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Abstract
In the Block Graph Deletion problem, we are given a graph G on n vertices and a positive
integer k, and the objective is to check whether it is possible to delete at most k vertices from
G to make it a block graph, i.e., a graph in which each block is a clique. In this paper, we
obtain a kernel with Opk6q vertices for the Block Graph Deletion problem. This is a first
step to investigate polynomial kernels for deletion problems into non-trivial classes of graphs of
bounded rank-width, but unbounded tree-width. Our result also implies that Chordal Vertex
Deletion admits a polynomial-size kernel on diamond-free graphs. For the kernelization and
its analysis, we introduce the notion of ‘complete degree’ of a vertex. We believe that the
underlying idea can be potentially applied to other problems. We also prove that the Block
Graph Deletion problem can be solved in time 10k ¨ nOp1q.
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1 Introduction

In parameterized complexity, an instance of a parameterized problem consists in a pair
px, kq, where k is a secondary measurement, called the parameter. A parameterized problem
Q Ď Σ˚ˆN is fixed-parameter tractable (FPT ) if there is an algorithm which decides whether
px, kq belongs to Q in time fpkq ¨ |x|Op1q for some computable function f . Such an algorithm
is called an FPT algorithm. We call an FPT algorithm a single-exponential FPT algorithm
if it runs in time ck ¨ |x|Op1q for some constant c. A parameterized problem is said to admit a
polynomial kernel if there is a polynomial time algorithm in |x|` k, called a kernelization
algorithm, that reduces an input instance into an instance with size bounded by a polynomial
function in k, while preserving the Yes/No answer.

Graph modification problems constitute a fundamental class of graph optimization
problems. Typically, for a class Φ of graphs, a set Ψ of graph operations and a positive
integer k, we want to know whether it is possible to transform an input graph into a graph
in Φ by at most k operations chosen in Ψ. One of the most intensively studied graph
modification problems is the Feedback Vertex Set problem. Given a graph G and an
integer k as input, the Feedback Vertex Set problem asks whether G has a vertex subset
of size at most k whose removal makes it a forest, which is a graph without cycles. The
Feedback Vertex Set problem is known to admit an FPT algorithm [1, 11] and the
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running time has been subsequently improved by a series of papers [23, 16, 14, 10, 4, 2, 7, 19].
Also, Thomassé [26] showed that it admits a kernel on Opk2q vertices.

The Feedback Vertex Set problem has been generalized to deletion problems for more
general graph classes. Tree-width [25] is one of the basic parameters in graph algorithms and
plays an important role in structural graph theory. Since forests are exactly the graphs of
tree-width at most 1, the natural question is to decide, for an integer w ě 2, whether there is
an FPT algorithm with parameter k to find a vertex subset of size at most k whose removal
makes it a graph of tree-width at most w (called Tree-width w Vertex Deletion).
Courcelle’s meta theorem [5] implies that the Tree-width w Vertex Deletion is FPT.
Recently it is proved to admit a single-exponential FPT algorithm and a (non-uniform)
polynomial kernel (a kernel of size Opkgpwqq for some function g) [12, 18].

On the other hand, there are interesting open questions related to two natural graph classes
having tree-like structures. A graph is chordal if it does not contain any induced cycle of length
at least 4. Chordal graphs are close to forests as a forest is a chordal graph without triangles.
Marx [20] firstly showed that the Chordal Vertex Deletion problem is FPT, and Cao
and Marx [3] improved that it can be solved in time 2Opk log kq ¨ nOp1q. However, it remains
open whether there is a single-exponential FPT algorithm or a polynomial kernel [20, 3].
Another interesting class is distance-hereditary graphs, also known as graphs of rank-width
at most 1 [22]. As many problems are tractable on graphs of bounded rank-width by the
meta-theorem on graphs of bounded rank-width (equivalently, bounded clique-width) [6], it
is worth studying the general Rank-width w Vertex Deletion problem. Again, it is
known to be FPT from the meta-theorem on graphs of bounded rank-width [6], but for our
knowledge, it is open whether there is a single exponential FPT algorithm or a polynomial
kernel for this problem even for w “ 1.

Block graphs lie in the intersection of chordal graphs and distance-hereditary graphs,
and they contain all forests. A graph is a block graph if each block (maximally 2-connected
subgraph) of it forms a clique. It is not difficult to see that block graphs are exactly those
not containing an induced cycle of length at least 4 and a diamond (i.e. a cycle of length 4
with a single chord) as an induced subgraph. We study the following parameterized problem.
Block Graph Deletion
Input: A graph G, an integer k
Parameter: k
Question: Is there a vertex subset S of G with |S| ď k such that G´ S is a block graph?

Our main results are stated in the next two theorems.

I Theorem 1.1. The Block Graph Deletion admits a kernel with Opk6q vertices.

I Theorem 1.2. The Block Graph Deletion can be solved in time 10k ¨ nOp1q.

Our kernelization is motivated by the quadratic vertex-kernel by Thomassé [26]. In [26],
basic reduction rules are applied so that whenever the size of the instance is still large, there
must be a vertex of large degree (otherwise, it is a No-instance). Then a vertex v of large
degree witnesses either so-called the sunflower structure, or the 2-expansion structure. Our
kernelization employs a similar strategy. In order to work with block graphs instead of
forests, we come up with the notion of the complete degree of a vertex, which replaces the
role of the usual degree of a vertex in Feedback Vertex Set. Also, we need to bound the
size of a block which might appear in a block graph G´ S, if such a set S of size at most k
exists. Our single-exponential algorithm is surprisingly analogous to the algorithm of Chen.
et al. [4] for Feedback Vertex Set although the analysis is non-trivial.

Since block graphs are exactly diamond-free chordal graphs, we have the following as a
corollary of Theorem 1.1 and Theorem 1.2.
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I Corollary 1.3. On diamond-free graphs, Chordal Vertex Deletion admits a kernel
with Opk6q vertices and can be solved in time Op10k ¨ nOp1qq.

2 Preliminaries

All graphs considered in this paper are undirected and simple (without loops and parallel
edges). For a graph G, we denote by V pGq and EpGq the vertex set and the edge set of G,
respectively. When we analyze the running time of an algorithm, we agree that n “ |V pGq|.
A block tree TG of a graph G is the graph having B Y C as the vertex set, where B is the set
of all blocks of G and C is the set of all cut vertices of G, and there is an edge Bc P EpTGq
between B P B and c P C if and only if the cut vertex c belongs to the block B in G. The
constructed graph does not contain a cycle. We say that a graph is a block graph obstruction,
or simply an obstruction, if it is isomorphic to a diamond, or an induced cycle C` of length `
for some ` ě 4. A vertex is simplicial in G if NGpvq is a complete graph.

3 Complete degree of a vertex

We define a concept called the complete degree of a vertex in a graph. The definition of the
complete degree is motivated by the following lemma, whose proof is deferred at the end of
this section.

I Proposition 3.1. Let G be a graph and let v P V pGq and let k be a positive integer. Then
in Opkn3q time, we can find either ?
1. k ` 1 obstructions that are pairwise vertex-disjoint, or
2. k ` 1 obstructions whose pairwise intersections are exactly the vertex v, or
3. Sv Ď V pGq with |Sv| ď 7k such that G´ Sv has no block graph obstruction containing v.

For a graph G and v P V pGq such that G has no k ` 1 vertex-disjoint obstructions and
has no k ` 1 obstructions whose pairwise intersections are exactly the vertex v, the complete
degree of v is defined as the minimum number of components of G´ pSv Y tvuq among all
possible Sv Ď V pGqztvu where

|Sv| ď 7k, and
G´ Sv has no block graph obstruction containing v.

Note that if G ´ Sv has no block graph obstruction containing v, then GrNGpvqzSvs is a
disjoint union of complete graphs.

To prove Proposition 3.1, we use the Gallai’s A-path theorem. For a graph G and
A Ď V pGq, an A-path of G is a path of length at least 1 whose end vertices are in A, and all
internal vertices are in V pGqzA.

I Theorem 3.2 (Gallai [13]). Let G be a graph and let A Ď V pGq and let k be a positive
integer. Then, in Opkn2q time, we can find either ?
1. k ` 1 vertex-disjoint A-paths, or
2. X Ď V pGq with |X| ď 2k such that G´X has no A-paths.

Proof of Proposition 3.1. Let G1 :“ pG´ vq ´EpGrNGpvqsq. By Theorem 3.2, we can find
in time Opkn2q either
1. 2k ` 1 vertex-disjoint NGpvq-paths in G1, or
2. X Ď V pGq with |X| ď 4k such that G1 ´X has no NGpvq-paths.
Suppose that G1 contains at least 2k` 1 pairwise vertex-disjoint NGpvq-paths. Let P be one
of these NGpvq-paths in G1 with p and q as its end vertices, and let P 1 be a shortest p, q-path
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in G1rV pP qs. Note that P 1 has length at least 2. If P 1 has length 2, then Grtvu Y V pP 1qs is
isomorphic to either C4 or the diamond depending on the adjacency between p and q in G.
If P 1 has length at least 3 and pq P EpGq, then GrV pP 1qs is an induced cycle of length at
least 4. If P 1 has length at least 3 and pq R EpGq, then Grtvu Y V pP 1qs is an induced cycle
of length at least 5. Thus, Grtvu Y V pP qs contains an obstruction, and G contains either
disjoint k ` 1 obstructions, or k ` 1 obstructions whose pairwise intersections are exactly v.

So, we may assume that there exists X Ď V pG1q with |X| ď 4k such that G1 ´X has
no NGpvq-paths. Now, we greedily find a maximal set P of vertex-disjoint induced P3 in
GrNGpvqs by searching vertex subsets of size 3. If there are k ` 1 vertex-disjoint induced
P3’s, then G has k ` 1 diamonds whose pairwise intersections are exactly v. Otherwise, we
set Sv “ X Y

Ť

PPP V pP q and notice that |Sv| ď 7k. Observe that G ´ Sv has no block
graph obstruction containing v. Clearly, we can find P in time Opkn3q. J

In our algorithm, we need to find a vertex of sufficiently large complete degree and the
corresponding deletion set Sv in polynomial time. However, we just need sufficiently many
complete graphs on the neighborhood, and do not need to compute the complete degree of
each vertex exactly. The following lemma will be used to analyze the difference between an
optimal set and an arbitrary set Sv obtained by Proposition 3.1.

I Lemma 3.3. Let G be a graph and let S1, S2 Ď V pGq such that for each 1 ď i ď 2, G´ Si
is a disjoint union of complete graphs. If |S2| ď k, then the number of components of G´ S2
is at least the number of components of G´ S1 minus k.

4 Finding a vertex of large complete degree

In this section, we prove that if a graph is reduced under certain rules and its size is still
large, then there should exist a vertex of large complete degree. To do this, we first provide
basic reduction rules.

4.1 Basic reduction rules
I Reduction Rule 1 (Block component rule). If G has a component H that is a block graph,
then we remove H from G.

I Reduction Rule 2 (Cut vertex rule). Let v be a vertex of G such that G ´ v contains a
component H where GrV pHq Y tvus is a connected block graph. Then we remove H from G.

Two vertices v, w in a graph G are called true twins if NGpvqztwu “ NGpwqztvu and
vw P EpGq. Note that two simplicial vertices in a block of a block graph are true twins.

I Reduction Rule 3 (Twin rule). Let S be the set of vertices that are pairwise true twins in
G. If |S| ě k ` 2, then we remove vertices except k ` 1 vertices.

It is not hard to observe that Rules 1, 2, and 3 are sound. Note that we can test whether
a given graph is a block graph in quadratic time using an algorithm to partition the graph
into blocks [15], and testing whether each block is a complete graph.

I Reduction Rule 4 (Reducing block-cut vertex paths). Let t1t2t3t4 be an induced path of G
and for each 1 ď i ď 3, let Si Ď V pGqztt1, . . . , t4u be a clique of G such that

for each 1 ď i ď 3 and v P Si, NGpvqzSi “ tti, ti`1u, and
for each 2 ď i ď 3, NGptiq “ tti´1, ti`1u Y Si´1 Y Si.

Then we remove S2 and contract t2t3.
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Clearly, we can apply Reduction Rule 4 in polynomial time. We prove the soundness
of Reduction Rule 4 in the full version [17]. The following rule will be applied using
Proposition 3.1.

I Reduction Rule 5 (pk ` 1q-distinct obstructions rule). Let v P V pGq and let G1 :“ G´ v ´

EpGrNGpvqsq such that there are 2k ` 1 vertex-disjoint NGpvq-paths in G1. If G contains
k` 1 vertex-disjoint obstructions, then say that it is a No-instance. Otherwise, we remove v
from G, and decrease k by one. (By Proposition 3.1, one of them exists.)

4.2 A vertex of large complete degree
An instance pG, kq is called a reduced instance if it is reduced under Rules 1, 2, 3, 4, and 5
introduced in the previous subsection. In this subsection, we prove that there exists a vertex
of large complete degree whenever a reduced instance is sufficiently large, which is stated as
Theorem 4.1.

For positive integers k, `, we define that
g1pk, `q :“ 6k2p`` 14kq2 ` 2kp`` 14kq,
g2pk, `q :“ pk ` 1q2 ` 7k2 ` 1

2kp`` 14kq.

I Theorem 4.1. Let pG, kq be a reduced instance of Block Graph Deletion that is a
Yes-instance. If G has at least k ` g1pk, `qg2pk, `q vertices then G has a vertex of complete
degree at least `` 1.

Let pG, kq be a reduced instance of Block Graph Deletion and let S Ď V pGq of size
at most k such that G ´ S is a block graph. We let G1 :“ G ´ S and for each v P S, we
define that

Gv :“ GrV pG1q Y tvus,
S1v is a vertex set of size at most 7k in G´ v that is obtained by Proposition 3.1,
Sv :“ S1v X V pG

1q.
Let T :“

Ť

vPS Sv. Note that |T | ď 7k2 and for each v P S, there are no block graph
obstructions containing v in Gv ´ T .

We first give a bound on the size of each block of G1 and the number of blocks in G1
sharing a cut vertex with it, assuming that there is no vertex in S of large complete degree in
G. Each block of G1 consists of the set of simplicial vertices and the set of cut vertices in G1.

I Lemma 4.2. Let F be a graph whose vertex set is X Y tv1, . . . , vtu such that t ě 2 and
X is a clique of F and every two vertices of X have different neighbors on tv1, . . . , vtu. If
|X| ě t` 2, then F contains a diamond having exactly one vertex of tv1, . . . , vtu.

Proof. Without loss of generality, we can assume that tv1, . . . , vtu is a minimal set with
the aforementioned property. Notice that there exists a vertex vi which has at least two
neighbors in X. By minimality assumption, vi is not adjacent with all vertices in X. Choose
distinct vertices x, y, z P X such that x,y are neighbors of vi and z is not. Observe that
F rtvi, x, y, zus is isomorphic to the diamond containing exactly one vertex of tv1, . . . , vtu J

I Lemma 4.3. Let B be a block of G1, and let B1 and B2 be the sets of all simplicial vertices
and all cut vertices of G1 contained in B, respectively. Let H1, H2, . . . ,Ht be the components
of G1 ´ V pBq that has a neighbor in B. The followings hold. ?
1. |B1| ď pk ` 1q2 ` 7k2.
2. If for every v P S, v has complete degree at most ` in G, then |B2| ď t ď kp`` 14kq.
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Proof. The proof for (2) can be found in the full version [17]. (1) We first give a bound on
the number of simplicial vertices of a block for G1 ´ T . Note that BzT is a block of G1 ´ T .
Let B11 be B1zT . Clearly, |B1| ď |B11|` 7k2.

Since vertices in B11 are pairwise true twins in G1, if two vertices in B11 have the same
neighbors on S, then they are true twins in G. We partition B11 into an equivalent classes
where two vertices are equivalent if they have the same neighbors on S. From Reduction
Rule 3, each equivalent class has at most k ` 1 vertices.

If |S| ď 1, then there are at most 2 equivalent classes in B11. If |S| ě 2 and the number of
equivalent classes in B11 is at least k` 2, then since |S| ď k, G contains a diamond containing
exactly one vertex v of S by Lemma 4.2. This contradicts to the fact that Gv ´ T has no
obstruction containing v. Thus, the number of equivalent classes in B11 is at most k ` 1 and
|B1| ď |B11|` 7k2 ď pk ` 1q2 ` 7k2. J

Contracted Block Tree. We introduce a notion called the contracted block tree of G. A
contracted block tree TG of a connected graph G is a rooted tree obtained from a block tree
T 0
G of G by (i) choosing a block vertex of T 0

G as a root, and (ii) for each cut vertex c of T 0
G,

identifying it with its unique parent.
Let TG1 be the union of contracted block trees of connected components of G1. We color

the vertices of TG1 in three phases: in the first phase, for every vertex v P S and for every
w P NV pGqzSpvq, we choose the (unique) block B P V pTG1q which contains w and is closest to
the root, and color B by red. Let R1 be the vertices colored red so far. In the second phase,
we again recursively color the least common ancestor of any pair of red vertices by red. Let
R be the set of red vertices TG1 . All other vertices of TG1 are colored blue.

I Lemma 4.4. Suppose that the complete degree of v is at most ` for every v P S. Then we
have |R| ď 2kp`` 14kq.

I Lemma 4.5. Let T be a tree with at least 2 vertices and degree at most d, and let M be a
set of vertices in T . Then there are at most d ¨ |M | connected components in T ´M .

The next lemma follows from Lemma 4.4 and 4.5.

I Lemma 4.6. If G1 contains at least g1pk, `q blocks, then TG1 has a blue component on at
least 3 vertices.

Proof of Theorem 4.1. Let pG, kq be a reduced instance with |V pGq| ě k ` g1pk, `qg2pk, `q

and S Ď V pGq be a set of size at most k such that G ´ S is a block graph. To derive
contradiction, suppose that for every v P S, v has complete degree at most ` in G. Then
G1 “ G´ S has at least g1pk, `qg2pk, `q vertices. Let p be the number of blocks of G1. From
Lemma 4.3 and the fact that each cut vertex is contained in at least two blocks, we obtain
|V pG1q| ď pppk` 1q2` 7k2q` 1

2pkp`` 14kq ď p ¨ g2pk, `q. Therefore, we have p ě g1pk, `q. By
Lemma 4.6, TG1 contains a blue component P on at least 3 vertices.

We claim that P is (i) a path, and (ii) each of its two end vertices, and no other, is
adjacent with exactly one red vertex. Let us prove (i) first. Let W be the unique block vertex
in P which is closest to the root. Notice that W is not the root itself since the instance
is reduced with respect to Reduction Rule 1 and thus the root is a red vertex. Hence W
has a unique parent which is red. For any Z which is a leaf in the subtree P , it is adjacent
with at least one red vertex. Indeed, if not, Z is a leaf in TG1 . Then by Reduction Rule 2,
the block Z (possibly except for its unique cut vertex) should have been removed from G,
a contradiction. Note that any red vertex adjacent with Z is a child of Z since the path
from Z to W is blue and W ‰ Z. Furthermore, the subtree P has exactly one leaf since
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Figure 1 Reduction Rule 6.

otherwise, the second phase of coloring must have colored the branching vertices contained
in P , a contradiction. This establishes (i). For (ii), observe that if (ii) does not hold, then
some vertex of P must have been colored in the second phase, a contradiction.

Now, with P together with the two red vertices incident with V pP q, we can apply
Reduction Rule 4, a contradiction. Therefore, we conclude that there exists a vertex v P S
such that v has complete degree at least `` 1 in G. J

5 Reducing the instance with large complete degree

We introduce the last rule, which will be used when G has a vertex of large complete degree.
We use the well-known technique, called the α-expansion lemma, which is already used in
several kernelization algorithms [26, 9, 21, 8]. One notable difference from other approaches is
that, to guarantee the equivalence, we add some paths in the given graph, and thus increase
the number of vertices. However, we show that our rule decreases n `m where m is the
number of edges whose both degrees are at least 3, by using the 3-expansion le???mma
instead of the 2-expansion lemma.

I Reduction Rule 6 (Large complete degree rule). Let v P V pGq and X Ď V pGqztvu with
|X| ď 7k. Let C be a set of connected components of G´pX Ytvuq and let φ : X Ñ

`C
3
˘

such
that

for each C P C, Grtvu Y V pCqs is a block graph, v has a neighbor in C, and there exists a
vertex x P X that has a neighbor in C,
for x P X, φpxq is a subset of C where each graph in φpxq has a neighbor of x, and
the sets in tφpxq : x P Xu are pairwise disjoint.

Then, remove all edges between v and every component of C, and add two internally vertex-
disjoint paths of length two between v and each vertex x P X. (All of the new vertices in
these paths have degree 2 in the resulting graph). If a component of C has a vertex of degree
1 in the resulting graph, then we remove the vertex. See Figure 1.

We prove that Reduction Rule 6 is safe in the full version [17]. As we discussed, we clarify
that it decreases n `m˚ where m˚ is the number of edges whose both end vertices have
degree at least 3. Since |C| ě 3|X| and n`m˚ is increased by 2|X| by adding paths of length
2 from v to each vertex of X, it is sufficient to show that for each C P C, n`m˚ is decreased
by at least 1 by removing the edges between v and C. Let C P C. If |NGpvq XC| ě 3, then it
is trivial. First assume that |NGpvq X C| “ 2. Then C has more than two vertices, or there
exists a vertex x P X that has a neighbor on NGpvq X C. In either case, it is not difficult
to verify that one of the vertex in NGpvq X C has degree at least 3 in G. Therefore, m˚
is decreased by at least 1 when removing the edges between v and C. Now, let us assume
that NGpvq X C “ twu for some w P V pCq. If w has degree 2, then after removing the edge
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vw, we also remove w following Reduction Rule 6. Thus, n is decreased by 1. Otherwise,
removing vw decreases m˚ by 1. We conclude that n`m˚ is always decreased when applying
Reduction Rule 6.

Now we describe how to obtain a polynomial-size kernel from a given instance. The
algorithm presented in the following theorem is used as a subroutine.

I Theorem 5.1 (α-expansion lemma [26]). Let α be a positive integer. Let F be a bipartite
graph on the bipartition pX,Y q with |Y | ě α|X| such that every vertex of Y has at least
one neighbor in X. Then there exist nonempty subsets X 1 Ď X and Y 1 Ď Y and a function
φ : X 1 Ñ

`

Y 1

α

˘

such that

NF pY
1q XX “ X 1,

φpxq Ď NF pxq for each x P X 1, and

the sets in tφpxq : x P X 1u are pairwise disjoint.
In addition, such pair of subsets X 1, Y 1 can be computed in polynomial time in α|V pF q|.

Proof of Theorem 1.1. Given an instance pG, kq, we exhaustively apply Reduction Rules 1-5
to obtain a reduced instance. If a reduced graph G has at least k`g1pk, 29kqg2pk, 29kq vertices,
then by Theorem 4.1, G has a vertex of complete degree at least 29k. By Proposition 3.1,
we can find in polynomial time a vertex v and a vertex set Sv Ď V pG´ vq such that G´ Sv
has no block graph obstruction containing v, and GrNGpvqzSvs has at least 29k ´ 7k “ 22k
components. Note that there are at most k components of G´ ptvu Y Svq that may contain
an obstruction, and for each component C of G ´ ptvu Y Svq, at most one components of
GrNGpvqzSvs can be contained in C. Let C be the set of components of G´ptvuYSvq which
(i) contains a component of GrNGpvqzSvs, and (ii) has no block graph obstructions. Since
|C| ě 22k ´ k “ 21k and |Sv| ď 7k, using Theorem 5.1, we can find in polynomial time sets
C1 Ď C and S1v Ď Sv and a function φ : S1v Ñ

`C1

3
˘

such that

the set of vertices in Sv that has a neighbor in
Ť

CPC1 V pCq is S1v,

for x P S1v, φpxq is a subset of C where each graph in φpxq has a neighbor of x, and

the sets in t
Ť

CPφpxq V pCq : x P S1vu are pairwise disjoint.
Note that for each C P C1, Grtvu Y V pCqs is a block graph, otherwise, it has an obstruction
containing v, contradicting to the definition of Sv. Furthermore, for each C P C1, there exists
a vertex x P S1v that has a neighbor in C, otherwise, we can reduce it using Reduction Rule 2.
So, we can apply Reduction Rule 6 to reduce this instance. We apply these reductions
recursively. As we discussed, each step decreases n`m˚ where m˚ is the number of edges
whose both end vertices have degree 3, so, it will terminate in polynomial time, and at
the final step, the resulting graph will have less than k ` g1pk, 29kqg2pk, 29kq “ Opk6q

vertices. J

6 A fixed parameter tractable algorithm

The goal of this section is to prove Theorem 1.2 claiming an Op10k ¨nOp1qq-time algorithm for
Block Graph Deletion. We apply iterative compression technique, which is established
as a powerful tool to design FPT algorithms since it was first introduced by Reed, Smith
and Vetta [24]. Our algorithm Block Graph Deletion requires as a subroutine an FPT
algorithm for the following disjoint version of Block Graph Deletion.
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278 A Polynomial Kernel for Block Graph Deletion

Disjoint Block Graph Deletion
Input: A graph G, S Ď V pGq such that both G ´ S and GrSs are block graphs, an
integer k.
Parameter: k
Task: Find a solution to pG,S, kq, i.e. a set S̃ Ď V pGqzS such that G´ S̃ is a block graph
and |S̃| ď k, or correctly report that no such set exists.

We present an algorithmBlockpG,S, kq which solves Disjoint Block Graph Deletion
in time Op3k`` ¨ n6q, where ` is the number of connected components in GrSs.

Algorithm 1 Algorithm for Block Graph Deletion
1: procedure Block(G,S, k)
2: if k ď 0 and V pGqzS ‰ H, return No.
3: if k ě 0 and G is a block graph, return H.
4: if u, v, w P V pGqzS s.t. GrS Y tu, v, wus is not a block graph then
5: Ź u, v, w are not necessarily distinct if |V pGqzS| ď 2
6: BlockpG´ u, S, k ´ 1q Y tuu Ź Small Set Branching Rule
7: BlockpG´ v, S, k ´ 1q Y tvu
8: BlockpG´ w, S, k ´ 1q Y twu
9: else if there is uv P EpG´ Sq and x, y P NSptu, vuq s.t.

10: x, y belong to distinct connected components of GrSs then
11: BlockpG´ u, S, k ´ 1q Y tuu Ź Component Branching Rule
12: BlockpG´ v, S, k ´ 1q Y tvu
13: BlockpG,S Y tu, vu, kq
14: else
15: Let B be a leaf block of G´ S and BG´SpBq “ tbu.
16: G1 Ð G´BzBG´SpBq ` tbw : w P NSpBqu Ź Bypass Rule
17: BlockpG1, S, kq.
18: end if
19: end procedure

Let us establish that Block(G,S, k) correctly returns a solution to pG,S, kq if it is a
Yes-instance, and returns No otherwise. Notice that if pG,S, kq does not meet the condition
at line 3, then V pGqzS is non-empty and thus one of the steps at lines 2, 4, 10, or 15 will be
executed and some output will be returned at the end of the algorithm BlockpG,S, kq. The
execution of Block(G,S, k) can be represented by a search tree where each node corresponds
to a call made during the execution. For the correctness of the algorithm, we use induction
on the level of a call in the search tree. It is clear that lines 2–3, corresponding to the base
case, returns the output correctly. If the condition at line 4 is met, then any solution S̃ to
pG,S, kq must contain one of u, v and w. Conversely, if S̃ is a solution returned by one of
the calls Block at lines 6–8, then S̃ together with u, v, or w is a solution to pG,S, kq. To see
the correctness of lines 11–13, first notice that they enumerate all possible intersection of
a solution S̃ X tu, vu. Hence it suffices to verify that GrS Y tu, vus is indeed a block graph.
This is a consequence from the fact that G does not meet the condition of line 4 for any (at
most) three vertices.

The branching rules considered at lines 4-8 and lines 10-13 are called the Small Set
Branching and Component Branching, respectively. Notice that an instance pG,S, kq consid-
ered at line 15 is reduced with respect to Small Set Branching and Component Branching
or, simply put, irreducible: neither branching rules apply to pG,S, kq. For the correctness of
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the algorithm Block, it remains to show that Bypass Rule at line 16 is safe, that is, S̃ is a
solution to the instance pG1, S, kq at line 17 if and only if it is a solution to pG,S, kq. We
need the following lemmata, whose proofs can be found in the full version [17].

I Lemma 6.1. Let pG,S, kq be an irreducible instance and B be a leaf block of G´ S. Then
either NSpBq “ H or there exists a single block X of GrSs such that NSpBq Ď X.

I Lemma 6.2. Let pG,S, kq be an irreducible instance and B be a leaf block of G´ S. Then
GrS YBs is a block graph.

I Lemma 6.3. Let pG,S, kq be an irreducible instance and B be a leaf block of G´ S. Then
there exists a vertex u P B such that NSpuq “ NSpBq.

I Lemma 6.4. Let pG,S, kq be an irreducible instance and B be a leaf block of G ´ S. If
there is a vertex set S̃ Ď V pGqzS such that G´ S̃ is a block graph, then there is S̃1 Ď V pGqzS

such that G´ S̃1 is a block graph, |S̃1| ď |S̃| and S̃1 X pBzBG´SpBqq “ H.

The following lemma states the correctness of Bypass Rule applied at lines 15–17.

I Lemma 6.5. Let pG,S, kq be an irreducible instance, B be a leaf block of G´ S, and G1
be the graph obtained by applying Bypass Rule. Then,

if S̃ is a solution to pG,S, kq, S̃zpBzBG´SpBqq is a solution to pG1, S, kq, and
if S̃1 is a solution to pG1, S, kq, it is also a solution to pG,S, kq.

Proof. Let b be the unique cut vertex of G ´ S contained in B. Let us prove the first
implication. Suppose that S̃ is a solution to pG,S, kq such that S̃XpBzBG´SpBqq “ H. Such
a solution exists by Lemma 6.4. We show that S̃ is a solution to pG1, S, kq, from which the
first implication follows. If b P S̃, then G1 ´ S̃ clearly a block graph as it is an induced
subgraph of G ´ S̃. Let us consider the case when b R S̃. For the sake of contradiction,
suppose that G1 ´ S̃ contains a vertex set C inducing an obstruction. Consider a vertex
u P B such that NSpuq “ NSpBq. The existence of such u is shown in Lemma 6.3. Note that
u ‰ b and there exists x P NSpBq such that bx R EpGq and bx is contained in C, otherwise,
C also appears in G´ S̃. If C contains one more vertex from NSpBq, then C should be a
diamond with two intersections on NSpBq in G1 ´ S̃. Then GrV pCqztbu Y tuus is a diamond
of G´ S̃, which is a contradiction. Thus, |V pCq XNSpBq| “ 1 and GrV pCq Y tuus induces a
subgraph isomorphic to a graph obtained from C by subdividing one edge. It contains an
obstruction in G´ S̃, which contradicts to our assumption.

We establish the second implication. Suppose that S̃1 is a solution to pG1, S, kq, but G´ S̃1
is not a block graph. Let C be a vertex set inducing an obstruction in G´ S̃1. Then GrCs is
not a diamond nor a cycle of length 4 since otherwise, GrC Y Ss is not a block graph and
|CzS| ď 3, contradicting to the assumption that pG,S, kq is reduced with respect to Small
Set Branching. Therefore GrCs must be an induced cycle of length at least 5. Notice that
C contains some vertex v R B Y S since GrB Y Ss is a block graph by Lemma 6.2. There are
two possibilities, and in each case we derive a contradiction.

When b R C: Notice that NSpBq X C is a separator between B X C and v in GrCs, and
thus contains a minimal separator between B X C and v. However, NSpBq is a complete
graph by Lemma 6.1 while any minimal separator in an induced cycle must be non-adjacent,
a contradiction.
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When b P C: Observe that there is a vertex x P NSpBq X C such that x is adjacent with
some vertex, say w, in B X C. We claim that NSpBq X C “ txu. Suppose not, and let y
be a vertex in pNSpBq X Cqztxu. The existence of v P CzpB Y Sq implies wy R EpGq. Take
u P B such that NSpuq “ NSpBq, which is possible due to Lemma 6.3, and observe that
ux, uy P EpGq. It follows that Grtu,w, x, yus is a diamond, contradicting to the assumption
that pG,S, kq is reduced with respect to Small Set Branching. From txu Ď NSpBqXC, our
claim follows. Notice that |CXB| ď 2 since an induced cycle can intersect with a clique in at
most two vertices. Therefore, pCzBq Y tbu has at least four vertices. Also G1rpCzBq Y tbus is
an induced cycle as no chord can be added in the construction of G1 from G. This contradicts
to the assumption that G1 ´ S̃1 is a block graph. This completes the proof of the lemma. J

I Lemma 6.6. Given an instance pG,S, kq to Disjoint Block Graph Deletion with
n “ |V pGq|, the algorithm BlockpG,S, kq correctly returns a solution or outputs No in time
Op3k`` ¨ n6q.

Proof. The correctness of the algorithm is discussed above. For the analysis of the running
time, we use the fact that every branching during the execution of BlockpG,S, kq decreases
either k or the number of connected components in GrSs by at least one. The details of the
proof can be found in the full version [17]. J

Finally, to solve Block Graph Deletion, we apply the standard iterative compression
technique. Together with the algorithm Block for Disjoint Block Graph Deletion and
its analysis given in Lemma 6.6, we obtain an FPT algorithm stated in Theorem 1.2. The
full proof is given in the full version [17].
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