1604.08797v3 [cs.CG] 16 May 2017

arXiv

Ortho-polygon Visibility Representations
of Embedded Graphs *

E. Di Giacomo' W. Didimo* W. S. Evans? G. Liotta* H. Meijer®
F. Montecchiani* S. K. Wismath?

Abstract

An ortho-polygon visibility representation of an n-vertex embedded graph G (OPVR of G) is an
embedding-preserving drawing of G that maps every vertex to a distinct orthogonal polygon and each
edge to a vertical or horizontal visibility between its end-vertices. The vertex complexity of an OPVR of
G is the minimum k such that every polygon has at most k reflex corners. We present polynomial time
algorithms that test whether G has an OPVR and, if so, compute one of minimum vertex complexity.
We argue that the existence and the vertex complexity of an OPVR of G are related to its number of
crossings per edge and to its connectivity. More precisely, we prove that if G has at most one crossing
per edge (i.e., G is a 1-plane graph), an OPVR of GG always exists while this may not be the case if two
crossings per edge are allowed. Also, if G is a 3-connected 1-plane graph, we can compute an OPVR
of G whose vertex complexity is bounded by a constant in O(n) time. However, if G is a 2-connected
1-plane graph, the vertex complexity of any OPVR of G may be Q2(n). In contrast, we describe a family
of 2-connected 1-plane graphs for which an embedding that guarantees constant vertex complexity can
be computed in O(n) time. Finally, we present the results of an experimental study on the vertex
complexity of ortho-polygon visibility representations of 1-plane graphs.

1 Introduction

Visibility representations are among the oldest and most studied methods to display graphs. The first
papers appeared between the late 70s and the mid 80s, mostly motivated by VLSI applications (see,
e.g., [16, 130, 31} 137, 138l [40])). These papers were devoted to bar visibility representations (BVR) of
planar graphs, where the vertices are modeled as non-overlapping horizontal segments, called bars, and
the edges correspond to vertical visibilities, i.e., vertical segments that do not intersect any bar other
than at their end points. The study of visibility representations of non-planar graphs started about ten
years later when rectangle visibility representations were introduced in the computational geometry and
graph drawing communities (see, e.g., [11, [23} 25} 33]). In a rectangle visibility representation every
vertex is represented as an axis-aligned rectangle and two vertices are connected by an edge using either
horizontal or vertical visibilities. Figure [Ta]is an example of a rectangle visibility representation of the
complete graph K5. Rectangle visibility representations are an attractive way to draw a non-planar graph:
Edges are easy to follow because they do not bend and can have only one of two possible slopes, edge
crossings are perpendicular, textual labels associated with the vertices can be inserted in the rectangles.

*Research of EDG, WD, GL and FM supported in part by the MIUR project AMANDA, prot. 2012C4E3KT_-001. NSERC
funding is gratefully acknowledged for WE and SW.

TUniversita degli Studi di Perugia, Ttaly, {name . surname}@unipg.it

iUniversity of British Columbia, Canada, will@cs.ubc.ca

§University College Roosevelt, The Netherlands, h.meijer@ucr.nl

1[University of Lethbridge, Canada, wismath@uleth.ca

(a) (b)

Figure 1: (a) A rectangle visibility representation of K. (b) An embedded graph G that does not admit
an embedding-preserving rectangle visibility representation. (c) An embedding-preserving OPVR of G
with vertex complexity one.

Motivated by the NP-hardness of recognizing whether a graph admits a rectangle visibility represen-
tation [33]], Streinu and Whitesides [34] initiated the study of rectangle visibility representations that must
respect a set of topological constraints. They proved that if a graph G is given together with the cyclic or-
der of the edges around each vertex, the outer face, and a horizontal/vertical direction for each edge, then
there exists a polynomial-time algorithm to test whether G admits a rectangle visibility representation
that respects these constraints. Biedl et al. [6] have recently shown that testing the representability of G
is polynomial also with a different set of topological constraints, namely when G is given with an embed-
ding that must be preserved in the rectangle visibility representation (an embedding specifies the cyclic
order of the edges around each vertex and around each crossing, and the outer face). In these constrained
settings, however, even structurally simple “almost planar” graphs may not admit a rectangle visibility
representation. For example, although the embedded graph of Figure[Ib]is 1-plane (i.e., it has at most one
crossing per edge), it does not admit an embedding-preserving rectangle visibility representation [6].

In this paper we introduce a generalization of rectangle visibility representations, we study to what
extent such a generalization enlarges the family of graphs that are representable, and we describe testing
and drawing algorithms. Let G be an embedded graph. An ortho-polygon visibility representation of G
(OPVR of GG) is an embedding-preserving drawing of G that maps each vertex to an orthogonal polygon,
disjoint from the others, and each edge to a vertical or horizontal visibility between its end-vertices. For
example, Figure[Ic]is an embedding-preserving OPVR of the graph in Figure[Ib] In Figure[Ic|all vertices
except two are rectangles: The non-rectangular vertices have a reflex corner each; intuitively, each of
them is “away from a rectangle” by one reflex corner. We say that the OPVR of Figure [Ic| has vertex
complexity one. More generally, we say that an OPVR has vertex complexity k, if k£ is the maximum
number of reflex corners over all vertex polygons in the representation. We are not only interested in
characterizing and testing what graphs admit an OPVR, but we also aim at computing representations
of minimum vertex complexity (rectangle visibility representations if possible). The main results in this
paper can be listed as follows.

e In Section 4] we present a combinatorial characterization of the graphs that admit an embedding-
preserving OPVR. The characterization leads to an O(n?)-time algorithm that tests whether an
embedded graph G with n vertices admits an embedding-preserving OPVR. If the test is affirma-
tive, we also show that an embedding-preserving OPVR of G with minimum vertex complexity
can be computed in O(n% log% n) time. An implication of this characterization is that any 1-plane
graph admits an embedding-preserving OPVR.

e In Sections[5]and[6] we prove that every 3-connected 1-plane graph admits an OPVR whose vertex
complexity is bounded by a constant and that this representation can be computed in O(n) time.
This implies an O(n 7 y/Iog n)-time algorithm to compute OPVRs of minimum vertex complexity

for these graphs. Biedl et al. [6] proved that not every 3-connected 1-plane graph has a representa-
tion with zero vertex complexity, and in fact we also show a lower bound of two for infinitely many
graphs of this family.

e In Section[7]we study 2-connected 1-plane graphs. Note that not every 2-connected 1-plane graph
can be augmented to become a 3-connected 1-plane graph, which has a strong impact on the vertex
complexity of the corresponding OPVRs. Indeed, we prove that an embedding-preserving OPVR
of a 2-connected 1-plane graph may require 2(n) vertex complexity. On the positive side, for a
special family of 2-connected 1-plane graphs we show that an embedding that guarantees constant
vertex complexity can be computed in O(n) time.

e In Section[§|we present the results of an extensive experimental study on OPVRs of 1-plane graphs.
This study aims at estimating both the vertex complexity of these drawings in practice and the
percentage of vertices that are not represented as rectangles.

Section 2]contains preliminary definitions. In Section[3|we recall the basic ideas behind the Topology-
Shape-Metrics framework, a key ingredient for the results presented throughout the paper. Conclusions
and open problems are in Section[9]

We conclude this introduction by recalling that 1-planar graphs have been the subject of a rich lit-
erature in recent years. Particular attention has been given to recognition and complexity problems
(see, e.g., [4, 18} [17, 27]), straight-line drawings (see, e.g., [2} 39]), right-angle crossing drawings (see,
e.g., [15,118]), and visibility representations (see, e.g, [6, (7, [19]]); see also [26]] for additional references
and topics. In addition, two recent papers [20, 29] study visibility representations of non-planar graphs
where the edges are horizontal and vertical lines of sight and each vertex consists of two segments sharing
an end-point. These representations can be turned into OPVRs of vertex complexity one by replacing the
two segments of each vertex with an arbitrarily thin orthogonal polygon with one reflex corner.

2 Preliminaries

A drawing T of a graph G = (V, E) is a mapping of the vertices of V' to points of the plane, and of the
edges in E to Jordan arcs connecting their corresponding endpoints but not passing through any other
vertex. We only consider simple drawings, i.e., drawings such that two arcs representing two edges have
at most one point in common, and this point is either a common endpoint or a common interior point
where the two arcs properly cross each other. I' is planar if no edge is crossed. A planar graph is a graph
that admits a planar drawing.

A planar drawing of a graph subdivides the plane into topologically connected regions, called faces.
The infinite region is the outer face. A planar embedding of a planar graph is an equivalence class of
planar drawings that define the same set of faces. A plane graph is a planar graph with a given planar
embedding. Let f be a face of a plane graph G. The number of vertices encountered in the closed walk
along the boundary of f is the degree of f and is denoted as deg(f). If G is not 2-connected, a vertex
may be encountered more than once, thus contributing more than one unit to the degree of the face (see
Figure 2a). The concept of a planar embedding is extended to non-planar drawings as follows. Given a
non-planar drawing I, replace each crossing with a dummy vertex. The resulting planarized drawing has
a planar embedding. An embedding of a (non-planar) graph G is an equivalence class of drawings whose
planarized versions have the same planar embedding. An embedded graph G is a graph with a given
embedding: An embedding-preserving drawing I" of G is a drawing of G whose embedding coincides
with that of G.

A bar visibility representation (BVR) of a plane graph G maps the vertices of G to non-overlapping
horizontal segments, called bars, and the edges of G to vertical visibilities. A visibility is a vertical

T
05y ;

(a) ()

Figure 2: (a) Face f; has degree 10 (since w is counted twice), while face fo has degree 5. (b) An
embedded graph that does not admit an embedding-preserving OPVR.

segment that does not intersect any bar other than those at its end-points. A BVR is strong if each
visibility between two bars corresponds to an edge of the graph, while it is weak if visibilities between
bars of non-adjacent vertices may occur.

An orthogonal polygon is a simple polygon whose sides are axis-aligned. A corner of an orthogonal
polygon is a point of the polygon where a horizontal and a vertical side meet. A corner is a reflex corner
if it forms a %’T angle inside the polygon. An ortho-polygon visibility representation (OPVR) of a graph
G maps each vertex v of G to a distinct orthogonal polygon P(v) and each edge (u,v) of G to a vertical
or horizontal visibility connecting P(u) and P(v) and not intersecting any other polygon P(w), for
w ¢ {u,v}. The intersection points between visibilities and polygons are the attachment points. As in
many papers on visibility representations [25} 134} 137, [40], we assume the e-visibility model, where the
segments representing the edges can be replaced by strips of non-zero width; this implies that an attaching
point never coincides with a corner of a polygon. An OPVR is on an integer grid if all its corners and
attachment points have integer coordinates. Given an OPVR, we can extract a drawing from it as follows.
For each vertex v, place a point inside polygon P(v) and connect it to all the attachment points on the
boundary of P(v); this can be done without creating any crossings and preserving the circular order of
the edges around the vertices. Thus, we refer to an OPVR as a drawing and we extend all the definitions
given for drawings to OPVRs. An OPVR ~ of an embedded graph is embedding-preserving if the drawing
extracted from + is embedding-preserving. When computing an OPVR we would like to use polygons
that are not “too complex”, ideally only rectangles. The vertex complexity of an OPVR is the maximum
number of reflex corners over all vertex polygons in the representation. An optimal OPVR is an OPVR
with minimum vertex complexity. In what follows, if this leads to no confusion, we shall use the term
edge to indicate both an edge and the corresponding visibility, and the term vertex for both a vertex and
the corresponding polygon.

3 The Topology-Shape-Metrics Framework

The topology-shape-metrics (TSM) framework was introduced by Tamassia [36] to compute orthogonal
drawings of graphs (see also Chapter 5 in [13]]). In an orthogonal drawing of a degree-4 graph each edge
is a polyline of horizontal and vertical segments. A bend is a point shared by two consecutive segments
of an edge. An angle formed by two consecutive segments incident to the same vertex is a vertex-angle;
an angle at a bend is a bend-angle. The following basic property holds [13].

Property 1. Let f be a face of an orthogonal drawing and let N, (f) be the number of angles (vertex-
angles and bend-angles) of value o inside f, with a € {7, 37”,277}. Then: Nz (f) — N%w(f) -
2Noy (f) = 4 if f is an internal face and Nz (f) — N%r(f) — 2Noy (f) = —4if f is the outer face.

Given a degree-4 graph GG, the TSM computes an orthogonal drawing I' of G with a minimum number

of bends. It works in three steps. The first step, called planarization, computes an embedding of G
and replaces crossing points with dummy vertices. The resulting plane graph G’ has n + c vertices,
where n and c are the number of vertices and crossings of G, respectively. The second step, called
orthogonalization, computes an orthogonal representation H of G’, which specifies the values of all
vertex-angles and the sequence of bend-angles along each edge. It defines an “orthogonal shape” of the
final drawing, without specifying the length of the edge segments (a more precise definition of orthogonal
representations can be found in Appendix [A). H is computed by means of a flow network NN, where
each unit of flow corresponds to a 7 angle. Each vertex-node in N corresponds to a vertex of G’ and
supplies 4 units of flow; each face-node in N corresponds to a face of G’ and demands an amount of flow
proportional to its degree. Bends along edges correspond to units of flow transferred across adjacent faces
of G’ through the corresponding arcs of N, and each bend has a unit cost in N (more details can be found
in Appendix [A). Network N is constructed in O(n + ¢) time since it has O(n + ¢) nodes and arcs. Also,
it always admits a feasible flow. A feasible flow ® of cost b of IV defines an orthogonal representation H
of G’ with b bends, and vice versa. The third step, called compaction, computes an orthogonal drawing
that preserves the shape defined by H, by assigning node and bend coordinates. It takes O(n + ¢ + b)
time and the resulting drawing lies on an integer grid of size O(n + ¢+ b) x O(n + ¢+ b).

4 Test and Optimization for Embedded Graphs

Any embedded graph G that admits an OPVR is biplanar, i.e., its edge set can be bicolored so that
each color class induces a planar subgraph (for example, color the horizontal edges of an OPVR of G
red and the vertical edges blue). However, a biplanar embedded graph G may not have an embedding-
preserving OPVR. An example is given in Figure [2b] (thin and bold edges define the two color classes).
The boundary of face f in the figure contains six edge crossings and no vertices. In any OPVR of G, each
crossing forms a 7 angle inside f, thus the orthogonal polygon representing f would have six 7 corners
and no 37” corners in its interior, which is impossible.

In the following we first describe an algorithm that, given an embedded graph G that admits an
embedding-preserving OPVR, computes an optimal OPVR of G (Lemma2). Then, we describe a topo-
logical characterization of the embedded graphs that admit an embedding-preserving OPVR (Lemma [3).
This leads to an efficient testing algorithm and it implies that the embedded graphs with at most one cross-
ing per edge, i.e., the I-plane graphs, always admit an embedding-preserving OPVR. Both our results
extend the topology-shape-metrics framework to handle OPVRs.

Our Approach. To exploit the TSM framework, we define a new plane graph G obtained from the input
embedded graph G as follows (refer to Figures|3al and . Replace each vertex v with a cycle C(v) of
d = deg(v) vertices, so that each of these vertices is incident to one of the edges formerly incident to v,
preserving the circular order of the edges around v. If d = 1 or d = 2, C(v) is a self-loop or a pair of
parallel edges, respectively. C(v) is the expansion cycle of v; the vertices and the edges of C(v) are the
expansion vertices and the expansion edges, respectively. Also, replace crossings with dummy vertices.
G is called the planarized expansion of G. The edges of G that are not expansion edges are the real edges.
Note that a real edge of G corresponds either to an uncrossed edge of G or to a portion of a crossed edge
of G. Clearly, each expansion vertex has degree 3 and each dummy vertex has degree 4. The next lemma
and properties immediately follow (see also Figs[3c|and [3d).

Lemma 1. An embedded graph G admits an embedding-preserving OPVR if and only if G admits an
orthogonal representation with the following properties: P1. Each vertex-angle inside an expansion
cycle has value 7. P2. Each real edge has no bend.

Proof. Let y be an embedding-preserving OPVR of G (see, e.g., Figure [3c). Replace each attachment
point and each crossing point with a vertex (see Figure[3d). The resulting drawing is a planar orthogonal

(G b G

(©)y @r

Figure 3: (a) An embedded graph GG and (b) its planarized expansion G. (c) An OPVR ~ of G and (d) the
orthogonal drawing I obtained from +.

drawing, whose orthogonal representation satisfies properties P1 and P2. In the other direction, assume
that G admits an orthogonal representation H that satisfies P1 and P2, and let I be an orthogonal drawing
with orthogonal representation H. Then to obtain an embedding-preserving OPVR of GG, we replace each
degree-4 vertex of I' by a crossing point, and every other vertex by an attachment point. In other words,
each expansion cycle is replaced by the polygon representing it in I', and each edge of G is represented
by a visibility segment. O

Property 2. If G is biplanar, for each face f of G that is not an expansion cycle, deg(f) > 4.

Proof. The faces of G that are not expansion cycles arise from the faces of G. Since G is simple, every
face f of G has degree at least three. If deg(f) > 4, then f clearly gives rise to a face of degree at least
four in G. If deg(f) = 3 then f cannot consist of crossing points only, otherwise there would be three
mutually crossing edges and G would not be biplanar. Hence, f has at least one vertex on its boundary,
and this vertex will correspond to two expansion vertices in G then the face arising from f in G has
degree at least four. O

Property 3. If G admits an embedding-preserving OPVR, then for every internal face f of G consisting
only of dummy vertices, deg(f) = 4.

Proof. Suppose that GG has an embedding-preserving OPVR and that f is an internal face of G formed by
dummy vertices only. By Lemma G has an orthogonal representation with no bend on the edges of f,
and all the vertex-angles inside f have value 7. Due to Property|1|this implies that deg(f) = 4. O

Lemma 2. Let G be an n-vertex embedded graph that admits an embedding-preserving OPVR. There

exists an O(ng log% n)-time algorithm that computes an embedding-preserving optimal OPVR ~ of G.
Also, v has the minimum number of total reflex corners among all embedding-preserving optimal OPVRs

of G.

Proof. Since G admits an embedding-preserving OPVR, it is biplanar. Hence it has m < 6n — 12 edges.
By Lemma an OPVR of G can be found by computing an orthogonal representation of G that satisfies
P1 and P2. This can be done by computing a feasible flow in the Tamassia flow network N associated
with G, subject to the following constraints: (i) Every arc of N from a vertex-node to a face-node has
fixed flow 2 if the face-node corresponds to an expansion cycle (which implies a 7 angle inside the cycle),
and fixed flow 1 otherwise (which implies a 7 angle inside the face); (4i) Arcs between two face-nodes
such that neither corresponds to an expansion cycle of G are removed (to avoid bends on the real edges).
A feasible flow for N may not correspond to an optimal OPVR. To minimize the vertex complexity we
construct a different flow network as follows.

The amount of flow moved from a vertex-node to an adjacent face-node is fixed a priori, and thus
we can construct from N an equivalent flow network N’, such that all vertex-nodes are removed and
their supplies are transferred to the supply of the adjacent face-nodes. Specifically, each face-node vy
corresponding to an expansion cycle f receives 2 deg(f) units of flow, while its demand is 2 deg(f) — 4
by definition. This is equivalent to saying that v, will supply 4 units of flow in N’. Similarly, each
face-node v corresponding to a face f that is not an expansion cycle receives deg(f) units of flow, while
its demand is 2 deg(f) — 4 (or 2deg(f) + 4 if f is the outer face). This is equivalent to saying that vy
will demand flow deg(f) — 4 (deg(f) + 4 if f is the outer face) in N’. By Property 2| deg(f) > 4
and therefore deg(f) — 4 > 0. We now consider every face f of G having dummy vertices only (if
any), and the corresponding face-node vy in N’. Note that vy is an isolated node of N'. Since G admits
an embedding-preserving OPVR, by Property 3| deg(f) = 4; hence, we can remove v; from N’ and
conclude that f must be drawn as a rectangle. Thus, every face-node in N’ corresponds to a face of G
with at least one expansion vertex on its boundary. Since every expansion vertex belongs to at most three
faces of G and there are O(n) expansion vertices, N’ has O(n) nodes and arcs.

We also add gadgets to the network N’ in order to impose an upper bound h on the number of reflex
corners inside the polygons representing the expansion cycles. Let v, be a node of N’ corresponding to
an expansion cycle f. We replace vy with two face-nodes: a node v;}", with zero supply and demand;
and a node v;“t, with the same supply as vy (which is 4). The incoming edges of vy become incoming
edges of v}”, while the outgoing edges of vy become outgoing edges of U?Ut. Finally, we add an edge
(v}", v}’-“t) with capacity h. Let N” be the flow network resulting by applying this transformation to
all nodes of N’ corresponding to expansion cycles. Since each unit of flow entering in vy (now in v}”
corresponds to a 37” angle inside f, a feasible flow of N”’ defines an orthogonal representation where each
expansion cycle is a polygon with at most h reflex corners, i.e., such a feasible flow defines an OPVR
having vertex complexity at most h. N” is computed in O(n) time and has O(n) nodes and arcs, as N'.
In order to guarantee that the OPVR has the minimum number of reflex corners among those with vertex
complexity at most h, we compute a feasible flow of minimum cost. In particular, we apply the min-cost
flow algorithm of Garg and Tamassia [21], whose complexity is O(x 3m”/logn”), where n” and m’”

Figure 4: The simplified dual G of the planarized expansion G in Figure

are the number of nodes and arcs of N, respectively, and y is the cost of the ﬂovﬂ As already observed,
both n’" and m”" are O(n). Also, since the value of the flow is O(n) and since in a min-cost flow each unit
of flow moved along an augmenting path can traverse each face-node at most once, we have y = O(n?).
Hence, a min-cost flow of N (if it exists) is computed in O(n% Vlogn) time.

The supplied flow in N” is 4n (four units for each expansion cycle) and each unit of a min-cost flow
can traverse a face-node at most once. Thus, the vertex complexity of an embedding-preserving optimal
OPVR of G is k < 4n. We can find the value of k by performing a binary search in the range [0, 4n],
testing, for each considered value h, if an OPVR with vertex complexity at most £ exists. The number
of tests is O(logn) and each test takes O(n2+/logn) time, with the algorithm described above. Thus,
computing an orthogonal representation H corresponding to an OPVR with vertex complexity % takes
O(ng 1og% n) time. A drawing of H is computed with the compaction step of the TSM. Since H has at
most k - n bends, this step can be executed in O((k + 1)n + ¢) = O(n?) time. O

To describe our characterization, we introduce a new plane graph associated with the planarized ex-
pansion G of G. Let G be the dual graph of G’ where the dual edges associated with the real edges
are removed. G has a vertex for each face of G and an edge between two vertices for every edge of an
expansion cycle shared by the two corresponding faces. We call G the simplified dual of G (see also
Figure . Given a connected component C of G, denote by F¢ the set of faces of G corresponding to
the vertices of C, by F$” the subset of F¢ corresponding to the expansion cycles, and by F37°* the set
Fe \ F&*. Finally, let f,,: be the outer face of G. We give the following characterization.

Lemma 3. An embedded graph G admits an embedding-preserving OPVR if and only if for each con-
nected component C of G we have:

4| Fe| if four & Fe
d = 1

Proof. Suppose first that G’ admits an embedding-preserving OPVR ~. By Lemma |1}, G admits an or-
thogonal representation H such that properties P1 and P2 hold. Consider any orthogonal drawing I" of G
that can be obtained from H, and let C be a connected component of G . For each face f € F¢ Property

Note that we cannot use the faster min-cost flow algorithm in [[0] because N’/ may not be planar (due to the gadgets introduced
in order to transform N’ into N’).

holds in T', and since there is no angle of 2 it follows that Nx (f) — N

2z (f) = 4. Summing over all
faces we obtain

> (Nz(f) = Nax(f) =

feFe ’

We can rewrite the left-hand side of Equationas follows: >° rc o, (N (f) - Nax (f)) = Zfngm (N% ()
+ NL(F) - NE () - N8 () + X peppen (NS () + NE(F) = Nge (f) = N8 (£). where the super-
scripts b and v indicate whether the angle is a bend-angle or a vertex-angle, respectively. Since we
are using the e-visibility model, the attachment points of the edges incident to the polygons P(v) are

not corners of P(v). Thus, all corners of P(v) are bends along the edges of C'(v), which means that
Nz (f) = Ni.(f) = 0 for all faces f € Fg*. For the faces f € F}°", we have instead that each
2

vertex-angle of f is a § angle (i.e., N E’Tﬂ (f) = 0). More precisely, if the vertex is a dummy vertex then

{4|Fc if four ¢ Fe ®

4|FC‘ -8 iffout € e

it has degree four and therefore the four angles around it all measure 7. If the vertex is an expansion
vertex, then it forms a 7 angle inside its expansion cycle (because the attaching points are not corners).
Since the vertex has degree three, the other two angles around it measure 5. The only edges that can
have bends are the expansion edges because the real edges are (parts of) the edges of G that are drawn as
straight-line segments in . Since the expansion edges are shared by a face of F5* and a face of FZ'°”,
each bend forming a 7 angle inside a face of F§* forms an angle of 37 inside a face of FZe%, and vice

versa. This means that 3 e (N%(f) - Ng%(f)) + X erpes (N2 (f) — N&.(f)) = 0 and there-

2
fore 3 rc g, (N2 (f) = Naz (f)) = ZfeFéwm N3 (f) = ZfeFCnm deg(f). Thus, Equationbecomes
Equation [T]

We now prove that if Equation |1{ holds for every connected component C of G, then G admits an
embedding-preserving OPVR. Consider the flow network N’ defined in the proof of Lemma To prove
the claim we show that if Equation |1{ holds for every connected component C of G, then N’ admits a
feasible flow. To this aim we observe that N’ and G share the same set of vertices. That is, for each node
vy of G corresponding to a face f in Fp, there is a corresponding node vy in N'. Also, for each edge
(u,v) of G there are two arcs, (u,v) and (v, u), in N'. It follows, that for every connected component C
of G, there is a corresponding strongly connected component C’ in N”.

The flow network N’ admits a feasible flow if and only if every connected component of N admits
a feasible flow. Consider a connected component C’ of N’. Since the capacities of the arcs of N’ are
unbounded and C’ is in fact strongly connected, a feasible flow of C’ exists if and only if the total supply is
equal to the total demand (see, e.g., [22]]). We now show that this is the case. Suppose first that f,,; & Fe.
The total supply of the nodes of C’ is 4|F5”|, while the total demand is ZfeFCne.m (deg(f) — 4). By
Equation [1] the total demand can be written as 4|F¢| — 4| FZ“*|, which is clearly equal to the total supply
4| FE* | If four € Fe, the total supply is again 4| F5” |, while the total demand is ZfGFCnEI (deg(f)—4)+8.
Again, by Equation [1] the total demand can be written as 4| FF*| — 8 — 4|F¢| 4 8 = 4|F¢| — 4|FFe*|,
which is equal to the total supply 4|F5*|. This concludes the proof that N’ admits a feasible flow, which
implies the existence of an embedding-preserving OPVR of G. O

The characterization of Lemmaimmediately leads to an O(n + ¢)-time algorithm that tests whether
an embedded graph G with n vertices and c¢ crossings admits an embedding-preserving OPVR. Indeed,
the size of G is O(n + ¢) and the condition of Lemmacan be checked in linear time in the size of G .
If G is biplanar, it has at most 6n — 12 edges and O(n + ¢) = O(n?). The next theorem summarizes the
contribution of this section.

Theorem 1. Let G be an n-vertex embedded graph. There exists an O(n?)-time algorithm that tests
whether G admits an embedding-preserving OPVR and, if so, it computes an embedding-preserving opti-

mal OPVR v of G in O(ng log% n) time. Also, v has the minimum number of total reflex corners among
all embedding-preserving optimal OPVRs of G.

It may be worth remarking that an alternative algorithm to test whether G admits an embedding-
preserving OPVR can be derived from the result in [3]. Alam et al. [3]] showed an algorithm to test
whether an n-vertex biconnected plane graph GG admits an orthogonal drawing such that edges have no
bends, and each face f has most k; reflex corners. The time complexity of this algorithm is O((nk;)%)—
time, where £ = maxycqg ky. Thus, one can compute G and split each expansion edge of G with 4n
subdivision vertices (the maximum number of reflex corners that a face can have). The resulting graph
G has O(n?) vertices. Then one can apply the algorithm by Alam et al. on G with k ¢ = 4n for every
face f of G. However, this would lead to a time complexity O(n?).

We conclude this section by observing that the number of crossings per edge is a critical parameter for
the ortho-polygon representability of an embedded graph, namely even two crossings per edge may give
rise to a graph that cannot be represented — see Figure [2b] On the positive side, the following theorem
can be proved by applying Lemma [3]

Theorem 2. Every I-plane graph admits an embedding-preserving OPVR.

Proof. Let G be a 1-plane graph with n vertices, m edges, and ¢ crossings. Let G be the planarized
expansion of G, and let G be the simplified dual of G. We first observe that G is connected. If not
there would be two sets of faces of G such that for a face f; from one set and a face f; from the other
set, f1 and f» do not share an edge of an expansion cycle. In other words, there exists a cycle of G that
contains only dummy vertices. Such a cycle however can exist only if each of its edges has two dummy
end-vertices, which is impossible because G is 1-plane. We now show that G satisfies the condition of
Lemmal[3]

Since G consists of one connected component, it contains the outer face and by Lemma we have
> fepnes deg(f) = 4|F| — 8, where |F| is the number of faces of G. Each expansion vertex forms
two angles inside faces that are not expansion cycles, while each dummy vertex forms four angles inside
faces that are not expansion cycles. Hence, > feFnes deg(f) = 2n. + 4n4, where n. and ny are the total
number of expansion vertices and dummy vertices, respectively. We have that n, = 2m, ngy = ¢, and
|F| = n+ f/, where f’ is the number of faces in the planarization of G. It follows that 2n, + 4ng =
4m~+4c and the condition of Lemma[3|becomes 4m+4c = 4 f'+4n—8, thatis n+ f' = m+c+2. Letn/
and m’ be the number of vertices and edges, respectively, in the planarization of G. By Euler’s formula,
we have n’ + f' = m’ +2. Since n’ = n+ cand m’ = m + 2c, it follows that n +c + f' = m + 2c + 2
and therefore n + f’ = m + ¢ + 2, which proves that G satisfies Equation 1} O

Motivated by Theorem 2] we devote the next sections to the study of upper and lower bounds on the
vertex complexity of 1-plane graphs.

S Types of Crossings and Edge Partitions of 1-plane Graphs

In this section, we first classify different types of crossings that arise in 1-plane graphs (Section[5.1). We
then present a result about partitioning the edges of a 3-connected 1-plane graph so that each partition
set induces a plane graph and one of these plane graphs has maximum vertex degree six, which is a tight
bound (Section [5.2). This result may be of independent interest since it contributes to recent combina-
torial studies about partitioning the edge set of 1-plane graphs into two plane subgraphs having special
properties (see, e.g., [1, |10, 28]). Moreover, the results in this section are then used to prove an upper
bound of 12 and a lower bound of 2 on the vertex complexity of 3-connected 1-plane graphs (Section [6).

10

R

(a) B-conf. (b) Kite (c) W-conf. (d) T-conf. (e) Aug. T-conf.

Figure 5: Crossing configurations of 1-plane graphs.

5.1 Types of crossings in 1-plane graphs

Let G be a 1-plane graph and let (u,v) and (w, z) be two edges of G that cross at a point p. Edges (u, v)
and (w, z) form a B-configuration if there exists an edge between their endpoints, say edge (u, z), such
that vertices v and w are inside the triangle {u, z,p} (see Figure without dashed edges). If (u,v)
and (w, z) form a B-configuration and all the edges of the 4-cycle {(u,w), (w,v), (v, 2), (z,u)} exist,
then (u,v) and (w, z) form an augmented B-configuration (see Figure [5al including the dashed edges).
Two crossing edges (u, v) and (w, z) form a kite in G, if the 4-cycle {(u, w), (w, v), (v, 2), (z,u) } exists,
and the crossing point p between (u,v) and (w, z) lies inside such a 4-cycle (see Figure[5b). Let (u, v)
and (w, z) be two edges of G that cross at a point p, and let (u, z) and (z,y) be two further edges of G
that cross at a point q. The four edges form a W-configuration if vertices v, w, z, y lie inside the cycle
formed by the edge parts (u, p), (p, z), (z,q), and (g, u) (see Figure[5c). B- and W-configurations were
introduced by Thomassen [39]] to characterize the 1-plane graphs that admit an embedding-preserving
straight-line drawing. In [6], Biedl ef al. introduced an additional configuration called T-configuration.
They proved that a 1-plane graph admits an embedding-preserving rectangle visibility representation if
and only if it does not contain B-, W-, or T-configurations [6]. Let (u, v) and (w, z) be two edges crossing
at a point p, let (u,y) and (z, z’) be two edges crossing at a point ¢, and let (z,v") and (w,y’) be two
edges crossing at a point ¢. If vertices v, v, y, 9/, z, 2’ are inside the cycle formed by the edge parts (u, q),
(g,2), (z,1), (t,w), (w,p), and (p, u), then the above six edges form a T-configuration (see Figure 5d).
Moreover, if v = v/, y = 3/, 2z = 2’ and v, y, z form a triangle in G, then the above six edges form an
augmented T-configuration (see Figure[5e).

In the following sections we shall often refer to crossing-augmented I-plane graphs. A 1-plane graph
G is crossing-augmented, when for each pair of crossing edges (u,v) and (w, z), the subgraph of G
induced by {u,v,w, z} is a K4. We call the four edges of the K different from (u,v) and (w, z) cycle
edges of (u,v) and (w, z) — they form a 4-cycle. Note that a 1-plane graph can always be made crossing-
augmented in O(n) time, by adding the missing cycle edges without introducing any new edge crossings
(see, e.g., [2,135]).

5.2 Edge partition of 3-connected 1-plane graphs

An edge partition of a 1-plane graph G is a coloring of each of its edges with one of two colors, red and
blue, such that both the red graph G'r induced by the red edges and the blue graph G 5 induced by the
blue edges are plane graphs. The planar embedding of G (G p) is induced by the 1-planar embedding
of G when considering only the red (blue) edges. It is known that G admits an edge partition such that
G is a forest [1,[10], and that if G has 4n — 8 edges, then an edge partition such that G g has maximum
vertex degree four always exists [28]. The following result, besides being of independent interest for the
theory of 1-planarity, will be used to establish an upper bound on the vertex complexity of OPVRs of
3-connected 1-plane graphs.

Theorem 3. Let G be a 3-connected 1-plane graph with n vertices. There is an edge partition of G such

11

w w

(@) () (© (d)
Figure 6: (a) Illustrations for the proofs of (a) Claim (b) Claim (c)-(d) Claim

that the red graph has maximum vertex degree six and this bound is worst case optimal. Also, such an
edge partition can be computed in O(n) time.

Proof. We assume that G is crossing-augmented. The proof relies on claims that describe properties of
the cycle edges of G which make it possible to construct the desired partition of the edges of G. It is
important to observe that, due to 1-planarity, a cycle edge is not crossed in the subgraph induced by the
four end-vertices of its two crossing edges. However, a cycle edge can be crossed in G, but, as shown in
the next claim, no two cycle edges cross one another in G.

Claim 1. There are no two cycle edges of G that cross each other.

Proof. Refer to Figure [6a] Let (u,v) and (w, z) be two edges crossing each other, and assume for a
contradiction that they are both cycle edges. This implies the existence of two pairs of crossing edges:
(u,) and (v,y), crossing at point p; (w,’) and (z,y’), crossing at a point q. Then either w or z is
inside the cycle C' composed of the following (parts of) edges: (u,v), (u,p), and (v, p). Without loss of
generality suppose that w is inside C' and hence z is outside C'. It is immediate to see that either (w, z")
or (z,y’) crosses one among (u,v), (u, z) and (v, y), and hence there is at least one edge crossed twice,
which contradicts the 1-planarity of G. O

Claim 2. Every edge of G is the cycle edge of at most two pairs of crossing edges.

Proof. Refer to Figure Let (u, v) be a cycle edge shared by two pairs of crossing edges. These two
pairs of crossing edges define a cycle C' (dashed in Figure [6b) such that no vertex inside C' can be con-
nected with a vertex outside C', except through a path that contains u or v. Suppose, for a contradiction,
that there is a third pair of crossing edges having (u,v) as a cycle edge. Then, for every two pairs of
crossing edges among these three, there is a cycle C; (i = 1,2,3) passing through « and v and with
the same property as C, that is, any path from a vertex inside C; to a vertex outside C; contains u or v.
Also, in any 1-planar embedding of G, one of these three cycles is such that the end-vertices of one of the
three pairs of crossing edges are inside this cycle, and the end-vertices of another pair are outside it. This
implies that « and v are a separation pair, a contradiction with the fact that GG is 3-connected. O

Let G, be the plane graph obtained from G by removing an edge for each pair of crossing edges.
We can arbitrarily choose what edges to remove, provided that we never remove a cycle edge. Claim I]
ensures that this choice is always feasible. Let G;{ be a plane graph obtained by edge-augmenting G, so
to become a plane triangulation.

We apply a Schnyder trees decomposition [32] to G; . Schnyder [32] proved that the internal edges of
a plane triangulation can be oriented such that each internal vertex has exactly three outgoing edges and
the vertices of the outer face have no outgoing edge. We arbitrarily orient the edges of the outer face of
G; and we obtain a 3-orientation of G; , that is an orientation of its edges such that every vertex has at
most three outgoing edges. Based on this 3-orientation, the following claim can be proved.

12

f =

Figure 7: Illustration for the proof of Theorem

Claim 3. Let (u,v) and (w, z) be a pair of crossing edges of G. Then both {u,v} or both {w, z} have
an outgoing edge in G;‘ that is a cycle edge of (u,v) and (w, 2).

Proof. Consider the 4-cycle in Gz‘f formed by the four cycle edges of (u,v) and (w, z). Recall that these
four edges are all present in G;, since we did not remove any cycle edge. Suppose that » has an outgoing
edge, as shown in Figure Then either v has an outgoing edge, or both the edges (z,v) and (w, v)
are oriented towards v. In both cases the statement holds. Suppose otherwise that both edges of u are
incoming. Then both w and z have an outgoing edge towards w, as shown in Figure [6d] O

We use Claim [3|to partition the edge set of G as follows. For each pair of crossing edges (u, v) and
(w, z) of G we color red the edge connecting the pair {u, v} or {w, z} for which Claim 3| holds. By this
choice, each end-vertex of a red edge has one outgoing edge among the cycle edges of (u, v) and (w, z).
Since every vertex is incident to at most three outgoing edges in G; , and since each edge is the cycle
edge of at most two pairs of crossing edges (Claim[2), by this procedure at most six edges for each vertex
get the red color.

The linear time complexity is a consequence of the fact that a 1-plane graph has O(n) edges [35] and
that Schnyder trees can be constructed in O(n) time [32].

We conclude the proof by showing that there exist 3-connected 1-plane graphs such that the red graph
of any edge partition has maximum vertex degree at least 6. Let G}, be a maximal plane graph with
n > 13 vertices. Construct the graph G from G, as follows. For each face f of G,, identify the three
vertices of f with the three vertices on the outer face of an augmented T-configuration (see Figure[Se). An
illustration of the insertion of an augmented T-configuration inside a face f is shown in Figure|[7} Graph
G is 3-connected and 1-plane by construction. Consider an edge partition of G. For every face f of G,
there are exactly three red edges. Each of these three red edges is incident to a vertex of G,. Since G, has
2n — 4 faces, there are 3(2n — 4) = 6n — 12 red edges, each incident to a vertex of G,,. If the maximum
vertex degree of the red graph is k, then it must be kn > 6n — 12, which implies k > 6 — % and, since
k is integer, k > 6 for n > 13. O

6 Vertex Complexity Bounds for 3-connected 1-plane Graphs

The edge partition of Theorem [3] can be used to construct an OPVR of a 3-connected 1-plane graph
whose vertex complexity does not depend on the input size. We first describe the high-level idea behind
this construction (see also Figure [§|for an illustration) and then give a formal proof (Theorem [).

Let GG be a 3-connected 1-plane graph with n vertices, and let G and G i, be the plane graphs defined
by the edge partition of Theorem 3} see for example Figure [8a] We first augment G to a maximal plane
graph (if needed), and then construct a BVR 75; see for example Figure[8b] Assume that two vertices u
and v are connected by a red edge and let vz (u) and y5(v) be the horizontal bars representing vertices
u and v in g, respectively. We attach a vertical bar to yg(u) and a vertical bar to v (v) such that
each vertical bar shares an endpoint with the horizontal bar and the two vertical bars can see each other
horizontally. This makes it possible to draw the horizontal red edge (u,v); see for example Figure

13

a a
(a) (b) () (d)

Figure 8: (a) An edge partition of a 3-connected 1-plane graph G; red (blue) edges are dashed (solid); (b)
A BVR 75 of Gp; (c) Insertion of the red edges into v5; (d) An OPVR of G.

Once all red edges have been added to g, every vertex v that has some incident red edge is represented
as a “rake”-shaped object consisting of one horizontal bar and at most six vertical bars (we have a vertical
bar for each red edge incident to v and there are at most six such edges). This “rake”-shaped object can
then be used as the skeleton of an orthogonal polygon that has two reflex corners per vertical bar; see for
example Figure [8d]

We start with some additional definitions. A plane acyclic directed graph G\, such that G, has a single
source s and a single sink ¢ that are both on the outer face, is called a plane st-graph (see, e.g., [31,137]).
For each vertex v of a plane st-graph G, the incoming edges appear consecutively around v, as do the
outgoing edges. Vertex s only has outgoing edges, while vertex ¢ only has incoming edges (this particular
transversal structure is known as a bipolar orientation [31,137]). Each cycle C of G, is bounded by two
directed paths with a common origin and destination, called the left path and right path of C.

Let G be a 3-connected 1-plane graph with n vertices. Assume that G is crossing-augmented. Suppose
that there exists a pair of crossing edges in G having a cycle edge e that is crossed. As observed in
Section a distinct copy €’ of e can be added to G so that ¢’ does not cross any edge in G. We call
e’ the planar copy of e. Note that replacing e with ¢’ changes the embedding of G, and thus we do not
perform this operation. However, the definition of planar copy will be useful in the following.

In the next lemma we show how to use a given edge partition of G' to compute an embedding-
preserving OPVR of GG whose vertex complexity is at most twice the maximum vertex degree of the
red graph.

Lemma 4. Let G be an n-vertex 3-connected 1-plane graph with a given edge partition such that the
maximum vertex degree of the red graph is d. There exists an O(n)-time algorithm that computes an
embedding-preserving OPVR of G with vertex complexity at most 2d on an integer grid of size O(n) X
O(n).

Proof. The proof is based on an algorithm that works in three steps. In the first step we augment G to a
maximal plane graph and we compute a BVR of the resulting graph. In the second step the edges of G
are inserted in the BVR computed in the first step. In the third step an OPVR of G is computed.

Step 1: BVR computation. We first show how to augment G5 to a maximal plane graph G5 such
that, for each pair of crossing edges in G, the corresponding four cycle edges belong to G%;. For each
cycle edge e of G that is colored red (and thus belongs to G'r), we introduce in G its planar copy €.
Afterwards, we augment the graph (by adding edges) until it is maximal (which can be done in O(n)
time without introducing multiple edges, see, e.g., [24]). Since G} is maximal, a strong BVR of G}
using the e-visibility model can be computed as follows. We first orient the edges of G} such that the
resulting directed graph is acyclic and contains a single source s and a single sink ¢ on its outer face, i.e.,
it is a plane st-graph. This can be done in O(n) time (see, e.g., [31L[37]). A strong BVRE]fy of the plane

2To avoid confusion, it might be worth observing that the terminology used in [37] is slightly different. In particular, a strong
BVR using the e-visibility model (i.e., the model we are referring to in this point) is called an e-visibility representation in [37].

14

Figure 9: Illustration for the proof of Claim @

st-graph G’5; can be computed in O(n) time, such that s and ¢ are represented by the bottommost and the
topmost bars of -, respectively [37]. For our purposes we choose as s and ¢ two vertices that belong to
the outer face of G (and therefore of GG3;). Observe that, since G is 1-plane, it has at least two vertices on
the outer face. With this choice we can prove the following claim, which will be useful in the remainder
of the proof, recall that G’; has been constructed such that it contains all cycle edges for each pair of
crossing edges in G.

Claim 4. For each augmented B-configuration of G formed by two crossing edges (u,v) and (w, z), the
Sfour cycle edges of (u,v) and (w, z) are oriented in G’ such that one of them is a transitive edge for the
cycle {u,w, v, z}.

Proof. Refer to Figure @ Let (u,v) and (w, z) be a pair of crossing edges forming an augmented B-
configuration in G, such that vertices w and v lie inside the cycle composed of the edge (u, z), the part
of the edge (u, v) from w to the crossing point, and the part of the edge (w, z) from the crossing point to
z. Suppose, for a contradiction, that the cycle {u, w, v, z} does not contain a transitive edge in G5;. In
other words, both the left path and the right path of this cycle contain one vertex. Then consider the two
“inner” vertices of the B-configuration, v and w. Since the cycle contains no transitive edge, either v or
w, say v, is either the origin or the destination of the cycle. Suppose that v is the destination of the cycle
(if it is the origin the proof is symmetric). Since G is 3-connected, there is at least one path from v to
t in G7%;. This path can cross neither the edge (w, z) nor the edge (u,v) in G because (w, z) and (u, v)
already cross each other. This path cannot cross edge (u, z) as otherwise G}; would not be plane (edge
(u,) is a cycle edge and hence either it belongs to G5 and thus to G, or its planar copy has been added
to G73;). It follows that ¢ lies inside the cycle formed by the part of the edge (u, v) from u to the crossing
point, the part of the edge (w, z) from the crossing point to z, and the edge (u, z). This contradicts the
fact that ¢ is on the outer face of G. O

Step 2: Insertion of the edges of G r. We now show how to modify - in order to insert the edges of G .
Let (w, z) be an edge of G, and let (u,v) be the edge of G crossed by (w, z). Since G is crossing-
augmented, if two pairs of crossing edges form a W-configuration, then each of the two pairs forms either
a kite or an augmented B-configuration. Similarly, if three pairs of crossing edges form a T-configuration,
then each single pair forms either a kite or an augmented B-configuration. Based on this observation, we
distinguish whether (u,v) and (w, z) form a kite or an augmented B-configuration in G.

Case A. Edges (u,v) and (w, z) form a kite in G. Then we further distinguish between the two cases
where the cycle {u, w, v, z} has a transitive edge in G’ or not.

Case A.1. Suppose first that the cycle {u,w, v, z} has a transitive edge, say (u,z), as shown in
Figure Let o be the vertical segment that connects v and z and passes through the rightmost point
of v, as shown in Figure We claim that there is no horizontal bar of a vertex that shares an inner
point with o. If a vertex x had one such horizontal bar, then it would see both u and v inside the region
of v bounded by (u,v), (v,2), and (u, z) (see also Figure[10d). Since v is a strong BVR, there would

15

v v

U U

(a) (b) (©)

() (e

Figure 10: Illustration for Case A1 of the proof of Theorem

exist a path connecting v and v and containing 2. Such a path would cross the edge (w, z) in G, which is
impossible because G is 1-planar and (w, z) is already crossed by (u,v) (see also Figure[10¢).

Analogously, let o’ be the vertical segment connecting v to the rightmost point of w, as shown in
Figure We claim that there is no horizontal bar that shares an inner point with o’. If a vertex x’
had one such horizontal bar, then it would see both « and v inside the region of « bounded by (u,w),
(w,v), and (u,v) (see also Figure[I0d). Since 7 is a strong BVR, there would exist a path connecting u
and v and containing z’. Such a path would cross the edge (w, z) in G, which is impossible because G is
1-planar and (w, z) is already crossed by (u, v) (see also Figure [L0¢).

It follows that if a horizontal bar intersects o or ¢’, this intersection happens at an endpoint of the
bar. Since we are using the e-visibility model, the bar can be slightly shortened so not to intersect o or o’
anymore. Then we can use o and ¢’ to draw one vertical bar attached to the horizontal bar of w and one
vertical bar attached to the horizontal bar of z, such that they are contained in o and ¢’, respectively, and
they see each other through a horizontal visibility that crosses (u, v), see Figure

Case A.2. Suppose now that the cycle {u, w, v, z} has no transitive edge, as shown in Figure and
hence is drawn as in Figure[TTb] By applying a similar argument as above, we can draw two vertical bars
attached to the horizontal bars of w and z, respectively, and such that they see each other crossing (u, v),

as shown in Figure[TTc]

Case B. Edges (u,v) and (w,z) form an augmented B-configuration in G. By Claim [} the cycle
{u,w, v, z} always has a transitive edge in G%, as shown in Figure and hence is drawn as in Fig-
ure[ITe] Then it can be handled analogously as in the above cases, as shown in Figure

Once all red edges have been inserted, we remove the vertical visibilities representing the planar
copies of red cycle edges introduced in Step 1, if any. We conclude the description of this step by
observing that it can be performed in O(n) time, since each red edge can be reinserted in O(1) time.

Step 3: Computation of the OPVR of G. Denote by v* the visibility representation of GG obtained
after Step 2. Each edge of G is now represented as vertical or horizontal visibility between two hori-
zontal or two vertical bars, respectively. Since for each vertex we inserted at most d edges, each ver-
tex is represented by a “rake”-shaped object with one horizontal bar and at most d vertical bars. By

16

o
u v v _U
U u |
O_/
w w w
(a) (b) (c)
z z
o
v v
o w L_w
U U
(d) (e) (®

Figure 11: Illustration for (a)—(c) Case A.2 and (d)-(f) Case B of the proof of Theorem@

slightly thickening these objects, we obtain orthogonal polygons with at most 2d reflex angles, and thus
an embedding-preserving OPVR ~y of G with vertex complexity at most 2d. In order to obtain an OPVR
on an integer grid, we can extract an orthogonal representation /I from 7 and then use the compaction
step of the TSM approach. Since G has O(n) crossings and H has O(n) bends, the compaction can be
executed in O(n) time and the size of the resulting OPVR is O(n) x O(n). O

Combining Theorem [3]and Lemma] we obtain the following theorem.

Theorem 4. Let G be a 3-connected I-plane graph with n vertices. There exists an O(n)-time algorithm
that computes an embedding-preserving OPVR of G with vertex complexity at most 12 on an integer grid

of size O(n) x O(n).

Proof. By Theorem [3] every n-vertex 3-connected 1-plane graph has an edge partition such that the red
graph has maximum vertex degree six, which can be computed in O(n) time. We can exploit this edge
partition and apply the algorithm of Lemma [to compute an embedding-preserving OPVR of G with
vertex complexity at most 12 on an integer grid of size O(n) x O(n) in O(n) time. O

Based on Theorem[d] we can significantly improve the time complexity to compute an optimal OPVR
of 3-connected 1-plane graphs.

Theorem 5. Let G be a 3-connected 1-plane graph with n vertices. There exists an O(n%\/log n)-
time algorithm that computes an embedding-preserving optimal OPVR - of G, on an integer grid of size
O(n) x O(n). Also, v has the minimum number of reflex corners among all the embedding-preserving
optimal OPVRs of G.

Proof. We use the same terminology and notation as in the proof of Lemma [2| Let v be an optimal
OPVR of G and let H be the corresponding orthogonal representation. By Theorem [~ has vertex
complexity at most 12. This implies that H can be computed by executing at most 12 tests for the
existence of a feasible flow for the network N”. Also, since the vertex complexity is at most 12, H

17

Figure 12: Illustration for the proof of Theorem@

has O(n) bends and thus the cost of the flow is x = O(n). It follows that H can be computed in time
O(xinylogn) = O(n% Viogn).

A drawing of H is obtained by applying the compaction step of the TSM framework. Since the
number of bends of H is O(n) and since the number of crossings of a 1-plane graph is O(n) (see,

e.g., [35]]), this step is executed in O(n) time and produces a drawing on an integer grid of size O(n) X
O(n). O

It is known that there are 3-connected 1-plane graphs such that any embedding-preserving OPVR has
vertex complexity at least one [6]. To improve this lower bound we use the same graph family as the one
used for the tightness of the vertex degree bound in the proof of Theorem

Theorem 6. There exists an infinite family G of 3-connected 1-plane graphs such that for any graph G
of G, any embedding-preserving OPVR of G has vertex complexity at least two.

Proof. Consider the same family of graphs used to prove the tightness of Theorem [3] and recall that any
n-vertex graph G in this family is 3-connected and 1-plane by construction. Since G is 1-plane it admits
an OPVR by Theorem 2]

Consider an OPVR of G and the corresponding orthogonal drawing I'. For each face f of Gy, there
are three faces f; (¢ = 1,2, 3) in G, such that each of these three faces contains four expansion vertices
and one dummy vertex. In Figure the three faces f; (i = 1,2,3) for the face f in Figure [/| are
highlighted. For each face f;, the dummy vertex forms a 7 angle inside f;. Also, each expansion vertex
forms one 7 angle. In total there are exactly five 7 vertex-angles inside f;. Then, since the real edges of
fi do not have bends, by Property [l one of the two expansion edges must form (at least) one bend-angle
of 37” inside f;, and therefore a bend-angle of 7 inside the corresponding expansion cycle. Since there are
2n — 4 faces in G, there are 6n — 12 faces of I' each requiring at least one %T angle from an expansion
edge. If every vertex of G is represented by a polygon with vertex complexity at most k, then the edges
of each expansion cycle form at most 4 + k angles of 37” inside their incident faces (that are not expansion
cycles). Hence it must be that (4 + k)n > 6n — 12, thatis k > 2 — 171—2 Since k is an integer, it follows
that £ > 2 for any n > 13. O

7 Vertex Complexity Bounds for 2-connected 1-plane Graphs

In this section, we show that if an n-vertex 1-plane graph G is 2-connected and it can be augmented
to become 3-connected only at the expense of losing its 1-planarity, then the vertex complexity of any
OPVR of G may be Q(n). Also, for these graphs we show that a 1-planar embedding that guarantees
constant vertex complexity can be computed in O(n) time under the assumption that they do not have a
certain type of crossing configuration.

18

(a) K (b) G

Figure 13: Illustration for the proof of Theorem

Theorem 7. For every positive integer n, there exists a 2-connected I-planar graph G with O(n) ver-
tices such that, for every I-planar embedding of G, any embedding-preserving OPVR of G has vertex
complexity Q2(n).

Proof. We first prove the claim for a fixed 1-planar embedding. Consider the 1-plane graph K in Fig-
ure [[3a] It has 2 vertices on its outer face, u and v, plus 6 inner vertices. We now construct a graph G
as follows. Attach n 4 1 copies K1, ..., K,+1 of K such that they all share v and v. The copies are
attached in parallel without introducing any further edge crossing, as shown in Figure[I3b] Also connect
u and v with an edge on the outer face. The resulting graph G has 8(n + 1) — 2n = 6n + 8 = O(n)
vertices. Also, GG is 2-connected and 1-plane by construction. Since it is 1-plane, it admits an OPVR
by Theorem [2] Consider now an embedding-preserving OPVR of G and the corresponding orthogonal
drawing I'. Between any two consecutive copies K; and K;11 (i = 1,...,n), there is a face f; of G
having two expansion vertices of C'(u) (the expansion cycle of u) and two expansion vertices of C'(v) on
its boundary, together with two dummy vertices; see Figure Each dummy vertex forms one 721 angle
inside f;. Also, each expansion vertex forms one 7 angle inside f;. Hence, there are at least six 7 angles
inside f;. Also, since the real edges of f; have no bends, by Property [I] the two expansion edges of f;
must form (at least) two 3© 5 angles inside f;. In T there are n such faces requiring two angles of T each
from an expansion edge. If every vertex of G is represented by a polygon with vertex complexity at most
k, then the edges of each expansion cycle form at most 4 4 k angles of T inside their incident faces (that
are not expansion cycles). At least nine of these angles are inside the outer face of I' (by Property|[I), and
hence it must be that (4 + k)2 — 9 > 2n, thatis k > n.

It remains to extend the argument of the proof to any 1-planar embedding of G. To this aim, we
observe that graph K together with the edge (u,v) has a unique 1-planar embedding [35]]. This, together
with the fact that no two copies of K can intersect one another without violating 1-planarity, implies that
G has a unique embedding up to a renaming of the n + 1 copies of K, except for the edge (u, v). Such an
edge can be indeed placed between any two consecutive copies of K. Nonetheless, this does not change
the argument above, as there will be a face f; split in two faces, each requiring at least one 7 angle from
either C(u) or C'(v). O

The graphs used to prove Theorem [7] contain several W-configurations. By contrast, the next theorem
shows that the absence of W-configurations suffices to find a 1-planar embedding which admits an OPVR
with constant vertex complexity.

Theorem 8. Let G be a 2-connected 1-plane graph with n vertices and no W-confi-gurations. There
exists an O(n)-time algorithm that computes a I1-planar OPVR of G with vertex complexity at most 22 on
an integer grid of size O(n) x O(n).

The proof of Theorem|]is based on a drawing algorithm described in the following. We first construct
an SPQR-tree [[14] of the input graph G (see also Appendix [B), and then traverse the tree bottom-up in

19

order to compute the desired representation, while maintaining a set of geometric invariants. R-nodes,
which are the most challenging components, are handled with a sophisticated variant of the technique
used to prove Theorem [4] The embedding of the computed OPVR may be different from the one of G,
but it is still 1-planar, i.e., it has at most one crossing per edge. More precisely, we may need to use flip
and swap operations on the SPQR-tree of G. Analogously to the proof of Theorem[] we describe how
to construct a visibility representation where vertices of GG are connected geometric features composed
of horizontal and vertical bars (possibly not “rake”-shaped in this case, but still arranged in a tree-like
structure). These objects are then used as “skeletons” for the orthogonal polygons.

Let T" be the S PQ R-tree of G rooted at a ()-node p. We assume that G is crossing-augmented. This
implies the following property:

Property 4. Let (u,v) and (w, z) be two edges that cross each other in G. Then the two corresponding
Q-nodes are both children of the same R-node.

As a consequence of Property @] we also have:

Property 5. Let p be an R-node, and let ey and es be two virtual edges of its skeleton sk(u) such that
they cross each other. Then ey and ey correspond to two QQ-nodes.

For the sake of description, we also apply the following transformation to GG and to its SPQ R-tree
T. Let ys be a P-node of T" with a ()-node v as a child. If the parent of is not an R-node we subdivide
the edge e corresponding to v with a subdivision vertex. This corresponds to replacing v with an S-node
having two (Q-nodes as children. Also, note that since the parent of 1 is not an R-node, it can only be an
S-node (this observation will be useful in the following).

Denote by G’ the graph obtained from G by applying the above operation to all P-nodes of T'. Let
T’ be the resulting S PQ R-tree. The algorithm performs a bottom-up visit of 7" and computes for each
visited node g a visibility representation of the pertinent graph G, of n. The leaves of T” (i.e., the Q-
nodes) are ignored, since the corresponding edges are drawn as visibilities in the visibility representation
of their parent nodes. Let 1 be a node of T” different from the root p, and let G, be the corresponding
pertinent graph whose poles are s,, and ¢,,. The algorithm computes a visibility representation ,, of G,
that satisfies the following invariants.

I1. Vertex s, is represented by one horizontal bar that is the bottommost bar of -,,.
I2. Vertex ¢, is represented by one vertical bar that is the leftmost bar of ,,.
I3. Every vertex different from s,, and ¢, is represented by a set of at most 12 bars.

We now show how to construct «y,, based on whether y is an R-node, a P-node, or an S-node. The
root p and its child £ are handled in a special way.

Lemma 5. Let p be an R-node of T'. Let vy, Yoy, - - - Vo, be the k > 0 visibility representations of the
k > 0 children of i (excluding Q-nodes) for which Invariants I1-13 hold. Then G, admits a visibility
representation -y, that respects Invariants 11-13.

Proof. The idea is to first compute a visibility representation of the skeleton sk(u) of G, (ignoring
the reference edge (s,,t,)), and then replace each virtual edge e,, associated with node v}, with the
corresponding visibility representation -, . In particular, recall that sk () is a 3-connected 1-plane graph
(see Appendix , and hence we can compute an edge partition of sk(u) such that the red graph has
maximum vertex degree 6 (Theorem [3). Denote by skpr () and by skp(u) the red and blue graph,
respectively. Applying Step 1 of the proof of Theorem we obtain a strong BVR of sk (). Recall that
Step 1 of Theorem |4 requires the choice of two vertices, s and ¢ on the outer face of sk(u), such that
skp(w) will have s and ¢ as unique source and sink, respectively. In our case, we choose s = s, and

20

(@p.yt+ (wp —21)) =Ryt + (xp — 1)) Ryt + (xp — z1))

(L, yt)
uy

t
(xR, yt)
(xr,yt)
(% u

(d) (e) ®

Figure 14: Illustration for the proof of Lemma

t = t,. Afterwards, by applying Step 2 of the proof of Theorem we obtain a visibility representation
~* of sk(u) such that each vertex is represented by a horizontal bar plus at most six vertical bars. Since
G contains no W-configurations, there is at most one pair of edges (s, u) and (,,, v) that cross at a point
p that belongs to the outer face of sk(p) \ {(sy,%,)}. If such a pair does not exist, then both s,, and t,,
are represented by a single horizontal bar. Else, according to the technique used in Step 2 of Theorem 4]
we can choose one vertex between s,, and ?,, to be represented by a single horizontal bar, while the other
one is represented by a horizontal bar plus a vertical bar. We choose ¢, to be represented by a single
horizontal bar.

Let IT; and II be the two paths between s, and t,, that belong to the outer face of sk () \ {(su,t.)}
(which is a cycle since sk(u) is 3-connected). As observed above, at most one of them can be composed
of exactly one crossing point p connected to both s, and ¢,,. Without loss of generality, we can assume
that such a path (if any) is II;, as otherwise we can flip G, around s, and ¢,, such that this is the case.
We now show how to transform ~v* into a visibility representation « that satisfies Invariants I1-I3. Let
(zr,y:) and (z g, y¢) be the leftmost and rightmost points of the horizontal bar representing ¢, in v*. We
transform this horizontal bar into the vertical bar having (xr,,v;) and (xr,,y: 4+ (x g — 1)) as bottommost
and topmost points, respectively; see also Figure[I4a] for an illustration. In other words, we rotate the bar
by 7 counter-clockwise around point (zr,y;). Moreover, if 1, is not the leftmost point of v*, we can
translate the vertical bar further to the left, until its z-coordinate is the leftmost one. This will ensure I12.
We now describe how to transform all the blue edges incident to ¢,, (drawn as vertical visibilities in)
into horizontal visibilities in ’, and how to transform all the red edges (drawn as horizontal visibilities
in v*) crossing the blue edges incident to t,, into vertical visibilities in 7'. Let (u1,t,), ..., (un,tu),
be the h > 0 blue edges incident to ¢, ordered according to the left-to-right total order defined by the
corresponding vertical visibilities in 7*. In other words, for any two blue edges (u;,t,) and (u;,t,),
i < j if and only if the vertical visibility representing (u;,t,) in v* is to the left of the vertical visibility
representing (u;,t,) in v*. Let (x;,;) be the bottommost point of the vertical visibility representing
(u;,t,) in v*. We replace this visibility with a vertical bar in 4" having (z;,y;) and (z;,y¢ + @) as
bottommost and topmost points, respectively; see also Figure [I4b] for an illustration. This adds one
vertical bar to the representation of u;. After applying this operation for all edges (u;,t,), ¢ =1,...,h,

21

Figure 15: Illustration for the proof of Lemma red (blue) edges are dashed (solid).

we have that every vertex u; can see t,, through a horizontal visibility. Also, the circular order of the
edges around ¢, is preserved from 7* to 4/. We remark that, at this point, every object representing a
vertex consists of at most 8 connected bars.

For each red edge (w, z), consider the two vertical bars in v* such that (w, z) is a horizontal visibility
between them, and let (z,,, ¥,) and (z, y.) be the coordinates of the bottommost point of the vertical bar
of w and z, respectively. We now show how to replace each red edge (w, z) crossing a blue edge (u;, t,,)
with a vertical visibility crossing the horizontal visibility that represents (u;,t,) in +'. Without loss of
generality, we can assume that x,, < x,. Then we extend the vertical bar of z such that its topmost point
isnow (z.,y: +1i+ %), and then attach a horizontal bar whose rightmost point is (2., y: + i + i) and its
leftmost point is (2, — €, y; + 4+ %) (for an arbitrarily small value of ¢ in order to ensure the e-visibility
model). Also, we remove the vertical bar of w. With this construction w and z see each other through
a vertical visibility that crosses (u;,t,); see also Figure for an illustration. Notice that if the pair of
crossing edges (s,,u) and (t,,v) exists, then (s,,u) is red and x5, < z,. Hence this transformation
removes the vertical bar of s,,, which is now represented by a single horizontal bar and therefore I1 holds.

Observe that for each red edge (w, z) to which the above transformation is applied, an additional
horizontal bar is added to its right end-vertex (z in our description). We show that, for each vertex z, we
have at most one such edge, and therefore at most one additional bar. As a consequence each vertex is
represented by a set of bars of size at most 9. More precisely, we claim that each vertex z is incident to
at most one red edge (w, z) that crosses a blue edge incident to t,,, and such that x,, < z.. To prove
this, we orient each red edge (w, z) from w to z if 2, < ., and each blue edge (u, v) from u to v if the
horizontal bar of w is below the horizontal bar of v. Then the red edges always cross the blue edges from
left to right. Equivalent to our claim, we show that for each vertex z there are no two incoming red edges
that cross two blue edges incident to the same vertex. Suppose, for a contradiction, that two red edges
(w1, z) and (wz, z) cross two blue edges (u1,v) and (uz, v) at points p and ¢; see also Figure[15|for an
illustration. Then due to the orientation of these four edges and due to 1-planarity, at least two vertices are
inside the cycle {z, p, v, ¢}, and at least two vertices are outside this cycle. Since every path connecting
a vertex inside the cycle to a vertex outside the cycle passes through v or z, v and z are a separation pair
of sk(p) — a contradiction since sk(u) is 3-connected.

It remains to replace each virtual edge e,,, = (u, v) in 7 with the corresponding visibility representa-
tion 7y, ; see also Figure Note first that if the edge (u, v) exists in the pertinent graph G, of v;, then
it is already drawn in 4 as the visibility representing e,, (although using such a drawing may imply a
swap operation between (u, v) and the rest of G,,). Since I1-12 hold for 7,,, we can assume that v is the
leftmost vertical bar of ~,,,, and v is the bottommost horizontal bar of ~,,,. The idea is to merge -, in 7/,
possibly scaling and/or stretchin vy,. This operation increases the number of bars of either u or v by
one unit. If we merge ,, in 7’ without rotating it, then the number of bars of v is increased by one; see
also Figure for an illustration. Else, if we rotate v,, clockwise by 7, then u is the vertex receiving

3By Invariants I1 and I2, u has only horizontal visibilities and v has only vertical visibilities, and hence we can translate u
horizontally and v vertically and then scale -y, so to fit it in a prescribed region of the plane.

22

Sy

Figure 16: Illustration for the proof of Lemma@

one more bar; see also Figure [I4f]for an illustration.

With an idea similar to the one used in the proof of Theorem [3] we can exploit Schnyder trees to
obtain a 3-orientation of skp(u), and, for each virtual edge e,,, = (u,v) oriented from u to v, “charge”
the additional bar on u. This ensures that each vertex is charged with at most 3 further bars, which leads to
at most 12 bars per vertex, and thus I3 holds. Note that edge (s,,, t,,) is the reference edge of 1 and hence
it is not replaced with a visibility representation, regardless of its orientation. Also, in a 3-orientation
obtained via Schnyder trees, all other edges of skp(u) incident to s, and ¢, can be oriented incoming
with respect to both s,, and ¢,,, which guarantees that a bar is added to neither s,, nor ¢,, and thus I1-12
hold. More precisely, all edges of skp(u) that are not part of the outer face are oriented incoming with
respect to both s, and t,, by construction. Furthermore, the two edges of the outer face distinct from
(su,t,) and incident one to s . and one to ¢, can be freely oriented, and therefore they can be oriented
incoming with respect to s,, and ¢,,. O

Lemma 6. Let ;1 be a P-node of T'. Let Yy, Yy, - - -, Vo, be the k > 0 visibility representations of the
k > 0 children of u (excluding QQ-nodes) for which Invariants 11-13 hold. Then G, admits a visibility
representation -y, that respects Invariants 11-13.

Proof. If p is not the child of an R-node, then it does not have any ()-nodes among its children (if it had
one in G, then it was subdivided). Else, if the parent of x is an R-node v and p has a Q-node as a child,
then, as explained in the proof of Lemma[3] the edge corresponding to this Q-node is drawn directly in the
visibility representation ~,,. Thus, we can assume that ;2 does not have any ()-node among its children.
Since the visibility representations 7, , Vu,, - - -, Y, satisfy Invariants I1-I3, we can suitably scale
them and extend the bar representing s, = s,, = --- = s, and the bar representing ¢, = t,, = --- =
ty, so to merge all the drawings as shown in Figure[T6] This construction satisfies Invariants I1-I3. [J

Lemma 7. Let yu be an S-node of T'. Let 7y, Vo, - - -, Vo, be the k > 0 visibility representations of the
k > 0 children of i (excluding Q-nodes) for which Invariants I1-13 hold. Then G, admits a visibility
representation y,, that respects Invariants 11-13, and such that each vertex s,;, = t,,_, (i = 2,...,k)is
represented by at most four bars.

Proof. If p has some (Q-nodes among its children, we draw them as shown in Figure The only
exception is when one of them is incident to ¢, in which case it is drawn as in Figure so to avoid the
addition of a horizontal bar to t,,. This ensures Invariants I1-I2.

Then we merge the horizontal bar of s,, = t,,_, in 7,, with the vertical bar of the same vertex in
Yu;_,» fori =2,..., k, as shown in Figure This construction satisfies Invariant I3. We remark that
each vertex s,, = t,, , is now represented by at most four bars (this fact will be used in the following),
as desired. O]

23

(@
(a)

v Su v

(b) (c) (e)

Figure 17: (a)—(c) Illustration for the proof of Lemma (d)-(e) Removing subdivision vertices.

We now describe how to draw the edge (s,,t,) represented by the root p of 7. We observe that s,
and t,, are the poles of &, and hence they are represented in -y, by a single bar each. We represent (s, t,)
with a horizontal visibility. To this aim, we add a vertical bar to s, whose bottommost point coincides
with the leftmost point of s, and whose topmost point is slightly above the bottommost point of ¢, (so to
ensure the e-visibility model). The edge (s,,t,) is now represented as a horizontal visibility between this
vertical bar and the one representing ¢,,.

As a final step, we show how to remove the subdivision vertices used to subdivide some of the edges.
Let (u, v) be a subdivided edge corresponding to a (Q-node of T" whose parent is a P-node p. Let x be the
subdivision vertex added to split (u, v). As described in the proof on Lemma vertex x is represented by
a “staircase” of 4 bars. By turning either the visibility (u,), or the visibility (v, x) into a bar, we get rid
of x and realize the edge (u,v) as shown in Figures and This operation increases the number of
bars used to represent u or v by one. Since the parent of y is not an R-node, it can only be an S-node, and
hence both u and v are represented by a set of bars of size at most 4 (Lemma[7). However, both v and v
can be incident to many subdivided edges. We now show how to “charge” at most two subdivided edges
per vertex, meaning that the charged vertex will be the one taking the additional bar. As a consequence,
each of these vertices is represented by at most six bars.

The idea is as follows. Let ;1 be an R-node of 1" such that it does not have any R-node as descendant.
Let vy, ..., v be its children that are not -nodes. Since the subtree 7, rooted at v; (i = 1,. .., k) does
not contain any R-node, the pertinent graph G, is a partial 2-tree. We now show that every partial 2-tree
admits an orientation of its edges such that every vertex has at most two outgoing edges. Since 2-trees
are 2-degenerate, they can be made empty by iteratively removing a vertex v with degree at most two.
Orienting outwards the at most two edges incident to v leads to the desired orientation. Observe that the
penultimate vertex only has one outgoing edge e. It is not difficult to see that the order of the removed
vertices can be chosen so that the last edge e is a predefined one. By applying this procedure on GG,,, and
choosing e = (s,,,t,,) as predefined edge, we have that all vertices of GG,,, have at most two outgoing
edges, except for s, and ¢,,. Hence, the number of bars used to represent s,,, and ¢,,, does not increase
(recall that e = (s,,,t,,) is already drawn in 7,), while the number of bars used to represent any other
vertex in G, is at most 6. Apply the above procedure for all R-nodes that do not have any R-node as
descendant. Afterwards, prune down the subtrees of 7" rooted at such R-nodes and iterate the procedure
until there are no more R-nodes. Repeat the procedure on the remaining tree.

This algorithm can be implemented to run in O(n) time by avoiding the direct computation of an
OPVR, and by storing instead the information required to compute an orthogonal representation H of G.

24

| —=r1

—nH

Figure 18: An OPVR with 25 vertices and vertex complexity 3. Rectangular vertices have a darker color.

This, in particular, removes the scaling operations that only affect the length of the edges. By applying the
compaction step of the TSM framework, we finally obtain an OPVR of G in O(n) time on an integer grid
of size O(n) x O(n). Since every vertex is composed of at most 12 bars in the visibility representation,
in the final OPVR it is drawn as an orthogonal polygon with at most (12 — 1) - 2 reflex corners. This
proves Theorem §]

8 Implementation and Experiments

We implemented the optimization algorithm of Theorem [I]in C++, using the GDToolkit library [12]. To
evaluate the performance of the algorithm in practice, we tested it on a large set of 1-plane graphs, which
always admit an OPVR (Theorem [2). Other than evaluating the running time of the algorithm, we have
the two following objectives:

Obj-1. Measuring the vertex complexity of the computed OPVRs. In particular, for 3-connected 1-plane
graphs the gap between the upper bound of 12 and the lower bound of 2 is intriguing. We expect
that in practice the vertex complexity is closer to the lower bound, since the algorithm behind our
upper bound imposes strong restrictions on the computed OPVRs. For instance, it assumes that
crossing-free edges are always drawn as vertical bars, which might not be the case for an optimal
solution.

Obj-2. Establishing “how much” the computed drawings look like rectangle visibility representations,
independently of their vertex complexity. To this aim, for every computed OPVR with vertex
complexity k, we measure the percentage of vertices whose corresponding polygons have 7 reflex
corners, for any integeri € [0, ..., k]. We recall that our optimization algorithm not only minimizes
the vertex complexity, but within all the optimal solutions it computes one having the minimum
number of reflex corners (see Theorem [I). Thus, we always expect a high number of vertices
represented with low vertex complexity (ideally as rectangles).

Test suite. We generated three different subsets of (simple) 1-plane graphs, which we call GEN, BIC,
and TRIC, respectively. Each subset consists of 170 graphs (thus 510 instances in total). The number of
vertices of each graph ranges from 20 to 100. The graphs in GEN are general 1-plane graphs, while those
in BIC and in TRIC are always 2-connected and 3-connected, respectively. All graphs are maximal,

25

GEN - Number of edges and crossings GEN - 3-triconnected Graphs (%)

350 80%
8 e

300 ¢ ®] 70%
250 o) 60%
200 ¢ 8] 50:{
50 ge® © edges do
0 48 ° . x X crossings S0

Sg:xxxxxxxxxx*xxx 123_’ H [l HH

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
vertices vertices
(a) GEN - Number of edges and crossings. (b) GEN - Average % of 3-connected graphs.
BIC - Number of edges and crossings TRIC - Number of edges and crossings

a0 a0

s0 350 @

00 & @b@ & 300 B %8 8
250 §z>8»‘”’%9 250 & f &

00 a® 200 @@ @

o8]
150 @’g;v . 150 &
100 0®° - 100 op & L] s
% xex

"“iww*xx«m*w*“w*"*“w*www v,ai%%*»«%x»«w* SRR IR

’ 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 ’ 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

vertices vertices
(c) BIC - Number of edges and crossings. (d) TRIC - Number of edges and crossings.

Figure 19: Charts for the experimental data. The measured values are reported with dependence on the
number of vertices (x-axis).

which means that no further edges can be added in their embedding while preserving 1-planarity. Clearly,
augmenting a 1-plane graph to a maximal one cannot lower the vertex complexity of its OPVRs, whereas
it increases the running time required to compute a solution due to the increased number of edges.

Each graph with n vertices in GEN is obtained as follows. We first randomly generate an n-vertex
2-connected plane graph with the algorithm described in [5]. We then add as many edges as possible such
that each new edge crosses a previously uncrossed edge of the graph and no multiple edge is introduced.
We finally add a random sequence of uncrossed edges to get maximality (that is, no further edge can be
added without either violating 1-planarity or introducing a multiple edge). Although in principle every
maximal 1-plane graph can be generated with this approach, we observed that in practice all instances in
GEN admitted an OPVR with vertex complexity at most one (see the results below). Hence, we generated
the sets BIC and TRIC, which contain more difficult instances, obtained by explicitly adding the 1-
plane configurations used to prove our lower bounds. For a given positive integer n, a graph in BIC is
generated as follows: (4) start from a randomly generated k-vertex 2-connected plane graph, where k is
a fraction of n (we chose k = 0.2, as we observed that larger values give rise to graphs whose OPVRs
have smaller vertex complexity); (i) perform a random sequence of operations, where each operation
adds an augmented B-, or W-, or T-configuration, or a new crossing edge, or a new pair of crossing edges
to the graph, until the number of vertices reaches or exceeds n (multiple edges are not added); (¢i7) add
a final random sequence of uncrossed edges to get maximality. With this approach the resulting graph
might have a number of vertices slightly larger than n (at most n + 3). The graphs in TRIC are generated
analogously, but with the following two variants, which are needed to keep the graphs 3-connected: (7)
the initial 2-connected graph is randomly triangulated before adding 1-plane configurations; (ii) no W-
configuration is added, and each augmented B-configuration is added only if it is possible to connect one
of its internal vertices to the rest of the graph using an additional crossing edge.

The average density of the GEN graphs is 3.4 and, on average, 41.2% of their edges are crossing
edges: the variance for these two parameters is very low. About 33.7% of these graphs are 3-connected
(see Figures[T9aand[T9b). The BIC and TRIC graphs have an average density similar to that of the GEN
graphs: 3.2 for BIC and 3.4 for TRIC (Figures and [T9d). The percentage of crossing edges in the

26

GEN - Running Time (sec) GEN - Vertex Complexity - distribution of Vertices(%)

45 100%
40 8 90%8§§§§§8§§§@§S§§98
35 . °© so% 7 °
30 o o 70%
S 55 g 8 8 60%
s) 9 50%
g 20] g 8 8 20% 0 VC-0-V%
12 ° e 8 P 30% 0 VC-1-v%
: TIRAE R T
2o g 0 88 »S g8 d8oef8BoBo0g8eoo0
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
vertices vertices
(a) Running time. (b) % of vertices with complexity i (VC-i-V%).
BIC - Running Time (sec) BIC - Vertex Complexity - Distribution of vertices (%)
60 100%
° o 8o
50 5, s £ 8 4o, Ho, P B BREEY Prd
40 © & ° B o %8 ° %
€ g o 60% 0 VC-0-v%
5 30 o © o
g & & 683 40% VC-1-V%
20 @%%%o" %e N ° VC-2-V%
. wyg%‘?"?‘ﬁ" oo, 20% 34y Bk R PRLEE SR O
0 oo O mmo@ P 0% :.“_I-_._l_...l_.____t_-t—A
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
vertices vertices
(c) Running time. (d) % of vertices with complexity i (VC-i-V%).
TRIC- Running Time (sec) TRIC - Vertex Complexity - Distribution of vertices (%)
60 20%
o 80% g O g0
50 SR XTI EFR LR Ta- LR
. 40 o of 60% 2
2 < 50%
13 e o -0-VY%
§ 30 P o 0 VC-0-v%
20 el 8o, o 30% Ve-1v%
o o 8 éj . 2 20% ° VC-2-V%
$ 9 & =) 10% o §®
conye et I¥FEL hecdirzeTestaarpys
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
vertices vertices
(e) Running time. (f) % of vertices with complexity i (VC-i-V%).
BIC - Vertex Complexity TRIC - Vertex Complexity
4 ° 2 © ©0 00 0 000 GO 0 000 00 GO0 00 GG 000 00 GO 000
3 oo oo 60 o o o 0o ocoo o
2 000 OCO 0000 0O O 0O OCO OO0O 000 OCO OO0O OO0 0000 0000 00 0000 000 OO0O 1 0co c00 COO O © 00 @ 00 O © oo o o o o o o
160 oo o o o
0 0
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
vertices vertices
(g) BIC - Vertex complexity. (h) TRIC - Vertex complexity.

Figure 20: Charts (scatter plots) that summarize some experimental data. The measured values are re-
ported with dependence on the number of vertices (z-axis).

BIC graphs is very close to that of the GEN graphs, while for the TRIC graphs it is slightly higher (47.8%
on average).

Results. The computations have been executed on a common laptop, equipped with an Intel I7 proces-
sor and 8 GB of RAM. The software ran in the Oracle VirtualBox environment, under the Linux Ubuntu
OS. For the GEN graphs, the optimization drawing algorithm took less than 15 seconds for all instances

27

up to 60 vertices, and about 41 seconds on the largest instance, having 100 vertices and 355 edges (Fig-
ure 20a)). Concerning the vertex complexity, the optimal solutions of all GEN graphs required only vertex
complexity 1, except two of them that had an OPVR with vertex complexity 0. Figure 20b| shows, for
each instance, the percentage of vertices with O (i.e., rectangular vertices) and with one reflex corner: the
percentage of vertices drawn as rectangles is around 90%, and more than 80% for every instance. Hence,
a big portion of each drawing looks like a rectangle visibility representation.

The running times for BIC and TRIC reflect the behavior observed for the GEN graphs. However,
the largest instances of BIC and TRIC often appear to be computationally more expensive (Figures [20c
and [20e). The vertex complexity required by the different instances is shown in Figures and [20h]
Every instance of TRIC admitted a drawing with vertex complexity either 1 (37.65% of the instances) or
2 (62.35%), while the BIC graphs also required vertex complexity 3 (11.76% of the instances) and, in one
case, vertex complexity 4; however, the majority of the instances (80.59%) required vertex complexity 2.
For each instance, the distribution of the number of vertices drawn with ¢ reflex corners, where 7 ranges
from O to the vertex complexity required by that instance, is depicted in Figures and To avoid
visual clutter, we did not report the data about the unique drawing with vertex complexity 4 in the chart
of Figure[20d} this drawing has only two vertices with 4 reflex corners (from a total of 91 vertices). From
the charts, one can see that the percentage of vertices drawn as rectangles is still very high (around 80%
for BIC and around 75% for TRIC).

Overall, the experimental results confirmed our expectations about Obj-1 and Obj-2. An example of
an OPVR computed with our algorithm is depicted in Fig[I8]

9 Conclusions and Open Problems

In this paper we have introduced the notion of ortho-polygon visibility representations (OPVRs), a gener-
alization of rectangle visibility representations where vertices can be represented as orthogonal polygons
instead of rectangles. We have provided a quadratic-time algorithm that tests embedded graphs for rep-
resentability and, if the test is affirmative, it computes an embedding-preserving OPVR with minimum
vertex complexity, i.e., with the minimum number of reflex corners per vertex. Motivated by recent re-
sults on rectangle visibility representations [6], we have studied OPVRs of 1-planar graphs. We have
shown that for 3-connected 1-plane graphs an OPVR with vertex complexity at most 12 can be computed
in linear-time. We also showed that the vertex complexity of an OPVR of a 3-connected 1-plane graph
is at least 2 for some instances. For 2-connected 1-plane graphs, the vertex complexity is (n) for some
instances, but if the graphs do not have W-configurations, a 1-plane embedding that guarantees constant
vertex complexity can be constructed in O(n) time. Finally, we ran an experimental study to estimate the
vertex complexity of OPVRs of 1-plane graphs in practice.
The results in this paper naturally raise interesting open problems. Among them are:

1. Close the gap between the upper bound and the lower bound on the vertex complexity of OPVRs
of 3-connected 1-plane graphs (see Theorems [5|and|[6).

2. As shown in Section [§] many vertices in an optimal OPVR are rectangles in practice. We find it
interesting to study the problem of computing OPVRs that maximize the number of rectangular
vertices, even at the expense of sub-optimal vertex complexity.

3. Theorem [8| constructs 1-planar embeddings that guarantee constant vertex complexity if the input
does not have W-configurations. What 2-connected 1-plane graphs admit a 1-planar OPVR with
constant vertex complexity?

28

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]
(11]

[12]

[13]
(14]
[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

E. Ackerman. A note on 1-planar graphs. Discrete Appl. Math., 175:104-108, 2014.

M.]J. Alam, F. J. Brandenburg, and S. G. Kobourov. Straight-line grid drawings of 3-connected 1-planar graphs.
In S. K. Wismath and A. Wolff, editors, GD 2013, volume 8242 of LNCS, pages 83-94. Springer, 2013.

M. J. Alam, S. G. Kobourov, and D. Mondal. Orthogonal layout with optimal face complexity. In R. M.
Freivalds, G. Engels, and B. Catania, editors, SOFSEM 2016, volume 9587 of LNCS, pages 121-133. Springer,
2016.

M. J. Bannister, S. Cabello, and D. Eppstein. Parameterized complexity of 1-planarity. In F. Dehne, R. Solis-
Oba, and J. Sack, editors, WADS 2013, volume 8037 of LNCS, pages 97-108. Springer, 2013.

P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of
bends. IEEE Trans. Computers, 49(8):826-840, 2000.

T. C. Biedl, G. Liotta, and F. Montecchiani. On visibility representations of non-planar graphs. In S. P.
Fekete and A. Lubiw, editors, SoCG 2016, volume 51 of LIPIcs, pages 19:1-19:16. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

F. J. Brandenburg. 1-visibility representations of 1-planar graphs. J. Graph Algorithms Appl., 18(3):421-438,
2014.

S. Cabello and B. Mohar. Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM
J. Comput., 42(5):1803-1829, 2013.

S. Cornelsen and A. Karrenbauer. Accelerated bend minimization. J. Graph Algorithms Appl., 16(3):635-650,
2012.

J. Czap and D. Hudédk. On drawings and decompositions of 1-planar graphs. Electr. J. Comb., 20(2):P54, 2013.

A.M. Dean and J. P. Hutchinson. Rectangle-visibility representations of bipartite graphs. Discrete Appl. Math.,
75(1):9-25, 1997.

G. Di Battista and W. Didimo. GDToolkit. In R. Tamassia, editor, Handbook of Graph Drawing and Visualiza-
tion, pages 571-597. CRC Press, 2013.

G. Di Battista, P. Eades, R. Tamassia, and 1. G. Tollis. Graph Drawing. Prentice-Hall, 1999.
G. Di Battista and R. Tamassia. On-line planarity testing. SIAM J. Comput., 25(5):956-997, 1996.

W. Didimo, G. Liotta, S. Mehrabi, and F. Montecchiani. 1-bend RAC drawings of 1-planar graphs. In Y. Hu
and M. Nollenburg, editors, GD 2016, volume 9801 of LNCS, pages 335-343. Springer, 2016.

P. Duchet, Y. Hamidoune, M. L. Vergnas, and H. Meyniel. Representing a planar graph by vertical lines joining
different levels. Discrete Math., 46(3):319 — 321, 1983.

P. Eades, S. Hong, N. Katoh, G. Liotta, P. Schweitzer, and Y. Suzuki. A linear time algorithm for testing
maximal 1-planarity of graphs with a rotation system. Theor. Comput. Sci., 513:65-76, 2013.

P. Eades and G. Liotta. Right angle crossing graphs and 1-planarity. Discrete Appl. Math., 161(7-8):961-969,
2013.

W. S. Evans, M. Kaufmann, W. Lenhart, T. Mchedlidze, and S. K. Wismath. Bar 1-visibility graphs vs. other
nearly planar graphs. J. Graph Algorithms Appl., 18(5):721-739, 2014.

W. S. Evans, G. Liotta, and F. Montecchiani. Simultaneous visibility representations of plane st-graphs using
L-shapes. Theor. Comput. Sci., 645:100-111, 2016.

A. Garg and R. Tamassia. A new minimum cost flow algorithm with applications to graph drawing. In S. C.
North, editor, GD ’96, volume 1190 of LNCS, pages 201-216. Springer, 1996.

B. Haeupler and R. E. Tarjan. Finding a feasible flow in a strongly connected network. Operations Research
Letters, 36(4):397 — 398, 2008.

J. P. Hutchinson, T. C. Shermer, and A. Vince. On representations of some thickness-two graphs. Comput.
Geom., 13(3):161-171, 1999.

29

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

(35]
[36]

[37]

(38]
[39]
[40]

G. Kant and H. L. Bodlaender. Triangulating planar graphs while minimizing the maximum degree. In O. Nurmi
and E. Ukkonen, editors, SWAT 1992, volume 621 of LNCS, pages 258-271. Springer, 1992.

G. Kant, G. Liotta, R. Tamassia, and I. G. Tollis. Area requirement of visibility representations of trees. Inf.
Process. Lett., 62(2):81-88, 1997.

S. G. Kobourov, G. Liotta, and F. Montecchiani. = An annotated bibliography on 1-planarity. CoRR,
abs/1703.02261, 2017.

V. P. Korzhik and B. Mohar. Minimal obstructions for 1-immersions and hardness of 1-planarity testing. Journal
of Graph Theory, 72(1):30-71, 2013.

W. J. Lenhart, G. Liotta, and F. Montecchiani. On partitioning the edges of 1-plane graphs. Theoretical
Computer Science, 662:59 — 65, 2017.

G. Liotta and F. Montecchiani. L-visibility drawings of IC-planar graphs. Inf. Process. Lett., 116(3):217-222,
2016.

R. H.J. M. Otten and J. G. V. Wijk. Graph representations in interactive layout design. In IEEE ISCSS, pages
914-918. IEEE, 1978.

P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs. Discr. &
Comput. Geom., 1:343-353, 1986.

W. Schnyder. Embedding planar graphs on the grid. In D. S. Johnson, editor, SODA 1990, pages 138-148.
STIAM, 1990.

T. C. Shermer. On rectangle visibility graphs. III. External visibility and complexity. In F. Fiala, E. Kranakis,
and J. Sack, editors, CCCG 1996, pages 234-239. Carleton University Press, 1996.

L. Streinu and S. Whitesides. Rectangle visibility graphs: Characterization, construction, and compaction. In
H. Alt and M. Habib, editors, STACS 2003, volume 2607 of LNCS, pages 26-37. Springer, 2003.

Y. Suzuki. Re-embeddings of maximum 1-planar graphs. SIAM J. Discrete Math., 24(4):1527-1540, 2010.

R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comp., 16(3):421—
444, 1987.

R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs. Discr. & Comput.
Geom., 1(1):321-341, 1986.

C. Thomassen. Plane representations of graphs. In Progress in Graph Theory, pages 43—69. AP, 1984.
C. Thomassen. Rectilinear drawings of graphs. J. Graph Theory, 12(3):335-341, 1988.

S. K. Wismath. Characterizing bar line-of-sight graphs. In J. O’Rourke, editor, SoCG 1985, pages 147-152.
ACM, 1985.

30

A Orthogonal Representations and Network Flow Model

In this section, we recall basic definitions and main results related to the problem of computing orthogonal
representations exploiting the network flow model by Tamassia. We refer the reader to [[13}[21] for further
details.

Let G be a plane graph (possibly with multiple edges and self-loops) whose maximum vertex degree
is four. Let e = (u,v) be an edge of G. The two possible orientations (u,v) and (v, u) of e are called
darts. A dart is said to be counterclockwise with respect to face f if f is on the left hand side when
walking along the dart according to its orientation. Denote by D(u) the set of darts exiting from « and
by D(f) the set of counterclockwise darts with respect to f.

An orthogonal representation of G is an assignment to each dart (u,v) of two values a(u,v) €
{1,2,3,4} and 8(u,v) € N that satisfies the following conditions.

Cl. 1 <a(u,v) <4;

C2. B(u,v) > 0;

C3. > (. vep) alu,v) =4

C4. For each internal face f: 3, ,)cp(p(a(u,v) + B(v,u) — B(u,v)) = 2deg(f) — 4;

CS. For the outer face fext: Y-y 0)ep(f..,) (@(u,v) + B(v,u) — B(u,v)) = 2deg(f) + 4.

The value «(u,v) - 7 is the angle that dart (u,v) forms with the dart following it in the circular
counterclockwise order around u, while the value 3(u,v) is the number of bends of 7 along the dart
(u,v). Condition C1 expresses the fact that the sum of angles around each vertex is 2w, while C2
(respectively C3) expresses the fact that the sum of the angles at the vertices and bends of an internal face

(respectively outer) is equal to m(p — 2) (respectively m(p + 2)), where p is the number of such angles.

An orthogonal representation of G' with the minimum number of bends can be computed by means
of a flow network V. In the flow network NNV, each unit of flow corresponds to a g angle, each vertex
supplies 4 units of flow, and each face consumes an amount of flow proportional to its degree. Bends
along edges correspond to unit of flows transferred across adjacent faces, and each bend has a unit cost in
the network. The flow network V is constructed as follows. The nodes of network /V are the vertices and
faces of G. Each vertex-node v supplies o(v) = 4 units of flow, and each face-node f consumes 7(f)
units of flow, where

() = 2deg(f) —4 if f is an internal face
| 2deg(f)+4 if f is the outer face.

By Euler’s formula, », o (v) = >, 7(f), i.e., the total supply is equal to the total consumption.
For each dart (u,v) of G, with faces f and g on its left and right, respectively, N has two arcs:

e an arc (u, f) with lower bound A(v, f) = 1, capacity u(v, f) = 4, and cost x(v, f) = 0;
e an arc (f, g) with lower bound A(v, f) = 0, capacity p(v, f) = 400, and cost x (v, f) = 1;

The conservation of flow at the vertices expresses the fact that the sum of the angles around a vertex
is equal to 2. The conservation of flow at the faces expresses the fact that the sum of the angles at the
vertices and bends of an internal face is equal to 7w(p — 2), where p is the number of such angles. For the
outer face, the above sum is equal to 7(p + 2).

It can be shown that every feasible flow ¢ in network N corresponds to an admissible orthogonal
representation for graph GG, whose number of bends is equal to the cost of flow ¢. Namely, let ¢ be a
flow of N with cost b. Then, for each dart (u,v) whose associated arcs of N are (u, f) and (f, g), we

31

(a) (b)

Figure 21: (a) A graph G; (b) The SPQR-tree T of GG. For each node that is not a)-tree the skeleton is
depicted in the gray balloons; for @Q-nodes the corresponding edge is shown.

set a(u,v) = ®(u,) and B(u,v) = ®(f, g). On the other hand, by just setting ®(u, f) = a(u,v) and
®(f,g) = B(u,v), an orthogonal representation H with at most b bends is transformed into a feasible
flow ® of IV with cost b. Hence, the following theorem summarizes the above discussion.

Theorem 9 (see e.g. [13]). Let G be a plane graph with n vertices and maximum vertex degree four. An
orthogonal representation H of G with the minimum number of bends can be computed in O(T'(n)) time,
where T'(n) is the time for computing a min-cost flow of the flow network N associated with G.

B The S P(Q R-tree Decomposition

The following definitions and observations are useful for the proof of Theorem [§]

Let G be a 2-connected graph. A separation pair is a pair of vertices whose removal disconnects G.
A split pair is either a separation pair or a pair of adjacent vertices. A split component of a split pair
{u,v} is either an edge (u,v) or a maximal subgraph G, C G such that {u,v} is not a split pair of
Gy Vertices {u, v} are the poles of G.,,,. The SPQR-tree T of G with respect to an edge e is a rooted
tree that describes a recursive decomposition of G induced by its split pairs [14]]. In what follows, we
call nodes the vertices of T, to distinguish them from the vertices of G. The nodes of T" are of four types
S,P,Q, or R. Each node i of T has an associated 2-connected multigraph called the skeleton of p and
denoted by sk(u). At each step, given the current split component G*, its split pair {s, ¢}, and a node v in
T, the node p of the tree corresponding to G* is introduced and attached to its parent vertex v, while the
decomposition possibly recurs on some split component of G*. At the beginning of the decomposition
the parent of is a Q-node corresponding to e = (u,v), G* = G \ e, and {s,t} = {u, v}.

Base case: G* consists of a single edge between s and ¢. Then, p is a Q-node whose skeleton is G*
itself plus the reference edge between s and ¢.

Parallel case: The split pair {s,¢} has G1,...,Gy (k > 2) split components. Then, y is a P-node
whose skeleton is a set of k 4 1 parallel edges between s and ¢, one for each split component G; plus the
reference edge between s and t. The decomposition recurs on Gy, . . ., Gj, with p as parent node.

32

Series case: G* is not 2-connected and it has at least one cut vertex (a vertex whose removal discon-
nects G*). Then, u is an S-node whose skeleton is defined as follows. Let vy, ..., v5_1, where k > 2, be
the cut vertices of G*. The skeleton of x4 is a path eq, . . ., e, where e¢; = (v;_1,v;), vg = s and v, =,
plus the reference edge between s and ¢ which makes the path a cycle. The decomposition recurs on the
split components corresponding to each ey, . . ., e; with p as parent node.

Rigid case: None of the other cases is applicable. A split pair {s’,t'} is maximal with respect to
{s,t}, if for every other split pair {s*, ¢t*}, there is a split component that includes the vertices s’,t', s, t.
Let {s1,t1},...,{sk,tx} be the maximal split pairs of G* with respect to {s,¢} (k > 1), and, for
it = 1,...,k, let G; be the union of all the split components of {s;,¢;}. Then p is an R-node whose
skeleton is obtained from G* by replacing each component G; with an edge between s; and ¢;, plus the
reference edge (s, ¢). The decomposition recurs on each G; with p as parent node.

Figure [21] shows a graph and its SPQ R-tree. For each node that is not a Q)-tree the skeleton is
depicted; for @Q-nodes the corresponding edge is shown. The SPQ R-tree T of a graph G with n vertices
and m edges has m @-nodes and O(n) S-, P-, and R-nodes. Also, the total number of vertices of the
skeletons stored at the nodes of T" is O(n).

If G is an embedded graph, then each pertinent graph G, of a node p of T is also an embedded graph.
Furthermore, the skeleton sk (1) of p inherits an embedding from G,. For our purposes, we observe that
if G is a 1-plane graph, then the skeleton of an R-node is also a 1-plane graph. Moreover, we remark that
the skeleton of an R-node is 3-connected by definition.

The SPQR-tree can also be exploited to modify the embedding of G. A split component can be
flipped around its poles, hence reversing the order of the edges of the split component around its poles. A
swap operation consists of exchanging the position of two split components of the same split pair. If G is
1-plane, both these operations modify the embedding of G without introducing additional crossings, and
thus preserve 1-planarity.

33

	1 Introduction
	2 Preliminaries
	3 The Topology-Shape-Metrics Framework
	4 Test and Optimization for Embedded Graphs
	5 Types of Crossings and Edge Partitions of 1-plane Graphs
	5.1 Types of crossings in 1-plane graphs
	5.2 Edge partition of 3-connected 1-plane graphs

	6 Vertex Complexity Bounds for 3-connected 1-plane Graphs
	7 Vertex Complexity Bounds for 2-connected 1-plane Graphs
	8 Implementation and Experiments
	9 Conclusions and Open Problems
	A Orthogonal Representations and Network Flow Model
	B The SPQR-tree Decomposition

