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Abstract

We study the compressed representation of a ranked tree by a (string) straight-line pro-
gram (SLP) for its preorder traversal, and compare it with the well-studied representation by
straight-line context free tree grammars (which are also known as tree straight-line programs
or TSLPs). Although SLPs turn out to be exponentially more succinct than TSLPs, we show
that many simple tree queries can still be performed efficiently on SLPs, such as computing
the height and Horton-Strahler number of a tree, tree navigation, or evaluation of Boolean ex-
pressions. Other problems on tree traversals turn out to be intractable, e.g. pattern matching
and evaluation of tree automata.

1 Introduction

Grammar-based compression has become an active field in string compression during the past 20
years. The idea is to represent a given string s by a small context-free grammar that generates only
s; such a grammar is also called a straight-line program (SLP). For instance, the word (ab)1024 can
be represented by the SLP with the productions A0 → ab and Ai → Ai−1Ai−1 for 1 ≤ i ≤ 10 (A10

is the start symbol). The size of this SLP (the size of an SLP is usually defined as the total length
of all right-hand sides of the productions) is much smaller than the length of the string (ab)1024. In
general, an SLP of size n can produce a string of length 2Ω(n). Hence, an SLP can be seen indeed as
a succinct representation of the generated string. The goal of grammar-based string compression
is to construct from a given input string s a small SLP that produces s. Several algorithms for this
have been proposed and analyzed. Prominent grammar-based string compressors are for instance
LZ78, RePair, and BISECTION, see [13] for more details. The theoretically best known polynomial
time grammar-based compressors [13, 25, 38, 39] approximate the size of a smallest SLP up to a
factor O(log(n/g)), where g is the size of a smallest SLP for the input string.

Motivated by applications where large tree structured data occur, like XML processing, gram-
mar-based compression has been extended to trees [9, 10, 26, 33], see [31] for a survey. Unless
otherwise specified, a tree in this paper is always a rooted ordered tree over a ranked alphabet,
i.e., every node is labelled with a symbol and the rank of this symbol is equal to the number
of children of the node. This class of trees occurs in many different contexts like for instance
term rewriting, expression evaluation, tree automata, and functional programming. A tree over a
ranked alphabet is uniquely represented by its preorder traversal string. For instance, the preorder
traversal of the tree f(g(a), f(a, b)) is the string fgafab. It is now a natural idea to apply a string
compressor to this preorder traversal. In this paper we study the compression of ranked trees by
SLPs for their preorder traversals. This approach is very similar to [8], where unranked unlabelled
trees are compressed by SLPs for their balanced parenthesis representations. In [37] this idea is
used together with the grammar-based compressor RePair to get a new compressed suffix tree
implementation.

∗The third and fourth author are supported by the DFG-project LO 748/10-1 (QUANT-KOMP).
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In Section 4 we compare the size of SLPs for preorder traversals with two other grammar-based
compressed tree representations: the above mentioned SLPs for balanced parenthesis representa-
tions from [8] and (ii) tree straight-line programs (TSLPs) [10, 22, 26, 33]. The latter directly
generalize string SLPs to trees using context-free tree grammars that produce a single tree, see
[31] for a survey. TSLPs generalize dags (directed acyclic graphs), which are widely used as a
compact tree representation. Whereas dags only allow to share repeated subtrees, TSLPs can
also share repeated internal tree patterns. In [18] it is shown that every tree of size n over a
fixed ranked alphabet can be produced by a TSLP of size O( n

logn ), which is worst-case optimal.

A grammar-based tree compressor based on TSLPs with an approximation ratio of O(log n) was
presented in [26]. In [10], it was shown that from a given TSLP A of size m for a tree t one
can efficiently construct an SLP of size O(m · r) for the preorder traversal of t, where r is the
maximal rank occurring in t (i.e., the maximal number of children of a node). Hence, a smallest
SLP for the traversal of t cannot be much larger than a smallest TSLP for t. Our first main result
(Theorem 7) shows that SLPs can be exponentially more succinct than TSLPs: We construct a
family of binary trees tn (n ≥ 0) such that the size of a smallest SLP for the traversal of tn is
polynomial in n but the size of a smallest TSLP for tn is Ω(2n/2). We also match this lower
bound by an upper bound: Given an SLP A of size m for the traversal of a tree t of height h
and maximal rank r, one can efficiently construct a TSLP for t of size O(m · h · r) (Theorem 8).
Finally, we construct a family of binary trees tn (n ≥ 0) such that the size of a smallest SLP for
the preorder traversal of tn is polynomial in n but the size of a smallest SLP for the balanced
parenthesis representation is Ω(2n/2) (Theorem 9). Hence, SLPs for preorder traversals can be
exponentially more succinct than SLPs for balanced parenthesis representations. It remains open,
whether the opposite behavior is possible as well.

We also study algorithmic problems for trees that are encoded by SLPs. We extend some
of the results from [8] on querying SLP-compressed balanced parenthesis representations to our
context. Specifically, we show that after a linear time preprocessing we can navigate (i.e., move to
the parent node and the kth child), compute lowest common ancestors and subtree sizes in time
O(logN), where N is the size of the tree represented by the SLP (Theorem 10). For a couple
of other problems (computation of the height and depth of a node, computation of the Horton-
Strahler number, and evaluation of Boolean expressions) we provide at least polynomial time
algorithms for the case that the input tree is given by an SLP for the preorder traversal. On the
other hand, there exist problems that are polynomial time solvable for TSLP-compressed trees but
difficult for SLP-compressed trees: Examples for such problems are pattern matching, evaluation
of max-plus expressions, and membership for tree automata. Looking at tree automata is also
interesting when compared with the situation for explicitly given (i.e., uncompressed) preorder
traversals. For these, evaluating Boolean expressions (which is the membership problem for a
particular tree automaton) is NC1-complete by a famous result of Buss [11], and the NC1 upper
bound was generalized to every fixed tree automaton [28]. If we compress the preorder traversal
by an SLP, the problem is still solvable in polynomial time for Boolean expressions (Theorem 19),
but there is a fixed tree automaton where the evaluation problem becomes PSPACE-complete
(Theorem 25).

Related work on tree compression. There are also tree compressors based on other grammar
formalisms. In [1] so called elementary ordered tree grammars are used, and a polynomial time
compressor with an approximation ratio of O(n5/6) is presented. Also the top dags from [7] can
be seen as a variation of TSLPs for unranked trees. Recently, in [21] it was shown that for every

tree of size n with σ many node labels, the top dag has size O(n·log logσ n
logσ n ), which improved the

bound from [7]. An extension of TSLPs to higher order tree grammars was proposed in [27].
Another class of tree compressors use succinct data structures for trees. Here, the goal is to

represent a tree in a number of bits that asymptotically matches the information theoretic lower
bound, and at the same time allows efficient querying (ideally in time O(1)) of the data structure.
For unlabelled unranked trees of size n there exist representations with 2n+o(n) bits that support
navigation and some other tree queries in time O(1) [6, 23, 24, 36]. This result has been extended
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to labelled trees, where (log σ) ·n+2n+ o(n) bits suffice when σ is the number of node labels [16].

2 Preliminaries

Let Σ be a finite alphabet. For a string w = a1 · · · an ∈ Σ∗ we define |w| = n, w[i] = ai and
w[i : j] = ai · · ·aj where w[i : j] = ε, if i > j. Let w[: i] = w[1 : i] and w[i :] = w[i : |w|].
With rev(w) = an · · · a1 we denote w reversed. Given two strings u, v ∈ Σ∗, the convolution
u⊗ v ∈ (Σ×Σ)∗ is the string of length min{|u|, |v|} defined by (u⊗ v)[i] = (u[i], v[i]) for 1 ≤ i ≤
min{|u|, |v|}.

2.1 Complexity classes

We assume familiarity with the basic classes from complexity theory, in particular P, NP and
PSPACE. The following definitions are only needed in Section 5.3.3. The counting class #P contains
all functions f : Σ∗ → N for which there exists a nondeterministic polynomial time machine M
such that for every x ∈ Σ∗, f(x) is the number of accepting computation paths of M on input
x. The class PP (probabilistic polynomial time) contains all problems A for which there exists a
nondeterministic polynomial time machine M such that for every input x: x ∈ A if and only if
more than half of all computation paths of M on input x are accepting. By a famous result of
Toda [41], the class PPP = P#P (i.e., the class of all languages that can be decided in deterministic
polynomial time with the help of an oracle from PP contains the whole polynomial time hierarchy.
Hence, if a problem is PP-hard, then this can be seen as a strong indication that the problem
does not belong to the polynomial time hierarchy (otherwise the polynomial time hierarchy would
collapse).

The levels of the counting hierarchy C
p
i (i ≥ 0) are inductively defined as follows: C

p
0 = P

and C
p
i+1 = PPC

p

i (the set of languages accepted by a PP-machine as above with an oracle from
C
p
i ) for all i ≥ 0. Let CH =

⋃
i≥0 C

p
i be the counting hierarchy. It is not difficult to show that

CH ⊆ PSPACE, and most complexity theorists conjecture that CH ( PSPACE. Hence, if a problem
belongs to the counting hierarchy, then this can be seen as an indication that the problem is prob-
ably not PSPACE-complete. The counting hierarchy can be also seen as an exponentially blown-up
version of the circuit complexity class DLOGTIME-uniform TC0. This is the class of all languages
that can be decided with a constant-depth polynomial-size circuit family of unbounded fan-in that
in addition to normal Boolean gates may also use threshold gates. DLOGTIME-uniformity means
that one can compute in time O(log n) (i) the type of a given gate of the nth circuit, and (ii)
whether two given gates of the nth circuit are connected by a wire. Here, gates of the nth circuit
are encoded by bit string of length O(log n). More details on the counting hierarchy (resp., circuit
complexity) can be found in [4] (resp., [42]).

2.2 Trees

A ranked alphabet F is a finite set of symbols where every symbol f ∈ F has a rank rank(f) ∈ N.
We assume that F contains at least one symbol of rank zero. By Fn we denote the symbols of
F of rank n. Later we will also allow ranked alphabets, where F0 is infinite. For the purpose of
this paper, it is convenient to define trees as particular strings over the alphabet F (namely as
preorder traversals). The set T (F) of all trees over F is the subset of F∗ defined inductively as
follows: If f ∈ Fn with n ≥ 0 and t1, . . . , tn ∈ T (F), then also ft1 · · · tn ∈ T (F).

We call a string s ∈ F∗ a fragment if there exists a tree t ∈ T (F) and a non-empty string
x ∈ F+ such that sx = t. Note that the empty string ε is a fragment. Intuitively, a fragment is
a tree with gaps. The number of gaps of a fragment s ∈ F+ is formally defined as the number
n of trees t1, . . . , tn ∈ T (F) such that st1 · · · tn ∈ T (F), and is denoted by gaps(s). The number
of gaps of the empty string is defined as 0. The following lemma states that gaps(s) is indeed
well-defined.

Lemma 1. The following statements hold:

3
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Figure 1: The tree t from Example 3 and the tree fragment corresponding to the fragment
ffaafff .

• The set T (F) is prefix-free, i.e. t ∈ T (F) and tv ∈ T (F) imply v = ε.

• If t ∈ T (F), then every suffix of t factors uniquely into a concatenation of strings from
T (F).

• For every fragment s ∈ F+ there is a unique n ≥ 1 such that {x ∈ F∗ | sx ∈ T (F)} =
(T (F))n.

Since T (F) is prefix-free we immediately get:

Lemma 2. For every w ∈ F∗ there exist unique n ≥ 0, t1, . . . , tn ∈ T (F) and a unique fragment
s such that w = t1 · · · tns.

Let w ∈ F∗ and let w = t1 · · · tns as in Lemma 2. We define c(w) = (n, gaps(s)). The number
n counts the number of full trees in w and gaps(s) is the number of trees missing to make the
fragment s a tree, too.

For better readability, we occasionally write a tree ft1 · · · tn with f ∈ Fn and t1, . . . , tn ∈ T (F)
as f(t1, . . . , tn), which corresponds to the standard term representation of trees. We also consider
trees in their graph-theoretic interpretation where the set of nodes of a tree t is the set of positions
{1, . . . , |t|} of the string t. The root node is 1. If t factorizes as uft1 · · · tnv for u, v ∈ F∗, f ∈ Fn,

and t1, . . . , tn ∈ T (F), then the n children of node |u|+1 are |u|+2+
∑k

i=1 |ti| for 0 ≤ k ≤ n− 1.
We define the depth of a node in t (number of edges from the root to the node) and the height
of t (maximal depth of a node) as usual. Note that the tree t as a string is simply the preorder
traversal of the tree t seen in its standard graph-theoretic interpretation.

Example 3. Let t = ffaafffaaaa = f(f(a, a), f(f(f(a, a), a), a)) be the tree depicted in Figure 1
with f ∈ F2 and a ∈ F0. Its height is 4. All prefixes (including the empty word, excluding the full
word) of t are fragments. The fragment s = ffaafff is also depicted in Figure 1 in a graphical
way. The dashed edges visualize the gaps. We have gaps(s) = 4. For the factor u = aafffa of t
we have c(u) = (2, 3). The children of node 5 (the third f -labelled node) are 6 and 11.

2.3 Straight-line programs

A straight-line program, briefly SLP, is a context-free grammar that produces a single string.
Formally, it is a tuple A = (N,Σ, P, S), where N is a finite set of nonterminals, Σ is a finite set of
terminal symbols (Σ ∩ N = ∅), S ∈ N is the start nonterminal, and P is a finite set of productions
(or rules) of the form A → w for A ∈ N , w ∈ (N ∪ Σ)∗ such that:

• For every A ∈ N , there exists exactly one production of the form A → w, and

• the binary relation {(A,B) ∈ N ×N | (A → w) ∈ P, B occurs in w} is acyclic.

Every nonterminal A ∈ N produces a unique string valA(A) ∈ Σ∗. The string defined by A is
val(A) = valA(S). We usually omit the subscript A when the context is clear. The size of the
SLP A is |A| =

∑
(A→w)∈P |w|. One can transform an SLP A = (N,Σ, P, S) which produces a

nonempty word in linear time into Chomsky normal form, i.e. for each production (A → w) ∈ P ,
either w ∈ Σ or w = BC where B,C ∈ N .
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For an SLP A of size n we have |val(A)| ∈ 2O(n), and there exists a family of SLPs An (n ≥ 1)
such that |An| ∈ O(n) and |val(A)| = 2n. Hence, SLPs allow exponential compression.

The following lemma summarizes known results about SLPs which we will use throughout the
paper, see e.g. [30].

Lemma 4. There are linear time algorithms for the following problems:

1. Given an SLP A, compute the set of symbols occurring in val(A).

2. Given an SLP A with terminal alphabet Σ and a subset Γ ⊆ Σ, compute the number of
occurrences of symbols from Γ in val(A).

3. Given an SLP A with terminal alphabet Σ, a subset Γ ⊆ Σ, and a number i, compute the
position of the ith occurrence of a symbol from Γ in val(A) (if it exists).

4. Given an SLP A and i, j ∈ {1, . . . , |val(A)|} where i ≤ j, compute an SLP for val(A)[i : j].
The size of the SLP for val(A)[i : j] is bounded by O(|A|).

2.4 Tree straight-line programs

We now define tree straight-line programs. Let F and V be two disjoint ranked alphabets, where we
call elements from F terminals and elements from V nonterminals. Let further X = {x1, x2, . . . }
be a countably infinite set of parameters (disjoint from F and V), which we treat as symbols of
rank zero. In the following we consider trees over F ∪V ∪X . The size |t| of such a tree t is defined
as the number of nodes labelled by a symbol from F ∪ V , i.e. we do not count parameter nodes.
A tree straight-line program A, or short TSLP, is a tuple A = (V ,F , P, S), where V is the set of
nonterminals, F is the set of terminals, S ∈ V0 is the start nonterminal and P is a finite set of
productions of the form A(x1, . . . , xn) → t (which is also briefly written as A → t), where n ≥ 0,
A ∈ Vn and t ∈ T (F ∪ V ∪ {x1, . . . , xn}) is a tree in which every parameter xi (1 ≤ i ≤ n) occurs
at most once, such that:

• For every A ∈ Vn there exists exactly one production of the form A(x1, . . . , xn) → t, and

• the binary relation {(A,B) ∈ V × V | (A → t) ∈ P,B is a label in t} is acyclic.

These conditions ensure that exactly one tree valA(A) ∈ T (F ∪{x1, . . . , xn}) is derived from every
nonterminal A ∈ Vn by using the rules as rewriting rules in the usual sense. As for SLPs, we omit
the subscript A when the context is clear. The tree defined by A is val(A) = valA(S). The size |A|
of a TSLP A = (V ,F , P, S) is |A| =

∑
(A→t)∈P |t|. We call a TSLP monadic if every nonterminal

has rank at most one. One can transform every TSLP A into a monadic one of size O(|A| · r),
where r is the maximal rank of a terminal in A [34]. TSLPs, where every nonterminal has rank 0
correspond to dags (the nodes of the dag are the nonterminals of the TSLP).

For a TSLP A of size n we have |val(A)| ∈ 2O(n), and there exists a family of TSLPs An (n ≥ 1)
such that |An| ∈ O(n) and |val(A)| = 2n. Hence, analogously to SLPs, TSLPs allow exponential
compression. One can also define nonlinear TSLPs where parameters can occur multiple times
on right-hand sides; these can achieve doubly exponential compression but have the disadvantage
that many algorithmic problems become more difficult, see e.g. [32].

For every word w (resp., tree t) there exists a smallest SLP (resp., TSLP) A. It is known that,
unless P = NP, there is no polynomial time algorithm that finds a smallest SLP (resp., TSLP) for
a given word [13] (resp. tree).

3 Checking whether an SLP produces a tree

In this section we show that, given an SLP A and a ranked alphabet F , we can verify in time
linear in |A|, whether val(A) ∈ T (F). In other words, we present a linear time algorithm for the
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compressed membership problem for the language T (F) ⊆ F∗. We remark that T (F) is a context-
free language, which can be seen by considering the grammar with productions S → fSn for all
symbols f ∈ Fn. In general the compressed membership problem for context-free languages can be
solved in PSPACE and there exists a deterministic context-free language with a PSPACE-complete
compressed membership problem [12, 29].

Theorem 5. Given an SLP A, one can check in time O(A), whether val(A) ∈ T (F).

Proof. Let A = (N,F , P, S) be in Chomsky normal form and let A ∈ N . Due to Lemma 2,
we know that val(A) is the concatenation of trees and a (possibly empty) fragment. Define
c(A) := c(val(A)). Then val(A) ∈ T (F) if and only if c(S) = (1, 0). Hence, it suffices to compute
c(A) for all nonterminals A ∈ N . We do this bottom-up. If (A → f) ∈ P with f ∈ Fn, then we
have

c(A) =

{
(1, 0) if n = 0

(0, n) otherwise.

Now consider a nonterminal A with the rule (A → BC) ∈ P , and let c(B) = (b1, b2), c(C) =
(c1, c2). We claim that

c(A) =

{
(b1 + c1 −max{1, b2}+ 1, c2) if b2 ≤ c1

(b1, c2 + b2 − c1 −min{1, c2}) otherwise.

Let val(B) = t1 · · · tb1s and val(C) = t′1 · · · t
′
c1s

′, where t1, . . . , tb1 , t
′
1, . . . , t

′
c1 ∈ T (F) and s (resp.,

s′) is a fragment with gaps(s) = b2 (resp., gaps(s′) = c2). We distinguish two cases:

Case b2 ≤ c1: If b2 ≥ 1, then the string st′1 · · · t
′
b2

is a tree, and thus val(A) contains b1+1+(c1−b2)
full trees and the fragment s′ with c2 many gaps. On the other hand, if b2 = 0, then val(A) contains
b1 + c1 many full trees.

Case b2 > c1: The trees t′1, . . . , t
′
c1 fill c1 many gaps of s, and if s′ 6= ε, then the fragment s′ fills

one more gap, while creating another c2 gaps. In total there are b2 − (c1 + 1) + c2 gaps if c2 > 0
and b2 − c1 gaps if c2 = 0.

4 SLPs for traversals versus other grammar-based tree rep-

resentations

In this section, we compare the worst case size of SLPs for traversals with the following two
grammar-based tree representations:

• TSLPs, and

• SLPs for balanced parenthesis sequences [8].

4.1 SLPs for traversals versus TSLPs

In [10] it is shown that a TSLP A producing a tree t ∈ T (F) can always be transformed into
an SLP of size O(|A| · r) producing t, where r is the maximal rank of a label occurring in t. So,
for binary trees the size at most doubles. In this section we will discuss the other direction, i.e.
transforming an SLP into a TSLP. Let a be a symbol of rank 0 and let fn be a symbol of rank n for
each n ∈ N. Now let tn be the tree fna

n and consider the family of trees (tn)n∈N with unbounded
rank. The size of the smallest TSLP for tn is n + 1, whereas the size of the smallest SLP for tn
is in O(log n). It is less obvious that such an exponential gap can be also realized with trees of
bounded rank. In the following we construct a family of binary trees (tn)n∈N where a smallest
TSLP for tn is exponentially larger than the size of a smallest SLP for tn. Afterwards we show
that it is always possible to transform an SLP A for t into a TSLP of size O(|A| ·h · r) for t, where
h is the height of t and r is the maximal rank of a label occurring in t.

6



fi1
fi2

fin

$ jn

j2

j1

Figure 2: The comb tree t(u, v) for u = i1 · · · in and v = j1 · · · jn

4.1.1 Worst-case comparison of SLPs and TSLPs

We use the following result from [5] for the previously mentioned worst-case construction of a
family of binary trees:

Theorem 6 (Thm. 2 from [5]). For every n > 0, there exist words un, vn ∈ {0, 1}∗ with |un| = |vn|
such that un and vn have SLPs of size nO(1), but the smallest SLP for the convolution un ⊗ vn
has size Ω(2n/2).1

For two given words u = i1 · · · in ∈ {0, 1}∗ and v = j1 · · · jn ∈ {0, 1}∗ we define the comb tree

t(u, v) = fi1(fi2(. . . fin($, jn) . . . j2), j1)

over the ranked alphabet {f0, f1, 0, 1, $} where f0, f1 have rank 2 and 0, 1, $ have rank 0. See
Figure 2 for an illustration.

Theorem 7. For every n > 0 there exists a tree tn such that the size of a smallest SLP for tn is
polynomial in n, but the size of a smallest TSLP for tn is in Ω(2n/2).

Proof. Let us fix an n and let un and vn be the aforementioned strings from Theorem 6. Let
|un| = |vn| = m. Consider the comb tree tn := t(un, vn). Note that tn = fi1 · · · fim$ rev(vn),
where un = i1 · · · im. By Theorem 6 there exist SLPs of size nO(1) for un and vn, and these SLPs
easily yield an SLP of size nO(1) for tn.

Next, we show that a TSLP A for tn yields an SLP of size O(|A|) for the string un ∧ vn. Since
a smallest SLP for un ∧ vn has size Ω(2n/2) by Theorem 6, the same bound must hold for the size
of a smallest TSLP for tn.

Let A be a TSLP for tn. By [34] we can transform A into a monadic TSLP A′ for tn of size
O(|A|). We transform the TSLP A′ into an SLP of the same size for un ⊗ vn. We can assume
that every nonterminal except for the start nonterminal S occurs in a right-hand side and every
nonterminal occurs in the derivation starting from S. At first we delete all rules of the form
A → j (j ∈ {0, 1}) and replace the occurrences of A by j in all right-hand sides. Now every
nonterminal A 6= S of rank 0 derives to a subtree of tn that contains the unique $-leaf of tn.
Hence, tn contains a unique subtree val(A). This implies that A occurs exactly once in a right
hand side. We can therefore without size increase replace this occurrence of A by the right-hand
side of A. After this step, S is the only rank-0 nonterminal in the TSLP. With the same argument,
we can also eliminate rank-1 nonterminals that derive to a tree containing the unique leaf $. After
this step, every rank-1 nonterminal A(x) derives a tree of the form g1(g2(. . . (gk(x, jk) . . . ), j2), j1)
(gi ∈ {f0, f1} and ji ∈ {0, 1}).

Now, if a right-hand side contains a subtree fi(s1, s2), then s2 must be either 0 or 1. Similarly,
for every occurrence of i ∈ {0, 1} in a right-hand side, the parent node of that occurrence must
be either labelled with f0 or f1 (note that the parent node exists and cannot be a nonterminal).
Therefore we can obtain an SLP for un ⊗ vn by replacing every production A(x) → t(x) by
A → λ(t(x)), where λ(t(x)) is the string obtained inductively by λ(x) = ε, λ(B(s(x)) = Bλ(s(x))
for nonterminals B, and λ(fi(s(x), j)) = (i, j)λ(s(x)). The production for S must be of the form
S → t($) for a term t(x) and we replace it by S → λ(t(x))$.

1Actually, in [5] the result is not stated for the convolution un ⊗ vn but the literal shuffle of un and vn which
is un[1]vn[1]un[2]vn[2] · · · un[m]vn[m]. But this makes no difference, since the sizes of the smallest SLPs for the
convolution and literal shuffle, respectively, of two words differ only by multiplicative constants.
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4.1.2 Conversion of SLPs to TSLPs

Note that the height of the tree tn in Theorem 7 is linear in the size of tn. By the following result,
large height and rank are always responsible for the exponential succinctness gap between SLPs
and TSLPs.

Theorem 8. Let t ∈ T (F) be a tree of height h and maximal rank r, and let A be an SLP for t
with |A| = m. Then there exists a TSLP B with val(B) = t such that |B| ∈ O(m · h · r), which can
be constructed in time O(m · h · r).

Proof. Without loss of generality we assume that A is in Chomsky normal form. For every non-
terminal A of A with c(A) = (a1, a2) we introduce a1 nonterminals A1, . . . , Aa1

of rank 0 (these
produce one tree each) and, if a2 > 0, one nonterminal A′ of rank a2 for the fragment encoded
by A. For every rule of the form A → f with f ∈ Fn we add to B the TSLP-rule A1 → f if
n = 0 or A′(x1, . . . , xn) → f(x1, . . . , xn) if n ≥ 1. Now consider a rule of the form A → BC with
c(B) = (b1, b2) and c(C) = (c1, c2).

Case 1: If b2 = 0 we add the following rules to B:

Ai → Bi for 1 ≤ i ≤ b1

Ab1+i → Ci for 1 ≤ i ≤ c1

A′(x1, . . . , xc2) → C′(x1, . . . , xc2) if c2 > 0

Case 2: If 0 < b2 ≤ c1 we add the following rules to B:

Ai → Bi for 1 ≤ i ≤ b1

Ab1+1 → B′(C1, . . . , Cb2)

Ab1+1+i → Cb2+i for 1 ≤ i ≤ c1 − b2

A′(x1, . . . , xc2) → C′(x1, . . . , xc2) if c2 > 0

Case 3: If b2 > c1 we add the following rules to B, where d = b2 − c1:

Ai → Bi for 1 ≤ i ≤ b1

A′(x1, . . . , xd) → B′(C1, . . . , Cc1 , x1, . . . , xd) if c2 = 0

A′(x1, . . . , xc2+d−1) → B′(C1, . . . , Cc1 , C
′(x1, . . . , xc2), xc2+1, . . . , xc2+d−1) if c2 > 0

Chain productions, where the right-hand side consists of a single nonterminal, can be eliminated
without size increase. Then, only one of the above productions remains and its size is bounded by
c1 + 2 (recall that we do not count parameters). Recall that c1 is the number of complete trees
produced by C. It therefore suffices to show that the number of complete trees of a factor s of t
is bounded by h · r, where h is the height of t and r is the maximal rank of a label in t. Assume
that s = t[i : j] = t1 · · · tns

′, where ti ∈ T (F) and s′ is a fragment. Let k be the lowest common
ancestor of i and j. If k = i (i.e., i is an ancestor of j) then either s = t1 or s = s′. Otherwise,
the root of every tree tl (1 ≤ l ≤ n) is a child of a node on the path from i to k. The length of
the path from i to k is bounded by h, hence n ≤ h · r.

4.2 SLPs for traversals versus balanced parenthesis sequences

Balanced parenthesis sequences are widely used as a succinct representation of ordered unranked
unlabeled trees [36]. One defines the balanced parenthesis sequence bp(t) of such a tree t induc-
tively as follows. If t consists of a single node, then bp(t) = (). If the root of t has n children
in which the subtrees t1, . . . , tn are rooted (from left to right), then bp(t) = (bp(t1) · · · bp(tn)).
Hence, a tree with n nodes is represented by 2n bits, which is optimal in the information theoretic
sense. On the other hand, an unlabelled full binary tree t (i.e., a tree where every non-leaf node
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Figure 3: Example tree for the proof of Theorem 9

has exactly two children) of size n can be represented with n bits by viewing t as a ranked tree
over F = {a, f}, where f has rank two and a has rank zero.

Theorem 9. For every n > 0 there exists a full binary tree tn such that the size of a smallest
SLP for tn is polynomial in n, but the size of a smallest SLP for bp(tn) is in Ω(2n/2).

Proof. Let us fix an n and let un, vn ∈ {0, 1}∗ be the strings from Theorem 6. Let |un| = |vn| = m.
We define tn by

tn = ϕ1(rev(un)) aϕ2(vn)

where ϕ1, ϕ2 : {0, 1}∗ → {a, f}∗ are the homomorphisms defined as follows:

ϕ1(0) = f ϕ2(0) = a

ϕ1(1) = faf ϕ2(1) = faa

It is easy to see that tn is indeed a tree (note that the string ϕ2(vn) is a sequence of m many
trees). From the SLPs for un and vn we obtain an SLP for tn of size polynomial in n. It remains
to show that the smallest SLP for bp(tn) has size Ω(2n/2). To do so, we show that from an SLP
for bp(tn) we can obtain with a linear size increase an SLP for the convolution of un and vn. In
fact, we show the following claim:

Claim. The convolution un ⊗ vn can be obtained from a suffix of bp(tn) by a fixed rational
transformation (i.e., a deterministic finite automaton that outputs along every transition a finite
word over some output alphabet).

This claim proves the theorem using the following two facts:

• An SLP for a suffix of a string val(A) (for an SLP A) can be produced by an SLP of size
O(|A|) by point 4 of Lemma 4.

• For every fixed rational transformation ρ, an SLP for ρ(val(A)) can be produced by an SLP
of size O(|A|) [5, Theorem 1] (the O-constant depends on the rational transformation).

To see why the above claim holds, it is the best to look at an example. Assume that un = 10100
and vn = 10010. Hence, we have

tn = ϕ1(rev(un)) aϕ2(vn) = f f faf f faf a faa a a faa a.

9



This tree is shown in Figure 3. We have

bp(tn) = (
0
(
0
(()(︸︷︷︸
1

(
0
(()(︸︷︷︸
1

() (()())))︸ ︷︷ ︸
(1,1)

())︸︷︷︸
(0,0)

()))︸︷︷︸
(1,0)

(()()))︸ ︷︷ ︸
(0,1)

())︸︷︷︸
(0,0)

.

Indeed, bp(tn) starts with an encoding of the string rev(un) (here 00101) via the correspondence
0 =̂ ( and 1 =̂ (()(, followed by () (which encodes the single a between ϕ1(rev(un)) and ϕ2(vn)
in tn), followed by the desired encoding of the convolution un ⊗ vn. The latter is encoded by the
following correspondence:

(0, 0) =̂ ())

(1, 0) =̂ ()))

(0, 1) =̂ (()()))

(1, 1) =̂ (()()))).

So, a 0 (resp., 1) in the second component is encoded by () (resp., (()())), which corresponds to
the tree a (resp., faa). A 0 (resp., 1) in the first component is encoded by one (resp., two) closing
parenthesis.

Note that the strings ()), ())), (()())), (()()))) form a prefix code. This allows to replace these
strings by the convoluted symbols (0, 0), (1, 0), (0, 1), and (1, 1), respectively, by a deterministic
rational transducer. This shows the above claim.

Theorem 9 can be also interpreted as follows: For every n > 0 there exists a full binary tree
tn such that the size of the smallest SLP for the depth-first-unary-degree-sequence (DFUDS – it
is defined in the proof of Theorem 10 below) of tn is polynomial in n, but the size of the smallest
SLP for the balanced parenthesis representation of tn is in Ω(2n/2). It remains open, whether
there is also a tree family where the opposite situation arises.

5 Algorithmic problems on SLP-compressed trees

In this section we study the complexity of several basic algorithmic problems on trees that are
represented by SLPs.

5.1 Efficient tree operations

In [8] it is shown that for a given SLP A of size n that produces the balanced parenthesis rep-
resentation of an unranked tree t of size N , one can produce in time O(n) a data structure of
size O(n) that supports navigation as well as other important tree queries (e.g. lowest common
ancestors queries) in time O(logN). Here, the word RAM model is used, where memory cells can
store numbers with logN bits and arithmetic operations on logN -bit numbers can be carried out
in constant time. An analogous result was shown in [7, 21] for top dags. Here, we show the same
result for SLPs that produce (preorder traversals of) ranked trees. Recall that we identify the
nodes of a tree t with the positions 1, . . . , |t| in the string t.

Theorem 10. Given an SLP A of size n for a tree t ∈ T (F) of size N , one can produce in
time O(n) a data structure of size O(n) that allows to do the following computations in time
O(logN) ≤ O(n) on a word RAM, where i, j, k ∈ N with 1 ≤ i, j ≤ N are given in binary
notation:

(a) Compute the parent node of node i > 1 in t.

(b) Compute the kth child of node i in t, if it exists.

(c) Compute the number k such that i > 1 is the kth child of its parent node.
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(d) Compute the size of the subtree rooted at node i.

(e) Compute the lowest common ancestor of nodes i and j in t.

Proof. In [8], it is shown that for an SLP A of size n that produces a well-parenthesized string
w ∈ {(, )}∗ of length N , one can produce in time O(n) a data structure of size O(n) that allows
to do the following computations in time O(logN) on a word RAM, where 1 ≤ k, j ≤ N are given
in binary notation and b ∈ {(, )}:

• Compute the number of positions 1 ≤ i ≤ k such that w[i] = b (rankb(k)).

• Compute the position of the kth occurrence of b in w if it exists (selectb(k)).

• Compute the position of the matching closing (resp., opening) parenthesis for an opening
(resp., closing) parenthesis at position k (findclose(k) and findopen(k)).

• Compute the left-most position i ∈ [k, j] having the smallest excess value in the interval
[k, j], where the excess value at a position i is rank((i)− rank)(i) (rmqi(k, j)).

Let us now take an SLP A of size n for a tree t ∈ T (F) of size N and let s be the corre-
sponding unlabelled tree. In [6], the DFUDS-representation (DFUDS for depth-first-unary-degree-
sequence) of s is defined as follows: Walk over the tree in preorder and write down for every node
with d children the string (d) (d opening parenthesis followed by a closing parenthesis). Finally
put an additional opening parenthesis at the beginning of the resulting string, which yields a
well-parenthesized string. For instance, for the tree g(f(a, a), a, h(a)) we obtain the DFUDS-
representation ( ((() (() ) ) ) () ). Clearly, from the SLP A we can produce an SLP B for the
DFUDS-representation of the tree s: Simply replace in right-hand sides every occurrence of a
symbol f of rank d by (d), and add an opening parenthesis in front of the right-hand side of the
start nonterminal.

The starting position of the encoding of a node i ∈ {1, . . . , N} in the DFUDS-representation
can be found as select)(i − 1) + 1 for i > 1, and for i = 1 it is 2. Vice, versa if k is the starting
position of the encoding of a node in the DFUDS-representation, then the preorder number of
that node is rank)(k − 1) + 1.

In [6, 24], it is shown that the tree navigation operations from the theorem can be implemented
on the DFUDS-representation using a constant number of rank, select, findclose(k), findopen(k) and
rmqi-operations. Together with the above mentioned results from [8] this shows the theorem.

The data structure of [8] allows to compute the depth and height of a given tree node in time
O(logN) as well. It is not clear to us, whether this result can be extended to our setting as
well. In [24] it is shown that the depth of a given node can be computed in constant time on the
DFUDS-representation. But this uses an extra data structure, and it is not clear whether this extra
data structure can be adapted so that it works for an SLP-compressed DFUDS-representation.
On the other hand, in Section 5.3, we show that the height and depth of a given node of an
SLP-compressed tree can be computed in polynomial time at least.

5.2 Pattern matching

In contrast to navigation problems, simple pattern matching problems become quite difficult for
SLP-compressed trees. The pattern matching problem for SLP-compressed trees can be formalized
as follows: Given a tree s ∈ T (F ∪X ), called the pattern, where every parameter x ∈ X occurs at
most once, and an SLP A producing a tree t ∈ T (F), is there a substitution σ : X → T (F) such
that σ(s) is a subtree of t? Here, σ(s) ∈ T (F) denotes the tree obtained from s by substituting
each variable x ∈ X by the tree σ(x). Note that the pattern is given in uncompressed form. If the
tree t is given by a TSLP, the corresponding problem can be solved in polynomial time [40] (even
if the pattern tree s is given by a TSLP as well).

Theorem 11. The pattern matching problem for SLP-compressed trees is NP-complete. Moreover,
NP-hardness holds for a fixed pattern of the form f(x, a)
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Proof. The problem is contained in NP because one can guess a node i ∈ {1, . . . , |t|} and verify
whether the subtree of t rooted in imatches the pattern s. The verification is possible in polynomial
time by comparing all relevant symbols using Theorem 10.

By [30, Theorem 3.13] it is NP-complete to decide for given SLPsA,B over {0, 1}with |val(A)| =
|val(B)| whether there exists a position i such that val(A)[i] = val(B)[i] = 1. This question can be
reduced to the pattern matching problem with a fixed pattern. One can compute in polynomial
time from A and B an SLP T for the comb tree t(val(A), val(B)). There exists a position i such
that val(A)[i] = val(B)[i] = 1 if and only if the pattern f1(x, 1) occurs in t(val(A), val(B)).

5.3 Tree evaluation problems

The algorithmic difficulty of SLP-compressed trees already becomes clear when computing the
height. For TSLPs it is easy to see that the height of the produced tree can be computed in linear
time: Compute bottom-up for each nonterminal the height of the produced tree and the depths of
the parameter nodes. However, this direct approach fails for SLPs since each nonterminal encodes
a possibly exponential number of trees. The crucial observation to solve this problem is that one
can store and compute the required information for each nonterminal in a compressed form.

In the following we present a general framework to define and solve evaluation problems on SLP-
compressed trees. We assign to each alphabet symbol of rank n an n-ary operator which defines
the value of a tree by evaluating it bottom-up. This approach includes natural tree problems like
computing the height of a tree, evaluating a Boolean expression or determining whether a fixed
tree automaton accepts a given tree. We only consider operators on Z but other domains with an
appropriate encoding of the elements are also possible. To be able to consider arbitrary arithmetic
expressions properly, it is necessary to allow the set of constants of a ranked alphabet F to be
infinite, i.e. F0 ⊆ Z.

Definition 12. Let D ⊆ Z be a (possibly infinite) domain of integers and let F be a ranked
alphabet with F0 = D. An interpretation I of F over D assigns to each function symbol f ∈ Fn an
n-ary function fI : Dn → D with the restriction that aI = a for all a ∈ D. We lift the definition
of I to T (F) inductively by

(f t1 · · · tn)
I = fI(tI1 , . . . , t

I
n),

where f ∈ Fn and t1, . . . , tn ∈ T (F).

Definition 13. The I-evaluation problem for SLP-compressed trees is the following problem:
Given an SLP A over F with val(A) ∈ T (F), compute val(A)I .

5.3.1 Reduction to caterpillar trees

In this section, we reduce the I-evaluation problem for SLP-compressed trees to the corresponding
problem for SLP-compressed caterpillar trees. A tree t ∈ T (F) is called a caterpillar tree if every
node has at most one child which is not a leaf. Let s ∈ F∗ be an arbitrary string. Then sI ∈ F∗

denotes the unique string obtained from s by replacing every maximal substring t ∈ T (F) of s by
its value tI . By Lemma 2 we can factorize s uniquely as s = t1 · · · tnu where t1, . . . , tn ∈ T (F)
and u is a fragment. Hence sI = m1 · · ·mnu

I with m1, . . . ,mn ∈ D. Since u is a fragment, the
string uI is the fragment of a caterpillar tree (briefly, caterpillar fragment in the following).

Example 14. Let F = {0, 1, 2,+,×} with the standard interpretation on integers (+ and × are
considered as binary operators). Consider s = 0 2 + 2 + + × 2 + 2 1 + ×. Since +21 evaluates to
3, and ×23 evaluates to 6, we have sI = 0 2 + 2 + +6 +×.

Our reduction to caterpillar trees only works for interpretations that satisfy a certain growth
condition. We say that an interpretation I is polynomially bounded, if there exist constants α, β ≥ 0
such that for every tree t ∈ T (F) (we denote the absolute value of an integer by z by abs(z) instead
of |z| in order to get not confused with the size |t| of a tree),

abs(tI) ≤

(
β · |t|+

∑

i∈L

abs(t[i])

)α
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where L ⊆ {1, . . . , |t|} is the set of leaves of t. The purpose of this definition is to ensure that
for every SLP A with val(A) ∈ T (F), both the length of the binary encoding of val(A)I and the
integer constants that appear in A are polynomially bounded in |A|.

Theorem 15. Let I be a polynomially bounded interpretation. Then the I-evaluation problem for
SLP-compressed trees is polynomial time Turing-reducible to the I-evaluation problem for SLP-
compressed caterpillar trees.

Proof. In the proof we use an extension of SLPs by the cut-operator, called composition systems.
A composition system A = (N,Σ, P, S) is an SLP where P may also contain rules of the form
A → B[i : j] where A,B ∈ N and i, j ≥ 0. Here we let val(A) = val(B)[i : j]. It is known [19] (see
also [30]) that a given composition system can be transformed in polynomial time into an SLP
with the same value. One can also allow mixed rules A → X1 · · ·Xn where each Xi is either a
terminal, a nonterminal or an expression of the form B[i : j], which clearly can be eliminated in
polynomial time.

Let A = (N,F , P, S) be the input SLP in Chomsky normal form. We use the notation c(A) =
c(val(A)) as in the proof of Theorem 5. We will compute a composition system where for each
nonterminal A ∈ N there are nonterminals A1 and A2 in the composition system such that the
following holds: Assume that val(A) = t1 · · · tn s, where t1, . . . , tn ∈ T (F) and s is a fragment.
Hence, c(A) = (n, gaps(s)). Then we will have

• val(A1) = tI1 · · · t
I
n ∈ D∗, and

• val(A2) = sI .

In particular, val(A1)val(A2) = val(A)I and val(A)I is given by the single number in val(S1).
The computation is straightforward for rules of the form A → f with A ∈ N and f ∈ F : If

rank(f) = 0, then val(A1) = f and val(A2) = ε. If rank(f) > 0, then val(A1) = ε and val(A2) = f .
For a nonterminal A ∈ N with the rule A → BC we make a case distinction depending on

c(B) = (b1, b2) and c(C) = (c1, c2).

Case b2 ≤ c1: Then concatenating val(B) and val(C) yields a new tree tnew (or ε if b2 = 0) in
val(A). Note that tInew is the value of the tree val(B2) val(C1)[1 : b2]. Hence we can compute tInew
in polynomial time by computing an SLP that produces val(B2) val(C1)[1 : b2] and querying the
oracle for caterpillar trees. We add the following rules to the composition system:

A1 → B1 t
I
new C1[b2 + 1 : c1]

A2 → C2

Case b2 > c1: Then all trees and the fragment produced by C are inserted into the gaps of the
fragment encoded by B. If c1 = 0 (i.e., val(C1) = ε), then we add the productions A1 → B1 and
A2 → B2C2. Now assume that c1 > 0. Consider the fragment

s = val(B2) val(C1) val(C2).

Intuitively, this fragment s is obtained by taking the caterpillar fragment val(B2), where the first
c1 many gaps are replaced by the constants from the sequence val(C1) and the (c1 + 1)st gap is
replaced by the caterpillar fragment val(C2), see Figure 4. If s is not already a caterpillar fragment,
then we have to replace the (unique) largest factor of s which belongs to T (F) by its value under
I to get sI . To do so we proceed as follows: Consider the tree t′ = val(B2) val(C1) ⋄b2−c1 , where
⋄ is an arbitrary symbol of rank 0, and let r = |val(B2)|+ c1 + 1 (the position of the first ⋄ in t′).
Let q be the parent node of r, which can be computed in polynomial time by Theorem 10. Using
Lemma 3 we compute the position p of the first occurrence of a symbol in t′[q+1 :] with rank > 0.
If no such symbol exists, then s is already a caterpillar fragment and we add the rules A1 → B1

and A2 → B2C1C2 to the composition system. Otherwise p is the first symbol of the largest factor
from T (F) described above. Using Theorem 10(d), we can compute in polynomial time the last
position p′ of the subtree of t′ that is rooted in p. Note that the position p must belong to val(B2)
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Figure 4: An example for case 2 in the proof of Theorem 15. In the left fragment we insert the
trees a, b, a, a and the fragment faf . The latter yield, together with a part of the fragment, a new
tree tcat.

and that p′ must belong to val(C1) (since c1 > 0). The string tcat = (val(B2) val(C1))[p : p′] is
a caterpillar tree for which we can compute an SLP in polynomial time by the above remark on
composition systems. Hence, using the oracle we can compute the value tIcat. We then add the
rules

A1 → B1,

A′ → B2C1, and

A2 → A′[: p− 1] tIcatA
′[p′ + 1 :]C2

to the composition system. This completes the proof.

5.3.2 Polynomial time solvable evaluation problems

Next, we present several applications of Theorem 15. We start with the height of a tree.

Theorem 16. The height of a tree t ∈ T (F) given by an SLP A is computable in polynomial
time.

Proof. We can assume that t is not a single constant. We replace every symbol in F0 by the integer
0. Then, the height of t is given by its value under the interpretation I with fI(a1, . . . , an) =
1 + max{a1, . . . , an} for symbols f ∈ Fn with n > 0. Clearly, I is polynomially bounded. By
Theorem 15 it is enough to show how to evaluate a caterpillar tree t given by an SLP A in
polynomial time under the interpretation I. But note that in this caterpillar tree, arbitrary
natural numbers may occur at leaf positions.

Let Dt = {d ∈ N | d labels a leaf of t}. The size of this set is bounded by |A|. For d ∈ Dt let
vd be the largest (i.e., deepest) node such that d is the label of a child of node vd (in particular,
vd is not a leaf). Let us first argue that vd can be computed in polynomial time.

Let k be the maximal position in t where a symbol of rank larger than zero occurs. The
number k is computable in polynomial time by Lemma 4 (point 2 and 3). Again using Lemma 4
we compute the position of d’s last (resp., first) occurrence in t[: k] (resp., t[k + 1 :]). Then using
Theorem 10 we compute the parent nodes of those two nodes in t and take the maximum (i.e.,
the deeper one) of both. This node is vd.

Assume that Dt = {d1, . . . , dm}, where w.l.o.g. vd1
< vd2

< · · · < vdm
(if vdi

= vdj
for di < dj ,

then we simply ignore di in the following consideration). Note that vdm
is the maximal position

in t where a symbol of rank larger than zero occurs (called k above). Let ti be the subtree rooted
at vdi

. Then tIm = dm + 1. We now claim that from the value tIi+1 we can compute in polynomial
time the value tIi . The crucial point is that we can ignore all constants that appear in the interval
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[vdi
+ 1, vdi+1

− 1] except for di. More precisely, assume that a = tIi+1 and let b be the number of
occurrences of symbols of rank at least one in the interval [vdi

+ 1, vdi+1
− 1]. Also this number

can be computed in polynomial time by Lemma 4. Then the value of tIi is max{a+ b+1, di +1}.
Finally, using the same argument, we can compute tI from tI1 .

Corollary 17. Given an SLP A for a tree t and a node 1 ≤ i ≤ |t| one can compute the depth of
i in t in polynomial time.

Proof. We can write t as t = uvw, where |u| = i − 1 and v is the subtree of t rooted at node i.
We can compute in polynomial time |v| by Theorem 10. This allows to compute in polynomial an
SLP for the tree uh|t|aw. Here, h has rank one and a has rank zero. Then the depth of i in t is
height(uh|t|aw)− |t|.

An interesting parameter of a tree t is its Horton-Strahler number or Strahler number, see
[15] for a recent survey. It can be defined as the value tI under the interpretation I over N

which interprets constant symbols a ∈ F0 by aI = 0 and each symbol f ∈ Fn with n > 0 as
follows: Let a1, . . . , an ∈ N and a = max{a1, . . . , an}. We set fI(a1, . . . , an) = a if exactly one
of a1, . . . , an is equal to a, and otherwise fI(a1, . . . , an) = a + 1. The Strahler number was first
defined in hydrology, but also has many applications in computer science [15] , e.g. to calculate
the minimum number of registers required to evaluate an arithmetic expression [17].

Theorem 18. Given an SLP A for a tree t, one can compute the Strahler number of t in polynomial
time.

Proof. Note that the interpretation I above is very similar to the one from the proof of Theorem 16.
The only difference is that the uniqueness of the maximum among the children of a node also affects
the evaluation. Therefore the proof of Theorem 16 must be slightly modified by considering for
each d ∈ N occurring in t the two deepest leaves in t labelled with d (or the unique leaf labelled by
d if d occurs exactly once). Let i and j be the parents of those two leaves (i ≥ j) and let ti (resp.,
tj) be the subtree of t rooted at i (resp., j). The nodes i and j can be computed in polynomial
time as in the proof of Theorem 16. We have tIi ≥ d, and therefore tIj = d + 1. This implies
that any further occurrence of d that is higher up in the tree has no influence on the evaluation
process. The rest of the argument is similar to the proof of Theorem 16.

If the interpretation I is clear from the context, we also speak of the problem of evaluating
SLP-compressed F-trees. In the following theorem the interpretation is given by the Boolean
operations ∧ and ∨ over {0, 1}.

Theorem 19. Evaluating SLP-compressed {∧,∨, 0, 1}-trees can be done in polynomial time.

Proof. Let A be an SLP over {∧,∨, 0, 1} such that val(A) is a caterpillar tree. Define a left
caterpillar tree to be a tree of the form uv, where u ∈ {∧,∨}∗, v ∈ {0, 1}∗ and |v| = |u|+ 1. That
means that the main branch of the caterpillar tree grows to the left. The evaluation of val(A) is
done in two steps. In a first step, we compute in polynomial time from A a new SLP B such that
B is a left caterpillar tree and val(A)I = val(B)I . In a second step, we show how to evaluate a left
caterpillar tree. We can assume that val(A) is neither 0 or 1.

Step 1. (See Figure 5 for an illustration of step 1.) Since val(A) is a caterpillar tree, we have
val(A) = uv with u ∈ {∧,∨,∧0,∧1,∨0,∨1}∗ · {∧,∨}, v ∈ {0, 1}∗ and |v| is 1 plus the number
of occurrences of the symbols ∧,∨ in u that are not followed by 0 or 1 in u. We can compute
bottom-up the length of the maximal suffix of val(A) from {0, 1}∗ in polynomial time. Hence,
by Lemma 4 we can compute in polynomial time SLPs A1 and A2 such that val(A1) = u and
val(A2) = v.

We will show how to eliminate all occurrences of the patterns ∧0,∧1,∨0,∨1. For this, it is
technically easier to replace every occurrence of ◦a by a new symbol ◦a, where ◦ ∈ {∧,∨} and
a ∈ {0, 1}. Let ϕ : {∧,∨,∧0,∧1,∨0,∨1}∗ → {∧,∨,∧0,∧1,∨0,∨1}∗ be the mapping that replaces
every occurrence of ◦a by the new symbol ◦a (◦ ∈ {∧,∨}, a ∈ {0, 1}). This mapping is a rational
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Figure 5: An example for step 1 in the proof of Theorem 19. In the first image we find the
expression ∧0, hence we remove the remaining suffix. The expression ∨0 can also be removed
without changing the final truth value.

transformation. Hence, using [5, Theorem 1], we can compute in polynomial time an SLP B1 for
ϕ(val(A1)). We now compute, using Lemma 4, the position i in val(B1) of the first occurrence of
a symbol from {∧0,∨1}. Next, we compute an SLP C1 for the prefix val(B1)[: i − 1], i.e., we cut
off the suffix starting in position i. Moreover, we compute the number j of occurrences of symbols
from {∧,∨} in the suffix val(B1)[i :] and compute an SLP B2 for the string 0 val(A2)[j+2 :] in case
val(B1)[i] = ∧0 and 1 val(A2)[j + 2 :] in case val(B1)[i] = ∨1. Then val(A) evaluates to the same
truth value as ϕ−1(val(C1)) val(B2). The reason for this is that ϕ−1(val(B1)[i :]) val(A2)[: j +1] is
a tree which evaluates to 0 (resp., 1) if val(B1)[i] = ∧0 (resp., val(B1)[i] = ∨1), because 0 ∧ x = 0
(resp., 1 ∨ x = 1).

Note that ϕ−1(val(C1)) val(B2) is a caterpillar tree, where val(C1) ∈ {∧,∨,∧1,∨0}∗ and
val(B2) ∈ {0, 1}∗. Since 1 ∧ x = x (resp., 0 ∨ x = x), we can delete in the string val(C1) all
occurrences of the symbols ∧1 and ∨0 without changing the final truth value. Let D1 be an SLP
for the resulting string, which is easy to compute from C1. Then val(D1) val(B2) is indeed a left
caterpillar tree.

Step 2. To evaluate a left caterpillar tree let A1 and A2 be two SLPs where val(A1) ∈ {∧,∨}∗,
val(A2) ∈ {0, 1}∗, and |val(A2)| = |val(A1)|+ 1. Let ϕ : {∧,∨}∗ → {0, 1}∗ be the homomorphism
with ϕ(∧) = 1 and ϕ(∨) = 0. Using binary search, we compute the largest position i such that the
reversed length-i suffix of val(A2) is equal to the length-i prefix of ϕ(val(A1)). If i = |val(A1)|, then
the value of val(A1) val(A2) is the first symbol of val(A2). Otherwise, the value of val(A1) val(A2)
is 0 (resp., 1) if val(A1)[i+ 1] = ∧ (resp., val(A1)[i + 1] = ∨).

Corollary 20. If the interpretation I is such that (D,∧I ,∨I) is a finite distributive lattice, then
the I-evaluation problem for SLP-compressed trees can be solved in polynomial time.

Proof. By Birkhoff’s representation theorem, every finite distributive lattice is isomorphic to a
lattice of finite sets, where the join (resp., meet) operation is set union (resp., intersection). This
lattice embeds into a finite power of ({0, 1},∧,∨).

5.3.3 Difficult arithmetical evaluation problems

Assume that I is the interpretation that assigns to the symbols + and × their standard meaning
over the integers. Note that this interpretation is not polynomially bounded. For instance, for the
tree tn = ×n(2)n+1 we have tIn = 2n+1. Hence, if a tree t is given by an SLP A, then the number
of bits of tI can be exponential in the size of A. Therefore, we cannot write down the number tI

in polynomial time. The same problem arises already for numbers that are given by arithmetic
circuits (circuits over + and ×).

In [3] it was shown that the problem of computing the kth bit (k is given in binary notation)
of the number to which a given arithmetic circuit evaluates to belongs to the counting hierarchy.
An arithmetic circuit can be seen as a dag that unfolds to an expression tree. Dags correspond to
TSLPs where all nonterminals have rank 0. Vice versa, it was shown in [18] that a TSLP A over
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+ and × can be transformed in logspace into an arithmetic circuit that evaluates to val(A)I . This
transformation holds for any semiring. Thus, over semirings, the evaluation problems for TSLPs
and circuits (i.e., dags) have the same complexity. In particular, the problem of computing the
kth bit of the output value of a TSLP-represented arithmetic expression belongs to the counting
hierarchy. Here, we show that this result even holds for arithmetic expressions that are given by
SLPs:

Theorem 21. The problem of computing for a given binary encoded number k and an SLP A

over {+,×} ∪ Z the kth bit of val(A)I belongs to the counting hierarchy.

Proof. We follow the strategy from [3, proof of Thm. 4.1]. Let A be the input SLP for the tree
t and let N = I(t). Then N ≤ 22

n

where n = |A| (this follows since the expression t has size at
most 2n and the value computed by an expression of size m is at most 2m). Let Pn be the set of
all prime numbers in the range [2, 22n] (note that 22n ≥ log2 N). Then

∏
p∈Pn

p > N . Also note
that each prime p ∈ Pn has at most 2n bits in its binary representation. We first show that the
language

L = {(A, p, j) | A is an SLP for a tree, n = |A|, p ∈ Pn, 1 ≤ j ≤ 2n,

the jth bit of val(A)I mod p is 1}

belongs to the counting hierarchy. The rest of proof then follows the argument in [3]: Using
the DLOGTIME-uniform TC0-circuit family from [20] for transforming a number from its Chinese
remainder representation into its binary representation one defines a TC0-circuit of size 2O(n) that
has input gates x(p, j) (where n = |A|, p ∈ Pn, 1 ≤ j ≤ 2n). If we set x(p, j) to true iff (A, p, j) ∈ L
(this means that the input gates x(p, j) receive the Chinese remainder representation of val(A)I),
then the circuit outputs correctly the (exponentially many) bits of the binary representation of
val(A)I . Then, as in [3, proof of Thm. 4.1], one shows by induction on the depth of a gate that the
problem whether a given gate of that circuit (the gate is specified by a bit string of length O(n))
evaluates to true is in the counting hierarchy, where the level in the counting hierarchy depends
on the level of the gate in the circuit.2

Hence we have to show that L belongs to the counting hierarchy. Let A be an SLP for a tree
t, n = |A|, p ∈ Pn, and 1 ≤ j ≤ 2n. By Theorem 15 it suffices to consider the case that t is a
caterpillar tree t; the polynomial time Turing reduction in Theorem 15 increases the level in the
counting hierarchy by one. Also note that we use a uniform version of Theorem 15, where the
interpretation (addition and multiplication in Zp) is part of the input. This is not a problem, since
the prime number p has at most 2n bits, so all values that can appear only need 2n bits.

Let m be the number of operators in t, i.e., the total number of occurrences of the symbols
+ and × in val(A). Note that m can be exponentially large in |A|, but its binary representation
can be computed in polynomial time by Lemma 4 (point 2). We now define a matrix of numbers
xt
i,j ∈ Zp (i, j ∈ [1,m+ 1]) such that

tI =

m+1∑

i=1

m+1∏

j=1

xt
i,j .

Moreover, we will show that given A and binary encoded numbers i, j ∈ [1,m + 1], the binary
encoding of xt

i,j (which consists of at most 2n bits) can be computed in polynomial time.
We define the numbers xt

i,j inductively over the structure of the caterpillar tree t. For the
caterpillar tree t = a (with a ∈ Zp) we set xt

1,1 = a. Now assume that t = f(a, s) or t = f(s, a)
for an operator f ∈ {+,×}, a caterpillar tree s with m − 1 operators, and a ∈ Zp. In the case

2Let us explain the differences to [3, proof of Thm. 4.1]: In [3], the arithmetic expression is given by a circuit
instead of an SLP. This simplifies the proof, because if we replace in the above language L the SLP A by a circuit,
then we can decide the language L in polynomial time (we only have to evaluate a circuit modulo a prime number
with polynomially many bits). In our situation, we can only show that L belongs to a certain level of the counting
hierarchy. But this suffices to prove the theorem, only the level in the counting hierarchy increases by the number
of levels in which the set L sits.
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t = f(s, a) we assume that m − 1 ≥ 1; this avoids ambiguities in case t = f(a, b) for a, b ∈ Zp.
Assume that the numbers xs

i,j are already defined for i, j ∈ [1,m]. If f = +, then we set:

xt
1,1 = a

xt
1,i = 1 for i ∈ [2,m+ 1]

xt
i,1 = 1 for i ∈ [2,m+ 1]

xt
i,j = xs

i−1,j−1 for i, j ∈ [2,m+ 1]

We get
m+1∑

i=1

m+1∏

j=1

xt
i,j = a+

m+1∑

i=2

m+1∏

j=2

xs
i−1,j−1 = a+

m∑

i=1

m∏

j=1

xs
i,j = a+ sI = tI .

If f = ×, then we set:

xt
1,i = 0 for i ∈ [1,m+ 1]

xt
i,1 = a for i ∈ [2,m+ 1]

xt
i,j = xs

i−1,j−1 for i, j ∈ [2,m+ 1]

We get
m+1∑

i=1

m+1∏

j=1

xt
i,j =

m+1∑

i=2

a ·
m+1∏

j=2

xs
i−1,j−1 = a ·

m∑

i=1

m∏

j=1

xs
i,j = a · sI = tI .

We now show that the binary encodings of the numbers xt
i,j can be computed in polynomial

time (given A, i, j). For this let us introduce some notations: For our caterpillar tree t = val(A)
(which contains m occurrences of operators) and i ∈ [1,m], j ∈ [1,m + 1] we define inductively
op(t, i) ∈ {+,×} and operand(t, j) ∈ Zp as follows:

• If t = a ∈ Zp, then let operand(t, 1) = a (note that in this case we have m = 0, hence the
op(t, i) do not exist).

• If t = f(a, s) or (t = f(s, a) and m − 1 ≥ 1) with a ∈ Zp, then we set op(t, 1) = f ,
op(t, i) = op(s, i− 1) for i ∈ [2,m], operand(t, 1) = a, and operand(t, j) = operand(s, j − 1)
for j ∈ [2,m+ 1].

In other words: op(t, i) is the ith operator in t, and operand(t, j) is the unique argument from
Zp of the jth operator in t (recall that t is a caterpillar tree). The mth (and hence last) operator
in t has two arguments from Zp; its left argument is operand(t,m) and its right argument is
operand(t,m+ 1). Using these notations, we can compute the numbers xt

i,j by the following case
distinction (correctness follows by a straightforward induction):

• i < j: If op(t, i) = + then xt
i,j = 1, else xt

i,j = 0.

• i = j: If op(t, i) = + then xt
i,j = operand(t, j), else xt

i,j = 0.

• i > j: If op(t, j) = + then xt
i,j = 1, else xt

i,j = operand(t, j).

So, in order to compute the xt
i,j it suffices to compute op(t, i) and operand(t, j), given A, i, j. This

is possible in polynomial time: The position k of the ith operator in t and op(t, i) can be computed
in polynomial time using point 3 of Lemma 4 (take Γ = {+,×}). Once the position k is computed,
operand(t, i) can be computed in polynomial time using point (b) of Theorem 10.

Recall that our goal is to compute a specific bit of val(A)I mod p, where A is an SLP that
produces a caterpillar tree, and p ∈ [2, 22n] is a prime, where n = |A|. We have to show that this
problem belongs to the counting hierarchy. We have shown that

val(A)I =
m+1∑

i=1

m+1∏

j=1

xt
i,j .
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where the binary encoding of the number xt
i,j ∈ Zp can be computed in polynomial time, given

A, i, j. We now follow again the arguments from [3]. It is known that the binary representation of
a sum (resp., product) of n many n-bit numbers can be computed in DLOGTIME-uniform TC0 [20].
The same holds for the problem of computing a sum (resp., product) of n many numbers from
[0, p−1] modulo a given prime number p with O(log n) bits (it is actually much easier to argue that
the latter problem is in DLOGTIME-uniform TC0, see again [20]). Hence, there is a DLOGTIME-
uniform TC0 circuit family (Cm)m≥1, where the input of Cm consists of bits x(i, j, k) (i, j ∈ [1,m],
k ∈ O(logm)) and a prime number p with O(logm) bits, such that the following holds: If x(i, j, k)
receives the kth bit of a number xi,j ∈ Zp, then the circuit outputs

∑m
i=1

∏m
j=1 xi,j mod p. We

take the circuit Cm+1, where m ∈ 2O(n) (recall that n = |A| and m is the number of operators in
t = val(A)). The input gate x(i, j, k) receives the kth bit of the number xt

i,j ∈ Zp defined above.
We have shown above that the bits of xt

i,j can be computed in polynomial time. This allows (again
in the same way as in [3, proof of Thm. 4.1]) to show that for a given gate number of Cm+1 one
can compute the truth value of the corresponding gate within the counting hierarchy.

Computing a certain bit of the output number of an arithmetic circuit belongs to PHPP
PP

PP

[2]
(but no matching lower bound is known). In our situation, the level gets even higher, so we made
no effort to compute it.

We can use the technique from the proof of Theorem 21 to show the following related result.
Note that a circuit (or dag) over max and + can be evaluated in polynomial time (simply by
computing bottom-up the value of each gate), and by the reduction from [18] the same holds for
TSLP-compressed expressions.

Theorem 22. The problem of evaluating SLP-compressed ({max,+} ∪ Z)-trees over the integers
belongs to the counting hierarchy.

Proof. The proof follows the arguments from the proof of Theorem 21. But since the interpretation
given by max and + is polynomially bounded, every subtree of an SLP-compressed tree evaluates to
an integer that needs only polynomially many bits with respect to the size of the SLP. Hence we do
not need the Chinese remainder theorem as in the proof of Theorem 21 and can use Theorem 15
directly. It remains to show that the problem of evaluating SLP-compressed ({max,+} ∪ Z)-
caterpillar trees belongs to the counting hierarchy. For this we follow the same strategy as in the
proof of Theorem 21 and define numbers xt

i,j (where t = val(A) is the input caterpillar tree) such
that

val(A)I = max
1≤i≤m+1

m+1∑

j=1

xt
i,j .

Since the sum of n many n-bit numbers as well as the maximum of n many n-bit numbers can
be computed in DLOGTIME-uniform TC0 (the maximum of n many n-bit numbers can be even
computed in DLOGTIME-uniform AC0), one can argue as in the proof of Theorem 21.

Let us now turn to lower bounds for the problems of evaluating SLP-compressed arithmetic
expressions (max-plus or plus-times). For a number c ∈ N consider the unary operation +c on
N with +c(z) = z + c. The evaluation of SLP-compressed ({max,+c} ∪ N)-trees is possible in
polynomial time analogously to the proof of Theorem 16. The following theorem shows that the
general case of SLP-compressed ({max,+} ∪ N)-trees is more complicated.

Theorem 23. Evaluating SLP-compressed ({max,+} ∪ N)-trees is #P-hard.

Proof. Let A,B be two SLPs over {0, 1} with |val(A)| = |val(B)|. We will reduce from the problem
of counting the number of occurrences of (1, 1) in the convolution val(A) ⊗ val(B) ∈ ({0, 1}2)∗,
which is known to be #P-complete by [29]. Let ρ : {0, 1}∗ → {max,+}∗ be the homomorphism
defined by ρ(0) = max, ρ(1) = +. One can compute in polynomial time from A and B an SLP for
the tree ρ(val(A)) 1 rev(val(B)). The corresponding tree over {max,+, 0, 1} evaluates to one plus
the number of occurrences of (1, 1) in the convolution val(A)⊗ val(B).
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In [3] it was shown that the computation of a certain bit of the output value of an arithmetic
circuit (over + and ×) is #P-hard. Since a circuit can be seen as a TSLP (where all nonterminals
have rank 0), which can be transformed in polynomial time into an SLP for the same tree [10], also
the problem of computing a certain bit of val(A)I for a given SLP A is #P-hard. For the related
problem PosSLP of deciding, whether a given arithmetic circuit computes a positive number, no
non-trivial lower bound is known. For SLPs, the corresponding problem becomes PP-hard:

Theorem 24. The problem of deciding whether val(A)I ≥ 0 for a given SLP A over {+,×} ∪ Z

is PP-hard.

Proof. By [29], the following problem is PP-complete: Given SLPs A,B over {0, 1}where |val(A)| =
|val(B)|, and a binary encoded number z, is the number of occurrences of (1, 1) in the convoluted
string val(A) ⊗ val(B) at least z? We modify the proof of Theorem 23. Let A,B be SLPs over
{0, 1}, where N = |val(A)| = |val(B)|. Pick n ≥ 0 such that 2n > 2N . Let ρA : {0, 1}∗ → {+,×}∗

be the homomorphism defined by ρA(0) = +, ρA(1) = × and ρB : {0, 1}∗ → {1, 2}∗ be the
homomorphism defined by ρB(0) = 1, ρB(1) = 2. One can compute in polynomial time from A

and B an SLP for the tree ρA(val(A)) (2
n) ρB(rev(val(B))) (here 2

n stands for an SLP that evaluates
to 2n). Let R be the value of the corresponding tree. Note that R is calculated by starting with
the value 2n and applying N additions or multiplications by 1 or 2. The number K of occurrences
of (1, 1) in the convolution val(A) ⊗ val(B) corresponds to the number of multiplications by 2 in
the calculation, which can be computed from R: We have

2n · 2K ≤ R ≤ (2n + 2(N −K)) · 2K ≤ (2n + 2N) · 2K

since R is maximal if (N−K) additions of 2 are followed by K multiplications by 2. Since 2N < 2n

we obtain 2n+K ≤ R ≤ 2n+K + r for some r < 2n+K . Hence, K ≥ z, if and only if R− 2n+z ≥ 0.
It is straightforward to compute an SLP which evaluates to R− 2n+z.

5.3.4 Tree automata

(Bottom-up) tree automata (see [14] for details) can be seen as finite algebras: The domain of
the algebra is the set of states, and the operations of the algebra correspond to the transitions of
the automaton. This correspondence only holds for deterministic tree automata. On the other
hand every nondeterministic tree automaton can be transformed into a deterministic one using a
powerset construction. Formally, a nondeterministic (bottom-up) tree automaton A = (Q,F ,∆, F )
consists of a finite set of states Q, a ranked alphabet F , a set ∆ of transition rules of the form
f(q1, . . . , qn) → q where f ∈ Fn and q1, . . . , qn, q ∈ Q, and a set of final states F ⊆ Q. A tree

t ∈ T (F) is accepted by A if t
∗
→∆ q for some q ∈ F where →∆ is the rewriting relation defined

by ∆ as usual. The uniform membership problem for tree automata asks whether a given tree
automaton A accepts a given tree t ∈ T (F). In [28] it was shown that this problem is complete
for the class LogCFL, which is the closure of the context-free languages under logspace reductions.
LogCFL is contained in P and DSPACE(log2(n)). For every fixed tree automaton, the membership
problem belongs to NC1 [28]. If the input tree is given by a TSLP, the uniform membership
problem becomes P-complete [34]. For non-linear TSLPs (where a parameter may occur several
times in a right-hand side) the uniform membership problem becomes PSPACE-complete, and
PSPACE-hardness holds already for a fixed tree automaton [32]. The same complexity bound
holds for SLP-compressed trees (which in contrast to non-linear TSLPs only allow exponential
compression):

Theorem 25. Given a tree automaton A and an SLP A for a tree t ∈ T (F), it is PSPACE-
complete to decide whether A accepts t. Moreover, PSPACE-hardness already holds for a fixed tree
automaton.

Proof. For the upper bound we use the following lemma from [35]: If a function f : Σ∗ → Γ∗ is
PSPACE-computable and L ⊆ Γ∗ belongs to NSPACE(logk(n)) for some constant k, then f−1(L)
belongs to PSPACE. Given an SLP A for the tree t = val(A), one can compute the tree t by a
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PSPACE-transducer by computing the symbol t[i] for every position i ∈ {1, . . . , |t|}. The current
position can be stored in polynomial space and every query can be performed in polynomial time.
As remarked above the uniform membership problem for explicitly given trees can be solved in
DSPACE(log2(n)).

For the lower bound we use a fixed regular language L ⊆ ({0, 1}2)∗ from [29] such that the
following problem is PSPACE-complete: Given two SLPs A and B over {0, 1} with |val(A)| =
|val(B)|, is val(A)⊗ val(B) ∈ L?

Let A = (Q, {0, 1}2,∆, q0, F ) be a finite word automaton for L. Let A,B be two SLPs over
{0, 1} with |val(A)| = |val(B)| and let T be an SLP for the comb tree t(u, v) where u = rev(val(A))
and v = rev(val(B)). We transform A into a tree automaton AT over {f0, f1, 0, 1, $} with the state
set Q ⊎ {p0, p1}, the set of final states F and the following transitions:

$ → q0,

i → pi, for i ∈ {0, 1},

fi(q, pj) → q′, for (q, (i, j), q′) ∈ ∆

The automaton A accepts the convolution val(A) ⊗ val(B) if and only if the tree automaton AT

accepts t(u, v).

The PSPACE-hardness result in Theorem 25 can also be interpreted as follows: There exists
a fixed finite algebra for which the evaluation problem for SLP-compressed trees is PSPACE-
complete. This is a bit surprising if we compare the situation with dags or TSLP-compressed
trees. For these, membership for tree automata is still doable in polynomial time [34], whereas the
evaluation problem of arithmetic expressions (in the sense of computing a certain bit of the output
number) belongs to the counting hierarchy and is #P-hard. In contrast, for SLP-compressed
trees, the evaluation problem for finite algebras (i.e., tree automata) is harder than the evaluation
problem for arithmetic expressions (PSPACE versus the counting hierarchy).

6 Further research

We conjecture that in practice, grammar-based tree compression based on SLPs leads to faster
compression and better compression ratios compared to grammar-based tree compression based
on TSLPs, and we plan to substantiate this conjecture with experiments on real tree data. The
theoretical results from Section 4 indicate that SLPs may achieve better compression ratios than
TSLPs. Moreover, grammar-based string compression can be implemented without pointer struc-
tures, whereas all grammar-based tree compressors (that construct TSLPs) we are aware of work
with pointer structures for trees, and a string-encoded tree (e.g. an XML document) must be
first transformed into a pointer structure. Moreover, we believe that SLPs can be encoded more
succinctly than TSLPs (for instance, we do not have to store the ranks of nonterminals).
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