−1/3 in the rest of the analysis since it is negligible in all cases
we consider.

We now bound the total communication cost: we trackκ(ǫ2 , δ,A) (defined in Equation (5)) copies of

(S, R̂)
AMS∼ A in parallel; and to maintain each such pair, we may restartCountEachSimplefor O(logm)

times. Recall that the communication cost of each run ofCountEachSimpleis O(k·λǫ logm). The total
communication cost (6) follows immediately. The space and processing time per item follows by noting

the fact that maintaining each copy of(S, R̂)
AMS∼ A needsO(logm) bits, and each item requiresO(1)

processing time. We are done with the proof of Theorem 1.

We can in fact useCountEachinstead ofCountEachSimplein Algorithm 2 to further reduce the com-
munication cost. The idea is straightforward: we simply replaceCountEachSimple(S, ǫ

3λ) in Algorithm 2
with CountEach(S, ǫ

3λ ,
δ
2κ).

Corollary 1 For any functionf : N → R
+ ∪ {0} with f(0) = 0 and input classA, there is an algorithm

that maintains at the coordinator a(1 + ǫ, δ)-approximation tof̄(A), and it uses

O

(

(

k/ǫ2 +
√
k/ǫ3

)

· λ · sup
A∈A

π(A) · log 1

δ
log

κ

δ
log3 m

)

(9)

bits of communication,O(κ logm log κ
δ) bits space per site, and amortizedO(κ log κ

δ) time per item, where
π(A) andκ = κ(ǫ2 ,

δ
2 ,A) are defined in (4) and (5) respectively.

Proof: We trackκ(ǫ2 ,
δ
2 ,A) copies ofR̂ at the coordinator. EacĥR is tracked byCountEach(S, ǫ

3λ ,
δ
2κ) so

that allκ copies ofR̂ are still(1 + ǫ
3λ)-approximation toR with probability at least(1− δ

2). Following the
same arguments as that in Lemma 3,Est(f, R̂, κ) will be a (1 + ǫ, δ)-approximation toE[X].

For the communication cost, recall that the communication cost of eachCountEach(S, ǫ
3λ ,

δ
2κ) isO((k+

√
kλ
ǫ) · log κ

δ log
2 m) = O

(

(k +
√
k
ǫ) · λ log κ

δ log
2m
)

bits (Lemma 2). Since we runκ (defined in (5))

copies ofCountEachand each may be restarted forO(logm) times, the total communication cost is bounded
by (9). EachCountEach(S, ǫ

3λ) usesO(logm log κ
δ) space per site andO(log κ

δ) processing time per item.
We get the space and time costs immediately. �

2.4 Sequence-Based Sliding Window

In the sequence-based sliding window case, we are only interested in the lastw items received by the system,
denoted byAw(t) = {aj | j > t− w}.

It is easy to extend the AMS sampling step to the sliding window case. Cormode et al. [11] gave an
algorithm that maintainss random samples at the coordinator in the sequence-based sliding window setting.

9

This algorithm can be directly used in our case by settings = 1. Similar as before, when the sampleS is
updated, we start to track its tailing frequencyR usingCountEach. The algorithm is depicted in Algorithm
4.

Algorithm 4: TrackF-SW (ǫ, δ): Track f̄(Aw) in sequence-based sliding window setting

1 κ← κ(ǫ2 ,
δ
2 ,A);

2 use the sequence-based sliding window sampling algorithm from [11] to maintainκ independent
samples;

3 each sampleS initiates aCountEach(S, ǫ
3λ ,

δ
2κ) to track aR̂. WheneverS is updated, restart

CountEach;

4 return the average of all
(

f(R̂)− f(R̂− 1)
)

;

Theorem 2 For any functionf : N → R
+ ∪ {0} with f(0) = 0 and input classA, let π be defined as in

(4) but withA being replaced withAw. Letκ = κ(ǫ2 ,
δ
2 ,A). There is an algorithm for the sequence-based

sliding window (with window sizew) that maintains at the coordinator a(1+ǫ, δ)-approximation tof(Aw),
using

O

(

(

k/ǫ2 +
√
k/ǫ3

)

· λ · sup
A∈A

π(Aw) · log 1

δ
log

κ

δ
log3 m

)

bits of communication,O(κ logm log κ
δ) bits space per site, and amortizedO(κ log κ

δ) time per item.

Proof: In [11] it is shown thatO(k logw logm) = O(k log2 m) bits of communication is sufficient to
maintain a random sample inAw, and each site usesO(logm) bits space andO(1) processing time per
item. The rest of the proof is exactly the same as Corollary 1. �

2.5 Time-Based Sliding Window

In the time-based sliding window case, we are only interested in the items received in the lastt time steps,
denoted byAt.

The algorithm of trackingf̄(At) is essentially the same as that in the sequence-based sliding window
case (Algorithm 4), except that in Line 2 of Algorithm 4, we use the time-based sampling algorithm from
[11] instead of the sequence-based sampling algorithm. We summarize the result in the following theorem.
Note that compared with Theorem 2, the only difference is theextra logm in the space per site, which is
due to the extralogm factor in the sampling algorithm for the time-based slidingwindow in [11].

Theorem 3 For any functionf : N → R
+ ∪ {0} with f(0) = 0 and input classA, let π be defined as in

(4) but withA being replaced withAt. Letκ = κ(ǫ2 ,
δ
2 ,A). There is an algorithm for the time-based sliding

window (with window sizet) that maintains at the coordinator a(1 + ǫ, δ)-approximation tof̄(At), using

O

(

(

k/ǫ2 +
√
k/ǫ3

)

· λ · sup
A∈A

π(At) · log 1

δ
log

κ

δ
log3m

)

bits of communication,O(κ log2m log κ
δ) bits space per site, and amortizedO(κ log κ

δ) time per item.

10

3 Shannon Entropy

In the Shannon entropy function we havef(x) = x log m
x (x > 0) andf(0) = 0, wherem = |A(t)|.

Let fm denote this function. In this section, we will show that for arbitrary inputA ∈ [n]m, we can track

f̄m(A) =
∑

i∈[n]
mi
m log m

mi
efficiently, using onlyÕ

(

k/ǫ2 +
√
k/ǫ3

)

bits of communication. We also

obtain similar results for sliding window cases.
To do this, we first show that when only considering a restricted input classA′, f̄m(A) (A ∈ A′) can be

tracked efficiently by directly applying the AMS framework presented in previous section. We then discuss
how to trackf̄m(A) under arbitrary inputA ∈ [n]m.

For technical reasons, we assume1/m ≤ δ, ǫ ≤ 1/20 throughout this section. As mentioned, in
distributed monitoring we can only maintain a(1 + ǫ)-approximation ofm at the coordinator usingo(m)
bits of communication, but for the sake of simplifying the presentation, we assume thatm can be maintained
at the coordinatorexactly without any cost. Appendix B explains why we can make such an assumption.
The same assumption is also applied to the analysis of the Tsallis Entropy in Section 4.

Roadmap.We will again start by introducing some tools from previous work. We then define the restricted
input classA′, and give some intuition on how to track general inputs. We next give the algorithm for the
infinite window case, followed by the analysis. Finally we discuss the sliding window cases.

3.1 Preliminaries

To present our algorithm for the Shannon entropy we need a fewmore tools from previous work.

CountAll. Yi and Zhang [34] gave a deterministic algorithm, denoted byCountAll(ǫ), that can be used to
track the empirical probabilities of all universe elementsup to an additive approximation errorǫ in distributed
monitoring. We summarize their main result below.

Lemma 5 ([34]) For any0 < ǫ ≤ 1, CountAll(ǫ) usesO(kǫ log
2 m) bits of communication, such that for

any elementi ∈ [n], it maintains at the coordinator an estimation̂pi such that|p̂i − pi| < ǫ. Each site uses
O(1ǫ logm) bits space and amortizedO(1) time per item.

CountMin. We will also need the CountMin sketch introduced by Cormode and Muthukrishnan [9] in the
streaming model. We summarize its property below.

Lemma 6 ([9]) TheCountMin(ǫ, δ) sketch usesO(1ǫ logm log 1
δ) bits of space in the streaming model, such

that for any given elementi ∈ [n], it gives an estimation̂mi of i’s frequencymi such thatPr[mi ≤ m̂i ≤
mi + ǫm−i] ≥ 1− δ. The processing time for each item isO(log 1

δ).

3.2 Tracking fm Under A Restricted ClassA′

We have briefly mentioned (before Definition 1) that if we consider all possible inputs,fm = x log m
x cannot

be tracked efficiently by directly using our AMS sampling framework because the correspondingλ does not
exist. However, if we consider another input class

A′ = {A ∈ [n]m
′

: 0 < m′ ≤ m,∀i ∈ [n],mi ≤ 0.7m},

(in other words, we consider streams with length no more thanm and the frequency of each element is
bounded by0.7m), then we can upper boundλfm,A′ by a constant.

11

The following two lemmas show that under input classA′, fm can be tracked efficiently using the AMS
framework in Section 2.

Lemma 7 Let fm and the input classA′ be defined above. We haveλfm,A′ ≤ 10 and infA′∈A′ f̄m(A′) ≥
0.5.

Proof: Let r, r̂ ∈ Z
+, wherer̂ is a (1 + ǫ)-approximation tor. Let X = X(r) = fm(r) − fm(r − 1)

andX̂ = X(r̂). Taking the derivative,X ′(r) = f ′
m(r) − f ′

m(r − 1) = − log
(

1 + 1
r−1

)

< 0, and thus

infX = fm(0.7m) − fm(0.7m − 1)
m≫1≈ log 0.7−1 > 0.5.

Whenr ≥ 2, we have

|X(r)−X(r̂)| ≤ ǫr log

(

1 +
1

(1− ǫ)r − 1

)

≤ 5ǫ;

and whenr = 1, we havêr = r henceX = X̂. Therefore
∣

∣

∣
X − X̂

∣

∣

∣
≤ 5ǫ ≤ 10 · ǫ · X (asinfX > 0.5).

Consequently we can setλ = 10, and thusλfm,A′ = inf{λ} ≤ 10.
Next, given anyA′ ∈ A′, we havemi < 0.7m for all i ∈ [n], and thusf̄m(A′) = 1

|A′|
∑

i∈[n] fm(mi) >

log 0.7−1 > 0.5. �

Lemma 8 Let fm andA′ be defined above. Algorithm 3 (withCountEachSimplein Algorithm 1 and Al-
gorithm 2 replaced byCountEach) maintains a(1 + ǫ, δ)-approximation tof̄m(A) for anyA ∈ A′ at the

coordinator, usingO
(

(k/ǫ2 +
√
k/ǫ3) · log 1

δ log
4 m
)

bits of communication,O(ǫ−2 · log3 m log 1
δ) bits

space per site, and amortizedO(ǫ−2 · log 1
δ log

2 m) time per item.

Proof: This lemma is a direct result of Corollary 1. The main task to derive the stated is to bound
supA∈A′ π(A). Recall thatX(R) = fm(R) − fm(R − 1), asX ′(R) < 0 we have0.5 < X(0.7m) ≤
X ≤ X(1) = logm. To give an upper bound ofκ, it suffices to usea = 0, b = logm, and set
E = infA∈A′ f̄m(A) ≥ 0.5, which gives an upper bound

sup
A∈A′

π(A) ≤ 3(1 + a/E)2(a+ b)

(a+ E)
= O(logm),

or κ(ǫ2 ,
δ
2 ,A′) = O(ǫ−2 logm log δ−1).

Thus we maintainΘ(ǫ−2 logm log δ−1) copies of estimators at the coordinator. The lemma follows
by applying Corollary 1 with the valuesλfm,A′ and supA∈A′ π(A) chosen above (and noteO(log κ

δ) =
O(logm)). �

3.3 Intuition on Tracking fm under A = [n]m

To trackfm under input classA = [n]m, a key observation made by Chakrabarti et al. [5] is that we can
use the following expression to compute the entropy ofA when the streamA ∈ A has a frequent elementz
(say,pz ≥ 0.6):

H(A) =
1

m

n
∑

i=1

fm(mi)

= (1− pz)E[X ′] + pz log(1/pz), (10)

12

whereX ′ = fm(R′) − fm(R′ − 1), and(S′, R′)
AMS∼ A\z. Note thatA\z ∈ A′. Thus by Lemma 8 we can

trackE[X ′] = f̄m(A\z) efficiently.
We try to implement this idea in distributed monitoring. Theremaining tasks are: (1) keep track of the

pair (S′, R′) (thusX ′); and (2) keep track of(1− pz) andpz. Compared with the streaming model [5], both
tasks in distributed monitoring require some new ingredients in algorithms and analysis, which we present
in Section 3.4 and Section 3.5, respectively.

3.4 The Algorithms

We first show how to maintain the pair(S′, R′), pz and1− pz approximately.

Maintain (S′, R′). As observed in [5], directly sampling(S′, R′) is not easy. The idea in [5] is to maintain

(S0, R0)
AMS∼ A and(S1, R1)

AMS∼ A\S0. We also keep track of the itemz with pz ≥ 0.6, if exists. Now
we can construct(S′, R′) as follows: ifz 6= S0, then(S′, R′) ← (S0, R0); otherwise(S′, R′) ← (S1, R1).
The proof of the fact thatS′ is a random sample fromA\z can be found in [5], Lemma 2.4. Algorithm 5
and 6 show how to maintainS0, S1. Algorithm 7 (that is,TrackR(ǫ, δ1), whereδ1 will be set toδ/4κ in

Algorithm 9) shows how to maintain
(

1 + ǫ
λfm,A′

, δ1

)

-approximations toR0 andR1, and consequently a
(

1 + ǫ
λfm,A′

, δ1

)

-approximation toR′, which guarantees that|X ′ − X̂ ′| ≤ ǫ ·X ′ holds with probability at

least(1− δ1).

Algorithm 5: Receive an item at a site (for the Shannon entropy)

1 initialize S0 = S1 =⊥, r(S0) = r(S1) = +∞;
2 foreach e receiveddo
3 sampler(e) ∈R (0, 1);
4 if e = S0 then
5 if r(e) < r(S0) then send the coordinator “update(S0, r(S0)) with (e, r(e))” ;

6 else ife 6= S0 then
7 if r(e) < r(S0) then
8 send the coordinator “update(S1, r(S1)) with (S0, r(S0))”;
9 send the coordinator “update(S0, r(S0)) with (e, r(e))”;

10 else ifr(e) < r(S1) then send the coordinator “update(S1, r(S1)) with (e, r(e))” ;

Algorithm 6: Update samples at the coordinator (for the Shannon entropy)

1 foreach messagemsg receiveddo
2 executemsg: update(S0, r(S0)) and/or(S1, r(S1)) based onmsg;
3 broadcastmsgto all sites and request each site to execute themsg;

13

Algorithm 7: TrackR(ǫ, δ1): MaintainR0 andR1 at the coordinator

1 initialize S0 = S1 =⊥, andr(S0) = r(S1) = +∞;
2 setǫ1 ← ǫ

10 ;
3 if S0 is updated by the same elementthen restartCountEach(S0, ǫ1, δ1) ;
4 else ifS0 is updated by a different elementthen restartCountEach(S0, ǫ1, δ1) ;
5 else ifS1 is updatedthen
6 if S1 is updated byS0 then
7 replace the whole data structure ofCountEach(S1, ǫ1, δ1) with CountEach(S0, ǫ1, δ1);

8 else restartCountEach(S1, ǫ1, δ1) ;

Maintain pz and 1 − pz. It is easy to useCountAll to maintainpz up to an additive approximation error
ǫ, which is also a(1 + O(ǫ))-approximation ofpz if pz ≥ 0.6. However, to maintain a(1 + ǫ)-relative
approximation error of(1 − pz) is non-trivial when(1 − pz) is very close to0. We make use ofCountAll,
CountEachSimpleandCountMin to construct an algorithmTrackProb(ǫ, δ), which maintains a(1 + ǫ, δ)-
approximation of(1 − pz) at the coordinator whenpz > 0.6. We describeTrackProb in Algorithm 8.

Algorithm 8: TrackProb(ǫ, δ): Approximate the empirical probability of a frequent element

1 initialize z ←⊥; ct← 0; ∀i ∈ [k], cti ← 0;
/* run the following processes in parallel: */

2 run CountAll(0.01) ;
3 runγ ← CountEachSimple(−z, ǫ/4) ;
4 run m̂← CountEachSimple([n], ǫ/4);
5 the coordinator maintains a counterct that counts the number of items received by all sites up to the

last update ofz;
6 each site maintains a localCountMin(ǫ/4, δ) sketch;
7 each siteSi maintains a countercti that counts the number of items received atSi;
/* monitored by CountAll(0.01) */

8 if CountAll identifies a new frequent elemente with p̂e ≥ 0.59 then
9 z ← e. Broadcastz to all sites;

10 restartγ ← CountEachSimple(−z, ǫ/4);
11 each siteSi sends its localCountMinsketch and local countercti to the coordinator;
12 the coordinator mergesk localCountMinsketches to a globalCountMin, and setsct =

∑

i∈[k] cti;

13 return z, p̂−z ← ct−CountMin[z]+γ
m̂ ; p̂z ← 1− p̂−z.

Putting Things Together. Let (S0, R̂0) and(S1, R̂1) be samples and their associated counts maintained
by Algorithm 5, 6, and 7. The final algorithm for trackingH(A) is depicted in Algorithm 9.

14

Algorithm 9: TrackEntropy(ǫ, δ): Approximate the Shannon entropy

1 κ← 480ǫ−2 ln(4δ−1)(2 + logm);

/* maintain z, p̂z and p̂−z */

2 run TrackProb(ǫ/4, δ/2);

/* get κ independent copies of (S0, R̂0, S1, R̂1) */

3 runκ copies of Algorithm 5, 6, andTrackR(ǫ/6, δ/(4κ)) in parallel;
4 if p̂z > 0.65 then

/* For each copy of (S0, R̂0, S1, R̂1), construct R̂′
*/

5 if S0 = z then R̂′ ← R̂1 ;

6 else R̂′ ← R̂0 ;

/* Est(fm, R̂′, κ) gives the average of κ copies of fm(R̂′)− fm(R̂′ − 1) */

7 return (1− p̂z)Est(fm, R̂′, κ) + p̂z log(1/p̂z);

8 else
9 return Est(fm, R̂0, κ)

3.5 The Analysis

We prove the following result in this section.

Theorem 4 TrackEntropy(ǫ, δ) maintains at the coordinator a(1 + ǫ, δ)-approximation to the Shannon

entropy, usingO
(

(k/ǫ2 +
√
k/ǫ3) · log 1

δ log
5 m
)

bits of communication,O(ǫ−2 · log 1
δ log

3 m) bits space

per site and amortizedO(ǫ−2 · log 1
δ log

2m) time per item.

We first show the correctness ofTrackEntropy, and then analyze its costs.

Correctness.We establish the correctness by the following two lemmas. The first lemma shows that if there
is a frequent elementz with empirical probabilitypz ≥ 0.6, then Algorithm 8 properly maintains1 − pz.
The second lemma shows the correctness of Algorithm 9 for anyinputA ∈ [n]m.

Lemma 9 p̂−z (see Line13 of Algorithm 8) is a(1 + ǫ, δ)-approximation to(1− pz).

Proof: Let z (pz ≥ 0.6) be the candidate frequent element if exists. Lett(z) be the time step of the most
recent update ofz. At any time step, letA0 be the substream consisting of all items received on or before
t(z), ct =

∣

∣A0
∣

∣, and letA1 be the rest of the joint streamA. Letm0
z andm0

−z be the frequency of element
z in A0 and the sum of frequencies of elements other thanz in A0, respectively. Similarly, letm1

z andm1
−z

be defined forA1.
Algorithm 8 computesm̂1

−z as an approximation tom1
−z by CountEachSimple(−z, ǫ/4), and m̂ as

an approximation tom by CountEachSimple([n], ǫ/4), both at the coordinator. The coordinator can also
extract from the globalCountMinsketch anm̂0

z, which approximatesm0
z up to an additive approximation

error ǫ
4m

0
−z with probability (1 − δ). At Line 13 of Algorithm 8, at any time step, the coordinator can

compute

1− p̂z = p̂−z =
ct− m̂0

z + m̂1
−z

m̂
,

15

wherem̂0
z is an(ǫ4m

0
−z, δ)-approximation ofm0

z, andm̂1
−z andm̂ are(1 + ǫ/4)-approximation ofm1

−z and
m, respectively.

The lemma follows by further noting thatct = m0
z +m0

−z. �

Lemma 10 TrackEntropy(ǫ, δ) (Algorithm 9) correctly maintains at the coordinator a(1+ǫ, δ)-approximation
to the empirical entropyH(A).

Proof: Similar to [5] Theorem 2.5, we divide our proof into two cases.

Case 1: there does not exist az with p̂z ≤ 0.65. We reach line 9 of Algorithm 9. The assumption that
ǫ < 1/20 implies pz < 0.7, and thus the input streamA ∈ A′. It is easy to verify that our choices of
parameters satisfy the premise of Lemma 3, thus the correctness.

Case 2: there is az with p̂z > 0.65. We reach line 7 of Algorithm 9. In this case we use Equation (10).
The assumption thatǫ < 1/20 implies pz > 0.6, thusA\z ∈ A′. At line 3, we runTrackR(ǫ/6, δ

4κ)

so that with probability1 − δ
4 , the κ copiesX ′s satisfy|X ′ − X̂ ′| ≤ ǫ

6X
′ simultaneously by a union

bound. One can verify based on (5) that our choice forκ is large enough to ensure thatEst(fm, R′, κ) is a
(1+ǫ/4, δ/4)-approximation toE[X ′]. Applying the same argument as in Lemma 3, we haveEst(fm, R̂′, κ)
as a(1 + ǫ/2, δ/2)-approximation toE[X ′].

At line 2, TrackProb(ǫ/4, δ/2) gives(1− p̂z) as a(1+ ǫ/4, δ/2)-approximation to(1− pz) (by Lemma
9). Further noting that when(1− p̂z) is a(1 + ǫ/4)-approximation to(1− pz), we have

|p̂z log(1/p̂z)− pz log(1/pz)|
pz log(1/pz)

≤ |p̂z − pz|
pz log(1/pz)

max
p∈[1

2
,1]

∣

∣

∣

∣

d(p log 1/p)

dp

∣

∣

∣

∣

≤
ǫ
4(1− pz)

pz log(1/pz)
log e

≤ ǫ.

Thus (1 − p̂z)Est(fm, R̂′, κ) + p̂z log
1
p̂z

is a (1 + ǫ, δ)-approximation toH(A) = (1 − pz)E[X ′] +

pz log
1
pz

. �

Communication Cost. We shall consider the extra cost introduced by the followingadaptations to the
general AMS Sampling framework described in Section 2: (1) we need to maintainS0 andS1 rather than to
simply maintainS; and (2) we have a new subroutineTrackProb. It turns out that (1) will only introduce an
additional multiplicative factor oflogm to the communication, and (2) is not the dominating cost.

We first bound the total number of timesCountEach(S0) andCountEach(S1) being restarted.

Lemma 11 LetC0 andC1 be the frequency ofCountEach(S0) and CountEach(S1) being restarted in Al-
gorithm 7, respectively. Then(C0 + C1) is bounded byO(log2m) with probability at least1−m−1/6.

Proof: by Lemma 4,C0 is bounded byO(logm) with probability at least1 −m−1/3. Now let us focus on
C1. Supposen1 < n2 < . . . < nC0 are the global indices of items that updateS0. Let bi = r(ani), we have
b1 > b2 > . . . > bC0 . LetAi be the substream of(ani , ani+1, . . . ani+1−1) obtained by collecting all items
that will be compared withr(S1); thus|Ai| ≤ m and each item inAi is associated with a rank uniformly

16

sampled from(bi, 1). For a fixedC0, by Lemma 4 and a union bound we have thatC1 < O(C0 logm)
with probability at least1 − C0

m1/3 . Also recall thatC0 < 2 logm with probability 1 − m−1/3. Thus

C1 = O(log2 m) with probability at least1− 2 logm
m1/3 . �

We now bound the total communication cost.

Lemma 12 TrackProb(ǫ, δ) usesO(kǫ log
1
δ log

3m) bits of communication.

Proof: We show thatz will be updated by at mostO(logm) times. Suppose at some time stepm0 items
have been processed, andz = a is the frequent element. By definition, the frequency ofa must satisfy
ma > 0.58m0. We continue to process the incoming items, and whenz is updated by another element at the
moment them1-th item being processed, we must havema < 0.42m1. We thus havem1

m0
≥ 0.58

0.42 = 1.38 >
1, which means that every timez gets updated, the total number of items has increased by a factor of at least
1.38 since the last update ofz. Thus the number of updates ofz is bounded byO(logm).

We list the communication costs of all subroutines inTrackProb.

(1) CountAll(0.01) costsO(k log2 m) bits;

(2) CountEachSimple([n], ǫ/4) costsO(kǫ logm) bits;

(3) CountEachSimple(−z, ǫ/4) costsO(kǫ logm) bits;

(4) sendingk sketches ofCountMin(ǫ/4, δ) to the coordinator costsO(kǫ log
1
δ logm) bits;

(5) sendingk local counters to the coordinator costsO(k logm) bits.

Among them, (3), (4), (5) need to be counted byO(logm) times, and thus the total communication cost is
bounded byO(kǫ log

1
δ log

3m). �

Combining Lemma 2, Lemma 10, Lemma 11 and Lemma 12, we now prove Theorem 4,

Proof: We have already showed the correctness and the communication cost. The only things left are the
space and processing time per item. The processing time and space usage are dominated by those used to
track(S0, R̂0, S1, R̂1)’s. So the bounds given in Lemma 8 also hold.

�

3.6 Sliding Windows

In Section 2.4 we have extended our general AMS sampling algorithm to the sequence-based sliding window
case. We can apply that scheme directly to the Shannon entropy. However, the communication cost is
high when the Shannon entropy of the stream is small. On the other hand, it is unclear if we can extend
the technique of removing the frequent element to the sliding window case: it seems hard to maintain

(Sw
0 , R

w
0)

AMS∼ Aw and(Sw
1 , R

w
1)

AMS∼ Aw\Sw
0 simultaneously in the sliding window using poly(k, 1/ǫ, log w)

communication, poly(1/ǫ, logw) space per site and poly(1/ǫ, logw) processing time per item.
By slightly adapting the idea in Section 2.4, we have the following result that may be good enough for

most practical applications.

17

Theorem 5 There is an algorithm that maintainŝH(Aw) at the coordinator as an approximation to the
Shannon entropyH(Aw) in the sequence-based sliding window case such thatĤ(Aw) is a (1 + ǫ, δ)-
approximation toH(Aw) whenH(Aw) > 1 and an(ǫ, δ)-approximation whenH(Aw) ≤ 1. The algorithm

usesO
(

(k/ǫ2 +
√
k/ǫ3) · 1δ log4 m

)

bits of communication,O(ǫ−2 · log 1
δ log

3m) bits space per site and

amortizedO(ǫ−2 · log 1
δ log

2m) time per item.

Proof: Instead of settingκ (the number of sample copies we run in parallel) as Equation (5), we simply
setκ = Θ(ǫ−2 logw log δ−1), thus the space and time usage for each site. The correctnessis easy to see:
since we are allowed to have an additive approximation errorǫ (rather thanǫE[X]) whenE[X] ≤ 1, we can
replaceǫ by ǫ

E[X] in Inequality (1) to cancelE[X]. For the communication cost, we just replace the value of

κ in Section 2.4 (defined by Equation (5)) withΘ(ǫ−2 logw log δ−1). �

With the same argument we have a result for the time-based sliding window case where the window size
is t.

Theorem 6 There is an algorithm that maintainŝH(At) at the coordinator as an approximation to the
Shannon entropyH(At) in the time-based sliding window setting such thatĤ(At) is a(1+ǫ, δ)-approximation
toH(At) whenH(At) > 1 and an(ǫ, δ)-approximation whenH(At) ≤ 1. The algorithm uses

O
(

(k/ǫ2 +
√
k/ǫ3) · 1δ log4 m

)

bits of communication,O(ǫ−2 · log 1
δ log

4 m) bits space per site and amor-

tizedO(ǫ−2 · log 1
δ log

2 m) time per item.

4 Tsallis Entropy

Recall that~p = (p1, p2, . . . , pn) = (m1
m , m2

m , . . . , mn
m) is the vector of empirical probabilities. Theq-th

Tsallis entropy of a streamA is defined as

Tq(~p) =
1−∑i∈[n] p

q
i

q − 1
.

It is well-known that whenq → 1, Tq converges to the Shannon entropy. In this section, we give analgorithm
that continuously maintains a(1 + ǫ, δ)-approximation toTq(~p) for any constantq > 1.

Similar to the analysis for the Shannon entropy, we again assume that we can track the exact value ofm
at the coordinator without counting its communication cost. To apply the general AMS sampling scheme,
we usegm(x) = x−m(x

m)q, hence

gm(A) =
1

m

∑

i∈[n]

[

mi −m
(mi

m

)q]

= 1−
∑

i∈[n]
pqi = (q − 1)Tq(~p).

Let Z consist of elements in the streamA such that eachz ∈ Z hasmz ≥ 0.3m. Thus|Z| ≤ 4. Consider
the following two cases:

• Z = ∅. In this casegm(A) ≥ 1− (13)
q−1.

18

• Z 6= ∅. In this case

gm(A) =

(

1−
∑

z∈Z
pz

)

gm(A\Z) +
1

m

∑

z∈Z
gm(mz)

with gm(A\Z) ≥ 1− (13)
q−1.

Thus we can use the same technique as that for the Shannon entropy. That is, we can track the frequency of
each elementz ∈ Z separately (at most4 of them), and simultaneously remove all occurrences of elements
in Z from A and apply the AMS sampling scheme to the substreamA\Z.

We only need to consider the input classA′ = {A ∈ [n]m
′
: 0 < m′ ≤ m,∀i ∈ [n],mi ≤ 0.3m}.

The algorithm is essentially the same as the one for the Shannon entropy in Section 3; we thus omit its
description.

Theorem 7 There is an algorithm that maintains at the coordinator a(1 + ǫ, δ)-approximation toTq(A)

for any constantq > 1, usingO
(

(k/ǫ2 +
√
k/ǫ3) · log 1

δ log
4m
)

bits of communication. Each site uses

O(ǫ−2 · log 1
δ log

2 m) and amortizedO(ǫ−2 · log 1
δ logm) time per item.

Proof: The algorithm and correctness proof are essentially the same as that for the Shannon entropy in
Section 3. We thus only analyze the costs.

Let us first bound the correspondingλgm,A′ , supA∈A′ π(A) for gm under the input classA′:

E = inf
A′∈A′

gm(A′) = 1−
(

1

3

)q−1

= Θ(1).

Let h(x) = gm(x)− gm(x− 1), h′(x) < 0. As q > 1,

|h(m)| = gm(m− 1)

= m− 1−m

(

1− 1

m

)q

= q − 1 +O(1/m).

We thus seta = q. On the other hand,h(1) ≤ 1, we thus setb = 1. NowsupA∈A′ π(A) = O
(

(1+a/E)2(a+b)
a+E

)

=

O(1) (recall thatq is constant).
Next, note that

h(x) = −m1−q(xq − (x− 1)q) + 1 ≈ 1− q
(x

m

)q−1
, and

h(x) − h((1 + ǫ)x) ≈ −m1−q(qxq−1 − q(1 + ǫ)q−1xq−1)

≈ ǫ(q − 1)
(x

m

)q−1
.

Also note ifx < 0.3m, then
(

x
m

)q−1 ≤
(

1
3

)q−1
andh(x) > h(0.3m) = Ω(1). Therefore forq > 1 we can

find a large enough constantλ to make Equation (3) hold.
For the communication cost, simply pluggingλgm,A′ = O(1) and supA∈A′ π(A) = O(1) to Equa-

tion (9) yields our statement. Note that we haveκ = Θ(ǫ−2 log δ−1), hence imply the space usage and the
processing time per item (using Corollary 1). �

We omit the discussion on sliding windows since it is essentially the same as that in the Shannon entropy.
The results are presented in Table 1.

19

5 Concluding Remarks

In this paper we have given improved algorithms for trackingthe Shannon entropy function and the Tsallis
entropy function in the distributed monitoring model. A couple of problems remain open. First, we do not
know if our upper bound is tight. In [32] a lower bound ofΩ(k/ǫ2) is given for the case when we have item
deletions. It is not clear if the same lower bound will hold for the insertion-only case. Second, in the sliding
window case, can we keep the approximation error to be multiplicative even when the entropy is small, or do
strong lower bounds exist? The third, probably most interesting, question is that whether we can apply the
AMS sampling framework to track other functions with improved performance in the distributed monitoring
model? Candidate functions include Renyi entropy,f -divergence, mutual information, etc. Finally, it would
be interesting to implement and test the proposed algorithms on real-world datasets, and compare them with
related work competitors.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.
Journal of Computer and System Sciences, 58(1):137–147, 1999.

[2] C. Arackaparambil, J. Brody, and A. Chakrabarti. Functional monitoring without monotonicity. In
ICALP (1), pages 95–106, 2009.

[3] B. Babcock and C. Olston. Distributed top-k monitoring.In SIGMOD, pages 28–39, 2003.

[4] A. Chakrabarti, K. D. Ba, and S. Muthukrishnan. Estimating entropy and entropy norm on data streams.
Internet Mathematics, 3(1):63–78, 2006.

[5] A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal algorithm for estimating the entropy
of a stream.ACM Transactions on Algorithms, 6(3), 2010.

[6] H.-L. Chan, T. W. Lam, L.-K. Lee, and H.-F. Ting. Continuous monitoring of distributed data streams
over a time-based sliding window.Algorithmica, 62(3-4):1088–1111, 2012.

[7] G. Cormode and M. N. Garofalakis. Sketching streams through the net: Distributed approximate query
tracking. InVLDB, pages 13–24, 2005.

[8] G. Cormode, M. N. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggregates in a networked
world: Distributed tracking of approximate quantiles. InSIGMOD, pages 25–36, 2005.

[9] G. Cormode and S. Muthukrishnan. An improved data streamsummary: The count-min sketch and its
applications.Journal of Algorithms, 55(1):58–75, 2005.

[10] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms fordistributed functional monitoring. In
SODA, pages 1076–1085, 2008.

[11] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. Continuous sampling from distributed streams.
J. ACM, 59(2):10, 2012.

[12] G. Cormode, S. Muthukrishnan, and W. Zhuang. What’s different: Distributed, continuous monitoring
of duplicate-resilient aggregates on data streams. InICDE, page 57, 2006.

20

[13] G. Cormode, S. Muthukrishnan, and W. Zhuang. Conquering the divide: Continuous clustering of
distributed data streams. InICDE, pages 1036–1045, 2007.

[14] G. Cormode and K. Yi. Tracking distributed aggregates over time-based sliding windows. InSSDBM,
pages 416–430, 2012.

[15] M. Dilman and D. Raz. Efficient reactive monitoring. InINFOCOM, pages 1012–1019, 2001.

[16] S. Ganguly, M. N. Garofalakis, and R. Rastogi. Trackingset-expression cardinalities over continuous
update streams.VLDB J., 13(4):354–369, 2004.

[17] P. B. Gibbons and S. Tirthapura. Estimating simple functions on the union of data streams. InSPAA,
pages 281–291, 2001.

[18] P. B. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding windows. InSPAA, pages
63–72, 2002.

[19] S. Guha, A. McGregor, and S. Venkatasubramanian. Streaming and sublinear approximation of entropy
and information distances. InSODA, pages 733–742, 2006.

[20] N. J. A. Harvey, J. Nelson, and K. Onak. Sketching and streaming entropy via approximation theory.
In FOCS, pages 489–498, 2008.

[21] Z. Huang, K. Yi, and Q. Zhang. Randomized algorithms fortracking distributed count, frequencies,
and ranks. InPODS, pages 295–306, 2012.

[22] A. Jain, J. M. Hellerstein, S. Ratnasamy, and D. Wetherall. A wakeup call for internet monitoring
systems: The case for distributed triggers. InProceedings of HotNets-III, 2004.

[23] R. Keralapura, G. Cormode, and J. Ramamirtham. Communication-efficient distributed monitoring of
thresholded counts. InSIGMOD, pages 289–300, 2006.

[24] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature distributions. InSIG-
COMM, pages 217–228, 2005.

[25] A. Lall, V. Sekar, M. Ogihara, J. J. Xu, and H. Zhang. Datastreaming algorithms for estimating entropy
of network traffic. InSIGMETRICS/Performance, pages 145–156, 2006.

[26] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an acquisitional query
processor for sensor networks. InSIGMOD, pages 491–502, 2003.

[27] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent items in dis-
tributed data streams. InICDE, pages 767–778, 2005.

[28] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed data streams.
In SIGMOD, pages 563–574, 2003.

[29] I. Sharfman, A. Schuster, and D. Keren. A geometric approach to monitoring threshold functions over
distributed data streams. InSIGMOD, pages 301–312, 2006.

[30] I. Sharfman, A. Schuster, and D. Keren. Shape sensitivegeometric monitoring. InPODS, pages
301–310, 2008.

21

[31] S. Tirthapura and D. P. Woodruff. Optimal random sampling from distributed streams revisited. In
DISC, pages 283–297, 2011.

[32] D. P. Woodruff and Q. Zhang. Tight bounds for distributed functional monitoring. InSTOC, pages
941–960, 2012.

[33] K. Xu, Z. Zhang, and S. Bhattacharyya. Profiling internet backbone traffic: behavior models and
applications. InSIGCOMM, pages 169–180, 2005.

[34] K. Yi and Q. Zhang. Optimal tracking of distributed heavy hitters and quantiles. InPODS, pages
167–174, 2009.

A Proof of Lemma 4

Proof: We can assume thatU1, . . . , Um are distinct, since the event thatUi = Uj for somei 6= j has measure
0. LetTi = min{U1, . . . Um}. Let ODi denote the order ofU1, . . . , Ui. LetΣi = {Permutation of[i]}. It is
clear that for anyσ ∈ Σi, Pr[ODi = σ | Ti > t] = Pr[ODi = σ] = 1

i! . Since the order ofU1, . . . , Ui does
not depend on the minimal value in that sequence, we have

Pr[ODi = σ, Ti > t] = Pr[ODi = σ | Ti > t] ·Pr[Ti > t]

= Pr[ODi = σ] ·Pr[Ti > t].

Therefore, the events{ODi = σ} and{Ti > t} are independent.
For any givenσ ∈ Σi−1 andz ∈ {0, 1} :

Pr[Ji = z | ODi−1 = σ]

= lim
t→0

Pr[Ji = z, Ti−1 > t | ODi−1 = σ]

= lim
t→0

Pr[Ji = z | Ti−1 > t,ODi−1 = σ]

Pr[ODi−1 = σ]/Pr[Ti−1 > t,ODi−1 = σ]
(11)

= lim
t→0

Pr[Ji = z | Ti−1 > t] ·Pr[Ti−1 > t]

Pr[ODi−1 = σ]/Pr[ODi−1 = σ]
(12)

= lim
t→0

Pr[Ji = z, Ti−1 > t]

= Pr[Ji = z],

where (11) to (12) holds because the events{Ji = z} and{ODi−1 = σ} are conditionally independent
given{Ti−1 > t}, and the events{ODi = σ} and{Ti > t} are independent.

Therefore,Ji and ODi−1 are independent. Consequently,Ji is independent ofJ1, . . . , Ji−1, since the
latter sequence is fully determined by ODi−1.

Pr[Ji = 1] = Pr[Ui < min{U1, . . . , Ui−1}]

=

∫ 1

0
(1− x)i−1dx =

1

i
.

ThusE[Ji] = Pr[Ji = 1] = 1
i . By the linearity of expectation,E[J] =

∑

i∈[m]
1
i ≈ logm.

SinceJ1, . . . , Jm are independent,Pr[J > 2 logm] < m−1/3 follows from a Chernoff Bound. �

22

B The Assumption of Tracking m Exactly

We explain here why it suffices to assume thatm can be maintained at the coordinatorexactly without any
cost. First, note that we can always useCountEachSimpleto maintain a(1 + ǫ2)-approximation ofm using
O(k

ǫ2
logm) bits of communication, which will be dominated by the cost ofother parts of the algorithm for

tracking the Shannon entropy. Second, the additional errorintroduced for the Shannon entropy by theǫ2m
additive error ofm is negligible: letgx(m) = fm(x)− fm(x− 1) = x log m

x − (x− 1) log m
x−1 , and recall

(in the proof of Lemma 7) thatX > 0.5 under anyA ∈ A′. It is easy to verify that

∣

∣gx((1± ǫ2)m)− gx(m)
∣

∣ = O(ǫ2) ≤ O(ǫ2)X,

which is negligible compared with|X − X̂| ≤ O(ǫ)X (the error introduced by usinĝR to approximateR).
Similar arguments also apply toX ′, and to the analysis of the Tsallis Entropy.

C Pseudocode forCountEachSimple

Algorithm 10, 11 describe how we can maintain a(1 + ǫ)-approximation to the frequency of elemente.

Algorithm 10: Receive an iteme at a site

1 initialize c← 1, ct← 0;
2 foreach e receiveddo
3 ct← ct+ 1;
4 if ct = 1 then
5 send a bit to the coordinator;

6 if ct > (1 + ǫ)c then
7 c← ct;
8 send a bit to the coordinator;

Algorithm 11: CountEachSimple(e, ǫ) maintainsc as the count at the coordinator

1 initialize cti ← 0 for all i ∈ [k];
2 initialize c← 0;
/* maintain c as the count */

3 while Truedo
4 if received a bit from sitei then
5 if cti = 0 then
6 c← c+ 1;
7 cti ← 1;

8 else
9 c← c+ ǫ · cti;

10 cti ← (1 + ǫ)cti;

23

