
Full-fledged Real-Time Indexing for Constant Size Alphabets∗

Gregory Kucherov1,2 and Yakov Nekrich†3

1Laboratoire d’Informatique Gaspard Monge, Université Paris-Est & CNRS,
Marne-la-Vallée, Paris, France, Gregory.Kucherov@univ-mlv.fr

2Department of Computer Science, Ben-Gurion University of the Negev, Be’er Sheva, Israel
3Department of Electrical Engineering & Computer Science, University of Kansas,

yakov.nekrich@googlemail.com

Abstract

In this paper we describe a data structure that supports pattern matching queries on a
dynamically arriving text over an alphabet of constant size. Each new symbol can be prepended
to T in O(1) worst-case time. At any moment, we can report all occurrences of a pattern P
in the current text in O(|P | + k) time, where |P | is the length of P and k is the number of
occurrences. This resolves, under assumption of constant size alphabet, a long-standing open
problem of existence of a real-time indexing method for string matching (see [3]).

1 Introduction

Two main versions of the string matching problem differ in which of the two components – pattern
P or text T – is provided first in the input (or is considered as fixed) and can then be preprocessed
before processing the other component. The framework when the text has to be preprocessed
is usually called indexing, as it can be viewed as constructing a text index supporting matching
queries.

Real-time variants of the string matching problem are about as old as the string matching itself.
In the 70s, existence of real-time string matching algorithms was first studied for Turing machines.
For example, it has been shown that the language {P#T |P occurs in T} can be recognized by a
Turing machine, while the language {T#P |P occurs in T} cannot [10]. In the realm of the RAM
model, the real-time variant of pattern-preprocessing string matching has been extensively studied,
leading to very efficient solutions (see e.g. [4] and references therein). The indexing variant,
however, still has important unsolved questions.

Back in the 70s, Slisenko [18] claimed a real-time algorithm for recognizing the language
{T#P |P occurs in T} on the RAM model, but its complex and voluminous full description made
it unacknowledged by the scientific community, and the problem remained to be considered open

∗This version is an update of the paper published in ICALP’13 proceedings. We strengthen the main result
(Theorem 2) by replacing the expected worst-case time by deterministic worst-case time. This is achieved by using a
simpler suffix tree update construction in Section 2.2 (Theorem 1).
†This work was done while this author was at Laboratoire d’Informatique Gaspard Monge, Université Paris-Est

& CNRS

1

ar
X

iv
:1

30
2.

40
16

v3
 [

cs
.D

S]
 6

 J
ul

 2
01

3

for many years. In 1994, Kosaraju [14] reported another solution to this problem. In our present
work, however, we are interested in a more general problem, when matching queries can be made
at all moments, rather than after the entire text has been received. Specifically, in our problem, a
streaming text should be processed in real time so that at each moment, a matching query P can
be made to the portion of the text received so far. We call this the real-time indexing problem. This
problem has been considered in 2008 by Amir and Nor [3], who extended Kosaraju’s algorithm to
deal with repetitive queries made at any moment of the text scan.

All the three existing real-time indexing solutions [18, 14, 3] support only existential queries
asking whether the pattern occurs in the text, but are unable to report occurrences of the pattern.
Designing a real-time text indexing algorithm that would support queries on all occurrences of a
pattern is stated in [3] as the most important remaining open problem. The algorithms of [14, 3]
assume a constant size alphabet and are both based on constructions of “incomplete” suffix trees
which can be built real-time but can only answer existential queries. To output all occurrences of
a pattern, a fully-featured suffix tree is needed, however a real-time suffix tree construction, first
studied in [1], is in itself an open question. The best currently known algorithms spend on each
character O(log log n) worst-case time in the case of constant-size alphabets [5], or O(log log n +

log2 log |A|
log log log |A|) time for arbitrary alphabets A [7]. A truly real-time suffix tree construction seems
unlikely to exist. Therefore, a suffix tree alone seems to be insufficient to solve the real-time
indexing problem.

In this paper, we propose the first real-time text indexing solution that supports reporting all
pattern occurrences, under the assumption of constant size alphabet. Similar to the previous works
on real-time indexing, we assume that the text is read right-to-left, or otherwise the pattern needs
to be reversed before executing the query. The general idea is to maintain several data structures,
three in our case, each supporting queries for different pattern lengths. Each of these structures is
based on a suffix tree (or suffix-tree-like structure) exteded by some auxiliary data structures. To
update a suffix tree, we use an implementation of Weiner’s algorithm which is somewhat similar to
but simpler than that of [5]. The simplification is achieved by using some external algorithmic tools,
such as colored predecessor queries [16]. As a result, we can update a suffix tree in O(log log n)
worst-case time per letter, under the assumption that alphabet size is bounded by O(log1/4 n) and
without resorting to a deamortization as in [5]. This is an interesting result in itself.

The paper is organized as follows. In Section 2, we describe auxiliary data structures and present
our method for online update of suffix trees. In Section 3, we describe the three data structures for
different pattern lengths that constitute a basis of our solution. These data structures, however,
do not provide a fully real-time algorithm. Then in Section 4, we show how to “fix” the solution of
Section 3 in order to obtain a fully real-time algorithm.

Throughout the paper, Σ is an alphabet of constant size σ. Since the text T is read right-to-left,
it will be convenient for us to enumerate symbols of T from the end, i.e. T = tn . . . t1 and substring
ti+`ti+`−1 . . . ti will be denoted T [i + `..i]. T [i..] denotes suffix T [i..1]. Throughout this paper, we
reserve k to denote the number of objects (occurrences of a pattern, elements in a list, etc) in the
query answer.

2 Preliminaries

In this Section, we describe main algorithmic tools used by our algorithms.

2

2.1 Range Reporting and Predecessor Queries on Colored Lists

We use data structures from [16] for searching in dynamic colored lists.

Colored Range Reporting in a List. Let elements of a dynamic linked list L be assigned
positive integer values called colors. A colored range reporting query on a list L consists of two
integers col1 < col2 and two pointers ptr1 and ptr2 that point to elements e1 and e2 of L. An
answer to a colored range reporting query consists of all elements e ∈ L occurring between e1 and
e2 (including e1 and e2) such that col1 ≤ col(e) ≤ col2, where col(e) is the color of e. The following
result on colored range reporting has been proved by Mortensen [16].

Lemma 1 ([16]) Suppose that col(e) ≤ logf n for all e ∈ L and some constant f ≤ 1/4. We
can answer color range reporting queries on L in O(log logm+ k) time using an O(m)-space data
structure, where m is the number of elements in L. Insertion of a new element into L is supported
in O(log logm) time.

Note that the bound f ≤ 1/4 follows from the description in [12]: the data structure in [16] uses
Q-heaps [9] to answer certain queries on the set of colors in constant time.

Colored Predecessor Problem. The colored predecessor query on a list L consists of an element
e ∈ L and a color col. The answer to a query (e, col) is the closest element e′ ∈ L which precedes e
such that col(e) = col. The following Lemma is also proved in [16]; we also refer to [11], where a
similar problem is solved.

Lemma 2 ([16]) Suppose that col(e) ≤ logf n for all e ∈ L and some constant f ≤ 1/4. There
exists an O(m) space data structure that answers colored predecessor queries on L in O(log logm)
time and supports insertions in O(log logm) time, where m is the number of elements in L.

2.2 Online Update of Suffix Trees for Small Alphabets

Classical suffix tree construction algorithms read the input text online and spend an amortized
constant time on each text letter, however in the worst-case, they can spend as much as a linear
time on an individual letter. Several papers studied the question of reducing the worst-case time
spent on a letter, trying to approach the real-time update [2, 5, 12, 7]. All of them follow Weiner’s
algorithm and process the text right-to-left, as only one new suffix has to be added when a new
letter is prepended from left, resulting in a constant amount of modifications. Breslauer and Italiano
[5] showed how to deamortize Weiner’s algorithm in the case of constant-size alphabets in order to
obtain O(log log n) worst-case time on each new letter. Kopelowitz [12] proposed a solution for an
arbitrary alphabet A spending O(log log n+log log |A|) worst-case expected time on each prepended
letter. Very recently, Fischer and Gawrychowski [7] showed how to obtain a (deterministic) worst-

case time O(log log n+ log2 log |A|
log log log |A|) for arbitrary alphabets.

In this Section, we show a simple implementation of Weiner’s algorithm that achieves a worst-
case O(log log n) time per letter in the case when the alphabet size is bounded by log1/4 n. Our
solution uses Lemma 2 as well as a constant-time solution to dynamic lowest common ancestor
(lca) problem [6]. Thus, the solution below can be viewed as a simpler and slightly more general
version of the result of [5], extending it from constant-size alphabets to alphabets of size log1/4 n.

3

We first briefly recall the main idea of Weiner’s algorithm using a description similar to [5].
Updating a suffix tree when a new letter a is prepended to the current text T is done through
maintaining W-links defined as follows. For a suffix tree node labeled u and a letter a ∈ A, W-link
Wa(u) points to the locus of string au in the suffix tree, provided that au is a substring of T (i.e.
exists in the current suffix tree). Note that the locus of au can be an explicit or an implicit node,
and Wa(u) is called a hard or soft W-link respectively. The following properties of W-links will be
useful in the sequel.

Lemma 3 ([7]) (i) If for some letter a, a node has a defined W-link Wa, then any its ancestor
node has a defined W-link Wa too.

(ii) If two nodes u and v have defined hard W-links Wa, then lca(u, v) has a defined hard W-link
Wa too.

When a is prepended to a current text T , a new leaf labeled aT must be created and attached to
either an existing node or a new node created by splitting an existing edge. To find the attachment
node, the algorithm finds the lowest ancestor u of the leaf labeled T for which a (possibly soft)
W-link Wa(u) is defined. Then the target node Wa(u) is the branching node. The main difficulty
of Weiner’s approach is to find the lowest ancestor of a leaf with a defined W-link Wa(u). Another
difficulty is to update (soft) W-links when the attachment node results from an edge split (see [5]).

In our solution, we store only hard W-links and do not store soft W-links at all. Note that a hard
W-link, once installed, does not need to be updated for the rest of the algorithm [7]. Information
about soft W-links is computed “on the fly” using the following Lemma.

Lemma 4 ([7]) Assume that for a node u, Wa(u) is defined and is a soft link pointing to an
implicit node located on an edge (v, w). Then there exists a unique highest descendant u′ of u for
which Wa(u

′) is a hard link, and, moreover, Wa(u
′) = w.

To find the lowest ancestor u of a given node t with a defined (possibly soft) W-link Wa(u),
consider the Euler tour of the current suffix tree in which each internal node occurs two times
corresponding to its first and last visits. Then the following Lemma holds.

Lemma 5 Consider a node t. Assume that Wa(t) is not defined and u is the lowest ancestor of t
for which a (possibly soft) link Wa(u) is defined. Let v1 be the closest node preceding t in the Euler
tour of the suffix tree such that Wa(v1) is a hard link. Let v2 be the closest node following u in
Euler tour of the suffix tree such that Wa(v2) is a hard link. Then u is the lowest node between
lca(t, v1) and lca(t, v2). Moreover, if lca(t, v1) is the lowest, then v1 is the highest descendant of u
with a defined hard W-link Wa, otherwise v2 is such a descendant.

Proof : By Lemma 3(i), if Wa(t) is not defined, then Wa is not defined for any descendant of t.
Thus, no node occurring between the first and the second occurrences of t in the Euler tour has a
defined link Wa. Consequently, definitions of nodes v1 and v2 are unambiguous.

By Lemma 4, u has a unique closest descendant, say v, with a defined hard link Wa(v). If v
occurs before t in the Euler tour, then v is the closest node preceding t in the Euler tour with defined
Wa(v). To show this, assume there is a closer such node v′. Observe that v′ is also a descendant
of u and v′ is not a descendant of v. By Lemma 3(ii), lca(v, v′) is a node with a defined hard link
Wa. On the other hand, lca(v, v′) is a proper ancestor of v which is a contradiction. Therefore, v
is node v1 from the Lemma.

4

Symmetrically, if v occurs after t in the Euler tour, then v is node v2 from the Lemma. Clearly,
to compute u, it is sufficient to pick the lowest between lca(t, v1) and lca(t, v2). �

Based on the above, we implement Weiner’s algorithm by maintaining the Euler tour of the
current suffix tree in a colored list LW . If a node u has a defined hard W-link Wa(u), then both
occurrences of u in LW are colored with a. Note that a node can have up to |A| hard W-links and
therefore have up to 2|A| occurrences in LW . However, the total number of hard W-links is limited
by the number of tree nodes, as a node has at most one incoming hard W-link.

By Lemma 2, we can answer colored predecessor and successor queries on LW in O(log log |LW |)
time. Therefore, nodes v1 and v2 defined in Lemma 5 can be found in O(log log |LW |) time. Us-
ing lowest common ancestor queries on a dynamic tree [6], lca(t, v1) and lca(t, v2) can be com-
puted in O(1) time. Therefore, updating the suffix tree after prepending a new symbol is done is
O(lg lg |LW |) = O(lg lg |T |) time. As an update can introduce two new hard W-links, we also need
to update the colored list Lw. This is easily done in O(1) time. (Details are left out and can be
found e.g. in [15].)

We conclude with the final result of this Section.

Theorem 1 Consider a text over an alphabet A, |A| ≤ log1/4 n, arriving online right-to-left. After
prepending a new letter to the current text T , the suffix tree of T can be updated in time O(log log |T |)
using an auxiliary data structure of size O(|T |).

3 Fast Off-Line Solution

In this section we describe the main part of our algorithm of real-time text indexing. Based on the
suffix tree construction from the previous Section, the algorithm updates the index by reading the
text in the right-to-left order. However, the algorithm we describe in this Section will not be on-line,
as it will have to access symbols to the left of the currently processed symbol. Another “flaw” of
the algorithm is that it will support pattern matching queries only with an additional exception:
we will be able to report all occurrences of a pattern except for those with start positions among
a small number of most recently processed symbols of T . In the next section we will show how
to fix these issues and turn our algorithm into a fully real-time indexing solution that reports all
occurrences of a pattern.

The algorithm distinguishes between three types of query patterns depending on their length:
long patterns contain at least (log log n)2 symbols, medium-size patterns contain between (log(3) n)2

and (log log n)2 symbols, and short patterns contain less than (log(3) n)2 symbols1. For each of the
three types of patterns, the algorithm will maintain a separate data structure supporting queries
in O(|P |+ k) time for matching patterns of the corresponding type.

3.1 Long Patterns

To match long patterns, we maintain a sparse suffix tree TL storing only suffixes that start at
positions q · d for q ≥ 1 and d = log log n/(4 log σ). Suffixes stored in TL are regarded as strings
over a meta-alphabet of size σd = log1/4 n. This allows us to use the method of Section 2.2 to
update TL, spending O(log log n) time on each each meta-character encoding O(log log n) regular
characters. (We recall that σ = O(1).)

1Henceforth, log(3) n = log log log n.

5

Using TL we can find occurrences of a pattern P that start at positions qd for q ≥ 1, but not
occurrences starting at positions qd + δ for 1 ≤ δ < d. To be able to find all occurrences, we
maintain a list LE defined similarly to list LW from Section 2.2.

The list LE contains copies of all nodes of TL as they occur during the Euler tour of TL. LE
contains one element for each leaf and two elements for each internal node of TL. If a node of LE is a
leaf that corresponds to a suffix T [i..], we mark it with the meta-character

←−
T [i, d] = ti+1ti+2 . . . ti+d

which is interpreted as the color of the leaf for the suffix T [i..]. Colors are ordered by lexicographic
order of underlying strings. If S = s1 . . . sj is a string with j < d, then S defines an interval of
colors, denoted [minc(S),maxc(S)], corresponding to all character strings of length d with prefix
S. Recall that there are log1/4 n different colors. On list LE , we maintain the data structure of
Lemma 1 for colored range reporting queries.

The update of TL and LE is done as follows. After reading character ti where i = qd for q ≥ 1,
we add suffix T [i..], viewed as a string over the meta-alphabet of cardinality log1/4 n, to TL following
the algorithm described in Section 2.2. In addition, we have to update LE , i.e. to insert to LE the
new leaf holding the suffix T [i..] colored with ti+1ti+2 . . . ti+d. (Note that at this point the algorithm
“looks ahead” for the forthcoming d letters of T .) If a new internal node has been inserted into TL,
we also update the list LE accordingly.

Since the meta-alphabet size is only log1/4 n, navigation in TL from a node to a child can be
supported in O(1) time. Observe that the children of any internal node v ∈ TL are naturally ordered
by the lexicographic order of edge labels. We store the children of v in a data structure Pv which
allows us to find in time O(1) the child whose edge label starts with a string (meta-character)
S = s1 . . . sd. Moreover, we can also compute in time O(1) the “smallest” and the “largest” child of
v whose edge label starts with a string S = s1 . . . sj with j ≤ d. Pv will also support adding a new
edge to Pv in O(1) time. Data structure Pv can be implemented using e.g. atomic heaps [9]; since
all elements in Pv are bounded by log1/4 n, we can also implement Pv as described in [17].

We now consider a long query pattern P = p1 . . . pm and show how the occurrences of P are
computed. An occurrence of P is said to be a δ-occurrence if it starts in T at a position j = qd+ δ,
for some q. For each δ, 0 ≤ δ ≤ d − 1, we find all δ-occurrences as follows. First we “spell out”
Pδ = pδ+1 . . . pm in TL over the meta-alphabet, i.e. we traverse TL proceeding by blocks of up to d
letters of Σ. If this process fails at some step, then P has no δ-occurrences. Otherwise, we spell out
Pδ completely, and retrieve the closest explicit descendant node vδ, or a range of descendant nodes
vlδ, v

l+1
δ , . . . , vrδ in the case when Pδ spells to an explicit node except for a suffix of length less than

d. The whole spelling step takes time O(|P |/d+ 1).
Now we jump to the list LE and retrieve the first occurrence of vδ (or vlδ) and the second

occurrence of vδ (or vrδ) in LE . A leaf u of T corresponds to a δ-occurrence of P if and only
if u occurs in the subtree of vδ (or the subtrees of vlδ, . . . , v

r
δ) and the color of u belongs to

[minc(pδ . . . p1),maxc(pδ . . . p1)]. In the list LE , these leaves occur precisely within the interval
we computed. Therefore, all δ-occurrences of P can be retrieved in time O(log log n + kδ) by a
colored range reporting query (Lemma 1), where kδ is the number of δ-occurrences. Summing up
over all δ, all occurrences of a long pattern P can be reported in time O(d(|P |/d+ log log n) + k) =
O(|P |+ d log log n+ k) = O(|P |+ k), as d = log log n/(4 log σ), σ = O(1) and |P | ≥ (log log n)2.

3.2 Medium-Size Patterns

Now we show how to answer matching queries for patterns P where (log(3) n)2 ≤ |P | < (log log n)2.
In a nutshell, we apply the same method as in Section 3.1 with the main difference that the

6

sparse suffix tree will store only truncated suffixes of length (log log n)2, i.e. prefixes of suffixes
bounded by (log log n)2 characters. We store truncated suffixes starting at positions spaced by
log(3) n = log log log n characters. The total number of different truncated suffixes is at most
σ(log logn)2

. This small number of suffixes will allow us to search and update the data structures
faster compared to Section 3.1. We now describe the details of the construction.

We store all truncated suffixes that start at positions qd′, for q ≥ 1 and d′ = log(3) n, in a
tree TM . TM is organized in the same way as the standard suffix tree; that is, TM is a compacted
trie for substrings T [qd′..qd′ − (log log n)2 + 1], where these substrings are regarded as strings
over the meta-alphabet Σd′ .2 Observe that the same truncated suffix can occur several times.
Therefore, we augment each leaf v with a list of colors Col(v) corresponding to left contexts of
the corresponding truncated suffix S. More precisely, if S = T [qd′..qd′ − (log log n)2 + 1] for some

q ≥ 1, then
←−
T [qd′, d′] is added to Col(v). Note that the number of colors is bounded by σlog(3) n.

Furthermore, for each color col in Col(v), we store all positions i = qd′ of T such that S occurs at

i and
←−
T [i, d′] = col. Similar to Section 3.1, we maintain a colored list LM that stores the Euler

tour traversal of TM . For each internal node, LM contains two elements. For every leaf v and for
each value col in its color list Col(v), LM contains a separate element colored with col. Observe

that since the size of LM is bounded by O(σ(log logn)2+log(3) n), updates of LM can be supported in
O(log log(σ(log logn)2

)) = O(log(3) n) time and colored reporting queries on LM can be answered in
O(log(3) n+ k) time (Lemma 1).

Truncated suffixes are added to TM using a method similar to that of Section 3.1. After reading

a symbol tqd′ for some q ≥ 1, we insert Snew = T [qd′..qd′ − (log log n)2 + 1] colored with
←−
T [qd′, d′]

into the tree TM . Insertion of Snew is done as described in Section 2.2, and the list LM is updated

accordingly. If LM already contains a leaf with string value Snew and color
←−
T [qd′, d′], we add qd′ to

the list of its occurrences, otherwise we insert a new element into LM and initialize its location list
to qd′. Altogether, the addition of a new truncated suffix Snew requires O(log log |TM |) = O(log(3) n)
time.

A query for a pattern P = p1 . . . pm, such that (log(3) n)2 ≤ m < (log log n)2, is answered in
the same way as in Section 3.1. For each ρ = 0, . . . , log(3) n − 1, we find locus nodes vlρ, . . . , v

r
ρ

(possibly with vlρ = vrρ) of Pρ = pρ+1 . . . pm. Then, we find all elements in LM occurring between

the first occurrence of vlρ and the second occurrence of vrρ and colored with a color col that belongs
to [minc(pρ . . . p1),maxc(pρ . . . p1)]. For every such element, we traverse the associated list of
occurrences: if a position i is in the list, then P occurs at position (i+ρ). The total time needed to
find all occurrences of a medium-size pattern P is O(d′(|P |/d′+log(3) n)+k) = O(|P |+(log(3) n)2 +
k) = O(|P |+ k) since |P | ≥ (log(3) n)2.

3.3 Short Patterns

Finally, we describe our indexing data structure for patterns P with |P | < (log(3) n)2. We maintain
the tree TS of truncated suffixes of length ∆ = (log(3) n)2 seen so far in the text. For every position
i of T , TS contains the substring T [i..i−∆ + 1]. TS is organized as a compacted trie. We support

queries and updates on TS using tabulation. There are O(2σ
∆

) different trees, and O(σ∆) different
queries can be made on each tree. Therefore, we can afford explicitly storing all possible trees TS
and tabulating possible tree updates. Each internal node of a tree stores pointers to its lefmost

2For simplicity we assume that log(3) n and log logn are integers and log(3) n divides log logn. If this is not the case,
we can find d′ and d that satisfy these requirements such that log logn ≤ d ≤ 2 log logn and log(3) n ≤ d′ ≤ 2 log(3) n.

7

and rightmost leaves, the leaves of a tree are organized in a list, and each leaf stores the encoding
of the corresponding string Q.

The update table Tu stores, for each tree TS and for any string Q, |Q| = ∆, a pointer to the

tree T ′S (possibly the same) obtained after adding Q to TS . Table Tu uses O(2σ
∆
σ∆) = o(n) space.

The output table To stores, for every string Q of length ∆, the list of positions in the current text T
where Q occurs. To has σ∆ = o(n) entries and all lists of occurrences take O(n) space altogether.

When scanning the text, we maintain the encoding of the string Q of ∆ most recently read
symbols of T . The encoding is updated after each symbol using bit operations. After reading a
new symbol, the current tree TS is updated using table Tu and the current position is added to the
entry To[Q]. Updates take O(1) time.

To answer a query P , |P | < ∆, we find the locus u of P in the current tree TS , retrieve the
leftmost and rightmost leaves and traverse the leaves in the subtree of u. For each traversed leaf vl
with label Q, we report the occurrences stored in To[Q]. The query takes time O(|P |+ k).

4 Real-Time Indexing

The indexes for long and medium-size patterns, described in Sections 3.1 and 3.2 respectively,
do not provide real-time indexing solutions for several reasons. The index for long patterns, for
example, requires to look ahead for the forthcoming d symbols when processing symbols ti for
i = qd, q ≥ 1. Furthermore, for such i, we are unable to find occurrences of query patterns P
starting at positions ti−1 . . . ti−d+1 before processing ti. A similar situation holds for medium-size
patterns. Another issue is that in our previous development we assumed the length n of T to be
known, whereas this may of course not be the case in the real-time setting. In this Section, we
show how to fix these issues in order to turn the indexes real-time. Firstly we show how the data
structures of Sections 3.1 and 3.2 can be updated in a real-time mode. Then, we describe how to
search for patterns that start among most recently processed symbols. We describe our solutions
to these issues for the case of long patterns, as a simple change of parameters provides a solution
for medium-size patterns too. Finally, we will show how we can circumvent the fact that the length
of T is not known in advance.

In the algorithm of Section 3.1, the text is partitioned into blocks of length d, and the insertion
of a new suffix T [i..] is triggered only when the leftmost symbol ti of a block is reached. The
insertion takes time O(d) and assumes the knowledge of the forthcoming block ti+d . . . ti+1. To
turn this algorithm real-time, we apply a standard deamortization technique. We distribute the
cost of the insertion of suffix T [i−d..] over d symbols of the block ti+d . . . ti+1. This is correct, as by
the time we start reading the block ti+d . . . ti+1, we have read the block ti . . . ti−d+1 and therefore
have all necessary information to insert suffix T [i−d..]. In this way, we spend O(1) time per symbol
to update all involved data structures.

Now assume we are reading a block ti+d . . . ti+1, i.e. we are processing some symbol ti+δ for
1 ≤ δ < i. At this point, we are unable to find occurrences of a query pattern P starting at
ti+δ . . . ti+1 as well as within the two previous blocks, as they have not been indexed yet. This
concerns up to (3d − 1) most recent symbols. We then introduce a separate procedure to search
for occurrences that start in 3d leftmost positions of the already processed text. This can be done
by simply storing T in a compact form Tc where every logσ n consecutive symbols are packed into
one computer word3. Thus, Tc uses O(|T |/ logσ n) words of space. Using Tc, we can test whether

3In fact, it would suffice to store 3d− 1 most recently read symbols in compact form.

8

T [j..j − |P |+ 1] = P , for any pattern P and any position j, in O(d|P |/ logσ ne) = o(|P |/d) +O(1)
time. Therefore, checking 3d positions takes time o(|P |) +O(d) = O(|P |) for a long pattern P .

We now describe how we can apply our algorithm in the case when the text length is not known
beforehand. In this case, we assume |T | to take increasing values n0 < n1 < . . . , as long as the text
T keeps growing. Here, n0 is some appropriate initial value and ni = 2ni−1 for i ≥ 1.

Suppose now that ni is the currently assumed value of |T |. After we reach character tni/2,
during the processing of the next ni/2 symbols, we keep building the index for |T | = ni and, in
parallel, rebuild all the data structures under assumption that |T | = ni+1 = 2ni. In particular, if
log log(2ni) 6= log log ni, we build a new index for long patterns, and if log(3)(2ni) 6= log(3) ni, we
build a new index for meduim-size and short patterns. If logσ(2ni) 6= logσ ni, we also construct
a new compact representation Tc introduced earlier in this section. Altogether, we distribute the
construction cost of the data structures for T [ni..1] under assumption |T | = 2ni over the processing
of tni/2+1 . . . tni . Since O(ni) = O(ni/2), processing these ni/2 symbols remains real-time. By the
time tni has been read, all data structures for |T | = 2ni have been built, and the algorithm proceeds
with the new value |T | = ni+1. Observe finally that the intervals [ni/2 + 1, ni] are all disjoint,
therefore the overhead per letter incurred by the procedure remains constant. In conclusion, the
whole algorithm remains real-time. We finish with our main result.

Theorem 2 There exists a data structure storing a text T over a constant-size alphabet that can be
updated in O(1) worst-case time after prepending a new symbol to T . This data structure supports
reporting all occurrences of a pattern P in the current text T in O(|P | + k) time, where k is the
number of occurrences.

5 Conclusions

In this paper we presented the first real-time indexing data structure that supports reporting all
pattern occurrences in optimal time O(|P | + k). As in the previous works on this topic [14, 3, 5],
we assume that the input text is over an alphabet of constant size. It may be possible to extend
our result to alphabets of poly-logarithmic size.

Acknowledgements. GK has been supported by the Marie-Curie Intra-European fellowship for
carrier development. We thank the anonymous reviewers of ICALP’13 for helpful comments.

References

[1] A. Amir, T. Kopelowitz, M. Lewenstein, and N. Lewenstein. Towards real-time suffix tree
construction. In M. Consens and G. Navarro, editors, Proc. International Symposium on String
Processing and Information Retrieval (SPIRE), volume 3772 of Lecture Notes in Computer
Science, pages 67–78. Springer Berlin Heidelberg, 2005.

[2] A. Amir, T. Kopelowitz, M. Lewenstein, and N. Lewenstein. Towards real-time suffix tree
construction. In Proc. 12th International Conference on String Processing and Information
Retrieval (SPIRE 2005), pages 67–78, 2005.

[3] A. Amir and I. Nor. Real-time indexing over fixed finite alphabets. In Proc. 19th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pages 1086–1095, 2008.

9

[4] D. Breslauer, R. Grossi, and F. Mignosi. Simple real-time constant-space string matching.
In R. Giancarlo and G. Manzini, editors, Combinatorial Pattern Matching, volume 6661 of
Lecture Notes in Computer Science, pages 173–183. Springer Berlin Heidelberg, 2011.

[5] D. Breslauer and G. F. Italiano. Near real-time suffix tree construction via the fringe marked
ancestor problem. In Proc. 18th International Symposium on String Processing and Informa-
tion Retrieval (SPIRE 2011), pages 156–167, 2011.

[6] R. Cole and R. Hariharan. Dynamic LCA queries on trees. SIAM J. Comput., 34(4):894–923,
2005.

[7] J. Fischer and P. Gawrychowski. Alphabet-dependent string searching with wexponential
search trees. CoRR, abs/1302.3347, 2013.

[8] G. Franceschini and R. Grossi. A General Technique for Managing Strings in Comparison-
Driven Data Structures. In Proc. International Colloquium on Automata, Languages and
Programming (ICALP 2004), Lecture Notes in Computer Science, pages 606–617. Springer
Berlin / Heidelberg, 2004.

[9] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees
and shortest paths. J. Comput. Syst. Sci., 48(3):533–551, 1994.

[10] Z. Galil. String matching in real time. J. ACM, 28(1):134–149, 1981.

[11] Y. Giyora and H. Kaplan. Optimal dynamic vertical ray shooting in rectilinear planar subdi-
visions. ACM Transactions on Algorithms, 5(3), 2009.

[12] T. Kopelowitz. On-line indexing for general alphabets via predecessor queries on subsets of
an ordered list. In Proc. 53rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2012), pages 283–292, 2012.

[13] T. Kopelowitz and M. Lewenstein. Dynamic weighted ancestors. In Proc. 18th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2007), pages 565–574, 2007.

[14] S. R. Kosaraju. Real-time pattern matching and quasi-real-time construction of suffix trees
(preliminary version). In Proc. 26th Annual ACM Symposium on Theory of Computing (STOC
1994), pages 310–316. ACM, 1994.

[15] G. Kucherov, Y. Nekrich, and T. Starikovskaya. Cross-document pattern matching. In
J. Kärkkäinen and J. Stoye, editors, Proceedings of the 23rd Annual Symposium on Combina-
torial Pattern Matching (CPM), July 3-5, 2012, Helsinki (Finland), volume 7354 of Lecture
Notes in Computer Science, pages 196–207. Springer Verlag, 2012.

[16] C. W. Mortensen. Fully-dynamic two dimensional orthogonal range and line segment intersec-
tion reporting in logarithmic time. In Proc. 14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2003), pages 618–627, 2003.

[17] G. Navarro and Y. Nekrich. Top-k document retrieval in optimal time and linear space. In Proc.
23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pages 1066–1077,
2012.

10

[18] A. Slisenko. String-matching in real time: Some properties of the data structure. In Math-
ematical Foundations of Computer Science 1978, Proceedings, 7th Symposium, Zakopane,
Poland, September 4-8, 1978, volume 64 of Lecture Notes in Computer Science, pages 493–496.
Springer, 1978.

11

	1 Introduction
	2 Preliminaries
	2.1 Range Reporting and Predecessor Queries on Colored Lists
	2.2 Online Update of Suffix Trees for Small Alphabets

	3 Fast Off-Line Solution
	3.1 Long Patterns
	3.2 Medium-Size Patterns
	3.3 Short Patterns

	4 Real-Time Indexing
	5 Conclusions

