
ar
X

iv
:1

40
1.

02
94

v2
 [

cs
.D

M
]

 2
0

N
ov

 2
01

6

Complexity results for generating subgraphs

Vadim E. Levit

Department of Computer Science

Ariel University, ISRAEL

levitv@ariel.ac.il

David Tankus

Department of Software Engineering

Sami Shamoon College of Engineering, ISRAEL

davidt@sce.ac.il

Abstract

A graph G is well-covered if all its maximal independent sets are of
the same cardinality. Assume that a weight function w is defined on its
vertices. Then G is w-well-covered if all maximal independent sets are of
the same weight. For every graph G, the set of weight functions w such
that G is w-well-covered is a vector space, denoted WCW (G).

Let B be a complete bipartite induced subgraph of G on vertex sets of
bipartition BX and BY . Then B is generating if there exists an indepen-
dent set S such that S∪BX and S∪BY are both maximal independent sets
of G. In the restricted case that a generating subgraph B is isomorphic
to K1,1, the unique edge in B is called a relating edge.

Deciding whether an input graph G is well-covered is co-NP-complete.
Therefore finding WCW (G) is co-NP-hard. Deciding whether an edge
is relating is NP-complete. Therefore, deciding whether a subgraph is
generating is NP-complete as well.

In this article we discuss the connections among these problems, pro-
vide proofs for NP-completeness for several restricted cases, and present
polynomial characterizations for some other cases.

Keywords: weighted well-covered graph; maximal independent set;
relating edge; generating subgraph; vector space.

1 Introduction

1.1 Basic definitions and notation

Throughout this paper G is a simple (i.e., a finite, undirected, loopless and
without multiple edges) graph with vertex set V (G) and edge set E(G).

Cycles of k vertices are denoted by Ck. When we say that G does not contain
Ck for some k ≥ 3, we mean that G does not admit subgraphs isomorphic to

1

http://arxiv.org/abs/1401.0294v2

Ck. Note that these subgraphs are not necessarily induced. Let G(Ĉi1 , .., Ĉik)
be the family of all graphs which do not contain Ci1 ,...,Cik .

Let u and v be two vertices in G. The distance between u and v, denoted
d(u, v), is the length of a shortest path between u and v, where the length of
a path is the number of its edges. If S is a non-empty set of vertices, then the
distance between u and S, is defined as d(u, S) = min{d(u, s) : s ∈ S}.

For every positive integer i, denote

Ni(S) = {x ∈ V (G) : d(x, S) = i},

and
Ni [S] = {x ∈ V (G) : d(x, S) ≤ i}.

If S contains a single vertex, v, then we abbreviate Ni({v}), Ni [{v}] to be
Ni(v), Ni [v], respectively. We denote by G[S] the subgraph of G induced by
S. For every two sets, S and T , of vertices of G, we say that S dominates T if
T ⊆ N1 [S].

1.2 Well-covered graphs

Let G be a graph. A set of vertices S is independent if its elements are pairwise
nonadjacent. An independent set of vertices is maximal if it is not a subset
of another independent set. An independent set of vertices is maximum if the
graph does not contain an independent set of a higher cardinality.

The graph G is well-covered if every maximal independent set is maximum
[12]. Assume that a weight function w : V (G) −→ R is defined on the vertices
of G. For every set S ⊆ V (G), define

w(S) =
∑

s∈S

w(s).

Then G is w-well-covered if all maximal independent sets of G are of the same
weight.

The problem of finding a maximum independent set is NP-complete. How-
ever, if the input is restricted to well-covered graphs, then a maximum indepen-
dent set can be found in polynomial time using the greedy algorithm. Similarly,
if a weight function w : V (G) −→ R is defined on the vertices of G, and G

is w-well-covered, then finding a maximum weight independent set is a polyno-
mial problem. There is an interesting application, where well-covered graphs are
investigated in the context of distributed k-mutual exclusion algorithms [18].

The recognition of well-covered graphs is known to be co-NP-complete.
This is proved independently in [5] and [15]. In [4] it is proven that the problem
remains co-NP-complete even when the input is restricted to K1,4-free graphs.
However, the problem can be solved in polynomial time for K1,3-free graphs
[16, 17], for graphs with girth 5 at least [6], for graphs with a bounded maximal
degree [3], for chordal graphs [13], and for graphs without cycles of lengths 4
and 5 [7].

2

For every graph G, the set of weight functions w for which G is w-well-
covered is a vector space [3]. That vector space is denoted WCW (G) [2]. Since
recognizing well-covered graphs is co-NP-complete, finding the vector space
WCW (G) of an input graph G is co-NP-hard. However, finding WCW (G)
can be done in polynomial time when the input is restricted to graphs with a
bounded maximal degree [3], to graphs without cycles of lengths 4, 5 and 6 [11],
and to chordal graphs [1].

1.3 Generating subgraphs and relating edges

Further we make use of the following notions, which have been introduced in
[8]. Let B be an induced complete bipartite subgraph of G on vertex sets of
bipartition BX and BY . Assume that there exists an independent set S such
that each of S ∪BX and S ∪BY is a maximal independent set of G. Then B is
a generating subgraph of G, and the set S is a witness that B is generating. We
observe that every weight function w such that G is w-well-covered must satisfy
the restriction w(BX) = w(BY).

If the generating subgraph B contains only one edge, say xy, it is called a
relating edge. In such a case, the equality w(x) = w(y) is valid for every weight
function w such that G is w-well-covered.

Recognizing relating edges is known to be NP-complete [2], and it remains
NP-complete even when the input is restricted to graphs without cycles of
lengths 4 and 5 [9]. Therefore, recognizing generating subgraphs is also NP-

complete when the input is restricted to graphs without cycles of lengths 4 and
5. However, recognizing relating edges can be done in polynomial time if the
input is restricted to graphs without cycles of lengths 4 and 6 [9], and to graphs
without cycles of lengths 5 and 6 [11].

It is also known that recognizing generating subgraphs is a polynomial prob-
lem when the input is restricted to graphs without cycles of lengths 4, 6 and 7
[8], to graphs without cycles of lengths 4, 5 and 6 [11], and to graphs without
cycles of lengths 5, 6 and 7 [11].

1.4 Introducing the problems under consideration

The subject of this article is the following four problems and their interconnec-
tions.

• WC problem:
Input : A graph G.
Question: Is G well-covered?

• WCW problem:
Input : A graph G.
Output : The vector space WCW (G).

• GS problem:
Input : A graph G, and an induced complete bipartite subgraph B of G.

3

Question: Is B generating?

• RE problem:
Input : A graph G, and an edge xy ∈ E (G).
Question: Is xy relating?

If we know the output of the WCW problem for a graph G, then we know
the output of the WC problem for the same G: The graph G is well-covered
if and only if w ≡ 1 belongs to WCW (G). Therefore, the WC problem is not
harder than the WCW problem. Let Ψ be a family of graphs. If the WCW

problem can be solved in polynomial time, when its input is restricted to Ψ, then
also the WC problem is polynomial, when its input is restricted to Ψ. On the
other hand, if the WC problem is co-NP-complete, when its input is restricted
to Ψ, then the WCW problem is co-NP-hard, when its input is restricted to
Ψ.

A similar connection exists between the GS problem and the RE problem,
since the RE problem is a restricted case of the GS problem. Therefore, for
every family Ψ of graphs, if the GS problem can be solved in polynomial time,
then the RE problem can be solved in polynomial time as well, and if the RE

problem is NP-complete then the GS problem is also NP-complete.
This article considers bipartite graphs, graphs with girth 6 at least, andK1,4-

free graphs. Although for bipartite graphs and graphs with girth 6 at least, the
WC problem is known to be solvable in polynomial time, we prove that the
GS problem is NP-complete. For bipartite graphs, even the RE problem is
NP-complete. Additionally, NP-completeness of the GS problem for K1,4-free
graphs is proved. We also present polynomial algorithms for the RE problem,
the GS problem, and the WCW problem in the case that the maximum degree
of the input graph is bounded.

2 NP-complete cases

A binary variable is a variable whose value is either 0 or 1. If x is a binary
variable, then its negation is denoted by x. Each of x and x are called literals.
Let X = {x1, ..., xn} be a set of binary variables. A clause c over X is a set
of literals belonging to {x1, x1, ..., xn, xn} such that c does not contain both a
variable and its negation. A truth assignment is a function

Φ : {x1, x1, ..., xn, xn} −→ {0, 1}

such that
Φ(xi) = 1− Φ(xi) for each 1 ≤ i ≤ n.

A truth assignment Φ satisfies a clause c if c contains at least one literal l such
that Φ(l) = 1.

4

2.1 Relating edges in bipartite graphs

In this subsection we consider the following problems:

• SAT problem:
Input : A set X of binary variables and a set C of clauses over X .
Question: Is there a truth assignment for X which satisfies all clauses of
C?

• BWSAT problem:
Input : A set X of binary variables and two sets, C1 and C2, of clauses
over X , such that all literals of the clauses belonging to C1 are variables,
and all literals of clauses belonging to C2 are negations of variables.
Question: Is there a truth assignment for X , which satisfies all clauses of
C1 ∪ C2?

By Cook-Levin’s Theorem, the SAT problem is NP-complete. We prove
that the same holds for the BWSAT problem.

Lemma 2.1 The BWSAT problem is in NP-complete.

Proof. Obviously, theBWSAT problem is inNP. We prove itsNP-completeness
by showing a reduction from the SAT problem. Let

I1 = (X = {x1, ..., xn}, C = {c1, ..., cm})

be an instance of the SAT problem. Define Y = {x1, ..., xn, y1, ..., yn}, where
y1, ..., yn are new variables. For every 1 ≤ j ≤ m, let c′j be the clause obtained
from cj by replacing xi with yi for each 1 ≤ i ≤ n. Let C′ = {c′1, ..., c

′
m}. For

each 1 ≤ i ≤ n define two new clauses, di = {xi, yi} and ei = {xi, yi}. Let D =
{d1, ..., dn} and E = {e1, ..., en}. Obviously, all literals of C′ ∪D are variables,
and all literals of E are negations of variables. Hence, I2 = (Y,C′ ∪D,E) is an
instance of the BWSAT problem, see Example 2.2. It remains to prove that
I1 and I2 are equivalent.

Assume that I1 is a positive instance of the SAT problem. There exists a
truth assignment

Φ1 : {x1, x1, ..., xn, xn} −→ {0, 1}

which satisfies all clauses of C. Extend Φ1 to a truth assignment

Φ2 : {x1, x1, ..., xn, xn, y1, y1, ..., yn, yn} −→ {0, 1}

by defining Φ2(yi) = 1 − Φ1(xi) for each 1 ≤ i ≤ n. Clearly, Φ2 is a truth
assignment which satisfies all clauses of C′ ∪ D ∪ E. Hence, I2 is a positive
instance of the BWSAT problem.

Assume I2 is a positive instance of the BWSAT problem. There exists a
truth assignment

Φ2 : {x1, x1, ..., xn, xn, y1, y1, ..., yn, yn} −→ {0, 1}

5

that satisfies all clauses of C′ ∪ D ∪ E. For every 1 ≤ i ≤ n it holds that
Φ2(yi) = 1−Φ2(xi), or otherwise one of di and ei is not satisfied. Therefore, I1
is a positive instance of the SAT problem.

Example 2.2 The following contains both an instance of the SAT problem and
an equivalent instance of the BWSAT problem.

I1 = (X,C), where X = {x1, x2, x3, x4, x5},
C = {{x1, x2, x3}, {x1, x3, x4, x5}, {x1, x2, x3, x4}, {x1, x2, x4, x5}},
I2 = (Y,C1, C2), where Y = {x1, x2, x3, x4, x5, y1, y2, y3, y4, y5},
C1 = {{x1, y2, x3}, {x1, x3, x4, x5}, {y1, x2, y3, x4}, {x1, x2, y4, y5}, {x1, y1},
{x2, y2}, {x3, y3}, {x4, y4}, {x5, y5}}.
C2 = {{x1, y1}, {x2, y2}, {x3, y3}, {x4, y4}, {x5, y5}}

The following theorem is the main result of this section.

Theorem 2.3 The RE problem is NP-complete even if its input is restricted
to bipartite graphs.

Proof. The problem is obviously in NP. We prove NP-completeness by show-
ing a reduction from the BWSAT problem. Let

I1 = (X = {x1, ..., xn}, C1, C2)

be an instance of the BWSAT problem, where C1 = {c1, ..., cm} is a set of
clauses which contain only variables, and C2 = {c′1, ..., c

′
m′} is a set of clauses

which contain only negations of variables. Define a graph B as follows:

V (B) = {x, y} ∪ {vj : 1 ≤ j ≤ m} ∪ {v′j : 1 ≤ j ≤ m′}∪

{ui : 1 ≤ i ≤ n} ∪ {u′
i : 1 ≤ i ≤ n},

E (B) = {xy} ∪ {xvj : 1 ≤ j ≤ m} ∪ {yv′j : 1 ≤ j ≤ m′}∪

{vjui : xi appears in cj} ∪ {v′ju
′
i : xi appears in c′j} ∪ {uiu

′
i : 1 ≤ i ≤ n}.

Clearly, B is bipartite, and the vertex sets of its bipartition are

{ui : 1 ≤ i ≤ n} ∪ {x} ∪ {v′j : 1 ≤ j ≤ m′}

and
{vj : 1 ≤ j ≤ m} ∪ {y} ∪ {u′

i : 1 ≤ i ≤ n}.

Consider the instance I2 = (B, xy) of the RE problem. It is necessary to
prove that I1 and I2 are equivalent.

Assume that I1 is a positive instance of the BWSAT problem. Let

Φ : {x1, x1, ..., xn, xn} −→ {0, 1}

6

be a truth assignment which satisfies all clauses of C1 ∪ C2. Let

S = {ui : Φ(xi) = 1} ∪ {u′
i : Φ(xi) = 0}.

Obviously, S is independent. Since Φ satisfies all clauses of C1∪C2, every vertex
of

{vj : 1 ≤ j ≤ m} ∪ {v′j : 1 ≤ j ≤ m′}

is adjacent to a vertex of S. Hence, S∪{x} and S∪{y} are maximal independent
sets. Therefore, S is a witness that xy is a relating edge, and I2 is a positive
instance of the RE problem.

On the other hand, assume that I2 is a positive instance of the RE problem.
Let S be a witness of xy. Since S is a maximal independent set of

{ui : 1 ≤ i ≤ n} ∪ {u′
i : 1 ≤ i ≤ n},

exactly one of ui and u′
i belongs to S, for every 1 ≤ i ≤ n. Let

Φ : {x1, x1, ..., xn, xn} −→ {0, 1}

be a truth assignment defined by: Φ(xi) = 1 ⇐⇒ ui ∈ S. The fact that S

dominates
{vj : 1 ≤ j ≤ m} ∪ {v′j : 1 ≤ j ≤ m′}

implies that all clauses of C1 ∪C2 are satisfied by Φ. Therefore, I1 is a positive
instance of the BWSAT problem.

Example 2.4 Let I1 = (X,C1, C2) be an instance of the BWSAT problem,
where X = {x1, x2, x3, x4, x5, x6},
C1 = {{x1, x2, x3}, {x2, x4}, {x1, x4}, {x1, x5, x6}, {x3, x5, x6}}, and
C2 = {{x1, x2, x3}, {x2, x3, x4, x5}, {x2, x4, x5, x6}}

Then I2 = (G, xy) is an equivalent instance of the RE problem, where G is
the graph shown in Figure 1. The instance I1 is positive because of the satisfying
assignment Φ defined by Φ(xi) = 0 if i ∈ {2, 6}, and Φ(xi) = 1 otherwise. The
corresponding witness that I2 is positive is the set {u1, u

′
2, u3, u4, u5, u

′
6}.

Corollary 2.5 The GS problem is NP-complete when its input is restricted to
bipartite graphs.

2.2 Graphs with girth 6 at least

In this subsection we consider the following problems:

• 3-SAT problem:
Input : A set X of binary variables and a set C of clauses over X such
that every clause contains exactly 3 literals.
Question: Is there a truth assignment for X satisfying all clauses of C?

7

r
r

y

x

✈ r ✈ ✈ ✈ ru1 u2 u3 u4 u5 u6

r r r r rv1 v2 v3 v4 v5

r r rv′1 v′2 v′3

r ✈ r r r ✈u′
1 u′

2 u′
3 u′

4 u′
5 u′

6

r r r r r

r r r

❍❍❍❍❍❍❍❍❍

❅
❅

❅
❅❅

�
�
�
��

✟✟✟✟✟✟✟✟✟

�
�

�
��

❅
❅
❅
❅❅

❅
❅

❅
❅❅

�
�
�
��

❅
❅

❅
❅❅

✟✟✟✟✟✟✟✟✟

PPPPPPPPPPPPP

�
�
�
��

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

�
�
�
��

✟✟✟✟✟✟✟✟✟

PPPPPPPPPPPPP

�
�
�
��

�
�

�
��

✟✟✟✟✟✟✟✟✟

❅
❅
❅
❅❅

�
�

�
��

❍❍❍❍❍❍❍❍❍

✟✟✟✟✟✟✟✟✟

❅
❅
❅
❅❅

✏✏✏✏✏✏✏✏✏✏✏✏✏

❍❍❍❍❍❍❍❍❍

✬

✫

✬ ✩

✫ ✪

✬

✫

✬ ✩

✫ ✪

✩

✪

✬ ✩

✫ ✪

✩

✪

✬ ✩

✫ ✪
Figure 1: An example of the reduction from the USAT problem to the RE

problem.

• DSAT problem:
Input : A set X of binary variables and a set C of clauses over X such
that the following holds:

– Every clause contains 2 or 3 literals.

– Every two distinct clauses have at most one literal in common.

– If two clauses, c1 and c2, have a common literal l1, then there does
not exist a literal l2 such that c1 contains l2 and c2 contains l2.

Question: Is there a truth assignment for X satisfying all clauses of C?

Let I = (X,C) be an instance of the 3-SAT problem. A bad pair of clauses
is a set of two clauses {c1, c2} ⊆ C such that there exist literals, l1, l2, l3, l4, l5,
and:

• c1 = {l1, l2, l3} and c2 = {l1, l4, l5};

• either l2 = l4 or l2 = l4.

8

Clearly, an instance of the 3-SAT problem with no bad pair of clauses is
also an instance of the DSAT problem. The 3-SAT problem is known to be in
NP-complete. We prove that the same holds for the DSAT problem.

Lemma 2.6 The DSAT problem is NP-complete.

Proof. Obviously, theDSAT problem is inNP. We prove itsNP-completeness
by showing a reduction from the 3-SAT problem. Let

I1 = (X = {x1, ..., xn}, C = {c1, ..., cm})

be an instance of the 3-SAT problem.
Assume that there exists a bad pair of clauses, {cj1 , cj2} ⊆ C, i.e. there exist

literals, l1, l2, l3, l4, l5, such that:

• cj1 = {l1, l2, l3} and cj2 = {l1, l4, l5};

• either l2 = l4 or l2 = l4.

Define a new binary variable xn+1, and new clauses c1j2 = {l1, xn+1, l5},

c2j2 = {l4, xn+1}, and c3j2 = {l4, xn+1}. Then

I ′1 = (X ∪ {xn+1}, (C \ {cj2}) ∪ {c1j2 , c
2
j2 , c

3
j2})

is an instance of the SAT problem.
We prove that I1, I

′
1 are equivalent. Assume that I1 is a positive instance

of the 3-SAT problem. There exists a truth assignment

Φ1 : {x1, x1, ..., xn, xn} −→ {0, 1}

which satisfies all clauses of C. Extend Φ1 to a truth assignment

Φ2 : {x1, x1, ..., xn+1, xn+1} −→ {0, 1}

by defining Φ2(xn+1) = Φ1(l4). Clearly, Φ2 satisfies all clauses of I ′1. On the
other hand, assume that there exists a truth assignment

Φ2 : {x1, x1, ..., xn+1, xn+1} −→ {0, 1}

which satisfies all clauses of I ′1. Clauses c2j2 , and c3j2 imply that Φ2(xn+1) =
Φ2(l4). Therefore, I1 is a positive instance of the 3-SAT problem.

The new clauses we added contain a new binary variable. Hence, they do
not belong to bad pairs of clauses. Moreover, the clause cj2 which belongs to a
bad pair in I1 was omitted in I ′1. Hence, the number of bad pairs of clauses in
I ′1 is smaller than the one in I1.

Repeat that process until an instance without bad pairs of clauses is ob-
tained, and denote that instance I2. Clearly, every clause of I2 has 2 or 3
literals. Hence, I2 is an instance of the DSAT problem, and I1 and I2 are
equivalent.

9

Example 2.7 The following contains an instance of the 3-SAT problem and
an equivalent instance of the DSAT problem.

I1 = (X1, C1) where X1 = {x1, x2, x3, x4, x5} and C1 = {{x1, x2, x3},
{x1, x3, x4}, {x1, x3, x5}, {x3, x4, x5}, {x2, x3, x4}, {x1, x4, x5}}.

I2 = (X2, C2) where X2 = {x1, x2, x3, x4, x5, z3, y3, y4, y5} and
C2 = {{x1, x2, x3}, {x1, y3, x4}, {x1, z3, x5}, {x3, x4, x5}, {x2, x3, y4},
{x1, x4, y5}, {x3, y3}, {x3, y3}, {x3, z3}, {x3, z3}, {x4, y4}, {x4, y4}, {x5, y5},
{x5, y5}}.

Theorem 2.8 The following problem is NP-complete:
Input: A graph G ∈ G(Ĉ3, Ĉ4, Ĉ5) and an induced complete bipartite subgraph
B of G.
Question: Is B generating?

Proof. The problem is obviously in NP. We prove its NP-completeness by
showing a reduction from the DSAT problem. Let

I = (X = {x1, ..., xn}, C = {c1, ..., cm})

be an instance of the DSAT problem. Define a graph G as follows.

V (G) = {y} ∪ {aj : 1 ≤ j ≤ m} ∪ {vj : 1 ≤ j ≤ m}∪

{ui : 1 ≤ i ≤ n} ∪ {u′
i : 1 ≤ i ≤ n}.

E(G) = {yaj : 1 ≤ j ≤ m} ∪ {ajvj : 1 ≤ j ≤ m} ∪ {vjui : xi appears in cj}∪

{vju
′
i : xi appears in cj} ∪ {uiu

′
i : 1 ≤ i ≤ n}.

Since a clause can not contain both a variable and its negation, G does not
contain C3. The fact that there are no pairs of bad clauses implies that
G does not contain C4 and C5. Hence, G ∈ G(Ĉ3, Ĉ4, Ĉ5). Let
B = G[{y} ∪ {aj : 1 ≤ j ≤ m}]. Obviously, B is complete bipartite. Then
J = (G,B) is an instance of the GS problem. It remains to prove that I and J

are equivalent.
Assume that I is positive, and let

Φ : {x1, x1, ..., xn, xn} −→ {0, 1}

be a truth assignment which satisfies all clauses of C. Define

S = {ui : Φ(xi) = 1} ∪ {u′
i : Φ(xi) = 0}.

Obviously, S is independent. Since Φ satisfies all clauses of C, the set S dom-
inates {vj : 1 ≤ j ≤ m}. Hence, S is a witness that B is generating, i.e., J is
positive.

Assume that J is positive. Let S be a witness that B is generating, and let
S∗ be a maximal independent set of {ui : 1 ≤ i ≤ n} ∪ {u′

i : 1 ≤ i ≤ n} which
contains S. For every 1 ≤ i ≤ n, it holds that |S∗ ∩ {ui, u

′
i}| = 1. Define

Φ : {x1, x1, ..., xn, xn} −→ {0, 1}

10

by Φ(xi) = 1 ⇐⇒ ui ∈ S∗ for every 1 ≤ i ≤ n. Since S∗ dominates
{vj : 1 ≤ j ≤ m}, the function Φ satisfies all clauses of C, and I is a positive
instance.

r
y

r r r r r
❍❍❍❍❍❍❍❍❍

❅
❅

❅
❅❅

�
�
�
��

✟✟✟✟✟✟✟✟✟

r r r r r
a1 a2 a3 a4 a5

r r r r r r
v1 v2 v3 v4 v5

r r r r r ru1 u2 u3 u4 u5 u6u′
1 u′

2 u′
3 u′

4 u′
5 u′

6

❏
❏

❏
❏❏

✡
✡
✡
✡✡

✚
✚
✚
✚
✚✚

❩
❩

❩
❩

❩❩

❏
❏

❏
❏❏

✚
✚
✚
✚
✚✚

✡
✡
✡
✡✡

✡
✡
✡
✡✡

✧
✧
✧
✧
✧
✧

✧✧

❜
❜

❜
❜

❜
❜

❜❜

❏
❏

❏
❏❏

✈ ✈ ✈ ✈ ✈ ✈

B

Figure 2: An example of the reduction from the DSAT problem to the GS

problem.

Example 2.9 Let I1 = (X,C) be an instance of the DSAT problem, where
X = {x1, x2, x3, x4, x5, x6} and C = {{x1, x2, x3}, {x1, x2, x4}, {x1, x4, x6},
{x2, x5, x6}, {x3, x4, x5}}. Then I2 = (G,B) is an equivalent instance of the
GS problem, where G and B are the graphs shown in Figure 2. The instance
I1 is positive because of the satisfying assignment Φ defined by Φ(xi) = 1 if
i ∈ {1, 2, 4}, and Φ(xi) = 0 otherwise. The corresponding witness that I2 is
positive is the set {u1, u2, u

′
3, u4, u

′
5, u

′
6}.

2.3 K1,4-free graphs

Theorem 2.10 [4] The following problem is co-NP-complete:
Input: A K1,4-free graph G.
Question: Is G well-covered?

We use Theorem 2.10 to prove the following.

Theorem 2.11 The GS problem is NP-complete even when its input is re-
stricted to K1,4-free graphs.

Proof. Let G be a K1,4-free graph. An induced complete bipartite subgraph
of G is isomorphic to Ki,j , for 1 ≤ i ≤ j ≤ 3. Hence, the number of these
subgraphs is O(n6), which is polynomial. Every unbalanced induced complete
bipartite subgraph of G is a copy of K1,2 or K1,3 or K2,3. The number of these
subgraphs is O(n5).

11

Assume, on the contrary, that there exists a polynomial algorithm solving the
GS problem forK1,4-free graphs. The following algorithm decides in polynomial
time whether a K1,4-free graph G is well-covered. For each induced complete
bipartite unbalanced subgraph B of G on vertex sets of bipartition BX and
BY , decide in polynomial time whether B is generating. Once an unbalanced
generating subgraph is discovered, the algorithm terminates announcingG is not
well-covered. If the algorithm checked all induced complete bipartite unbalanced
subgraphs of G, and none of them is generating, then G is well-covered. Hence,
the WC problem can be solved in polynomial time when its input is restricted
to K1,4-free graphs, but that contradicts Theorem 2.10. Thus the GS problem
is NP-complete, when its input is a K1,4-free graph.

3 Polynomial algorithms when ∆ is bounded

In this section G will be a graph with n vertices and of maximum degree ∆.
The main findings of this section are polynomial algorithms for the RE problem
and the GS problem in the restricted case, when ∆ is bounded. Our motivation
here is the following.

Theorem 3.1 [3] Let k ∈ N . The following problem is polynomial.

Input: A graph G with ∆G ≤ k · (log2 n)
1

3 , and a function w : V (G) −→ R.
Question: Is G w-well-covered?

We prove that the GS problem is polynomial, when ∆ is bounded using the
same technique as in Theorem 3.1.

Theorem 3.2 Let k ∈ N . The following problem can be solved in O(n2+2k3

)
time.
Input: A graph G such that ∆ ≤ k · (log2 n)

1

3 , and an induced complete bipartite
subgraph B of G.
Question: Is B generating?

Proof. Let B be an induced complete bipartite subgraph of G on vertex sets
of bipartition BX and BY . For every V ∈ {X,Y }, let U ∈ {X,Y } − {V }, and
define:

M1(BV) = N(BV) ∩N2(BU), M2(BV) = N(M1(BV)) ∩N2(BV).

Then |M1(BV)| ≤ k2(log2 n)
2/3 and |M2(BV)| ≤ k3 log2 n. Obviously, B is

generating if and only if there exists an independent set in M2(BX) ∪M2(BY)
that dominates M1(BX) ∪M1(BY).

The following algorithm decides whether B is generating. For each subset
S of M2(BX) ∪ M2(BY), check whether S is independent and dominates
M1(BX) ∪M1(BY). Once an independent set S ⊆ M2(BX) ∪M2(BY) is found
such that M1(BX)∪M1(BY) ⊆ N [S], the algorithm terminates announcing the
instance at hand is positive. If all subsets of M2(BX) ∪M2(BY) were checked,

12

and none of them is independent and dominates M1(BX) ∪M1(BY), then the
algorithm returns a negative answer.

The number of subsets the algorithm checks is

O(2|M2(BX)∪M2(BY)|) = O(22k
3 log

2
n) = O(n2k3

).

For each subset S, the decision whether S is both independent and dominates
M1(BX) ∪M1(BY) can be done in O(n2). Therefore, the algorithm terminates

in O(n2+2k3

) time, which is polynomial.
We next prove that the RE problem is polynomial for the less restrictable

bound in comparison with its counterpart from Theorem 3.2.

Theorem 3.3 Let k ∈ N . The following problem can be solved in O(n2+2k2

)
time.
Input: A graph G such that ∆ ≤ k · (log2 n)

1

2 , and an edge xy ∈ E.
Question: Is xy relating?

Proof. For every v ∈ {x, y}, let u ∈ {x, y}−{v}. Define: M1(v) = N(v)∩N2(u),

M2(v) = N(M1(v)) ∩ N2(v). Then |M1(v)| ≤ k · (log2 n)
1

2 and |M2(v)| ≤
k2 log2 n. Clearly, xy is relating if and only if there exists an independent set in
M2(x) ∪M2(y), which dominates M1(x) ∪M1(y).

The following algorithm decides whether xy is relating. For each subset S of
M2(x)∪M2(y), check whether S is independent and dominates M1(x)∪M1(y).
Once an independent set S ⊆ M2(x) ∪ M2(y) is found such that
M1(x) ∪ M1(y) ⊆ N [S], the algorithm terminates announcing the instance at
hand is positive. If all subsets of M2(x)∪M2(y) were checked, and none of them
is both independent and dominates M1(x) ∪M1(y), then the algorithm returns
a negative answer.

The number of subsets the algorithm checks is

O(2|M2(x)∪M2(y)|) = O(22k
2 log

2
n) = O(n2k2

).

For each subset S, the decision whether S is both independent and dominates
M1(x)∪M1(y) can be done in O(n2) time. Therefore, the algorithm terminates

in O(n2+2k2

) time.
In what follows, our purpose is both to formalize and to give a detailed proof

of a claim mentioned in [3].

Theorem 3.4 Let k ∈ N . The following problem can be solved in O(n3+2k2+2k3

)
time.
Input: A graph G such that ∆ ≤ k · (log2 n)

1

3 .
Output: The vector space WCW (G).

Proof. Let G be a graph such that ∆ ≤ k · (log2 n)
1

3 . For every vertex v ∈ V ,
let Lv be the vector space of all weight functions w : V (G) −→ R which satisfy
all restrictions of all generating subgraphs which contain the vertex v. Clearly,

13

WCW (G) =
⋂

v∈V (G)

Lv. Hence, we first present an algorithm for finding Lv for

every v ∈ V .
Let v ∈ V . Since the diameter of every complete bipartite graph is at most

2, every complete bipartite subgraph of G which contains v is a subgraph of
N2[v]. However,

|N2(v)| ≤ ∆2 ≤ k2(log2 n)
2

3 ,

and
|N2[v]| ≤ 2 |N2(v)| ≤ 2k2(log2 n)

2

3 .

Therefore, the number of induced complete bipartite subgraphs which contain
v cannot exceed

22k
2(log

2
n)

2

3 ≤ n2k2

.

The following algorithm finds Lv:

• For each induced complete bipartite subgraph B = (BX , BY) of G con-
taining v:

– Decide whether B is generating;

– If B is generating add the restriction w(BX) = w(BY) to the list of
equations defining Lv.

We have proved that the number of induced complete bipartite subgraphs of
G containing v cannot exceed n2k2

. By Theorem 3.2, deciding for each subgraph
whether it is generating can be done inO(n2+2k3

) time. Therefore, the algorithm

for finding Lv terminates in O(n2+2k2+2k3

) time. In order to find WCW (G),
the algorithm for finding Lv should be invoked n times. Therefore, finding
WCW (G) can be completed in O(n3+2k2+2k3

) time.

4 Conclusions and future work

The following table presents complexity results concerning the four major prob-
lems presented in this paper. The empty table cells correspond to unsolved
cases. In particular, we want to find the complexity status of the WCW prob-
lem for bipartite graphs and for graphs with girth 6 at least. For these families
of graphs the GS problem is NP-complete while the WC problem is polyno-
mial. Hence, either we obtain a family of graphs for which the WC problem is
polynomial while the WCW problem is co-NP-hard, or we obtain a family of
graphs for which the GS problem is NP-complete while the WCW problem is
polynomial.

In addition, we are interested in finding some polynomial relaxations of the
bipartite case, if any. For instance, can recognizing well-covered graphs belong-
ing to G(Ĉ3, Ĉ5) be done polynomially?

Let us emphasize that we do not know whether there exists a family of
graphs for which the RE problem can be solved in polynomial time, but the
GS problem is NP-complete.

14

Input WC WCW RE GS

general
co-NPC

[5, 15]
co-NPH

[5, 15]
NPC

[2]
NPC

[2]

K1,3-free
P

[16]
P

[10]
P

[17]
P

[17]

K1,4-free
co-NPC

[4]
co-NPH

[4]
NPC

this paper

G(Ĉ4, Ĉ5)

P

[7]
NPC

[9]
NPC

[9]

G(Ĉ4, Ĉ6)

P

[9]

G(Ĉ5, Ĉ6)

P

[11]

G(Ĉ5, Ĉ6, Ĉ7)

P

[11]
P

[11]

G(Ĉ4, Ĉ5, Ĉ6)

P

[7]
P

[11]
P

[11]
P

[11]

G(Ĉ4, Ĉ6, Ĉ7)

P

[8]
P

[8]

bipartite
P

[14]
NPC

this paper
NPC

this paper

G(Ĉ3, Ĉ4)

P

[6]
NPC

this paper

G(Ĉ3, Ĉ4, Ĉ5)

P

[6]
NPC

this paper

∆ ≤ k(log2 n)
1

3

P

[3]
P

[3]
P

[3] and this paper
P

[3] and this paper

∆ ≤ k(log2 n)
1

2

P

[3] and this paper

Table 1: Complexity results on the 4 problems.

15

Another interesting open question is whether there exists a family of graphs
for which the GS problem is polynomial and its corresponding WCW problem
is co-NP-hard.

rv1
r r r

r r r

v2 v4 v6

v3 v5 v7

❅
❅
❅
❅❅

�
�
�
��

rv8 r
r
v9

v10

❇
❇
❇
❇❇

❏
❏

❏
❏❏

✓
✓
✓
✓
✓
✓

❳❳❳❳❳❳

✑
✑
✑
✑✑

◗
◗
◗
◗◗

B

Figure 3: The failure of the naive algorithm.

The naive algorithm for the GS problem, receives as its input an instance
I = (G,B = (BX , BY)). Then it finds WCW (G). If there exists a weight
function w ∈ WCW (G) such that w(BX) 6= w(BY), then B is not generating,
and consequently, I is negative. Otherwise, I is positive. For every family Ψ
of graphs, if the WCW problem can be solved polynomially, then the naive
algorithm for the GS problem terminates polynomially.

However, the naive algorithm fails, when its input is (G,B), where G is
the graph shown in Figure 3, and B is the subgraph induced by {v1, v2, v3}.
A function w : V (G) −→ R belongs to WCW (G) if and only if the following
conditions hold:

• w(v7) = w(v9)

• w(v8) = w(v10)

• w(v6) = w(v9) + w(v10)

• w(vi) = 0 for every 1 ≤ i ≤ 5.

Hence, w(v1) = w(v2) + w(v3) for every w ∈ WCW (G), and the naive
algorithm decides that B is generating, although it is not.

References

[1] J. I. Brown, R. J. Nowakowski, Well covered vector spaces of graphs, SIAM
Journal on Discrete Mathematics 19 (2006) 952–965.

16

[2] J. I. Brown, R. J. Nowakowski, I. E. Zverovich, The structure of well-covered
graphs with no cycles of length 4, Discrete Mathematics 307 (2007) 2235-
2245.

[3] Y. Caro, N. Ellingham, G. F. Ramey, Local structure when all maximal
independent sets have equal weight, SIAM Journal on Discrete Mathematics
11 (1998) 644-654.

[4] Y. Caro, A. Sebő, M. Tarsi, Recognizing greedy structures, Journal of Al-
gorithms 20 (1996) 137-156.

[5] V. Chvatal, P. J. Slater, A note on well-covered graphs, Quo Vadis, Graph
Theory?, Annals of Discrete Mathematics 55, North Holland, Amsterdam
(1993) 179-182.

[6] A. Finbow, B. Hartnell, R. Nowakowski, A characterization of well-covered
graphs of girth 5 or greater, Journal of Combinatorial Theory B 57 (1993)
44-68.

[7] A. Finbow, B. Hartnell, R. Nowakowski, A characterization of well-covered
graphs that contain neither 4- nor 5-cycles, Journal of Graph Theory 18

(1994) 713-721.

[8] V. E. Levit, D. Tankus Weighted well-covered graphs without C4, C5, C6,
C7, Discrete Applied Mathematics 159 (2011) 354-359.

[9] V. E. Levit, D. Tankus, On relating edges in graphs without cycles of length
4, Journal of Discrete Algorithms 26 (2014) 28-33.

[10] V. E. Levit, D. Tankus, Weighted well-covered claw-free graphs, Discrete
Mathematics 338 (2015) 99-106.

[11] V. E. Levit, D. Tankus, Well-covered graphs without cycles of lengths 4, 5
and 6, Discrete Applied Mathematics 186 (2015) 158-167.

[12] M. D. Plummer, Some covering concepts in graphs, Journal of Combinato-
rial Theory 8 (1970) 91-98.

[13] E. Prisner, J. Topp and P. D. Vestergaard, Well-covered simplicial, chordal
and circular arc graphs, Journal of Graph Theory 21 (1996) 113–119.

[14] G. Ravindra, Well-covered graphs, Journal of Combinatorics, Information
and System Sciences 2 (1977) 20-21.

[15] R. S. Sankaranarayana, L. K. Stewart, Complexity results for well-covered
graphs, Networks 22 (1992) 247-262.

[16] D. Tankus, M. Tarsi, Well-covered claw-free graphs, Journal of Combina-
torial Theory B 66 (1996) 293-302.

17

[17] D. Tankus, M. Tarsi, The structure of well-covered graphs and the complex-
ity of their recognition problems, Journal of Combinatorial Theory B 69

(1997) 230-233.

[18] M. Yamashita, T. Kameda,Modeling k-coteries by well-covered graphs, Net-
works 34 (1999) 221–228.

18

	1 Introduction
	1.1 Basic definitions and notation
	1.2 Well-covered graphs
	1.3 Generating subgraphs and relating edges
	1.4 Introducing the problems under consideration

	2 NP-complete cases
	2.1 Relating edges in bipartite graphs
	2.2 Graphs with girth 6 at least
	2.3 K1,4-free graphs

	3 Polynomial algorithms when is bounded
	4 Conclusions and future work

