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Abstract. The tree-cut width of a graph is a graph parameter defined
by Wollan [J. Comb. Theory, Ser. B, 110:47–66, 2015] with the help
of tree-cut decompositions. In certain cases, tree-cut width appears to
be more adequate than treewidth as an invariant that, when bounded,
can accelerate the resolution of intractable problems. While designing
algorithms for problems with bounded tree-cut width, it is important to
have a parametrically tractable way to compute the exact value of this
parameter or, at least, some constant approximation of it. In this paper
we give a parameterized 2-approximation algorithm for the computation
of tree-cut width; for an input n-vertex graph G and an integer w, our
algorithm either confirms that the tree-cut width of G is more than
w or returns a tree-cut decomposition of G certifying that its tree-cut

width is at most 2w, in time 2O(w2 logw) · n2. Prior to this work, no
constructive parameterized algorithms, even approximated ones, existed
for computing the tree-cut width of a graph. As a consequence of the
Graph Minors series by Robertson and Seymour, only the existence of a
decision algorithm was known.
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1 Introduction

One of the most popular ways to decompose a graph into smaller pieces is given
by the notion of a tree decomposition. Intuitively, a graph G has a tree decom-
position of small width if it can be decomposed into small (possibly overlapping)
pieces that are altogether arranged in a tree-like structure. The width of such a
decomposition is defined as the minimum size of these pieces. The graph invari-
ant of treewidth corresponds to the minimum width of all possible tree decom-
positions and, that way, serves as a measure of the topological resemblance of
a graph to the structure of a tree. The importance of tree decompositions and
treewidth in graph algorithms resides in the fact that a wide family of NP-hard
graph problems admits FPT-algorithms, i.e., algorithms that run in f(w) ·nO(1)

steps, when parameterized by the treewidth w of their input graph. According to
the celebrated theorem of Courcelle, for every problem that can be expressed in
Monadic Second Order Logic (MSOL) [5] it is possible to design an f(w) ·n-step
algorithm on graphs of treewidth at most w. Moreover, towards improving the
parametric dependence, i.e., the function f , of this algorithm for specific prob-
lems, it is possible to design tailor-made dynamic programming algorithms on
the corresponding tree decompositions. Treewidth has also been important from
the combinatorial point of view. This is mostly due to the celebrated “planar
graph exclusion theorem” [14,15]. This theorem asserts that:

(*) Every graph that does not contain some fixed wall1 as a topological
minor2 has bounded treewidth.

The above result had a considerable algorithmic impact as every problem
for which a negative (or positive) answer can be certified by the existence of
some sufficiently big wall in its input, is reduced to its resolution on graphs
of bounded treewidth. This induced a lot of research on the derivation of fast
parameterized algorithms that can construct (optimally or approximately) these
decompositions. For instance, according to [1], treewidth can be computed in

f(OPT ) · n steps where f(w) = 2O(w3) while, more recently, a 5-approximation
for treewidth was given in [2] that runs in 2O(OPT ) · n steps.

Unfortunately, the aforementioned success stories about treewidth have some
natural limitations. In fact, it is not always possible to use treewidth for improv-
ing the tractability of NP-hard problems. In particular, there are interesting
cases of problems where no such an FPT-algorithm is expected to exist [6,7,10].
Therefore, it is an interesting question whether there are alternative, but still
general, graph invariants that can provide tractable parameterizations for such
problems.

1 We avoid the formal definition of a wall here. Instead, we provide the following image

that, we believe, provides the necessary intuition.
2 A graph H is a topological minor of a graph G if a subdivision of H is a subgraph

of G.
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A promising candidate in this direction is the graph invariant of tree-cut
width that was recently introduced by Wollan in [23]. Tree-cut width can be
seen as an “edge” analogue of treewidth. It is defined using a different type
of decompositions, namely, tree-cut decompositions that are roughly tree-like
partitions of a graph into mutually disjoint pieces such that both the size of
some “essential” extension of these pieces and the number of edges crossing two
neighboring pieces are bounded (see Section 2 for the formal definition). Our
first result is that it is NP-hard to decide, given a graph G and an integer w,
whether the input graph G has tree-cut width at most w. This follows from a
reduction from the Min Bisection problem that is presented in Subsection 2.2.
This encourages us to consider a parameterized algorithm for this problem.

bounded ∆ and tcw ≡ bounded carving-width

bounded tcw

bounded tw

Fig. 1. The relations between classes with bounded treewidth (tw) and tree-cut
width (tcw).

Another tree-like parameter that can be seen as an edge-counterpart of tree-
width is carving-width, defined in [18]. It is known that a graph has bounded
carving-width if and only if both its treewidth and its maximum degree are
bounded. We stress that this is not the case for tree-cut width, which can also
capture graphs with unbounded maximum degree and, thus, is more general
than carving-width. There are two reasons why tree-cut width might be a good
alternative for treewidth. We expose them below.

(1) Tree-cut width as a parameter. From now on we denote by tcw(G)
(resp. tw(G)) the tree-cut width (resp. treewidth) of a graph G. As it is shown
in [23] tcw(G) = O(tw(G) ·∆(G)). Moreover, in [8], it was proven that tw(G) =
O((tcw(G))2) and in Subsection 2.3, we prove that the latter upper bound is
asymptotically tight. The graph class inclusions generated by the aforementioned
relations are depicted in Fig. 1. As tree-cut width is a “larger” parameter than
treewidth, one may expect that some problems that are intractable when pa-
rameterized by treewidth (known to be W[1]-hard or open) become tractable
when parameterized by tree-cut width. Indeed, some recent progress on the de-
velopment of a dynamic programming framework for tree-cut width (see [8]) con-
firms that assumption. According to [8], such problems include Capacitated
Dominating Set problem, Capacitated Vertex Cover [6], and Balanced
Vertex-Ordering problem. We expect that more problems will fall into this
category.
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(2) Combinatorics of tree-cut width. In [23] Wollan proved the following
counterpart of (*):

(**) Every graph that does not contain some fixed wall as an immersion3

has bounded tree-cut width.

Notice that (*) yields (**) if we replace “topological minor” by “immersion” and
“treewidth” by “tree-cut width”. This implies that tree-cut width has combina-
torial properties analogous to those of treewidth. It follows that every problem
where a negative (or positive) answer can be certified by the existence of a wall as
an immersion, can be reduced to the design of a suitable dynamic programming
algorithm for this problem on graphs of bounded tree-cut width.

Computing tree-cut width. It follows that designing dynamic programming
algorithms on tree-cut decompositions might be a promising task when this
is not possible (or promising) on tree-decompositions. Clearly, this makes it
imperative to have an efficient algorithm that, given a graph G and an integer
w, constructs tree-cut decompositions of width at most w or reports that this is
not possible. Interestingly, an f(w) · n3-time algorithm for the decision version
of the problem is known to exist but this is not done in a constructive way.
Indeed, for every fixed w, the class of graphs with tree-cut width at most w
is closed under immersions [23]. By the fact that graphs are well-quasi-ordered
under immersions [16], for every w, there exists a finite set Rw of graphs such
that G has tree-cut width at most w if and only if it does not contain any of the
graphs in Rw as an immersion. From [11], checking whether an h-vertex graph H
is contained as an immersion in some n-vertex graph G can be done in f(w) ·n3
steps. It follows that, for every fixed w, there exists a polynomial algorithm
checking whether the tree-cut width of a graph is at most w. Unfortunately, the
construction of this algorithm requires the knowledge of the set Rw for every w,
which is not provided by the results in [16]. Even if we knew Rw, it is not clear
how to construct a tree-cut decomposition of width at most w, if one exists.

In this paper we make a first step towards a constructive parameterized
algorithm for tree-cut width by giving an FPT 2-approximation for it. Given
a graph G and an integer w, our algorithm either reports that G has tree-cut
width more than w or outputs a tree-cut decomposition of width at most 2w in
2O(w2 logw)n2 steps. The algorithm is presented in Section 3.

2 Problem definition and preliminary results

Unless specified otherwise, every graph in this paper is undirected and loopless
and may have multiple edges. By V (G) and E(G) we denote the vertex set
and the edge set, respectively, of a graph G. Given a vertex x ∈ V (G), the

3 A graph H is an immersion of a graph G if H can be obtained from some subgraph
of G after replacing edge-disjoint paths with edges.
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neighborhood of x is N(x) = {y ∈ V (G) | xy ∈ E(G)}. Given two disjoint sets
X and Y of V (G), we denote δG(X,Y ) = {xy ∈ E(G) | x ∈ X, y ∈ Y }. For a
subset X of V (G), we define ∂G(X) = {x ∈ X | N(x) \X 6= ∅}.

2.1 Tree-cut width and treewidth

Tree-cut width. A tree-cut decomposition of G is a pair (T,X ) where T is a
tree and X = {Xt ⊆ V (G) | t ∈ V (T )} such that

• Xt ∩Xt′ = ∅ for all distinct t and t′ in V (T ),
•
⋃
t∈V (T )Xt = V (G).

From now on we refer to the vertices of T as nodes. The sets in X are called
the bags of the tree-cut decomposition. Observe that the conditions above allow
to assign an empty bag for some node of T . Such nodes are called trivial nodes.
Observe that we can always assume that trivial nodes are internal nodes.

Let L(T ) be the set of leaf nodes of T . For every tree-edge e = {u, v} of E(T ),
we let Tu and Tv be the subtrees of T \ e which contain u and v, respectively.

We define the adhesion of a tree-edge e = {u, v} of T as follows:

δT (e) = δG(
⋃

t∈V (Tu)

Xt,
⋃

t∈V (Tv)

Xt).

For a graph G and a set X ⊆ V (G), the 3-center of (G,X) is the graph
obtained from G by repetitively dissolving every vertex v ∈ V (G) \X that has
two neighbors and degree 2 and removing every vertex w ∈ V (G) \X that has
degree at most 2 and one neighbor (dissolving a vertex x of degree two with
exactly two neighbors y and z is the operation of removing x and adding the
edge {y, z} – if this edge already exists then its multiplicity is increased by one).

Given a tree-cut decomposition (T,X ) of G and node t ∈ V (T ), let T1, . . . , T`
be the connected components of T \ t. The torso of G at t, denoted by Ht,
is a graph obtained from G by identifying each non-empty vertex set Zi :=⋃
b∈V (Ti)

Xb into a single vertex zi (in this process, parallel edges are kept). We

denote by H̄t the 3-center of (Ht, Xt). Then the width of (T,X ) equals

max ({|δT (e)| : e ∈ E(T )} ∪ {|V (H̄t)| : t ∈ V (T )}).

The tree-cut width of G, or tcw(G) in short, is the minimum width of (T,X )
over all tree-cut decompositions (T,X ) of G.

The following definitions will be used in the approximation algorithm. Let
(T,X ) be a tree-cut decomposition of G. It is non-trivial if it contains at least
two non-empty bags, and trivial otherwise. We will assume that every leaf of a
tree-cut decomposition has a non-empty bag. The internal-width of a non-trivial
tree-cut decomposition (T,X ) is

in-tcw(T,X ) = max ({|δT (e)| : e ∈ E(T )} ∪ {|V (H̄t)| : t ∈ V (T ) \ L(T )}).

If (T,X ) is trivial, then we set in-tcw(T,X ) = 0.

We decision problem corresponding to tree-cut width is the following:
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Tree-cut Width
Input: a plane graph G and a non-negative integer k.
Question: tcw(G) ≤ k?

Treewidth. A tree decomposition of a graph G is a pair (T,Y) = {Yx : x ∈
V (T )}) such that T is a tree and Y is a collection of subsets of V (G) where

•
⋃
x∈V (T ) Yx = V (G);

• for every edge {u, v} ∈ E(G) there exists x ∈ V (T ) such that u, v ∈ Yx; and
• for every vertex u ∈ V (G) the set of nodes {x ∈ V (T ) : u ∈ Yx} induces a

subtree of T .

The vertices of T are called nodes of (T,Y) and the sets Yx are called bags.
The width of a tree decomposition is the size of the largest bag minus one.
The treewidth of a graph, denoted by tw(G), is the smallest width of a tree
decomposition of G.

2.2 Computing tree-cut width is NP-complete

We prove that Tree-cut Width is NP-hard by a polynomial-time reduction
from Min Bisection, which is known to be NP-hard [9]. The input of Min
Bisection is a graphG and a non-negative integer k, and the question is whether
there exists a bipartition (V1, V2) of V (G) such that |V1| = |V2| and |δG(V1, V2)| 6
k.

Theorem 1. Tree-cut Width is NP-complete.

Proof: It is easy to see that Tree-cut Width is in NP. We present a re-
duction from Min Bisection to Tree-cut Width (see Fig. 2). Let (G, k)
be an instance of Min Bisection on n vertices. We may assume that k 6 n2

since otherwise, the instance is trivially NO. We create an instance (G′, w) with

w = n3

2 + k as follows. The vertex set V (G′) consists of a set V of size n, a set
Q of size w− 2, and the set Cx,y of size w+ 1 for every pair x, y ∈ Q. Edges are
added so that:

• G′[V ] = G.
• For every pair x, y ∈ Q, all vertices of Cx,y are adjacent with both x and y.
• Each x ∈ V is adjacent with n2 (arbitrarily chosen) vertices of Q.

We now proceed with the proof of the correctness of the above reduction. Suppose
that (G, k) is a Yes-instance to Min Bisection with a bipartition (V1, V2).
Consider a tree-cut decomposition (T,X ) in which V (T ) contains three nodes
t1, t2, q and some additional nodes. The tree T forms a star with q as the center
and all other nodes as leaves. We have Xti = Vi for i = 1, 2, Xq = Q and each
vertex of

⋃
x,y∈Q Cx,y forms a singleton bag. It is not difficult to verify that

(T,X ) is a tree-cut decomposition of G′ whose width is w. In particular, notice
that |V (H̄q)| = |Q|+ 2 = w and |δ(ti, q)| = n

2 · n
2 + k = w for i = 1, 2.
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x y u v
Q

Cxy Cuv

V

n2 n2 n2 n2

Fig. 2. The graph G′ in the transformation of the instances of Min Bisection
to equivalent instances of Tree-cut Width.

Conversely, suppose that G′ admits a tree-cut decomposition (T,X ) of width
at most w. Any two vertices x, y ∈ Q must be in the same bag since they are
connected by w + 1 disjoint paths via Cx,y. Hence, there exists a tree node, say
q, in T such that Q ⊆ Xq.

Consider the set C = {T1, . . . , T`} of the connected components of T \{q} and
let ei be the tree-edge between Ti and q. As w > |V (H̄q)| > |Q| = w−2, there are
at most two tree-edges among e1, . . . , e` such that |δT (ei)| > 3. This means that
there are at most two subtrees among T1, . . . , T` such that V ∩

⋃
t∈V (Ti)

Xt 6= ∅.
From the fact that |Q| = w− 2, at least n− 2 vertices of V are not contained in
Xq and thus there exists at least one subtree Ti such that V ∩

⋃
t∈V (Ti)

Xt 6= ∅.
If there is i such that |V ∩

⋃
t∈V (Ti)

Xt| > n
2 +1, then |δT (ei)| > (n2 +1) ·n2 > w,

a contradiction. Hence, we conclude that there are exactly two subtrees, say T1
and T2, in C such that V ∩

⋃
t∈V (Ti)

Xt 6= ∅ for i = 1, 2 and for 3 6 i 6 `,

we have V ∩
⋃
t∈V (Ti)

Xt = ∅. This, together with the fact that |Q| = w − 2,

enforces that the sets V ∩
⋃
t∈V (T1)

Xt and V ∩
⋃
t∈V (T2)

Xt make a bipartition

of V into sets of equal size. Let us call this bipartition {V1, V2}. Observe that
δT (ei) ⊇ δ(Vi, Q) ∪ δ(V1, V2), thus δT (ei) contains at least n

2 · n
2 + |δ(V1, V2)|

edges for i = 1, 2. As |δT (e1)| 6 w, it follows |δ(V1, V2)| 6 k. Therefore, (G, k) is
Yes-instance to Min Bisection which complete the proof. �

2.3 Tree-cut width vs treewidth

In this section we investigate the relation between treewidth and tree-cut width.
The following was proved in [8].

Proposition 1. For a graph of tree-cut width at most w, its treewidth is at most
2w2 + 3w.
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In the rest of this subsection we prove that the bound of Proposition 1 is
asymptotically optimal. For this we need some definitions.

Let G be a graph. Two subgraphs X and Y of G touch each other if either
V (X) ∩ V (Y ) 6= ∅ or there is an edge e = {x, y} ∈ E(G) with x ∈ V (X) and
y ∈ V (Y ). A bramble B is a collection of connected subgraphs of G pairwise
touching each other. The order of a bramble B is the minimum size of a hitting
set S of B, that is a set S ⊆ V (G) such that for every B ∈ B, S ∩ V (B) 6= ∅.
In Seymour and Thomas [17], it is known that the treewidth of a graph equals
the maximum order over all brambles of G minus one. Therefore, a bramble of
order k is a certificate that the treewidth is at least k − 1.

We next define the family of graphs H = {Hw : w ∈ N>1} as follows. The
vertex set of Hw is a disjoint union of w cliques, Q1, . . . , Qw, each containing w
vertices. For each 1 6 i 6 w, the vertices of Qi are labeled as (i, j), 1 6 j 6 w.
Besides the edges lying inside the cliques Qi’s, we add an edge between (i, j) ∈ Qi
and (j, i) ∈ Qj for every 1 6 i < j 6 w. Notice that the vertex (i, i) does not
have a neighbor outside Qi. The graph H4 is depicted in Fig. 3.

(1, 1)(1, 2)(1, 3)(1, 4)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 1)(3, 2)(3, 3)(3, 4)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

Q1

Q2

Q3

Q4

Fig. 3. The graph H4.

Lemma 1. The tree-cut width of Hw is at most w + 1.

Proof: Consider the tree-cut decomposition (T,X ), in which T is a star with t
as the center and q1, . . . , qw as leaves. For the bags, we set Xt = ∅, and Xqi = Qi
for 1 6 i 6 w. It is straightforward to verify that the tree-cut width of (T,X ) is
w + 1. �

Lemma 2. For any positive integer w, the treewidth of Hw ∈ H is at least
1
16w

2 − 1.

Proof: For notational convenience, we assume that w is even. The argument
can be easily extended to the case when w is odd. For i ∈ [w] and a set Z ⊆ [w],
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let B(i, Z) denote the set {(i, j), (j, i) : j ∈ Z}. We define Bw as

Bw = {G[B(i, Z)] : ∀i ∈ [w], ∀Z ⊆ [w] \ {i} s.t. |Z| = w/2}.

It is easy to verify that each subgraph of Bw is connected. For any i ∈ [w]
and Z ⊆ [w]\{i} such that |Z| = 1

2w, the number of cliques Qi, 1 6 i 6 w, with
which B(i, Z) has non-empty intersection is at least 1

2w+1. This means any two
elements of Bw touch each other, and thus Bw is indeed a bramble. Henceforth,
we show that the order of Bw is at least 1

16w
2.

Suppose that there is a hitting set S of Bw with |S| < 1
16w

2. We define

FS = {i ∈ [w] | |{j ∈ [w] : (j, i) ∈ V (G) \ S}| > 3

4
w}.

Claim 1. |FS | > 3
4w.

Proof of the Claim: Suppose that the contrary holds. We use a counting
argument to derive a contradiction. The set V (G) \ S is partitioned into two
sets: {(j, i) : j ∈ [w], i ∈ FS} and {(j, i) : j ∈ [w], i 6∈ FS}. We have

|V (G) \ S| 6 w · |FS |+
3

4
w · (w − |FS |) 6

3

4
w2 +

3

16
w2 =

15

16
w2,

contradicting to the assumption that |S| < 1
16w

2. 3

Claim 2. There exists i∗ ∈ FS such that |{j ∈ [w] : (i∗, j) ∈ S}| < 1
4w.

Proof of the Claim: Suppose the contrary, i.e. we have |{j ∈ [w] : (i, j) ∈
V (G) \ S}| 6 3

4w for every i ∈ FS . Notice that the set V (G) \ S is partitioned
into {(i, j) : i ∈ FS , j ∈ [w]} and {(i, j) : i ∈ [w] \ FS , j ∈ [w]}. Then,

|V (G) \ S| 6 |FS | ·
3

4
w + (w − |FS |) · w 6 w2 − 1

4
w · |FS | <

13

16
w2,

where the last inequality follows from Claim 1. This contradicts the assumption
that |S| < 1

16w
2. 3

Consider some i∗ ∈ FS satisfying the condition of Claim 2. We observe that
the set

Z = {j ∈ [w] : (j, i∗) ∈ V (G) \ S} \ ({i∗} ∪ {j ∈ [w] : (i∗, j) ∈ S})

contains at least 1
2w vertices by the definition of FS and Claim 2. Pick any subset

Z∗ of Z of size exactly 1
2w. To reach a contradiction, it suffices to show that

B(i∗, Z∗)∩S = ∅. Indeed, from the fact that Z∗ ⊆ {j ∈ [w] : (j, i∗) ∈ V (G)\S},
it follows that

∀j ∈ Z∗ (j, i∗) ∈ V (G) \ S. (1)
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By the definition of Z it follows that Z∗ ∩ {j ∈ [w] : (i∗, j) ∈ S} = ∅, which,
implies that

∀j ∈ Z∗ (i∗, j) ∈ V (G) \ S. (2)

By (1) and (2), we conclude that B(i∗, Z∗)∩S = ∅. This completes the proof. �

From Lemmata 1 and 2, we conclude to the following.

Theorem 2. For every w ∈ N>1 there exists a graph Hw such that tw(Hw) =
Ω((tcw(Hw))2).

3 The 2-approximation algorithm

We present a 2-approximation of Tree-cut Width running in time 2O(w2 logw) ·
n2. As stated in Lemma 3 below, we first observe that computing the tree-cut
width of G reduces to computing the tree-cut width of 3-edge-connected graphs.
This property can be easily derived from [23, Lemmas 10–11].

Lemma 3. Given a connected graph G, let {V1, V2} be a partition of V (G) such
that δG(V1, V2) is a minimal cut of size at most two and let w > 2 be a positive
integer. For i = 1, 2, let Gi be the graph obtained from G by identifying the vertex
set V3−i into a single vertex v3−i. Then G has tree-cut width at most w if and
only if both G1 and G2 have tree-cut width at most w.

Proof: Recall that tcw(H) 6 tcw(G) if G admits an immersion of H by [23,
Lemma 11]. Hence, in order to prove the forward implication, it suffices to prove
that Gi is an immersion of G, for i = 1, 2. If |δ(V1, V2)| = 1, for each i = 1, 2 we
can delete all vertices of V3−i except for the single vertex in N(Vi) and obtained
Gi. If |δ(V1, V2)| = 2, note that for each i = 1, 2, G[V3−i] is connected and thus
Gi can be obtained by deleting vertices, edges and lifting a sequence of edges
along the path between two vertices in N(Vi).

Conversely, let (T i,X i) be a tree-cut decomposition of Gi of width at most
w for i = 1, 2, and consider the tree-cut decomposition (T,X ) such that X =
X1∪X2 and T is obtained by the disjoint union of T 1 and T 2 after adding an edge
between t1 ∈ V (T 1) and t2 ∈ V (T 2), where ti is the tree node of Ti containing
v3−i, i.e. the vertex obtained by contracting V3−i. We remove v1 and v2 from
the bags of T .

We claim that (T,X ) is a tree-cut decomposition of width at most w. Note
first that the adhesion of (T,X ) is at most w since |δT ({t1, t2})| 6 2 and the
adhesion of (T i,X i) is at most w for i = 1, 2. From |δT ({t1, t2})| 6 2, it follows
that for i = 1, 2, the 3-center of (Hti , Xti) of the tree-decomposition (T,X ) is the
same as the 3-center of (Hti , Xti) of the tree-decomposition (T i,X i). Therefore
the width of (T,X ) is at most w. �

The proof of the next lemma is easy and is omitted.
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Lemma 4. Let G be a graph and let v be a vertex of G with degree 1 (resp. 2).
Let also G′ be the graph obtained from G after removing (resp. dissolving) v.
Then tcw(G) = tcw(G′).

From now on, based on Lemmata 3 and 4, we assume that the input graph is
3-edge-connected. In this special case, the following observation is not difficult
to verify. It allows us to work with a slightly simplified definition of the 3-centers
in a tree-cut decomposition.

Observation 1. Let G be a 3-edge-connected graph and let (T,X ) be a tree-cut
decomposition of G. Consider an arbitrary node t of V (T ) and let T be the set
containing every connected component T ′ of T \ t such that

⋃
s∈V (T ′)Xs 6= ∅.

Then |V (H̄t)| = |Xt|+ |T |, that is |V (H̄t)| = |V (Ht)|.

We observe that the proof of Lemma 3 provides a way to construct a de-
sired tree-cut decomposition for G from decompositions of smaller graphs. Given
an input graph G for Tree-cut Width, we find a minimal cut (V1, V2) with
|δ(V1, V2)| 6 2 and create a graph Gi as in Lemma 3, with the vertex v3−i marked
as distinguished. We recursively find such a minimal cut in the smaller graphs
created until either one becomes 3-edge-connected or has at most w vertices.

Therefore, a key feature of an algorithm for Tree-cut Width lies in how to
handle 3-edge-connected graphs. Our algorithm iteratively refines a tree-cut de-
composition (T,X ) of the input graph G and either guarantees that the following
invariant is satisfied or returns that tcw(G) > ω.

Invariant: (T,X ) is a tree-cut decomposition ofG where in-tcw(T,X ) 6 2·w.

Clearly the trivial tree-cut decomposition satisfies the Invariant. A leaf t of
T such that |Xt| > 2 · ω is called a large leaf. At each step, the algorithm picks
a large leaf and refines the current tree-cut decomposition by breaking this leaf
bag into smaller pieces. The process repeats until we finally obtain a tree-cut
decomposition of width at most 2w, or encounter a certificate that tcw(G) > w.

3.1 Refining a large leaf of a tree-cut decomposition

A large leaf will be further decomposed into a star. To that aim, we will solve
the following problem:

Constrained Star-Cut Decomposition
Input: An undirected graph G, an integer w ∈ N, a set B ⊆ V (G), and a weight
function γ : B → N.
Parameter: w.
Output: A non-trivial tree-cut decomposition (T,X ) of G such that

1. T is a star with central node tc and with ` leaves for some ` ∈ N+,
2. in-tcw(T,X ) 6 w, and
3. |Xtc |+ ` 6 w and for every leaf node t, γ(B ∩Xt) 6 w,
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or report that such a tree-cut decomposition does not exist.

Observe that a Yes-instance satisfies, for every x ∈ B, γ(x) 6 w. We also
notice that as the output of the algorithm is a non-trivial tree-cut decomposition,
T contains at least two nodes with non-empty bags and every leaf node is non-
empty.

Given a subset S ⊆ V (G), we define the instance of the Constrained Star-
Cut Decomposition problem I(S,G) = (G[S], w, ∂G(S), γS) where for every
x ∈ ∂G(S), γS(x) = |δG({x}, V (G) \ S)|.

Lemma 5. Let G be a 3-edge-connected graph, w ∈ Z>2, and let S ⊆ V (G) be a
set of vertices such that |S| > w+1 and |δG(S, V (G)\S)| 6 2w. If tcw(G) 6 w,
then I(S,G) = (G[S], w, ∂G(S), γS) is a Yes-instance of Constrained Star-
Cut Decomposition.

Proof: Let (T,X ) be a normalized tree-cut decomposition of G of width at
most w. We extend the weight function γS on ∂G(S) into γ′S on V (G) by setting
γ′S(v) = γS(v) for every v ∈ S and γ′S(v) = 0 otherwise. Also, given a subtree T ′

of T , we let γ′S(T ′) =
∑
t∈V (T ′)

∑
v∈Xt

γ′S(v). The idea is to identify a node tc
of T that will serve as the central node of the star decomposition. The leaves of
the star decomposition will results from the contraction of the subtrees of T \ tc
containing bags that intersect the set S. To find the node tc, we orient the edges
of T using the following two rules. Given an edge e = {x, y} ∈ E(T ):

Rule 1: orient e from x to y if γ′S(Ty) > w.

Rule 2: orient e from x to y if S ∩
⋃
t∈V (Tx)

Xt = ∅.

Let T be the resulting orientation of T . Observe that Rule 1 and 2 may leave
some edges of T non-oriented.

Claim 3. For every edge e = {x, y} of T , e is oriented either in a single direction
or not oriented in T .

Proof of the Claim: Observe that if Rule 1 orients e from x to y, neither
Rule 1 nor Rule 2 may orient e in the opposite direction. The former is an im-
mediate consequence of the fact γ′S(Tx) + γ′S(Ty) = |δG(S, V (G) \ S)| 6 2w.
Rule 2 does not orient e from y to x either: if Rule 2 does so, we have
S ∩

⋃
t∈V (Ty)

Xt = ∅ and since the value γ′S(v) is non-zero only when v ∈ S,

we conclude that γS(Ty) = 0, a contradiction to the assumption that Rule 1
oriented e from x to y. Moreover, the edge e cannot be oriented in both directions
by Rule 2 since S is non-empty and thus at least one of the sets

⋃
t∈V (Tx)

Xt

and
⋃
t∈V (Ty)

Xt intersects with S. 3

By Claim 3, T contains at least one node, say tc, which is not incident to
an out-going edge in T . Let T1, . . . , T` be the connected components of T \ tc
containing a node t such that Xt ∩ S 6= S. Observe that as |S| > w + 1 and
tcw(T,X ) = w, S cannot be included in a single bag of (T,X ) and thereby
` > 1. Consider the following tree-cut decomposition (T ∗,X ∗) of G[S]:
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• T ∗ is a star with central node tc and leaf nodes t1 . . . t`,
• the bag of node tc is X∗c = Xtc ∩ S,
• for every leaf node ti ∈ V (T ∗), we set X∗i =

⋃
t∈V (Ti)

Xt ∩ S.

Observe that (T ∗,X ∗) is a tree-cut decomposition of G[S] and since |S| > w+
1, it is non-trivial. By construction, as it is obtained from (T,X ) by contracting
subtrees and removing vertices from bags, we have that in-tcw(T ∗,X ∗) 6 w.
It remains to prove that |Xtc | + ` 6 w and that γS(∂G(S) ∩Xt) 6 w for every
leaf node t. The former inequality directly follows from Observation 1 and the
fact that (T,X ) is an optimal tree-cut decomposition of G. The latter inequality
follows from the fact that t does not have an out-going edge in T , in particular,
Rule 1 does not orient any edge incident with t outwardly from t. �

Given a 3-edge-connected graph, applying Lemma 5 on a large leaf of a tree-
cut decomposition that satisfies the Invariant, we obtain:

Corollary 1. Let G be a 3-edge-connected graph G such that tcw(G) 6 w, and
let t be a large leaf of a tree-cut decomposition (T,X ) satisfying the Invariant.
Then I(Xt, G) = (G[Xt], w, ∂G(Xt), γXt) is a Yes-instance of Constrained
Star-Cut Decomposition.

The next lemma shows that if a large leaf bag Xt of a tree-cut decomposition
(T,X ) satisfying the Invariant defines a Yes-instance of the Constraint Tree-
Cut Decomposition problem, then (T,X ) can be further refined.

Lemma 6. Let G be a 3-edge-connected graph G and (T,X ) be tree-cut decom-
position of satisfying the Invariant. If (T ∗,X ∗) is a solution of Constrained
Star-Cut Decomposition on the instance I(Xt, G) = (G[Xt], w, ∂G(Xt), γXt

)
where t is a large leaf of (T,X ), then the pair (T̃ , X̃ ) where

• V (T̃ ) = (V (T ) \ {t}) ∪ V (T ∗),
• E(T̃ ) = (E(T ) \ {(t, t′)})∪E(T ∗)∪{(tc, t′)}, where t′ is the unique neighbor
of t in T and tc is the central node of T ∗,

• X̃ = (X \ {Xt}) ∪ X ∗

is a tree-cut decomposition of G satisfying the Invariant. Moreover the number
of non-empty bags is strictly larger in (T̃ , X̃ ) than in (T,X ).

Proof: By construction, (T̃ , X̃ ) is a tree-cut decomposition of G. The fact that
(T ∗,X ∗) is non-trivial implies that the number of non-empty bags is strictly
larger in (T̃ , X̃ ) than in (T,X ).

It remains to prove that in-tcw(T̃ , X̃ ) 6 2 · w. Since (T ∗,X ∗) is a solution
to I(Xt, G), we have |X∗tc |+ ` 6 w. As G is edge 3-connected, by Observation 1,

the torso size at tc in (T̃ , X̃ ) at most w + 1, which is at most 2w. Let us verify
that the adhesion of (T̃ , X̃ ) is at most 2w. For this, it suffices to bound the value

|δT̃ (e)| for the newly created edges e = {ti, tc}, for all i ∈ [`]. We have

|δT̃ ({ti, tc})| = |δG(X̃ti , V (G) \ X̃ti)|
= |δG(X̃ti , Xt \ X̃ti)|+ |δG(X̃ti , V (G) \Xt)| 6 2w.
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The inequality follows from that (T ∗,X ∗) is a solution to I(Xt, G). More pre-
cisely, |δG(X̃ti , Xt \ X̃ti)| 6 w is implied by the fact that in-tcw(T ∗;X ) 6 w.
And |δG(X̃ti , V (G) \Xt)| 6 w is a consequence of γXt(∂G(Xt) ∩X∗ti) 6 w.

Finally, as (T ∗,X ∗) is a non-trivial tree-cut decomposition, the number of
non-trivial nodes is strictly larger in (T̃ , X̃ ) than in (T,X ). �

3.2 An FPT algorithm for Constrained Star-Cut Decomposition

Lemma 1 provides a quadratic bound on the treewidth of a graph in term of
its tree-cut width. This allows us to develop a dynamic programming algorithm
for solving Constrained Star-Cut Decomposition on graphs of bounded
treewidth. To obtain a tree-decomposition, we use the 5-approximation FPT-
algorithm of the following proposition.

Proposition 2 (see [2]). There exists an algorithm which, given a graph G
and an integer k, either correctly decides that tw(G) > w or outputs a tree-
decomposition of width at most 5w + 4 in time 2O(w) · n.

If tcw(G) 6 w, then by Lemma 1 tw(G) 6 2w2+3w. From Proposition 2, we
may assume that G has treewidth O(w2) and, based on this and the next lemma,

solve Constrained Star-Cut Decomposition in 2O(w2·logw) · n steps.
A rooted tree decomposition (T,X , r) is a tree decomposition with a distin-

guished node r selected as the root. A nice tree decomposition (T,Y, r) (see [13])
is a rooted tree decomposition where T is binary, the bag at the root is ∅, and
for each node x with two children y, z it holds Yx = Yy = Yz, and for each node
x with one child y it holds Yx = Yy ∪ {u} or Yx = Yy \ {u} for some u ∈ V (G).
Notice that a nice tree decomposition is always a rooted tree decomposition. We
need the following proposition.

Proposition 3 (see [1]). For any constant k > 1, given a tree decomposition
of a graph G of width 6 k and O(|V (G)|) nodes, there exists an algorithm that,
in O(|V (G)|) time, constructs a nice tree decomposition of G of width 6 k and
with at most 4|V (G)| nodes.

Lemma 7. Let (G,w,B, γ) be an input of Constrained Star-Cut Decom-
position and let tw(G) 6 q. There exists an algorithm that given (G,w,B, γ)
outputs, if one exists, a solution of (G,w,B, γ) in 2O((q+w) logw) · n steps.

Sketch of proof: From Proposition 3, we can assume that we are given a nice
tree-decomposition (T,Y, r) of G of width at most O(q), which can be obtained
in time 2O(q) · n because of Proposition 2. We describe dynamic programming
tables. Let Zt be the vertex set

⋃
t′∈V (Tt)

Yt′ , where Tt is the subtree of T rooted

at t. For every 1 ≤ ` ≤ w, we need to compute a collection X = {X0, . . . , X`} of
pairwise disjoint subsets of V (G) (some of them may be empty sets) such that
|X0|+ ` 6 w. The subset X0 will play the role of the bag of the central node of
the star-cut decomposition.
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To guarantee that the specification of the problem can be checked, the
dynamic programming table at node t will store a collection of quadruples
(φ, a, α, β) with the following specifications:

(i) φ : Yt → [0, `], indicating that x ∈ Yt belongs to Xφ(x) ∩ Zt;
(ii) a is a number indicating the size |X0 ∩ Zt| of the central bag in G[Zt];
(iii) α : [`]→ [0, w] is a function, indicating the weight γ(B ∩Xi ∩ Zt);
(iv) β : [`]→ [0, w] is a function, indicating |δ(Xi, Zt \Xi)|;

Suppose that we have constructed tables for all nodes of T such that: for every
node t, a quadruple (φ, a, α, β) appears in the table at node t if and only if
there exists a collection X ′ = {X ′0, . . . X ′`} meeting the specifications. It is not
difficult to see that the instance (G,w,B, γ) is Yes if and only if the table at
the root contains a quadruple (φ, a, α, β) such that `+a ≤ w. Furthermore, such
tables can be constructed using standard dynamic programming in a bottom-up
manner.

Observe that the size of the dynamic table at each node t is dominated by the
number of collections X = {X0, . . . X`} of pairwise disjoint subsets of Yt, with
` 6 w, which is 2O((q+w) logw). Maintaining these tables follows by a standard
dynamic programming algorithm. �

3.3 Piecing everything together

We now present a 2-approximation algorithm for Tree-cut Width leading to
the following result.

Theorem 3. There exists an algorithm that, given a graph G and a w ∈ Z>0,
either outputs a tree-cut decomposition of G with width at most 2w or cor-
rectly reports that no tree-cut decomposition of G with width at most w exists in
2O(w2·logw) · n2 steps.

Proof: Recall that, by Lemmata 3 and 4, we can assume that G is 3-edge-
connected. If not, we iteratively decompose G into 3-edge-connected components
using the linear-time algorithm of [22]. A tree-cut decomposition of G can easily
built from the tree-cut decomposition of its 3-edge-connected components using
Lemma 3. As mentioned earlier, the trivial tree-cut decomposition satisfies the
Invariant. Let (T,X ) be a tree-cut decomposition satisfying the Invariant. As
long as the current tree-cut decomposition (T,X ) contains a large leaf `, the
algorithm applies the following steps repeatedly:

1. Let X` ∈ X be the bag associated to a large leaf `. Compute a nice tree-
decomposition of G[X`] of width at most O(w2) in 2O(w2) · n time. If such a
decomposition does not exist, as G[X`] is a subgraph of G, Lemma 1 implies
tcw(G) > w and the algorithm stops.

2. Solve Constrained Star-Cut Decomposition on I(Xt, G) using the dy-

namic programming of Lemma 7 for q = O(w2) in time 2O(w2·logw) · n.
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3. If I(Xt, G) is a NO-instance, then by Corollary 1, tcw(G) > w and the
algorithm stops.

4. Otherwise, by Lemma 6, (T,X ) can be refined into a new tree-cut decom-
position satisfying the Invariant.

The algorithm either stops when we can correctly report that tcw(G) > w
(step 1 or 3) or when the current tree-cut decomposition has no large leaf. In the
latter case, as (T,X ) satisfies (*), it holds that tcw(T,X ) 6 2 ·w. Observe that
each refinement step (step 4) strictly increases the number of non-empty bags
(see Lemma 6). It follows that the above steps are repeated at most n times,

implying that the running time of the 2-approximation algorithm is 2O(w2·logw) ·
n2. �

4 Open problems

The main open question is on the possibility of improving the running time or
the approximation factor of our algorithm. Notice that the parameter depen-
dence 2O(w2·logw) is based on the fact that the tree-cut width is bounded by a
quadratic function of treewidth. As we proved (Theorem 2), there is no hope
of improving this upper bound. Therefore any improvement of the parametric
dependence should avoid dynamic programming on tree-decompositions or sig-
nificantly improve the running time. Another issue is whether we can improve
the quadratic dependence on n to a linear one. In this direction we actually
believe that an exact FPT-algorithm for the tree-cut width can be constructed
using the “set of characteristic sequences” technique, as this was done for other
width parameters [3, 4, 12, 19–21]. However, as this technique is more involved,
we believe that it would imply a higher parametric dependence than the one of
our algorithm.
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