Skip to main content
Log in

Dynamic Parameterized Problems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the parameterized complexity of various graph theoretic problems in the dynamic framework where the input graph is being updated by a sequence of edge additions and deletions. Vertex subset problems on graphs typically deal with finding a subset of vertices having certain properties. In real world applications, the graph under consideration often changes over time and due to this dynamics, the solution at hand might lose the desired properties. The goal in the area of dynamic graph algorithms is to efficiently maintain a solution under these changes. Recomputing a new solution on the new graph is an expensive task especially when the number of modifications made to the graph is significantly smaller than the size of the graph. In the context of parameterized algorithms, two natural parameters are the size k of the symmetric difference of the edge sets of the two graphs (on n vertices) and the size r of the symmetric difference of the two solutions. We study the Dynamic \(\Pi \)-Deletion problem which is the dynamic variant of the classical \(\Pi \)-Deletion problem and show NP-hardness, fixed-parameter tractability and kernelization results. For specific cases of Dynamic \(\Pi \)-Deletion such as Dynamic Vertex Cover and Dynamic Feedback Vertex Set, we describe improved algorithms and linear kernels. Specifically, we show that Dynamic Vertex Cover has a deterministic algorithm with \(1.0822^k n^{\mathcal {O}(1)}\) running time and Dynamic Feedback Vertex Set has a randomized algorithm with \(1.6667^k n^{\mathcal {O}(1)}\) running time. We also show that Dynamic Connected Feedback Vertex Set can be solved in \(2^{\mathcal {O}(k)} n^{\mathcal {O}(1)}\) time. For each of Dynamic Connected Vertex Cover, Dynamic Dominating Set and Dynamic Connected Dominating Set, we describe an algorithm with \(2^k n^{\mathcal {O}(1)}\) running time and show that this is the optimal running time (up to polynomial factors) assuming the Set Cover Conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Cai, S., Egan, J., Shaw, P., Wang. K.: Turbo-charging cominating set with an FPT subroutine: Further Improvements and Experimental Analysis. In: Proceedings of the 14th International Conference on Theory and Applications of Models of Computation pp. 59–70. Springer (2017)

  2. Abu-Khzam, F.N., Egan, J., Fellows, M.R., Rosamond, F.A.: Shaw. P.: on the parameterized complexity of dynamic problems. Theor. Comput. Sci. 607(3), 426–434 (2015)

    Article  MATH  Google Scholar 

  3. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beigel, R.: Finding maximum independent sets in sparse and general graphs. In: Proceedings of the \(10th\) Annual ACM-SIAM Symposium on Discrete Algorithms SODA ’99, pp. 856–857. SIAM (1999)

  5. Bonsma, P., Lokshtanov, D.: Feedback vertex set in mixed graphs. In: Proceedings of the 12th International Conference on Algorithms and Data Structures WADS ’11, pp. 122–133. Springer (2011)

  6. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for the vertex feedback set problem with applications to constraint satisfaction and bayesian inference. In: Proceedings of the 5th Annual ACM–SIAM Symposium on Discrete Algorithms SODA ’94, pp. 344–354. SIAM (1994)

  7. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlstrom, M.: On problems as hard as CNF-SAT. ACM Trans. Algorithms 12(3), 41 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cygan, M., Fomin, F.V., Łukasz, K., Lokshtanov, D., Marx, D., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  10. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–42), 3736–3756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cygan, M., Nederlof, J., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science FOCS ’11, pp. 150–159. IEEE (2011)

  13. Downey, R.G., Egan, J., Fellows, M.R., Rosamond, F.A.: Shaw. P.: dynamic dominating set and turbo-charging greedy heuristics. Tsinghua. Sci. Technol. 19(4), 329–337 (2014)

    Article  MathSciNet  Google Scholar 

  14. Downey, R.G., Fellows, R.G.: Fundamentals of Parameterized Complexity. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  15. Diestel, R.: Raph Theory. Springer, Berlin (2005)

    Google Scholar 

  16. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP 2009) pp. 378–389. Springer (2009)

  17. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  18. Fomin, F.V., Gaspers, S., Lokshtanov, D., Saurabh, S.: Exact algorithms via monotone local search. In: Proceedings of the 48th Annual ACM Symposium on Theory of Computing STOC ’16, pp. 764–775. ACM (2016)

  19. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of combining branching and treewidth. Algorithmica 54(2), 181–207 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Proceedings of the 30th Workshop on Graph Theoretic Concepts in Computer Science (WG) pp. 245–256. Springer (2005)

  21. Gaspers, S., Gudmundsson, J., Jones, M., Mestre, J., Rümmele, S.: Turbocharging treewidth heuristics. In: Proceedings of the 11th International Symposium on Parameterized and Exact Computation (IPEC 2016) volume 63 of Leibniz International Proceedings in Informatics (LIPIcs) pp. 13:1–13:13. Schloss Dagstuhl–Leibniz–Zentrum fuer Informatik (2017)

  22. Hartung, S., Niedermeier, R.: Incremental list coloring of graphs, parameterized by conservation. Theor. Comput. Sci. 494, 86–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theor. Comput. Sci. 289(2), 997–1008 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for connected feedback vertex set. J. Comb. Optim. 24(2), 131–146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Thomassé, S.: A \(4k^2\) kernel for feedback vertex set. ACM Trans. Algorithms 6(2), 32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Saket Saurabh for the invaluable discussions and for providing several useful pointers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Krithika.

Additional information

A preliminary version of this work appears in the proceedings of the 11th International Symposium on Parameterized and Exact Computation (IPEC 2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krithika, R., Sahu, A. & Tale, P. Dynamic Parameterized Problems. Algorithmica 80, 2637–2655 (2018). https://doi.org/10.1007/s00453-017-0349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-017-0349-6

Keywords

Navigation