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Abstract

We consider a variety of NP-Complete network connectivity problems. We intro-
duce a novel dual-based approach to approximating network design problems with
cut-based linear programming relaxations. This approach gives a 3/2-approximation
to Minimum 2-Edge-Connected Spanning Subgraph that is equivalent to a pre-
viously proposed algorithm. One well-studied branch of network design models ad hoc
networks where each node can either operate at high or low power. If we allow uni-
directional links, we can formalize this into the problem Dual Power Assignment
(DPA). Our dual-based approach gives a 3/2-approximation to DPA, improving the
previous best approximation known of 11/7 ≈ 1.57.

Another standard network design problem is Minimum Strongly Connected
Spanning Subgraph (MSCS). We propose a new problem generalizing MSCS and
DPA called Star Strong Connectivity (SSC). Then we show that our dual-based
approach achieves a 1.6-approximation ratio on SSC. As a consequence of our dual-
based approximations, we prove new upper bounds on the integrality gaps of these
problems.

1 Introduction

In this work, we present approximation algorithms for multiple network connectivity prob-
lems. All the problems we consider seek a minimum cost graph meeting certain connectivity
requirements. Problems of this type have a wide array of applications. They have uses in the
design and modeling of communication and ad hoc networks. Often these problems involve
balancing fault tolerance and connectivity against cost of building and operating a network.

Many standard network connectivity problems have been shown to be NP-Complete [10].
As a result, there is little hope of producing fast (polynomial time) algorithms to solve
these problems (unless P = NP ). So the focus has shifted to giving fast (polynomial time)
algorithms that approximately solve these problems. An approximation algorithm is said to
have an approximation ratio of α if the cost of its output is always within a factor of α of the
cost of the optimal solution. Technically, α can depend on the size of the problem instance,
but a constant approximation ratio is better than one that grows.

In Subsections 1.1 and 1.2, we introduce a number of standard graph connectivity prob-
lems and their notable approximation algorithms. There are many other connectivity prob-
lems and algorithmic tools that we omit from our discussion (See [12] for a more in-depth
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survey). Then in Subsection 1.3, we summarize our contributions. In Section 2, we introduce
our novel approach to approximating network design problems. The remaining sections will
present our approximation algorithms based on this methodology.

1.1 Edge-Connectivity Problems

One standard graph connectivity problems is Minimum 2-Edge-Connected Spanning
Subgraph (2ECS). This problem takes as input a 2-edge-connected graph and outputs
a 2-edge-connected spanning subgraph with minimum cardinality edge set. A 5/4 = 1.25-
approximation was proposed using a matching lower bound in [15]. A 4/3 ≈ 1.33-approximation
was given by Vempala and Vetta [23]. Another notable approximation algorithm appears
in [18], which achieves a 1.5 ratio using a graph carving method with linear runtime. This
graph carving method is a special case of the dual-based approach we introduce in Section 2.

One can generalize the problem of 2ECS to have weights on every edge. Then the output
is the spanning subgraph with minimum total weight on its edges. This problem seems to
be harder to approximate that the unweighted version. The best approximation known for
the weighted problem was given by Khuller and Vishkin and achieves a 2-approximation
in [18]. Later, Jain proposed a 2-approximation that applies to a more general class of
Steiner problems [14].

Another generalization of 2ECS is to search for the k-edge-connected spanning subgraph
with the least number of edges. Using a linear program rounding algorithm, this problem
on a multigraph input has a 1 + 3/k-approximation if k is odd and a 1 + 2/k-approximation
if k is even [9]. Further, in [9], it is shown that for any fixed integer k ≥ 2 that a (1 + ε)-
approximation cannot exist for arbitrary ε > 0 (unless P = NP ).

One of the most fundamental directed graph connectivity problems is Minimum Strongly
Connected Spanning Subgraph (MSCS). This problem takes as input a strongly con-
nected digraph and outputs a strongly connected spanning subgraph with minimum cardi-
nality arc set. In [24], Vetta proposes the best approximation known for MSCS using a
matching lower bound to get an approximation ratio of 1.5. There are two other notable ap-
proximation algorithms for MSCS. First, Khuller, Raghavachari and Young gave a greedy
algorithm with a 1.61 + ε approximation ratio [16], [17]. Second, Zhao, Nagamochi and
Ibaraki give an algorithm that runs in linear time with a 5/3 ≈ 1.66-approximation ratio
in [27]. This algorithm implicitly uses the dual of the corresponding cut-based linear program
to bound the optimal solution.

When MSCS is generalized to have weights on each arc, the best algorithm known is
a 2-approximation. This straightforward algorithm works by computing an in-arborescence
and an out-arborescence with the same root in the digraph, and outputting their union. This
is the best algorithm known even when arc weights are restricted to be in {0, 1}.

1.2 Power Assignment Problems

A well-studied area of network design focuses on the problem of assigning power levels to
vertices of a graph to achieve some connectivity property. This is useful in modeling radio
networks and ad hoc wireless networks. It is common in this type of problem to minimize
total power consumed by the system. This class of problems take as input a directed simple
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graph G = (V,E) and a cost function c : E → R+. A solution to this problem assigns
every vertex a non-negative power, p(v). We use H(p) to denote the spanning subgraph of G
induced by the power assignment p (we will formally define H(p) later). The minimization
problem then is to find the minimum power assignment,

∑
p(v), subject to H(p) satisfying

a specific property.
The first work on Power Assignment was done by Chen and Huang [8], which assumed

that E is bidirected. We say an instance of Power Assignment is bidirected if whenever
uv ∈ E then vu ∈ E and c(uv) = c(vu). There has been a large amount of interest in
this type of problem since 2000 (some of the earlier papers are [13], [22] and [26]). While
we consider problems seeking strong connectivity, other works have focused on designing
fault-tolerant networks. In [25], approximations for both problems seeking biconnectivity
and edge-biconnectivity are given. Further, [20] considers the more general problems of
k-connectivity and k-edge-connectivity.

We consider an asymmetric version of Power Assignment that allows unidirectional links
defined as follows. The power assignment induces a spanning directed subgraph H(p) where
xy ∈ E(H(p)) if the arc xy ∈ E and p(x) ≥ c(xy). The goal is to minimize the total power
subject to H(p) being strongly connected. This problem was shown to be NP-Complete
in [6]. Many different approximations for this problem have been proposed, which are com-
pared in [5]. If we assume the input digraph and cost function are bidirected, the best
approximation known achieves a 1.85-approximation ratio [2].

We are particularly interested in a special case of asymmetric Power Assignment called
Dual Power Assignment (DPA). This problem takes a bidirected instance of Asymmet-
ric Power Assignment with cost function c : E → {0, 1}. This models a network where each
node can operate at either high or low power, and finds a minimum sized set of nodes to
assign high power to produce a strongly connected network. The best approximation known
for DPA was proposed by [1] and achieves an 11/7 ≈ 1.57-approximation. This algorithm is
based on interesting properties of Hamiltonian cycles. A greedy approach to approximating
DPA was first given in [7] and achieved a 1.75-approximation ratio. Then in Călinescu in [3]
showed that this greedy approach can be extended to match the 1.61+ε-approximation ratio
of Khuller et al. for MSCS in [16], [17]. A greedy algorithm based on the same heuristic
was later shown to give a 5/3 ≈ 1.66-approximation with nearly linear runtime in [11].

1.3 Our Results

MSCS and DPA both have approximation algorithms based on very similar ideas. This
raises the question of how these two problems are related. To answer this question, we
propose a new connectivity problem generalizing both of them called Star Strong Con-
nectivity (SSC), defined as follows: We call a set of arcs sharing a source endpoint a star.
SSC takes a strongly connected digraph G = (V,E) and a set C of stars as input such that⋃

F∈C F = E. Then SSC finds a minimum cardinality set R ⊆ C such that (V,
⋃

F∈R F ) is
strongly connected.

SSC is exactly MSCS when all F ∈ C are restricted to have |F | = 1. Under this
restriction, choosing any star in SSC would be equivalent to choosing its single arc in MSCS.
Further, we make the following claim relating SSC and DPA (proof of this lemma is deferred
to Section 3).

3



Lemma 1. When Star Strong Connectivity has a bidirected input digraph G (an arc
uv exists if and only if the arc vu exists), it is equivalent to Dual Power Assignment.

In some sense, SSC has a more elegant formulation than DPA. It removes the complexity
of having two different classes of arcs. This benefit becomes very clear when constructing
Integer Linear Programs for the two problems (our linear programs for SSC and DPA will
be formally introduced in Section 3). Besides this difference in elegance, both the resulting
programs for DPA and SSC constrained to have a bidirected input digraph are equivalent
to each other.

We introduce a novel dual-based approach to approximating connectivity problems. This
methodology utilizes the cut-based linear programming relaxation of a connectivity problem.
In Section 2, we give a full description of our approach and apply it to the problem of 2ECS.
The resulting algorithm is equivalent to the 3/2-approximation given in [18]. Its value is
solely in its simplicity and serving as an example of our approach.

Applying our dual-based method to DPA gives a tight 3/2-approximation. This improves
the previous best approximation known for DPA of 11/7 ≈ 1.57 [1]. Our algorithm and its
analysis are made simpler by viewing it as an instance of SSC with a bidirected input digraph
instead of DPA. In Section 3, we present our algorithm, prove its approximation ratio and
show this bound is tight.

Theorem 1. Dual Power Assignment has a dual-based 1.5-approximation algorithm.

Integer Linear Programs are often used to formulate NP-Complete problems. An ap-
proximation that uses a linear programming relaxation typically cannot give a better ap-
proximation ratio that the ratio between solutions of the integer and relaxed programs. This
ratio is known as the integrality gap of a program. For minimization problems, it is formally
defined as the supremum of the ratio between the optimal integer solution and the optimal
fractional solution over all problem instances. As a result of our analysis for Theorem 1, we
prove an upper bound of 1.5 for DPA’s integrality gap. This improves the previous upper
bound of 1.85 proven in [2].

Corollary 1. The integrality gap of the standard cut-based linear program for Dual Power
Assignment is at most 1.5.

In fact, we prove a slightly stronger statement. Our algorithm constructs integer primal
and integer dual solutions. As a result, the gap between integer solutions of these two
problems is at most 1.5.

Now, we turn our focus to the more general problem of SSC. Our algorithm for DPA is
dependent on the underlying digraph being bidirected. Further the 3/2-approximation for
MSCS in [24] and 11/7-approximation for DPA in [1] do not seem to generalize to SSC.
However the greedy approach used by Khuller et al. in [18] and [16] on MSCS and by
Călinescu in [3] on DPA appears to generalize easily to SSC.

Claim 1. SSC has a 1.61 + ε polynomial approximation algorithm using a simple variation
of the greedy algorithm of [16].

In Section 4, we improve on this 1.61 + ε-approximation by applying our dual-based
approach to SSC. This produces an algorithm with a tight 1.6-approximation ratio. Since
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MSCS is a subproblem of SSC, this approximation ratio also extends to it. As with our
approximation of DPA, we observe that an upper bound on the integrality gap follows from
our analysis.

Theorem 2. Star Strong Connectivity has a dual-based 1.6-approximation algorithm.

Corollary 2. The integrality gap of the standard cut-based linear program for Star Strong
Connectivity (and thus MSCS) is at most 1.6.

Again, we actually prove a slightly stronger statement. Since our algorithm constructs
integer primal and integer dual solutions, the primal-dual integer gap of these two problems
is at most 1.6.

A lower bound on the integrality gap of a problem provides a bound on the quality
of approximation that can be achieved with certain methods. Linear program rounding,
primal-dual algorithms, and our dual-based algorithms are all limited by this value. Recently,
Laekhanukit et al. proved the integrality gap of MSCS is at least 3/2− ε for any ε > 0 [19].

2 Dual-Based Methodology

In Subsection 2.1, we describe the typical form of integer linear programs (ILPs) related to
graph connectivity problems and give a high-level description of our dual-based approach for
a general problem. Finally, we apply our dual-based approach to the problem of 2ECS as a
simple example.

2.1 Cut-Based Linear Programs

All the connectivity problems considered in this work have cut-based ILPs. In this type
of program, the constraints are based on having at least a certain number of edges or arcs
crossing each cut of the graph. We will give the standard cut-based ILP for Minimum 2-
Edge-Connected Spanning Subgraph to demonstrate this structure. For a cut ∅ ⊂
S ⊂ V , we use ∂E(S) to denote all edges with exactly one endpoint in S. Then the standard
cut-based linear programming relaxation for 2ECS is the following.

2ECS Primal LP

minimize
∑
e∈E

xe

subject to
∑

e∈∂E(S)

xe ≥ 2 , ∀∅ ⊂ S ⊂ V

xe ≥ 0 , ∀e ∈ E
The integer programming formulation for 2ECS is given by adding the constraint that

all xe are integer valued. The linear program will always have objective less than or equal
to the objective of the integer program.

5



It is worth noting that this type of program has an exponential number of constraints, but
it could be converted into a polynomial sized program using flow-based constraints. Previous
algorithms have taken advantage of polynomial time linear program solvers to approximate
2ECS using its linear programming relaxation. However, our dual-based algorithms do not
need to solve the linear program. As a result, we can keep it in the simpler cut-based form.

Our method takes advantage of the corresponding dual linear program. The dual program
will always have objective at most that of the original (primal) program. This property is
known as weak duality. In fact, their optimal solutions will have equal objective, but we do
not need this stronger property. The dual program corresponding to 2ECS is the following.

2ECS Dual LP

maximize
∑
∅⊂S⊂V

2yS

subject to
∑

e∈∂E(S)

yS ≤ 1 , ∀e ∈ E

yS ≥ 0 , ∀∅ ⊂ S ⊂ V

Since the optimal solution to our integer program is lowerbounded by that of the primal
linear program, we know that the optimal integer solution is lowerbounded by every feasible
solution to the dual program.

The basic idea of our dual-based method is to build a feasible dual solution while con-
structing our integer primal solution. We construct our primal solution by repeatedly finding
and contracting a problem specific type of subgraph: a cycle for 2ECS, a perfect set for SSC
(defined later). Using a cut-based linear program, a dual solution will be a set of disjoint
cuts (where the exact definition of disjoint is problem specific). We are interested in cuts
that are disjoint from all cuts after contracting a subgraph. Later, we formally define these
as internal cuts. We choose the subgraph to contract based on it having a number of disjoint
internal cuts. When our algorithm terminates, the union of these disjoint internal cuts in
each iteration will give a feasible dual solution.

To apply this to a new connectivity problem, we first must define a contractible subgraph
such that repeated contraction will yield a feasible primal solution. Definitions for disjoint
and internal cuts will follow from the cut-based program and the contractible subgraphs.
Finally, any polynomial runtime procedure that constructs a contractible subgraph with
at least one internal cut produces an algorithm creating integer primal and dual solutions.
The quality of the approximation depends directly on the number of internal cuts in each
contraction. Our dual solution could use fractional cuts. However, this did not result in
improvements in the approximation bounds for the problems studied in this paper.

2.2 Application to 2ECS

We will illustrate our dual-based approach by giving a straightforward 3/2-approximation to
2ECS. This is neither best known in approximation ratio nor runtime. Its value is to serve
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as a simple example of our dual-based approach. In [18], an equivalent 3/2-approximation
is given for 2ECS that implicitly uses the dual bound. They also show that simple modifi-
cations of the algorithm allow it to run in linear time.

Our approximation is based on iteratively selecting and contracting cycles in the graph
until the graph is reduced to a single vertex (this approach has been used by multiple previous
approximations). We claim that such a procedure will always produce a 2-edge-connected
spanning subgraph. Consider any cut ∅ ⊂ S ⊂ V in the graph. At some point, we will select
a cycle with vertices in both S and V \ S. This cycle must have two edges crossing the cut.
Thus such a procedure will always produce a feasible solution.

Consider the primal and dual programs for 2ECS given in Section 2.1. When the dual
problem is restricted to integer values, it can be thought of as choosing a set of cuts such
that no two cuts share any edges. Our algorithm builds a solution to this dual problem to
lower bound the optimal primal solution.

We say a cut S is internal to a cycle C if all edges in ∂E(S) have both endpoints
in the vertices of C. To contract a cycle means to replace all vertices of the cycle with
a single supervertex whose edge set is all edges with exactly one endpoint in the cycle.
When contracting a cycle, we keep duplicate edges (and thus the resulting structure is a 2-
edge-connected multigraph). Contracting a cycle with an internal cut will remove all edges
crossing that cut from the graph. As a result, after repeated contraction of cycles each with
an internal cut, the set of all these internal cuts is dual feasible. Following from this, our
algorithm will find a cycle with an internal cut, add the edges of the cycle to our approximate
solution, contract the vertices of our cycle, and then repeat. Complete description of this
process is given in Algorithm 1.

Algorithm 1 Dual-Based Approximation for 2ECS

1: R = ∅
2: while |V | 6= 1 do
3: Find a cycle C with an internal cut as shown in Lemma 2
4: Contract the vertices of C into a single vertex
5: R := R ∪ E(C)
6: end while

Lemma 2. Every 2-edge-connected multigraph has a cycle with an internal cut.

Proof. Let N(v) denote the neighbors of a vertex v. We give a direct construction for a cycle
C with a vertex v̄ such that all neighbors of v̄ are in the cycle. Then the cut {v̄} will be
internal to this cycle. Our construction maintains a path P and repeatedly updates a vertex
v̄ to be the last vertex of the path as it grows.

1: Set P to any edge in G
2: Set v̄ to be the last vertex in the path P
3: while ∃u ∈ N(v̄) \ V (P ) do
4: P := P concatenated with the edge v̄u
5: v̄ := u
6: end while
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7: Set w to be the vertex in N(v̄) earliest in P
8: Set C to the cycle using v̄w and edges in P

Our choice of C immediately gives us that N(v̄) ⊂ V (C), which implies that the cut {v̄} is
internal to C.

Let n denote the number of vertices and k denote the number of cycles contracted by
Algorithm 1. Then we bound the optimal objective value (denoted by |OPT |) and the
objective value of this algorithm’s output (denoted by |R|) as follows:

Lemma 3. |OPT | ≥ max{n, 2k}

Proof. Consider the dual solution given by combining the internal cuts in each cycle. This
is feasible since any edge crossed by one of these internal cuts is removed from the graph in
the following contraction. Thus we have a dual feasible solution with objective 2k. Further
any 2ECS solution must have at least n edges. Then the cost of the optimal solution is at
least max{n, 2k}.

Lemma 4. |R| = n+ k − 1

Proof. Let Ci be the number of cycles of size i contracted by our algorithm. Since each cycle
of size i reduces the number of vertices by i− 1 and our final graph has a single vertex, we
know

∑n
i=2(i−1)Ci = n−1. Then our algorithm’s output has cost

∑n
i=2 iCi = n+k−1.

Simple algebra can show n+k−1
max{n,2k} <

3
2
. Thus this algorithm has a 1.5-approximation

ratio.

3 A 1.5-Approximation for DPA

To apply our dual-based methodology to DPA, we need to formulate it as a cut-based integer
linear program. Since DPA has two types of arcs (high and low power), the corresponding
program has to distinguish between these. The program corresponding to SSC avoids having
different types of arcs and thus has a simpler form. Then for ease of notation, we will give
our dual-based algorithm for DPA by approximating an instance of SSC with a bidirected
input digraph. In Lemma 1, we claimed these problems are equivalent and problem instances
can be easily transformed between the two. We now prove this result.

Proof. of Lemma 1. We give a procedures that will turn any instance of DPA on digraph
H into an instance of SSC with a bidirected input digraph, (G, C), and the reverse direction.
Our transformations have linear runtime and will not substantially increase the size of the
problem instance. Then our equivalence will follow.

We first consider transforming an instance of DPA into SSC. Let H0 be the digraph in-
duced by assigning no vertices of H high power. Then H0 will only have zero cost arcs. Since
instances of DPA are bidirected, no arcs cross between the strongly connected components
of H0. We then construct an instance of SSC with a vertex for each strongly connected com-
ponent of H0. For each vertex v in H0, we add a star with source at the strong component
of v and arcs going to each other strong component that v has an arc to in H. Note that G
is bidirected. Feasible solutions to these DPA and SSC instances can be converted between
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the two while preserving objective as follows: Given a feasible solution to DPA, for each
vertex assigned high power add the corresponding star to our SSC solution. Similarly, given
a feasible solution to SSC, we assign each vertex to high power when the corresponding star
is in our SSC solution. This will produce a feasible DPA instance. Note these conversions
will have equal objective since there is a one-to-one mapping between high power vertices
and stars.

Now we give a transformation for the reverse direction from an instance of SSC with a
bidirected input digraph, (G, C). Our instance of DPA will have a vertex vF for every star
F ∈ C. For each vertex v of G, consider the set of stars sourced at v, {F |source(F ) = 1}.
Add zero-cost arcs forming a cycle over this set. For every pair of arcs, uv and vu, in our
bidirected G and for every star F with uv ∈ F and star F ′ with vu ∈ F ′, we add a one-cost
arc between to vF and vF ′ . The resulting digraph will be bidirected, as is required for DPA.
As with our previous transformation, there is a one-to-one relationship between high power
vertices and stars. This relationship immediately gives a conversion between our feasible
solutions that will maintain objective.

We now proceed to construct a cut-based program for SSC and then give all the relevant
definitions for our algorithms. Our approximations for both DPA and SSC will utilize these
definitions. For the remainder of our definitions, we consider an instance of SSC on a digraph
G = (V,E) and a set of stars C.

Definition 1. For any star F ∈ C, we define source(F ) to be the common source vertex of
all arcs in F . We define sinks(F ) to be the set of endpoints of arcs in F .

Definition 2. For a cut, ∅ ⊂ S ⊂ V , we define ∂C(S) to be the set of all F ∈ C such that
source(F ) ∈ S and at least one element of sinks(F ) is in V \ S.

This notation allows us to use ∂C(S) as the set of all stars with an arc crossing from S
to V \ S. Using these definitions, we can create a cut-based linear programming relaxation
for SSC similar to those proposed in [21] and [5].

SSC Primal LP

minimize
∑
F∈C

xF

subject to
∑

F∈∂C(S)

xF ≥ 1 , ∀∅ ⊂ S ⊂ V

xF ≥ 0 , ∀F ∈ C
Lemma 5. When SSC Primal LP is restricted to xF ∈ Z, it is exactly SSC.

We defer the proof of Lemma 5 to the appendix. Intuitively, the dual of SSC is to find
the maximum set of cuts, such that no star F ∈ C crosses multiple of our cuts. Properly,
we can consider fractional cuts in our dual problem, but our algorithm only uses integer
solutions to the dual problem.
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SSC Dual LP

maximize
∑
∅⊂S⊂V

yS

subject to
∑

F∈∂C(S)

yS ≤ 1 , ∀F ∈ C

yS ≥ 0 , ∀∅ ⊂ S ⊂ V

3.1 Definitions

In our approximation of 2ECS, we repeatedly found cycles in the graph and contracted
them. A cycle of length k, adds k to the cost of the solution and reduces the number of
vertices by k − 1. A similar method has been applied to MSCS in many previous works.
In [3], Călinescu proposed a novel way to extend this approach to DPA. Following from
those definitions, we will use the following two definitions to define a contractible structure
in SSC.

Definition 3. A set Q ⊆ C is quasiperfect if and only if all F ∈ Q have a distinct source(F )
and the subgraph with vertex set the sources of the stars of Q and arc set

⋃
F∈Q F is strongly

connected. (Here we abuse notation as
⋃

F∈Q F may contain arcs with endpoints outside of
the source vertices of Q. Such arcs are ignored.)

We will use source(Q) for a quasiperfect Q to be the set of all source vertices in Q. The
distinction between source defined on F ∈ C and source defined on quasiperfect sets will
always be clear from context.

Definition 4. A set Q ⊆ C is perfect if and only if Q is quasiperfect and all F ∈ Q have
sinks(F ) ⊆ source(Q).

We define contracting a perfect set as follows: replace all the source vertices of the perfect
set with a single supervertex whose arc set is all arcs with exactly one end point in our perfect
set. We can combine duplicate arcs into a single arc during this contraction process. As a
result of contraction, the size of a star may decrease, and a star may be removed if it has no
remaining arcs. A quasiperfect Q adds |Q| cost and contracts the |Q| vertices of source(Q)
into one, but may have extra arcs leaving the new supervertex. A perfect set has no such
arcs, so the problem after contracting such a set will be another instance of SSC. Our next
lemma describes how to expand any quasiperfect set into a perfect set. This an extension of
Lemma 2 given by Calinescu in [3].

Lemma 6. Every quasiperfect set is a subset of some perfect set.

Proof. Consider the following expansion procedure for any quasiperfect set Q.

1: while ∃F ∈ Q with u ∈ sinks(F ) \ source(Q) do
2: Find a path P from u to source(Q) that is internally disjoint from Q

10



(a) (b)

u

(c)

Figure 1: Examples of both quasiperfect and perfect sets. A star is denoted by a square
with a set of arcs leaving it. The vertex connected to the square by a regular line segment
is the source. (a) A star made of three arcs. (b) A quasiperfect set of size five. If the arc to
vertex u did not exist, this would be a perfect set. (c) A perfect set of size eight containing
the previous example.

3: for each arc e in P do add a star containing e to Q end for
4: end while

Line 2 of this construction can be implemented using a simple depth first search. Any
star added must have had source outside of source(Q). So no star added will share a source
vertex with any other star in Q. Further Q will still have a strongly connected subgraph.
Thus each iteration of this procedure maintains the invariant that Q is quasiperfect. When
this construction terminates, no such F exists. Therefore the resulting set Q is perfect. Each
iteration also increases the size of Q, so it will terminate eventually.

Our expansion procedure can be simplified slightly for DPA. Since the digraph is bidi-
rected, lines 2 and 3 can just choose any star containing the reverse arc from u to source(F ).
For the special case of MSCS, all stars have size exactly one. It follows that all quasiperfect
sets will be perfect. In fact, for MSCS, it can easily be shown that all quasiperfect and
perfect sets are cycles.

Our approximation algorithms will repeatedly find perfect sets and contract them. As in
our 2ECS example, the dual problem requires us to build a set of cuts that share no crossing
stars. We use the following two definitions to relate the dual to perfect sets.

Definition 5. Two cuts S1 and S2 are star-disjoint if and only if ∂C(S1) and ∂C(S2) are
disjoint (i.e. ∂C(S1) ∩ ∂C(S2) = ∅).

Definition 6. A cut S is internal to a set Q ⊆ C if and only if every F ∈ ∂C(S) has
source(F ) ∈ source(Q) and sinks(F ) ⊆ source(Q).

Then contracting a perfect set with internal cut S will remove all stars in ∂C(S) from
the digraph. Then S must be star-disjoint from all cuts in the resulting digraph.

3.2 The 1.5-Approximation Algorithm

Now we will give our approximation algorithm for DPA by considering any instance of SSC
with a bidirected input digraph. In Lemma 7, we give a construction for a perfect set with
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two star-disjoint internal cuts. Utilizing this lemma, our approximation algorithm becomes
very simple. Our algorithm will repeatedly apply this construction and contract the resulting
perfect set. This procedure is formally given in Algorithm 2.

Algorithm 2 Dual-Based Approximation for Dual Power Assignment

1: R = ∅
2: while |V | 6= 1 do
3: Find a perfect set Q with two star-disjoint internal cuts as shown in Lemma 7
4: Contract the sources of Q into a single vertex
5: R := R ∪Q
6: end while

Lemma 7. Every instance of SSC with a bidirected input digraph has a perfect set with two
star-disjoint internal cuts.

Proof. We consider an instance of SSC defined on a bidirected digraph G = (V,E). In the
degenerate case, we have a digraph with only two vertices, u and v. Then the perfect set
{{uv}, {vu}} will have star-disjoint internal cuts {u} and {v}.

Now we assume |V | ≥ 3. Again, we let N(v) denote the neighbors of a vertex v. Note
that the set of in-neighbors and out-neighbors for a vertex are identical since the digraph is
bidirected. We call any vertex with exactly one neighbor a leaf. Then our assumption that
|V | ≥ 3 implies some non-leaf vertex exists. Consider the following cycle construction in G
(Figure 2 shows its possible outputs).

1: Set P to be any arc rv̄ ∈ E, where v̄ is not a leaf
2: while TRUE do
3: if ∃u ∈ V s.t. u ∈ N(v̄) \ V (P ) and u is not a leaf then
4: P := P concatenated with the arc v̄u
5: v̄ := u
6: else
7: Set w to be the vertex in N(v̄) ∩ V (P ) earliest in P
8: Set w̄ to be the successor of w in P
9: if ∃u ∈ V s.t. u ∈ N(w̄) \ V (P ) and u is not a leaf then
10: Replace P with the path using wv̄ instead of ww̄, reversing all arcs between v̄

and w̄
11: P := P concatenated with the arc w̄u
12: v̄ := u
13: else
14: Set x to be the vertex in N(w̄) ∩ V (P ) earliest in P
15: Set C to the cycle using the arc v̄w, the reverse of arcs in P from w to x, the arc

xw̄, and arcs in P from w̄ to v̄
16: return C, v̄, w̄
17: end if
18: end if
19: end while
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x

w

w̄

v̄ v̄ = w̄

x = w

p

p

(a) (b)

Figure 2: Examples of cycles produced by our construction for Lemma 7. Dashed curves
represent a path. We do not show the leaves that may exist next to v̄ or w̄. (a) Shows the
general form of our cycle. (b) Shows the special case when |C| = 2.

Note that it is possible for v̄ and w̄ to be the same vertex. We make the following claim
about the output of this procedure.

Lemma 8. For any instance of SSC with a bidirected input digraph and |V | ≥ 3, this con-
struction will output a cycle C with vertices v̄, w̄ ∈ V (C) having the following two properties:

1. v̄ and w̄ are not leaves.

2. Each neighbor of v̄ or w̄ is either in V (C) or a leaf.

Proof. Any strongly connected digraph with at least three vertices will have an initial arc
rv̄ where v̄ is not a leaf. This guarantees that step 1 is possible. Then each iteration
increases the length of the path P . It follows that there are at most |V | iterations before the
construction terminates.

For our first property, we maintain the invariant that v̄ is not a leaf. This is true from
our initial choice of v̄, and also maintained in each u ∈ V chosen to extend P . Finally, w̄ is
either equal to v̄ and thus not a leaf, or inside the path P and thus has two neighbors.

For our second property, the choice of the cycle C implies that V (C) contains all vertices
in P between x and v̄. All non-leaf neighbors of w̄ are at most as early as x in P . All
non-leaf neighbors of v̄ are at most as early as w in P . Note that w is at most as early as x
in p. Then all the non-leaf neighbors of v̄ and w̄ must be in the V(C).

Using this cycle C, we will construct our perfect set with two star-disjoint internal cuts.
Note our resulting perfect set may not fully contain C. Let Lv̄ and Lw̄ be the set of leaves
adjacent to v̄ and w̄, respectively. Consider the case where there is a star F sourced at v̄
containing arcs to multiple leaves. Let l1 and l2 be two distinct leaves in sinks(F ). Then
we expand the quasiperfect set {F} into a perfect set Q using Lemma 6. The resulting set
is shown in Figure 3 (a). This Q will have internal cuts {l1} and {l2}. Note that if two cuts
share no vertices, then they also share no crossing stars (i.e. they are star-disjoint). The
same construction can be made for such a star sourced at w̄. For the remainder of our proof,
we can assume no star exists sourced from v̄ or w̄ going to multiple leaves. Now we consider
two separate cases: v̄ = w̄ and v̄ 6= w̄.
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v̄

l1 l2

(a) (b)

v̄ = w̄

x = w

p

l

v̄ = w̄

x = w

p

l

(c)

v̄

u

l

(d)

v̄

w̄

(e)

Figure 3: Depicting the quasiperfect or perfect sets selected by our construction based on the
cycle C with vertices v̄ and w̄ ∈ V (C). We omit additional arcs that could be part of each
star shown. If such arcs exist, they will be handled by the expansion shown in Lemma 6.
Note v̄ and w̄ are symmetric and each case shown applies to both.

Case 1: v̄ = w̄. In this case, w must be the predecessor of v̄. We can conclude that |C| = 2.
Further, v̄ is only adjacent to w and leaves. We know that v̄ is not a leaf. Therefore
the set Lv̄ must be non-empty. Let l ∈ Lv̄ be a leaf of v̄.

As previously shown, we can assume that no star sourced at v̄ contains multiple of our
leaves. Then all stars containing the arc v̄l are either {v̄l, v̄w} or {v̄l}. Suppose the
star F = {v̄l, v̄w} exists. Then we expand the quasiperfect set {F} into a perfect set
Q using Lemma 6. The resulting perfect set will have {l} as an internal cuts since the
only neighbor of l is v̄. Further, V \{l} is internal to this perfect set since {v̄l, v̄w} and
{v̄l} are the only stars containing this arc and all three vertices w, v̄, and l are inside
the perfect set. These two internal cuts are star-disjoint since they have no common
vertices.

If the star {v̄l, v̄w} does not exist, then the star {v̄l} must exist. Therefore the set
{{v̄l}, {lv̄}} is perfect and has internal cuts {l} and V \ {l}. These two possibilities
are shown in Figure 3 (b) and (c).

Case 2: v̄ 6= w̄. First suppose a star sourced at v̄ exists with an arc to a leaf l ∈ Lv̄ and
an arc to a cycle vertex u ∈ V (C). Then let F be the star of this form with u nearest
after v̄ in C (using an arbitrary direction around C). We construct a quasiperfect set
by taking F and a star containing each arc of the cycle from u to v̄. We can expand
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this quasiperfect set into a perfect set Q using Lemma 6. Then {l} is an internal cut
to Q. This perfect set is shown in Figure 3 (d). We know that any star F sourced at
v̄ with an arc to l cannot have an arc to any other leaf. Then our choice of Q gives us
that all stars F crossing the cut V \ {l} have sinks(F ) ⊂ source(Q). Therefore the
cut V \ {l} is also internal to Q.

Now, we can assume no star sourced at v̄ exists with arcs into both Lv̄ and V (C). Then
every star F crossing the cut {v̄} ∪ Lv̄ has sinks(F ) ⊂ V (C). The same claim holds
for w̄ by symmetry. Then we construct a quasiperfect set by iterating over the arcs of
C, selecting a star containing each arc. Let Q be the perfect set made by expanding
this quasiperfect set using Lemma 6. This perfect set is shown in Figure 3 (e). We will
have {v̄} ∪ Lv̄ as an internal cut since V (C) ⊆ source(Q). Similarly we also have the
internal cut {w̄} ∪ Lw̄. Since v̄ 6= w̄, the two internal cuts are star-disjoint.

Therefore in either of our cases we can construct a perfect set with two star-disjoint
internal cuts. This concludes our proof of Lemma 7.

3.3 Analysis of 1.5-Approximation Ratio

Let I be the set of all possible SSC problem instances with bidirected input digraphs. We
denote the solution from our algorithm on some I ∈ I as A(I) and the optimal solution as
OPT (I). We let k denote the total number of perfect sets added by our algorithm. Further,
we let Ai denote the number of perfect sets of size i added by the algorithm.

Lemma 9. |A(I)| = n+ k − 1

Proof. Observe that Ai = 0 for any i > n since the source of stars in a perfect set are
distinct. Each perfect set of size i contracts i − 1 vertices, and over the whole algorithm,
we contract n vertices into 1. Therefore

∑n
i=2(i − 1)Ai = n − 1. Each perfect set of size i

contributes i cost to our solution. Then our cost is
∑n

i=2 iAi = n+ k − 1.

Lemma 10. |OPT (I)| ≥ n

Proof. Consider the dual solution of assigning one to the cut {v} for all v ∈ V . This dual
feasible solution has objective n. The lemma follows from weak duality.

Lemma 11. |OPT (I)| ≥ 2k

Proof. Whenever the algorithm adds a perfect set, we can identify two star-disjoint internal
cuts. We construct a dual feasible solution by assigning each of our internal cuts yS = 1. To
accomplish this, we must show that no star F crosses multiple of our internal cuts. Consider
any star F ∈ C crossed by at least of our cuts. Let S be the first of our internal cuts with
F ∈ ∂C(S). Since S is an internal cut, all arcs of F will be removed from the graph after
contracting the corresponding perfect set. Thus this F will be crossing at most one of our
internal cuts. So we have a dual feasible solution with objective 2k. The lemma follows from
weak duality.
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By taking a convex combination of Lemmas 10 and 11, we know the following:

|OPT (I)| ≥ 2

3
n+

1

3
(2k). (1)

Taking the ratio of Lemma 9 and Equation (1), we get a bound on the approximation
ratio. Straightforward algebra on this ratio completes our proof of Theorem 1:

|A(I)|
|OPT (I)|

≤ n+ k − 1
2n
3

+ 2k
3

<
3

2
= 1.5.

As a corollary, 1.5 upper bounds the ratio between integer primal and integer dual solu-
tions to our program. This is easily verified on any SSC instance I by choosing A(I) for the
integer primal and the larger of the two dual solutions used in Lemma 10 and 11. Corollary 1
follows from this observation. Further, our analysis of the approximation ratio is tight as
shown by an example in our appendix.

Theorem 3. The 1.5-approximation ratio of Algorithm 2 is tight.

4 A 1.6-Approximation for SSC

As in our approximation for DPA, we need a method to construct perfect sets with internal
cuts. Without the restriction to bidirected input digraphs, we are unable the guarantee
two star-disjoint internal cuts in each perfect set. Such a construction would give SSC a
1.5-approximation. Instead, we guarantee the following weaker condition.

Lemma 12. Every instance of SSC has a perfect set Q with either |Q| ≥ 4 and one internal
cut, or two star-disjoint internal cuts.

Proof. We use N+(v) to denote the set of out-neighbors of a vertex v in G. We use the
following cycle construction, which is a simplification of the construction used for DPA.

1: Set P to be any arc rv̄ ∈ E
2: while ∃u ∈ N+(v̄) \ V (P ) do
3: P := P concatenated with the arc v̄u
4: v̄ := u
5: end while
6: Set w to be the vertex in N+(v̄) earliest in P
7: Set C to the cycle using v̄w and arcs in P
8: return C and v̄

Lemma 13. This construction will output a cycle C and v̄ ∈ V (C) such that N+(v̄) ⊆ V (C).

Proof. Follows immediately from our choice of C.

Using this C and v̄, we will construct our perfect set. We consider this in three separate
cases: |C| ≥ 4, |C| = 3, and |C| = 2.
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Case 1: |C| ≥ 4. We construct a quasiperfect set by iterating over the arcs of our cycle C,
selecting a star containing each arc. Then let Q be the perfect set created by expanding
this set using Lemma 6. Note that |Q| ≥ 4. Since N+(v̄) ⊂ V (C), the cut {v̄} will be
internal to Q.

Case 2: |C| = 3. Our cycle construction must have found a cycle C on vertices {v̄, u1, u2}.
Then v̄ has the property that N+(v̄) ⊆ {u1, u2}. Suppose some of the cycle arcs, v̄u1,
u1u2, or u2v̄, are part of a star with a vertex outside our cycle in its sink set. Then
we can construct a quasiperfect set containing this star and a star for each other arc
in the cycle. Expanding this quasiperfect set, as defined in Lemma 6, will produce a
perfect set of size four or more with the internal cut {v̄}. So we assume that no such
F exists, and thus C is a perfect set.

If there exists a nontrivial path from u1 to u2 or from u2 to v̄ internally disjoint from
V (C), then we can replace an arc of C with this path to get a larger cycle that has
the same property with respect to v̄ (nontrivial meaning with |P | ≥ 2). Then we can
apply Case 1 to handle the new cycle.

Similarly, we can assume at least one of the following does not exist: path from u2

to u1 internally disjoint from V (C), path from u1 to v̄ internally disjoint from V (C),
or the arc from v̄ to u2. If all three of these existed and at least one of the paths is
nontrivial, we could construct a larger cycle with the same property with respect to v̄
by starting at v̄, following the arc to u2, following the path to u1, finally following the
path to v̄. We know the paths from u2 to u1 and u1 to v̄ are internally disjoint because
any overlap would create a path from u2 to v̄. Thus this construction will produce a
larger cycle containing all of neighbors of v̄. Then we can assume this structure does
not exist.

We handle the four possible cases of our assumption separately. Note that the strong
connectivity of the digraph implies there exists a path between any pair of vertices. Let
RC(u) be the set of vertices reachable by u without using any arcs with both endpoints
in C.

Subcase 2.1 No path from u2 to u1 exists that is internally disjoint from V (C). Note
that we also assume no nontrivial path from u2 to v̄ exists. Then RC(u2) includes
neither v̄ nor u1. Further, the only arc crossing RC(u2) is u2v̄ (since we have
assumed the arc u2u1 does not exist). It follows that RC(u2) is internal to any
perfect set contracting all three cycle vertices since no star contains a cycle arc
and an arc to a fourth external vertex.

Furthermore, the cut {v̄} will be internal to any perfect set contracting all three
cycle vertices. Therefore we select any star containing each of our cycle arcs to
produce a perfect set with internal cuts {v̄} and RC(u2). These two cuts are
star-disjoint since they have no vertices in common.

Subcase 2.2 No path from u1 to v̄ exists that is internally disjoint from V (C). Note
that we also assume no nontrivial path from u1 to u2 exists. Then RC(u1) includes
neither v̄ nor u2. Further, the only arc crossing this cut is u1u2 (since we have
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assumed the arc u1v̄ does not exist). It follows that RC(u1) is internal to any
perfect set contracting all three cycle vertices since no star contains a cycle arc
and an arc to a fourth external vertex.

Furthermore, the cut {v̄} will be internal to any perfect set contracting all three
cycle vertices. Therefore we select any star containing each of our cycle arcs to
produce a perfect set with internal cuts {v̄} and RC(u1). These two cuts are
star-disjoint since they have no vertices in common.

Subcase 2.3 The arc v̄u2 does not exist. Again, we select a perfect set made by
selecting a star containing each arc of our cycle. The cut {v̄} is internal to C
from our choice of C and v̄. Further, we know that no nontrivial path exists
from v̄ to u2 internally disjoint from V (C) and no nontrivial path exists from u1

to u2. Then we can conclude that the cut {v̄} ∪ RC(u1) is only crossed by the
arc u1u2 (since v̄u2 does not exist). Since we assumed no star containing a cycle
arc and an arc to a fourth external vertex exists, {v̄} ∪RC(u1) is also internal to
our perfect set. These two cuts are star-disjoint because the arc v̄u2 does not exist.

Subcase 2.4 The arcs v̄u2, u2u1 and u1v̄ exist, but no nontrivial paths exist from u2

to u1 or from u1 to v̄ internally disjoint from V (C). Suppose any of the reversed
cycle arcs v̄u2, u2u1 or u1v̄ are part of a star containing an arc to a fourth vertex
outside of V (C). Then we could construct a perfect set of size four or more with
internal cut {v̄} based on this cycle.

Now we assume no such stars exist. We select our perfect set by choosing any
star containing each of our cycle arcs. The cut {v̄} will be internal to such a
perfect set. Since no nontrivial path exists from u1 to u2 or to v̄ that is internally
star-disjoint from V (C), the cut RC(u1) will only be crossed by the arcs u1u2 and
u1v̄. Thus RC(u1) is internal to our perfect set. These two cuts are star-disjoint
since they have no vertices in common.

Thus under any case we can find two star-disjoint internal cuts in our cycle or a larger
perfect set with one internal cut.

Case 3: |C| = 2. Our cycle construction must have found a cycle C on vertices {v̄, u1}.
Note that the only arc leaving v̄ goes to u1, and there is a star containing only this
arc. The strong connectivity of our digraph implies there is a path from u1 to v̄. If a
nontrivial path Q exists from u1 to v̄, then we can replace C with the cycle made by
concatenating the arc v̄u1 with Q. This larger cycle can then be processed by either
Case 1 or 2. So we can assume that the only path from u1 to v̄ is the arc between them.
Consider the cut V \ {v̄}, which is only crossed by u1v̄. Either there exists a F1 ∈ C
containing u1v̄ and some u1u2, or this cut is internal to any perfect set contracting v̄
and u1. In the latter case, we can choose the perfect set {{v̄u1}, {u1v̄}}. This perfect
set has two star-disjoint internal cuts: {v̄} and V \ {v̄}.
If this F1 and u2 exist, then any nontrivial path Q from u2 to u1 would create a
quasiperfect set of size at least four. Then by Lemma 6, we could find a perfect set of
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size four or more with the internal cut {v̄}. Finally, we handle the case where the only
path from u2 to u1 is the arc u2u1. Let R ⊂ V be the set of all vertices that can be
reached by u2 without using the arc u2u1. Consider the cut given by R, which is only
crossed by u2u1. Either there exists a F2 ∈ C containing u2u1 and some u2u3, or R is
internal to any perfect set contracting u1 and u2. In the former case, expanding the
quasiperfect set {F1, F2}, as defined in Lemma 6, will give a perfect set of size at least
four with internal cut {v̄}. In the latter case, expanding the quasiperfect set {F1}, as
defined in Lemma 6, will give a perfect set with two star-disjoint internal cuts: {v̄}
and R.

Therefore regardless of the size of C, we can construct either a size four or more perfect
set with an internal cut or a smaller perfect set with two star-disjoint internal cuts. This
concludes our proof of Lemma 12.

Using Lemma 12, our approximation algorithm is very simple. We repeatedly apply
this construction and contract the resulting perfect set. This procedure is formally given in
Algorithm 3.

Algorithm 3 Dual-Based Approximation for Star Strong Connectivity

1: R = ∅
2: while |V | 6= 1 do
3: Find a perfect set Q as shown in Lemma 12
4: Contract the sources of Q into a single vertex
5: R := R ∪Q
6: end while

4.1 Analysis of 1.6-Approximation Ratio

The analysis of our approximation ratio is very similar to the analysis given in Section 3.3.
Let I be the set of all possible SSC problem instances. We denote the solution from our
algorithm on some I ∈ I as A(I) and the optimal solution as OPT (I). We let Ai denote
the number of perfect sets of size i added by the algorithm.

Lemma 14. |A(I)| =
n∑

i=2

iAi

Proof. Each perfect set in Ai has i stars, and thus contributes i cost to our solution.

Lemma 15. |OPT (I)| ≥ n >
n∑

i=2

(i− 1)Ai

Proof. Consider the dual solution of assigning one to the cut {v} for all v ∈ V . This dual
feasible solution has objective n. Since each perfect set of size i added by the algorithm

contracts i − 1 vertices, we know that n − 1 =
n∑

i=2

(i − 1)Ai. The lemma follows from weak

duality.
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Lemma 16. |OPT (I)| ≥ 2A2 + 2A3 +
n∑

i=4

Ai

Proof. Whenever the algorithm adds a perfect set of size two, we can identify two star-
disjoint internal cuts. Similarly, there are two star-disjoint internal cuts in every perfect
set of size three and one internal cut in the remaining perfect sets. From the definition of
internal cuts, we know that all of these internal cuts will be star-disjoint from previously
added internal cuts. So we have a dual feasible solution and the lemma follows from weak
duality.

By taking a convex combination of Lemmas 15 and 16, we know the following:

|OPT (I)| > 3

4
(

n∑
i=2

(i− 1)Ai) +
1

4
(2A2 + 2A3 +

n∑
i=4

Ai)

=
5

4
A2 + 2A3 +

n∑
i=4

(
3

4
i− 1

2
)Ai. (2)

Taking the ratio of Lemma 14 and Equation (2), we get a bound on the approximation
ratio. Straightforward algebra on this ratio can show it is at most 8/5:

|A(I)|
|OPT (I)|

<

n∑
i=2

iAi

5
4
A2 + 2A3 +

n∑
i=4

(3
4
i− 1

2
)Ai

≤ 8

5
= 1.6.

This finishes the proof of Theorem 2. Corollary 2 follows from the same observation made
about our 1.5-approximation for DPA. Further, our analysis of the approximation ratio is
tight as shown by an example in our appendix.

Theorem 4. The 1.6-approximation ratio of Algorithm 3 is tight.

5 Conclusion

We introduced a novel approach to approximating network design problems with cut-based
linear programming relaxations. Our method combines the combinatorial (recursive) struc-
ture of the problem with the cut-based structure produced by the corresponding dual linear
program. Identifying subgraphs that meet both the recursive and dual structural constraints
can produce provably good approximations.

We applied this methodology to a number of standard network design problems. In the
case of Minimum 2-Edge-Connected Spanning Subgraph, the resulting algorithm is
equivalent to a previously proposed 3/2-approximation [18]. For the problem of Minimum
Strongly Connected Spanning Subgraph, we produce a tight 1.6-approximation.
Although this is slightly worse than the 1.5-approximation of Vetta [24], our algorithm has
notably fewer cases than Vetta’s algorithm.
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We also applied our dual-based approach to a common power assignment network design
problem. The resulting algorithm for Dual Power Assignment achieves the best approx-
imation ratio known of 1.5 (improving on the previous best known 1.57-approximation of [1]).
We introduced a new problem generalizing DPA and MSCS, which we call Star Strong
Connectivity. Our approach gives a tight 1.6-approximation to SSC. Each of our ap-
proximation results also proves an upper bound on the integrality gap of the corresponding
problem.

Our dual-based approach can likely be applied to other unweighted connectivity problems
with cut-based linear programs. Further application of this method will likely produce new
approximation algorithms and improved upper bounds on their integrality gaps. Another
interesting extension of this work would generalize SSC to have costs on each star. Even
when costs are constrained to be in {0, 1}, Weighted SSC is at least as hard to approx-
imate as Set Cover. This follows from a very simple reduction that was observed in [3].
As a consequence, any work on approximating the weighted variant will at best achieve a
logarithmic approximation ratio. We believe the methods used in [4] will generalize to give
Weighted SSC such a logarithmic approximation.
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A Proof of Lemma 5

Consider some instance of SSC given by a digraph G = (V,E) and a set of stars C. Let
ROPT ⊆ C be the optimal solution to SSC. Let x∗ be the optimal solution to SSC Primal
LP when restricted to xF ∈ Z. We then need to show that |ROPT | =

∑
F∈C x

∗
F .

First we show that |ROPT | ≥
∑

F∈C x
∗
F . Consider the vector x produced by assigning all

F ∈ ROPT value 1 and the rest value 0. Then |ROPT | =
∑

F∈C xF . Our inequality will follow
if we show x is a feasible solution to SSC Primal LP, since x∗ is the minimum feasible
solution. From our construction, all xF ≥ 0. Further consider any cut ∅ ⊂ S ⊂ V . Since
ROPT produces a strongly connected spanning subgraph, some F ∈ ROPT crosses S. Since
this xF = 1, we know

∑
F∈∂C(S) xF ≥ 1. Thus x is feasible.
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Figure 4: Example instance of Gk used to show our 1.5-approximation ratio for DPA is
tight.

Now we prove that |ROPT | ≤
∑

F∈C x
∗
F . We know that all x∗F ∈ {0, 1} (if a larger

x∗F exists, our objective is reduced by reducing it to x∗F = 1 without effecting feasibility).
Consider the set of stars R = {F |x∗F = 1}. Then |R| =

∑
F∈C x

∗
F . Our inequality will follow

if we show R is a feasible solution to SSC, since ROPT is the minimum feasible solution. We
prove this by contradiction. Let G′ be the digraph induced by R (i.e. G′ = (V,

⋃
F∈R F )).

Assume G′ is not strongly connected. Then there exists s, t ∈ V such that there is no s, t-
path in G′. Consider the set Vs ⊆ V of all vertices u with a s, u-path. Note t /∈ Vs. Then
Vs is a cut with no arcs or stars crossing it. However, this contradicts the fact that x∗ is
feasible. Thus we can conclude R is feasible. Lemma 5 follows.

B Tightness of 1.5-Approximation Ratio for DPA

We prove this by giving a family Gk of instances of SSC with a bidirected input digraphs
where our algorithm can choose arbitrarily close to 3|OPT (Gk)|/2 stars. Our family of
instances will only have stars of size one. Therefore, we can represent an instance of SSC
using only the corresponding digraph. Further, since the digraph must be bidirected, we can
represent it using an undirected graph.

We define our family Gk as follows: Let V (Gk) = {v̄, w̄} ∪ {u1, u2, ...uk+1} ∪ {l1, l2, ...lk}.
Let E(Gk) contains v̄uk+1, w̄uk, and all edges in the cycle v̄, u1, u2, ...uk+1w̄ and the cycle
v̄, u1, l1, u2, l2, ...lk, uk+1, w̄. An example instance of Gk is depicted in Figure 4

Suppose Algorithm 2 is run on Gk. When our cycle construction is run, it could build
the path uk+1, w̄, uk, ...u2, u1, v̄ before terminating. Then it would choose the perfect set
corresponding to the cycle v̄, uk+1, w̄, uk, ...u2, u1. This set has disjoint internal cuts {v̄} and
{w̄}. After this is contracted into a vertex s, the algorithm will have to choose the perfect
set of size two contracting li into s for each 1 ≤ i ≤ k. Each of these sets have disjoint
internal cuts {li} and V \ {li}. Therefore our algorithm could choose 3k + 3 stars.

The optimal solution to Gk will choose the perfect set corresponding to the Hamiltonian
cycle v̄, u1, l1, u2, l2, ...lk, uk+1, w̄. This solution has objective 2k+3. Then the approximation
ratio achieved on Gk could be as large as 3k+3

2k+3
. As k approaches infinity, the ratio achieved

on Gk approaches 3/2.
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Figure 5: Example instances of Tk used to show our 1.6-approximation ratio for MSCS and
SSC is tight. (a) T1 (b) T2 (c) T5

C Tightness of 1.6-Approximation Ratio for SSC

We show our ratio is tight by giving a simple family of digraphs where our algorithm may
choose arbitrarily close to a 1.6-approximation. We use an example where all |F | = 1 (i.e.
when SSC is equivalent to MSCS). This allows us to describe any instance uniquely by
giving its digraph. Figure 5 gives examples of our family of digraphs, Tk. Formally, Tk is
recursively defined as follows:

First, T1 is a digraph with vertices {a, b, c, d, x, y, z} and arcs of the cycles abcdxyz and
yxca. Each Tk will have four specific vertices denoted by c, d, x and y. To construct Tk+1

from Tk, we replace x with the vertices {a′, b′, c′, d′, x′, y′}. The arc from x to c is replaced
with the arc from a′ to c. The arc from d to x is replaced with the arc from d to a′. Similarly
the two arcs between x and y are replaced with two arcs between y′ and y. Further, we
connect these new vertices with the arcs of the paths a′b′c′d′x′y′ and y′x′c′a′. The vertices
c′, d′, x′ and y′ from our expansion of Tk are c, d, x and y for Tk+1 respectively.

We prove the following two lemmas about Tk to establish the approximation ratio of Tk
approaches 1.6 as k grows.

Lemma 17. Every Tk has a Hamiltonian cycle containing the path dxy and of length 5k+2.

Proof. We prove this by induction. By the definition of T1, it contains the Hamiltonian
cycle abcdxyz. Then for our inductive step, we assume there is such a Hamiltonian cycle C
in the digraph Tk. We consider the path made by the arcs of C in Tk+1 (note the arc xy
becomes the arc y′y and dx becomes da′). Then the arcs of C form a path starting at y′,
going through all vertices common with Tk and ending at a′. Concatenating this with the
path a′b′c′d′x′y′ will yield a Hamiltonian cycle in Tk+1. Note this cycle contains the path
d′x′y′. We added five new arcs to this cycle, giving a total size of 5k + 2 + 5 = 5(k + 1) + 2,
which completes our inductive proof.

Lemma 18. Our algorithm may choose 8k + 2 arcs on input Tk.
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Proof. We prove this by induction. For T1, our cycle construction could build the path cayx.
Then the cycle cayx with internal cut {x} may be used to create our perfect set. Let w be
the resulting supervertex after contracting these four vertices. The next three iterations of
our algorithm will contract the cycles wd, wb and wz. Total this choose 10 arcs, confirming
our base case.

Now we assume our algorithm will produce a solution to Tk using 8k + 2 arcs. Given an
instance of Tk+1, consider the vertices added in our recursive construction: {a′, b′, c′, d′, x′, y′}.
As in our base case, the algorithm may contract the cycle y′x′c′a′ into a supervertex w. Then
it can contract the cycles wd′ and wb′. After these contractions, the six vertices that replaced
x in Tk have been combined to a single vertex. Then it follows that after our algorithm selects
these 8 arcs and contracts, Tk+1 becomes an instance of Tk. By our inductive assumption,
this process could choose 8 + (8k + 2) = 8(k + 1) + 2 arcs.

From Lemma 17, we know that the optimal solution to Tk costs 5k + 2. Combining
this result with Lemma 18, we find Tk could have an approximation ratio of 8k+2

5k+2
, which

approaches 8/5 = 1.6.
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