Skip to main content
Log in

Approximability of Clique Transversal in Perfect Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given an undirected simple graph G, a set of vertices is an r-clique transversal if it has at least one vertex from every r-clique. Such sets generalize vertex covers as a vertex cover is a 2-clique transversal. Perfect graphs are a well-studied class of graphs on which a minimum weight vertex cover can be obtained in polynomial time. Further, an r-clique transversal in a perfect graph is also a set of vertices whose deletion results in an \((r-1)\)-colorable graph. In this work, we study the problem of finding a minimum weight r-clique transversal in a perfect graph. This problem is known to be \(\mathsf {NP}\)-hard for \(r \ge 3\) and admits a straightforward r-approximation algorithm. We describe two different \(\frac{r+1}{2}\)-approximation algorithms for the problem. Both the algorithms are based on (different) linear programming relaxations. The first algorithm employs the primal–dual method while the second uses rounding based on a threshold value. We also show that the problem is APX-hard and describe hardness results in the context of parameterized algorithms and kernelization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abu-Khzam, F.N.: A kernelization algorithm for \(d\)-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abu-Khzam, F.N., Fernau, H.: Kernels: annotated, proper and induced. In: Parameterized and Exact Computation, Volume 4169 of Lecture Notes in Computer Science, pp. 264–275. Springer, Berlin (2006)

  3. Berge, C.: Färbung von graphen, deren sämtliche bzw. deren ungerade kreise starr sind (zusammenfassung). Wissenschaftliche Zeitschrift, Martin Luther Universität Halle-Wittenberg Mathematisch-Naturwissenschaftliche Reihe 10, 114–115 (1961)

    Google Scholar 

  4. Berry, L.A., Kennedy, W.S., King, A.D., Li, Z., Reed, B.A.: Finding a maximum-weight induced \(k\)-partite subgraph of an \(i\)-triangulated graph. Discret. Appl. Math. 158(7), 765–770 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P.D., Vusković, K.: Recognizing berge graphs. Combinatorica 25(2), 143–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cygan, M., Fomin, F .V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  7. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. J. Comput. Syst. Sci. 67, 789–807 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162(1), 439–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guruswami, V., Lee, E.: Inapproximability of feedback vertex set for bounded length cycles. Electron. Colloq. Comput. Complex. 21, 6 (2014)

    Google Scholar 

  12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  13. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  14. Hochbaum, D .S.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Co, Boston (1997)

    MATH  Google Scholar 

  15. Iwata, Y., Oka, K., Yuichi, Y.: Linear-time FPT algorithms via network flow. In: Proceedings of the ACM–SIAM Symposium on Discrete Algorithms, pp. 1749–1761 (2014)

  16. Impagliazzo, R., Paturi, R.: Complexity of k-SAT. In: Proceedings of IEEE Conference on Computational Complexity, pp. 237–240 (1999)

  17. Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching, and FPT algorithms. SIAM J. Comput. 45(4), 1377–1411 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krithika, R., Narayanaswamy, N.S.: Another disjoint compression algorithm for odd cycle transversal. Inf. Process. Lett. 113(22–24), 849–851 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krithika, R., Narayanaswamy, N.S.: Parameterized algorithms for \((r, l)\)-partization. J. Graph Algorithms Appl. 17(2), 129–146 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Knuth, D.E.: The sandwich theorem. Electron. J. Comb. 1(A1), 1–48 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within \(2-\epsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lokshtanov, D., Narayanaswamy, N .S., Raman, V., Ramanujan, M .S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1–15:31 (2014)

    Article  MathSciNet  Google Scholar 

  23. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discret. Math. 2(3), 253–267 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lovász, L.: On Minimax Theorems of Combinatorics. Ph.D thesis, Matemathikai Lapok, vol. 26, pp. 209–264 (1975)

  25. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nemhauser, G.L., Trotter, L.E.: Properties of vertex packing and independence system polyhedra. Math. Program. 6(1), 48–61 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algorithms. Math. Program. 8(1), 232–248 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32, 299–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wagler, A.: Critical and anticritical edges in perfect graphs. In: Graph-Theoretic Concepts in Computer Science, Volume 2204 of Lecture Notes in Computer Science, pp. 317–327 (2001)

  30. Williamson, D .P., Shmoys, D .B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Krithika.

Additional information

A preliminary version of this paper appeared in the proceedings of the 22nd European Symposium on Algorithms (ESA 2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorini, S., Krithika, R., Narayanaswamy, N.S. et al. Approximability of Clique Transversal in Perfect Graphs. Algorithmica 80, 2221–2239 (2018). https://doi.org/10.1007/s00453-017-0315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-017-0315-3

Keywords

Navigation