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Abstract We study the (1+λ) EA, a classical population-based evolutionary
algorithm, with mutation probability c/n, where c > 0 and λ are constant, on
the benchmark function OneMax, which counts the number of one-bits in a
bitstring.

We improve a well-established result that allows to determine the first
hitting time from the expected progress (drift) of a stochastic process, known
as the variable drift theorem. Using our improved result, we show that upper
and lower bounds on the expected runtime of the (1+λ) EA obtained from
variable drift theorems are at most apart by a small lower order term if the
exact drift is known. This reduces the analysis of expected optimization time
to finding an exact expression for the drift.

We then give an exact closed-form expression for the drift and develop a
method to approximate it very efficiently, enabling us to determine approxi-
mate optimal mutation rates for the (1+λ) EA for various parameter settings
of c and λ and also for moderate sizes of n. This makes the need for potentially
lengthy and costly experiments in order to optimize c for fixed n and λ for the
optimization of OneMax unnecessary.

Interestingly, even for moderate n and not too small λ it turns out that
mutation rates up to 10% larger than the asymptotically optimal rate 1/n
minimize the expected runtime. However, in absolute terms the expected run-
time does not change by much when replacing 1/n with the optimal mutation
rate.

? A preliminary version of this paper was published at GECCO 2016 [GW16].
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1 Introduction

The runtime analysis of randomized search heuristics has made significant
progress over the past two decades. A broad variety of randomized search
heuristics, for example evolutionary algorithms (EAs), ant colony optimiza-
tion and randomized local search have been considered for specific artificial
functions, and also for combinatorial optimization problems. The analysis of
evolutionary algorithms on simple pseudo-Boolean functions has been tremen-
dously fruitful and led to a wide range of results and techniques. In most
cases, runtime analysis is performed in an asymptotic fashion with respect to
the expected optimization time (see [AD11,Jan13,NW10] for an overview).

In the past couple of years there has been a surge of interest in non-
asymptotic analyses of EAs, i. e. in determining the runtime exactly, up to
lower order terms. For example, bounds on the expected runtime of the well-
known (1+1) EA on the classical OneMax function have enjoyed a series of
improvements. It has been known for a long time that the expected runtime is
Θ(n lnn) and goes back to Droste, Jansen and Wegener [DJW02]. The first as-
ymptotically tight bound of (1±o(1))en lnn was given by Witt [Wit13] for the
(1+1) EA on general linear pseudo-Boolean functions with positive weights.
Recently, the expected runtime of the (1+1) EA on OneMax has been stated
exactly, up to subconstant terms [HPR+].

For a long time, the optimal mutation rate has not been of particular inter-
est. By a rule of thumb the mutation rate was set to 1/n in many applications,
i. e. every bit is flipped independently with probability 1/n. At least for linear
functions, it is known that 1/n is asymptotically the optimal mutation rate for
the (1+1) EA on all linear functions [Wit13,DJW02]. Böttcher et al. [BDN10]
showed that the optimal mutation rate for the (1+1) EA on the Leading-
Ones problem is in fact ≈ 1.59/n, way above the common practice of using
1/n. Doerr and Goldberg [DG13] showed for the (1+1) EA that the asymptotic
bound of Θ(n lnn) holds for a mutation rate of c/n for the optimization of
linear pseudo-Boolean functions, where c is an arbitrary constant. Chicano et
al. [CSWA15] showed that the optimal mutation rate can be up to 50% higher
than the asymptotically optimal 1/n for small sizes of n for the (1+1) EA on
OneMax. Badkobeh et al. [BLS14] showed for the (1+λ) EA on OneMax
that the optimal mutation rate increases with λ in an adaptive setting.

The exact relationship between the static mutation rate and the runtime
of the (1+1) EA was revealed by Witt in the aforementioned work [Wit13]
by showing that the runtime is (1 ± o(1)) e

c

c n lnn for general linear pseudo-
Boolean functions which is asymptotically tight up to lower order terms. Here,
the leading constant ec

c is minimized for c = 1, thus justifying the unwritten
rule of setting the mutation rate to 1/n in many applications. This result was
refined and extended to populations by Gießen and Witt [GW15], who gave



Optimal Mutation Rates for the (1+λ) EA on OneMax 3

the asymptotically tight bound

(1± o(1))

(
ec

c
· n lnn

λ
+

1

2
· n ln lnλ

lnλ

)
for the number of generations needed by the (1+λ) EA on OneMax with
mutation rate c/n.

The impact of the mutation rate on the lower order term remains unclear
though. Since the lower order term is only known asymptotically, small prob-
lem sizes might benefit from a mutation rate that deviates from 1/n, as seen
in [CSWA15].

The goal of this paper is to find optimal mutation rates for the (1+λ) EA
on OneMax for constant λ. To this end, a new drift theorem is given that
provides a way of bounding the runtime if the exact drift values are known.
We then give an exact formula for the drift by analyzing the distribution of
the difference of two binomially distributed random variables and show how
to efficiently approximate it by means of the Poisson distribution, such that
the multiplicative error of the approximation is (1 ± O(1/n)). By applying
our new drift theorem with the approximated drift values, we are able to give
approximate optimal values of c in a computationally efficient way avoiding
the need for empirical investigations.

The paper is structured as follows. In Section 2 we state the (1+λ) EA
and the drift theorems used throughout the paper. In particular, a new drift
theorem for lower bounds is given. In Section 3 we present our main result that
the lower bounds from the new drift theorem and the upper bounds on the
expected runtime are only apart by a lower order term, provided the exact drift
is known. In Section 4 we give an exact closed-form expression for the drift.
Moreover, we show how to approximate it with only small asymptotic error in
a computationally efficient way. Section 5 deals with the practical implications
of our theoretical results. We show that by combining our main result with
the approximated drift we can approximate the expected runtime with only
small relative error. In Section 5.1 we exploit our findings by determining
approximate optimal mutation rates for various settings of n and λ. Section 5.2
finally demonstrates in an empirical analysis of the expected runtime that
our approximately optimal results (whose error provably can only affect a
lower order term of the expected runtime) in fact very well reflect the actual
runtimes.

2 Preliminaries

2.1 Algorithm

We consider the (1+λ) EA on pseudo-Boolean functions f : {0, 1}n → R in
the minimization version, defined as Algorithm 1. The case of c = 1 in the
mutation probability was considered in [JJW05,DK13,DK15]. The classical
(1+1) EA [AD11] is a special case of the (1+λ) EA for λ = 1 and c = 1.
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Throughout the paper, c and λ are for simplicity assumed to be constant, i. e.,
they may not depend on n. With minor efforts, our results can be generalized
to larger values, e. g., to c = O(lnn) and λ = O(lnn), at the expense of
additional logarithmic factors in the error bounds.

Algorithm 1 (1+λ) EA
Select x∗ uniformly at random from {0, 1}n.
for t← 1, 2, . . . do

for i← 1, . . . , λ do
Create xi by flipping each bit of x∗ independently

with probability c/n.
xm ← arg minxi f(xi) (breaking ties randomly)
if f(xm) ≤ f(x∗) then

x∗ ← xm

The runtime of the (1+λ) EA is defined to be the smallest t ∈ N, such
that an individual of minimum f -value is found. These individuals are called
optima. This notion of runtime is identical with the minimum number of itera-
tions (also called generations). Since each of these offspring has to be evaluated,
the number of function evaluations, which is another classical cost measure,
is by a factor of λ larger than the runtime as defined here. However, assum-
ing a massively parallel architecture that allows for parallel evaluation of the
offspring, counting the number of generations seems a valid cost measure. In
particular, a speed-up on the function OneMax(x1, . . . , xn) := x1 + · · ·+ xn
by increasing λ can only be observed in terms of the number of generations.

In the rest of the paper we will focus on the minimization of the classi-
cal function OneMax(x1, . . . , xn) := x1 + · · · + xn, which attains its unique
optimum, i. e. minimum, in the all-zero-bitstring.

2.2 Drift Theorems

Our analyses use variable drift analysis, a state-of-the art technique for the
analysis of expected optimization times. We first state a theorem for upper
bounds, which is well known. See [Joh10,MRC09,RS14]. We use a general
version that was proposed in [LW14].

Theorem 1 (Variable Drift, Upper Bound; [LW14]) Let (Xt)t≥0 be a
stochastic process adapted to a filtration Ft over some state space S ⊆
{0} ∪ [xmin, xmax], where xmin > 0. Let h(x) : [xmin, xmax] → R+ be a mono-
tone increasing function such that 1/h(x) is integrable on [xmin, xmax] and
E(Xt − Xt+1 | Ft) ≥ h(Xt) if Xt ≥ xmin. Then it holds for the first hitting
time T := min{t | Xt = 0} that

E(T | X0) ≤ xmin

h(xmin)
+

∫ X0

xmin

1

h(x)
dx .
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To prove lower bounds on the hitting time by variable drift, we need ad-
ditional assumptions. The first variable drift theorem for lower bounds on the
hitting that we are aware of goes back to [DFW11]. It requires that the process
does not make large steps towards the optimum, more precisely from state x
it may only go to states y ≥ c(x) for some function c(x). This deterministic
requirement on the progress is weakened to a stochastic one in the following
lemma. Moreover, the condition in item (v) is weaker than in [DFW11]. In-
stead of demanding E(Xt − Xt+1 | Ft) ≤ h(ξ(Xt)), we allow for h-functions
that are step functions. This can be useful for discrete state spaces. Somewhat
simplifying, if the state space is N and the drift at point i equals i, we can
use h(x) := dxe in the new variant, while the original variant would require
a continuous function such as h(x) = x. As

∫
1/dze dz ≤

∫
1/z dz, our step

function gives an improved upper bound.

Theorem 2 (Variable Drift, Lower Bound) Let (Xt)t≥0, be a stochastic
process adapted to a filtration Ft over some state space S ⊆ {0}∪ [xmin, xmax],
where xmin > 0. Suppose there exist

(i) two functions ξ, h : [xmin, xmax]→ R+ such that h(x) is monotone increas-
ing and 1/h(x) integrable on the interval [xmin, xmax],

(ii) β > 0,

and, using

g(x) :=
xmin

h(xmin)
+

∫ x

xmin

1

h(z)
dz,

suppose it holds for all t ≥ 0 that

(iii) Xt+1 ≤ Xt,
(iv) Pr(Xt+1 < ξ(Xt)) ≤ 1

βg(Xt)
for Xt ≥ xmin,

(v) E(Xt −Xt+1 | Ft) ≤ limδ↓0 h(ξ(Xt) + δ) for Xt ≥ xmin.

Then it holds for the first hitting time T := min{t | Xt = 0} that

E(T | X0) ≥ β

1 + β
g(X0).

Corollary to the above: If ξ is invertible and differentiable on the domain,
with inverse function ξ−1 and derivative ξ′, and (iv) and (v) are replaced by
the conditions

(iv’) Pr(Xt+1 < ξ(Xt))
≤ 1

β

(
xmin

h(ξ−1(xmin))
+
∫ ξ−1(Xt)

ξ−1(xmin)

ξ′(x)
h(x)

dx

) for Xt ≥ xmin,

(v’) E(Xt −Xt+1 | Ft) ≤ limδ↓0 h(Xt + δ) for Xt ≥ xmin

then the bound on E(T | X0) is equivalent to

E(T | X0) ≥ β

1 + β

(
xmin

h(ξ−1(xmin))
+

∫ ξ−1(X0)

ξ−1(xmin)

ξ′(x)

h(x)
dx

)
.
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Proof. We use the potential function g(x) = xmin

h(xmin)
+
∫ x
xmin

1
h(z) dz to apply

additive drift analysis w. r. t. to the drift E(g(Xt) − g(Xt+1) | Ft). Note that
the first bound on E(T | X0) given in the theorem follows if we can establish
the bound on the drift

E(g(Xt)− g(Xt+1) | Ft) ≤ 1 +
1

β

for Xt ≥ xmin since g(X0) =
(

xmin

h(xmin)
+
∫X0

xmin

1
h(x) dx

)
. The second bound on

E(T | X0) is equivalent to the first one as can be shown by a simple substitu-
tion.

We are left with the bound on the drift. By the law of total probability,

E(g(Xt)− g(Xt+1) | Ft)
= E(g(Xt)− g(Xt+1) | Ft;Xt+1≥ξ(Xt)) Pr(Xt+1≥ξ(Xt))

+ E(g(Xt)− g(Xt+1) | Ft;Xt+1<ξ(Xt)) Pr(Xt+1<ξ(Xt))

≤ E(g(Xt)− g(Xt+1) | Ft;Xt+1≥ξ(Xt))

+ g(Xt) · Pr(Xt+1 < ξ(Xt))

≤ E(g(Xt)− g(Xt+1) | Ft;Xt+1 ≥ ξ(Xt))

+ g(Xt) ·
1

βg(Xt)

= E(g(Xt)− g(Xt+1) | Ft;Xt+1 ≥ ξ(Xt)) +
1

β
,

where the first inequality estimated the drift in the case Xt+1 < ξ(Xt) by
g(Xt) and the second one used the assumption (iv).

We proceed by bounding

E(g(Xt)− g(Xt+1) | Ft;Xt+1 ≥ ξ(Xt))

≤ E(

∫ Xt

Xt+1

1

h(x)
d(x) | Ft;Xt+1 ≥ ξ(Xt))

≤ E(Xt −Xt+1 | Ft;Xt+1 ≥ ξ(Xt))

limδ↓0 h(ξ(Xt) + δ)

≤ E(Xt −Xt+1 | Ft)
limδ↓0 h(ξ(Xt) + δ)

,

where the first inequality follows by expanding g, the second one used that
Xt ≥ Xt+1 ≥ ξ(Xt) (which uses (iii)) along with the fact that h is monotone
increasing (i. e., non-decreasing) (from (i)), and the third one the definition of
conditional probability. Using (v), the last bound simplifies to

E(g(Xt)− g(Xt+1) | Ft) ≤
limδ↓0 h(ξ(Xt) + δ)

limδ↓0 h(ξ(Xt) + δ)
= 1,

so that
E(g(Xt)− g(Xt+1) | Ft) ≤ 1 +

1

β
as desired. ut
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3 Bringing together Lower Bounds and Upper Bounds from
Variable Drift

We are interested in how far the lower bound from Theorem 2 and the up-
per bound from Theorem 1 are apart when an exact expression on the drift
E(Xt −Xt+1) is known. Intuitively, this depends to a great extent on how
sharply the progress is concentrated around its expected value. If large jumps
towards the optimum are sufficiently likely, then the lower bound seems to
reflect the truth better. For example, consider the following artificial process:
the fitness function is OneMax and the algorithm is the (1+1) EA with the
following modified mutation step: with probability 1/n the optimum is cre-
ated, and with probability 1 − 1/n the usual standard-bit mutation operator
with mutation probability 1/n is used. At distance i from the optimum, the
drift towards the optimum is Θ(i/n), resulting in an upper bound O(n log n)
on the expected runtime according to Theorem 1. However, it is easy to see
that the actual expected runtime is O(n). This is a consequence of the possi-
bly large jumps directly into the optimum, which happen in every step with
probability 1/n. Note that such steps are very unlikely with the unmodified
mutation operator unless the algorithm is very close to the optimum anyway.

We concentrate now on the (1+λ) EA on OneMax, assuming constant c
in the mutation probability and constant λ. Then the following theorem shows
using the right drift function, upper and lower bounds on the expected runtime
are only apart by a term of lower order, which is indeed considerably lower
than the expected time on OneMax.

Theorem 3 Consider the (1+λ) EA on OneMax, choosing c and λ as con-
stants. Denoting by Xt the number of ones in the search point at time t ≥ 0,
the drift ∆(i) := E(Xt −Xt+1 | Xt = i) for i ∈ {1, . . . , n} is defined. Then it
holds for the expected runtime that

(1−O(n−1/3(lnn))) · I(X0) ≤ E(T | X0) ≤ I(X0),

where I(X0) =
∑X0

i=1 1/∆(i).

For its proof, we need a helper lemma, which is concerned with the mono-
tonicity of the drift.

Lemma 4 Let ∆(i) be defined as in Theorem 3. Then ∆(i + 1) ≥ ∆(i) for
any i ≥ 0.

Proof. We first prove the result for λ = 1 and show then how to extend it to
λ > 1.

Assume search point x(i) with i one-bits at time t and let x′(i) be its
random offspring (before selection). We represent

∆(i) =
∑
j≥0

Pr(|x(i)| − |x′(i)| ≥ j) =
∑
j≥i

Pr(|x′(i)| ≤ j),
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where |z| denotes the number of one-bits in z. If we can prove for all j ≤ i the
inequality

Pr(|x′(i+ 1)| ≤ j + 1) ≥ Pr(|x′(i)| ≤ j) (1)

the lemma follows. The inequality will be shown by a coupling argument;
formally, we map mutations x′(i) of x(i) to mutations x′(i + 1) of x(i + 1)
and show that the mapped mutations are at least as likely. By the symmetry
of the mutation operator, we can assume that x(i + 1) is bitwise non-less
than x(i). Let i∗ be the bit that is 1 in x(i+ 1) but 0 in x(i). We first consider
all mutations x′(i) of x(i) with at most j ≤ i one-bits in which bit i∗ is
not flipped. These mutations map one-to-one to mutations x′(i + 1) with at
most j + 1 one-bits by flipping the same bits in x(i+ 1).

The mutations of x(i) where bit i∗ is flipped to 1 must also flip another
bit k to 0 as j ≤ i. We map them to mutations of x(i+ 1) by flipping all bits
in the same way, except for that neither i∗ nor k are flipped. Such a mutation
has one further one-bit. Since we use mutation probability c/n = Θ(1/n), the
probability of not flipping i∗ and k is by a factor of(

1− c/n
c/n

)2

= Θ(n2)

larger than the probability of flipping both of them. Note that the mapping is
not bijective in this case as up to n− 1 different mutations (one for each value
of k) of x(i) are mapped to the same mutation of x(i + 1). Still, by a union
bound, the probability of generating the considered mutation of x(i+ 1) is by
a factor of Θ(n) larger, proving (1).

If λ > 1, we represent the drift as a sum of tail probabilities in the same
way as above, except for that the best of the λ offspring of x(i) is considered
instead of a single offspring x′(i). By independence of the offspring creation, the
probability that the best offspring improves by at least j equals 1−(Pr(|x(i)|−
|x′(i)| < j))λ. Using (1), this is at most 1− (Pr(|x(i+ 1)| − |x′(i+ 1)| < j))λ,
which completes the proof. ut

Proof of Theorem 3. To prove the upper bound, we use the variable drift
theorem for upper bounds (Theorem 1), using xmin = 1, xmax = n, and h(x) =
∆(dxe) for x ∈ [xmin, xmax]. Note that the theorem allows such a discontinuous
h-function. Hence, we obtain

E(T | X0) ≤ 1

∆(1)
+

∫ X0

xmin

dx

∆(dxe)
=

1

∆(1)
+ lim
`↓xmin

∫ X0

`

dx

∆(dxe)

=

X0∑
i=1

1

∆(i)
= I0.

For the lower bound, we define

ξ(x) :=

{
dxe − 1 if x ≤ n1/3,
dxe − dln(n)e otherwise.
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To analyze the probability that Xt+1 < ξ(Xt), given some Xt > 0, we also
consider the two cases. If Xt ≤ n1/3, then it is necessary to flip at least
two one-bits to zero to obtain Xt+1 < ξ(Xt) = Xt − 1. This probability
is at most (n1/3 cn )2 = O(n−4/3), and this asymptotic bound even holds if
the best of λ = O(1) offspring is considered. The probability of flipping at
least lnn bits in at least one of λ = O(1) offspring is clearly smaller, more
precisely n−Ω(lnn). Hence, P (Xt+1 < ξ(Xt)) ≤ O(n−4/3). Furthermore, we
get h(x) ≥ (1− c/n)n−1cx/n ≥ e−2ccx/n by considering the expected number
of one-bits flipped in an arbitrary offspring, conditioned on that no zero-bit
flips. Hence, (

xmin

h(xmin)
+

∫ Xt

xmin

1

h(x)
dx

)
≤ O(n) +

∫ n

1

ne2c

cdxe
,

which isO(n lnn) as c is constant. This establishes Condition (iv) of Theorem 2
for β = c′n1/3/(lnn), where c′ is a sufficiently large constant. We also note that
a union bound over λ = O(1) offspring implies h(xmin) = O(λc/n) = O(1/n),
hence

I0 ≥
xmin

h(xmin)
= Ω(n),

which we will use later.
Condition (iii) of Theorem 2 holds trivially due to the selection mechanism

of the (1+λ) EA. To verify the remaining conditions, we set h(x) := ∆(dxe)
for x ≤ n1/3 and h(x) := ∆(dxe+dln(n)e) otherwise. Note that limδ↓0 h(ξ(x)+
δ) = ∆(x) if x ≤ n1/3. Otherwise,

E(Xt −Xt+1 | Ft;Xt = x) = ∆(dxe) ≤ lim
δ↓0

∆(dxe+ δ)

= lim
δ↓0

h(dxe − dln(n)e+ δ) = lim
δ↓0

h(ξ(dxe) + δ)

since by Lemma 4∆(i) is monotone increasing in its argument. This establishes
(v). Also (i) is satisfied by definition of h. Altogether, the drift theorem yields

E(T | X0) ≥ β

1 + β

(
1

∆(1)
+

∫ X0

1

1

h(x)
dx

)

=
β

1 + β

n1/3∑
i=1

1

∆(i)
+

∫ X0

n1/3

1

h(x)
dx


≥ β

1 + β

n1/3∑
i=1

1

∆(i)
+

X0+dlnne∑
n1/3+dlnne

1

∆(i)

 ,

where the equality used that h(x) := ∆(dxe) for x ≤ n1/3 and the inequality
used the definition of h in the other case along with an index transformation.
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We see that the term in parentheses is at least

X0∑
i=1

1

∆(i)
−
dlnne∑
i=1

1

∆(n1/3 + i)
≥ I0 − dlnne

1

∆(n1/3)
,

by the monotonicity of ∆. We also know that ∆(n1/3) ≥ n1/3 cn (1− c/n)n−1 =

Ω(n−2/3) for any constant choice of c and any λ ≥ 1. Hence

dlnne 1

∆(n1/3)
= O(n2/3(lnn)) = O(n−1/3(lnn)I0),

using I0 = Ω(n). This altogether proves the desired inequality

E(T | X0) ≥ (1−O(n−1/3(lnn)))I0. ut

4 Approximating the Drift

In the following we will give a closed-form exact formula for the drift at fitness
k of the (1+λ) EA with mutation rate c/n for constant c and constant λ.
Let Xt denote the fitness at time t. Then, Xt+1 = Xt + Z, where Z is the
difference of two binomially distributed random variables, namely the number
of 1-bits flipped by the mutation and the number of 0-bits flipped by the
mutation. If more 1-bits than 0-bits are flipped, i. e. if Z is negative, the
algorithm progresses towards the optimum. Hence, we are interested in the
exact distribution of the random variable Z.

To this end, we will make use of the ordinary hypergeometric function,
also known as Gaussian hypergeometric function 2F1. Let for each a ∈ Z and
b ∈ N denote a(b) = a(a+ 1)(a+ 2) · · · (a+ b− 1) the rising factorial, which is
sometimes called the Pochhammer symbol. The hypergeometric function 2F1

is defined for x ∈ R as the following series:

2F1(a, b; c;x) = 2F1

(
a, b

c
;x

)
:=

∞∑
i=0

a(i)b(i)

c(i)
xi .

Note that the infinite series terminates if either a < 0 or b < 0. We refer the
reader to [AS64] for more information.

Let X ∼ Bin(n1, p1), Y ∼ Bin(n2, p2) and let Z := X−Y . In the following,
we will denote the distribution of Z as Z ∼ BinDiff(n1, n2, p1, p2).

Theorem 5 Let Z ∼ BinDiff(n1, n2, p1, p2). Then, for all z ∈ N:

Pr(Z = z) =

{
pz1(1− p1)n1−z(1− p2)n2

(
n1

z

)
ϕ1, z ≥ 0

p−z2 (1− p2)n1+z(1− p1)n1
(
n2

−z
)
ϕ2 z < 0

,
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where

ϕ1 = 2F1

(
−n2, z − n1

z + 1
;

p1p2
(1− p1)(1− p2)

)
,

and ϕ2 = 2F1

(
−n1, −(z + n2)

1− z
;

p1p2
(1− p1)(1− p2)

)
.

Proof. Let X,Y and Z be defined as stated in the theorem. We have for all
z ∈ Z

Pr(Z = z) = Pr(X − Y = z)

=
∑
a,b∈Z
a−b=z

Pr(X = a) Pr(X = b) . (2)

Furthermore, let q = p1p2/((1−p1)(1−p2)) and α = pz1(1−p1)n1−z(1−p2)n2 .
Consider the case z ≥ 0. Rewriting the sum from above we get

Pr(Z = z) =

n1∑
k=0

Pr(X = k + z) Pr(Y = k)

=

n1∑
k=0

(
n1
k + z

)
pk+z1 (1− p1)n1−k−z

(
n2
k

)
pk2(1− p2)n2−k

= α

n1∑
k=0

n1!

(k + z)!(n1 − k − z)!
· n2!

k!(n2 − k)!
· qk

= α

n1∑
k=0

(n1 − z − k + 1)(z+k)

z!(z + 1)(k)
· (n2 − k + 1)(k)

k!
· qk

= α

n1∑
k=0

(−1)2k(−(n1 − z))(k)(n1 − z + 1)(z)(−n2)(k)

z!(z + 1)(k)k!
· qk .

Using the fact that (n1 − z + 1)(z)/z! =
(
n1

z

)
we get

Pr(Z = z) = α

(
n1
z

) n1∑
k=0

(z − n1)(k)(−n2)(k)

(z + 1)(k)
· q

k

k!

= α

(
n1
z

)
2F1

(
−n2, z − n1

z + 1
; q

)
.

The case z < 0 can be shown analogously. ut
In the previous theorem we have seen that the discrete probability mass

function of a BinDiff-distributed random variable can be expressed in terms of
hypergeometric functions. The exact terms can also be written as Jacobi poly-
nomials, a class of orthogonal polynomials. This relationship to orthogonal
polynomials has been elaborated in connection with the probability distri-
bution of fitness values of a bit string undergoing uniform bit-flip mutation
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in [CSWA15]. In that work, another class of orthogonal polynomials, namely
Krawtchouk polynomials, were investigated.

In the following we will show that the drift can be computed efficiently. For
this purpose, we will assume that the computation of 2F1 counts as a single
arithmetic operation using some implementation of 2F1, similar to counting
other special functions like exp.

Corollary 6 Consider the (1+λ) EA, choosing c and λ constant on One-
Max. The drift ∆(k) at fitness k can be computed exactly with O(k) arithmetic
operations.

Proof. Consider a run of the algorithm as stated above and assume that
the OneMax-value is k. For all i ∈ [λ] let Xi ∼ Bin(n − k, c/n) and Yi ∼
Bin(k, c/n), then Zi := Xi−Yi is the random variable that denotes the change
in fitness of the i-th offspring individual, i. e. k+ min{Zi|i ∈ [λ]} is the fitness
of the new parent. Note that the image of each Zi is {z ∈ Z|−k ≤ z ≤ n−k}.

Using Theorem 5 we can write the cumulative distribution function of
Zi as FZi(x) =

∑x
y=−k Pr(Zi = y). Let Z∗ be defined as the minimum of

Z1, . . . , Zλ, i. e. Z∗ is the minimum order statistic. It is known that FZ∗(z) =
1− (1− FZ1(z))λ, using Z1 as an arbitrary representative among all Zi since
all Zi are independent. Hence, we get that

Pr(Z∗ = z) = (1− FZ1(z − 1))λ − (1− FZ1(z))λ .

Consider the drift at fitness k which is defined as

∆(k) := E(Xt −Xt+1 | Xt = k).

We get

∆(k) = −
−1∑

z=−k

z Pr(Z∗ = z)

= −
−1∑

z=−k

z
(
(1− FZ1

(z − 1))λ − (1− FZ1
(z))λ

)
= −

−1∑
z=−k

z

((
1−

z−1∑
y=−k

Pr(Z1 = y)

)λ

−
(

1−
z∑

y=−k

Pr(Z1 = y)

)λ)
.

The last term involves two nested sums. However, we only need to evaluate
Pr(Z1 = y) for y = −k, . . . ,−1 once, saving all values in a list, in order to
compute FZ1(z) for y = −k, . . . ,−1 which requires a single traversal over that
list. Computing the actual drift only consists of O(k) arithmetic operations
now, since we precomputed the needed values of FZ1

. Hence, the computation
of ∆(k) only needs O(k) arithmetic operations and space O(k). ut
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As we have seen in Corollary 6, we need O(k) arithmetic computations of
the probability mass function of a BinDiff-distributed random variable (see
Theorem 5). The computation of the hypergeometric function 2F1 proves to
be the bottleneck. For example, on an Intel i7-4770S CPU, a single computa-
tion of the value of 2F1(−750,−249; 2; 4.016 · 10−6), which is a representative
invocation of the function in this context, takes around 0.02 seconds using
the internal function hypergeom from Matlab R2015b. Different parameter
settings yield similar computation times. In order to compute the expected
runtime of the (1+λ) EA, we need to compute a linear amount of drift values,
which can pose a problem for large values of n due to the computational effort
on the hypergeometric function. Hence, we are interested in approximating
the drift with less computational effort.

The idea is to approximate the BinDiff-distribution. It is well-known that
a Poi(np)-distribution yields a good approximation for a Bin(n, p)-distribution
for large n and small p. To this end, we will approximate a BinDiff-distribution
with the distribution of the difference of the corresponding Poisson approxi-
mations. A similar approach to the approximation of the point-wise drift has
been pursued by Doerr, Doerr and Yang ([DDY16]). The distribution of the
difference of two independent Poisson-distributed random variables is known
in the literature as Skellam-distribution. We will state the definition according
to [Ske46].

Definition 7 Let X ∼ Poi(µ1) and Y ∼ Poi(µ2). The probability mass func-
tion of Z := X − Y is given by

Pr(Z = k) = e−(µ1+µ2)

(
µ1

µ2

) k
2

Ik(2
√
µ1µ2) ,

where Ik is the modified Bessel function of the first kind, defined by

Iν(z) =
(z

2

)ν ∞∑
i=0

(z/2)2i

i!(ν + i)!
,

for ν ∈ N0 and z ∈ R. In the following we will denote the distribution of Z by
Z ∼ Skellam(µ1, µ2).

For more information about the modified Bessel function of the first kind, we
refer the reader to [AS64].

Instead of the hypergeometric function in the probability mass function of
a BinDiff-distributed random variable, a Skellam-distributed random variable
involves the modified Bessel function of the first kind, which is another special
function. However, computing for example I250(1.73), takes less than 0.0001
seconds on an Intel i7-4770S CPU using the internal function besseli from
Matlab R2015b. The computation times are similar for different parameters.
This is a big improvement over the time needed for the computation of the
hypergeometric function. Computationally, the use of the Skellam-distribution
instead of the BinDiff-distribution is therefore justified. In the following we will
show that the error from the approximation is small as well. Again, we will
assume that the computation of Iν counts as a single arithmetic operation.
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Theorem 8 Consider the (1+λ) EA with mutation probability c/n and popu-
lation size λ on OneMax where c and λ are constant. Then, the drift ∆(k) can
be approximated up to a factor of 1±O(1/n) in O(k) arithmetic operations.

Proof. We will first bound the relative error of the approximation of a BinDiff-
distributed random variable by a Skellam-distributed random variable. Let
X ∼ Bin(n − k, c/n) and Y ∼ Bin(k, c/n), then Z := X − Y ∼ BinDiff(n −
k, k, c/n, c/n). Let X̃ ∼ Poi((n− k)c/n) and Ỹ ∼ Poi(kc/n) be the according
Poisson-approximated random variables. Then, Z̃ := X̃ − Ỹ ∼ Skellam((n −
k)c/n, kc/n). The relative error of the Poisson-approximation with respect to
X is ∣∣∣∣∣Pr(X̃ = m)

Pr(X = m)
− 1

∣∣∣∣∣ ≤ (e(n−k)c/n − 1) cn
m+ 1

.

Bounding the exponent by c and omitting the constants, we have Pr(X̃ = m) =
Pr(X = m)(1 ± O(1/(mn))) and Pr(Ỹ = m) = Pr(Y = m)(1 ± O(1/(mn)))
accordingly (see [Tee07] for details about the relative error bounds).

One can obtain different bounds for the relative error, depending on the
actual arithmetic computation of Pr(Z̃ = z), For example, we have that

1− FZ̃(z) = 1−
z∑

`=−k

Pr(Z̃ = `) =

n−k∑
`=z+1

Pr(Z̃ = `) .

For small z, the second term involves the computation of fewer probabilities
than the third term. This can lead to different results on the error bound as a
consequence of error propagation. However, due to the triangle inequality we
have that the absolute error

|Pr(Z = z)− Pr(Z̃ = z)| ≤ |Pr(Z = z)− q|+ |q − Pr(Z̃ = z)| ,

and the last term is 0 for any arithmetic computation q of Pr(Z̃ = z). Thus,
we can compute Pr(Z̃ = z) in the same way as Pr(Z = z) in Equation 2 in
order to derive a bound on the relative error of Z̃ with respect to Z, instead
of using the exact probability mass function. We have for z ≥ 0 that

Pr(Z̃ = z) =

n−z∑
j=0

(
Pr(X = j + z) Pr(Y = z)

·
(

1±O
(

1

(j + z)n

))(
1±O

(
1

zn

)))

= (1±O(1/n))

n−z∑
j=0

Pr(X = j + z) Pr(Y = z)

= (1±O(1/n)) Pr(Z = z) .

The case z < 0 is analogous and we obtain in total

Pr(Z̃ = z) = (1±O(1/n)) Pr(Z = z) ,
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for all z ∈ {−k,−k + 1, . . . , n− k}.
We can now compute the relative error of the approximated drift ∆̃. By

replacing Z1 with Z̃ in the computation of the exact drift from Corollary 6 we
obtain

∆̃(k) = −
−1∑

z=−k

z

(1−
z−1∑
y=−k

Pr(Z̃ = y)

)λ

−

(
1−

z∑
y=−k

Pr(Z̃ = y)

)λ
= −(1±O(1/n))λ

−1∑
z=−k

z

( n−k∑
y=z

Pr(Z = y)

)λ

−

(
n−k∑
y=z+1

Pr(Z = y)

)λ
= (1±O(1/n))∆(k) .

Note that in the last step we exploited the fact that λ is a constant.
Since we can use the same arithmetic computation as in Corollary 6, the

number of arithmetic operations in order to compute the approximated drift
is O(k) as well. ut

5 Computation of Mutation Rates

In the previous section we showed how to approximate the drift with only
a small relative error. Using the new drift theorem from Section 3 we are
interested in approximating the expected runtime.

Corollary 9 Consider the (1+λ) EA on OneMax with mutation probability
c/n, where c and λ are constant. Using the approximation from Section 4 the
runtime of the (1+λ) EA can be approximated up to a multiplicative error of
1±O(n−1/3(lnn)).

Proof. Let Xt denote the OneMax-value at time t > 0 and let furthermore
∆(i) := E(Xt −Xt+1 | Xt = i) be the drift at fitness value i.

Theorem 3 states that

(1−O(n−1/3(lnn))) · I(X0) ≤ E(T | X0) ≤ I(X0) ,

where I(X0) =
∑X0

i=1 1/∆(i).
Plugging in the approximate drift values ∆̃(i), as described in Section 4

and by weakening the upper bound we obtain

E(T | X0) = (1±O(n−1/3(lnn)))

X0∑
i=1

1/∆̃(i) .
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Table 1 Approximate optimal c values

Problem size n
λ 100 200 500 1000 2000 5000
1 1.19 1.16 1.13 1.11 1.10 1.09
2 1.19 1.16 1.13 1.11 1.10 1.09
3 1.19 1.16 1.13 1.12 1.10 1.09
4 1.20 1.17 1.14 1.12 1.11 1.09
5 1.21 1.17 1.14 1.12 1.11 1.10
6 1.21 1.18 1.14 1.13 1.11 1.10
7 1.22 1.18 1.15 1.13 1.12 1.10
8 1.23 1.19 1.15 1.13 1.12 1.10
9 1.23 1.19 1.16 1.14 1.12 1.11
10 1.24 1.20 1.16 1.14 1.12 1.11

Using a Chernoff bound we can see that the probability that the algorithm
initializes in the interval [n/2 − n2/3, n/2 + n2/3] is at least 1 − 2e−(2/3)n

1/3

.
The expected time to advance from a fitness of dn/2 + n2/3e down to bn/2c
is
∑dn/2+n2/3e
bn/2c 1/∆̃(i) ≤ n2/3/∆̃(bn/2 + n2/3c) due to the monotonicity of

∆̃ by Lemma 4. It holds that ∆̃(bn/2 + n2/3c) ≤ (n/2 + n2/3)(c/n) = O(1)

and thus, we get
∑dn/2+n2/3e
bn/2c 1/∆̃(i) = Ω(n2/3). Similarly, we can show that∑dn/2e

bn/2−n2/3c 1/∆̃(i) = O(n2/3). Furthermore, we know that the expected run-
time is Θ(n lnn), independent from the actual initialization in the given in-
terval. Therefore, the relative error by deviating at most n2/3 from n/2 is of
order Θ(n2/3/E(T )) = Θ((lnn)n−1/3), which matches the asymptotic factor.

Conditioning on the event that the algorithm initializes in [n/2−n2/3, n/2+
n2/3] yields in total:

E(T ) = (1±O(n−1/3(lnn))

dn/2e∑
i=1

1/∆̃(i) , (3)

where the error introduced by the Chernoff bound is absorbed by the asymp-
totic factor. Hence, we can approximate the runtime of the (1+λ) EA with
only small asymptotic error. ut

5.1 Approximating the runtime

We implemented the sum from the right-hand side of Equation 3 in order to
compute the approximate expected runtime in Matlab R2015b and computed
the approximate expected runtimes for c = 1.00, 1.01, . . . , 2.0 and λ = 1, . . . , 10
and problem sizes n = 100, 200, 500, 1000, 2000, 5000. The approximated opti-
mal values of c are given in Table 1.

As expected, we can see that for fixed λ, the approximated mutation rate
parameter c is decreasing with n, approaching 1 as predicted by the tight
analysis in [GW15]. Furthermore, the approximate optimal c for n = 100 and
λ = 1 is 1.19, which is only slightly higher than the exact value of 1.17 given in
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Table 2 Ratios of the expected runtimes for the approximate optimal mutation rate and
the standard mutation rate 1/n

Problem size n
λ 100 200 500 1000 2000 5000
1 0.9865 0.9901 0.9931 0.9946 0.9957 0.9967
2 0.9861 0.9899 0.9929 0.9945 0.9955 0.9965
3 0.9858 0.9896 0.9927 0.9943 0.9954 0.9964
4 0.9854 0.9893 0.9925 0.9941 0.9952 0.9963
5 0.9850 0.9890 0.9923 0.9939 0.9951 0.9962
6 0.9845 0.9886 0.9920 0.9937 0.9949 0.9960
7 0.9840 0.9882 0.9917 0.9935 0.9947 0.9959
8 0.9835 0.9878 0.9914 0.9932 0.9945 0.9957
9 0.9830 0.9874 0.9911 0.9930 0.9943 0.9956
10 0.9824 0.9869 0.9908 0.9927 0.9941 0.9954

[CSWA15], hence justifying that the approximation does not suffer from large
constants in the lower order term that might corrupt the approximation for
small values of n.

Interestingly, for fixed n the approximate optimal mutation rate grows with
λ. However, this behaviour cannot be explained by the bound from [GW15]
which means that the reason for this behaviour is hidden in the lower order
term. Intuitively, employing a larger population stabilizes the explorative char-
acter of allowing a higher mutation rate by reducing the chance that none of
the individuals makes progress at all.

In order to evaluate the benefit of setting the mutation rate to the ap-
proximate optimal value instead of using the mutation rate 1/n, we provide
the corresponding table of the ratios of the approximated expected runtimes
for the optimal mutation rate and 1/n. As can be seen in Table 2, using the
optimal mutation rate compared to 1/n does not improve the corresponding
expected runtime by more than 2% in the considered ranges of n and λ. This
means that a mutation rate of 1/n is a sane choice for the parameter ranges
that we have examined.

For fixed λ, the ratios increase with n, as expected. Interestingly, for fixed
n, the ratios decrease with λ, which means that using the optimal mutation
rate has a greater influence on larger population sizes. Another observation
from Figure 1 is that for fixed n and λ the expected runtime exhibits a certain
robustness in the sense that it does not change by much for values of c in the
considered range.

5.2 Comparison with empirical results

As shown in the beginning of this section, the results presented in subsec-
tion 5.1 approximate the expected runtime with only small error. However,
this error is stated asymptotically and the computed approximations of the
expected runtimes might differ greatly from the actual expected runtimes due
to large constants hidden in the asymptotic term, especially for smaller values
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Fig. 1 Approximate expected runtime of the (1+10) EA using the Skellam-approximation
for n = 100, 200, 500, 1000, 2000, 5000. The minimal c is marked for each n.

of n. However, this is not the case and our approximations turn out to be
surprisingly precise, even for smaller values of n.

We performed experiments in order to compare the empirical optimal val-
ues of the mutation parameter c to the approximate optimal values of c. For
this purpose we implemented the (1+λ) EA in C using the GNU Scientific Li-
brary (GSL) for the generation of pseudo-random numbers and to use the GSL
implementations of the hypergeometric function and modified Bessel function
of the first kind.

The results are shown in Figure 2. The plot displays the empirical optimal
values for the mutation parameter c for n ∈ {100, 200, . . . , 1000, 2000} for the
(1+1) EA, (1+50) EA and (1+100) EA, as dots. The empirical optimal values
of c are determined by taking the empirical minimum of the corresponding
runs of the (1+λ) EA for each pair of n and λ for c ∈ {0.50, 0.52, . . . , 3.0},
averaged over 50000 runs each. The approximated optimal value for c using
the Skellam-approximation as described in the beginning of this section is
displayed by a dashed line for each setting of n and λ. Additionally, for illus-
tration, the approximated optimal value for c using the exact formula for the
BinDiff-distribution (see Corollary 6) is displayed by a continuous line for each
setting of n and λ. The approximated values are determined by numerical op-
timization for both versions. We can see that for each λ both approximations
seem to reflect the empirical optimal values very well over the whole range
of n, producing only a small absolute error. Note that the empirical optimal
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values are subject to some amount of variation, despite the high sample size of
50000 for each data point. This is due to the high variance in the distribution
of the optimization time, which can also be observed in Figure 3 where the
interquartile range of the experiments is illustrated. Moreover, the Skellam-
approximation rapidly approaches the BinDiff-approximation which justifies
its use even further.

Due to the fast computation of our approximation we additionally added
values for n = 5000 and n = 10000 in Figure 3 to further illustrate the asymp-
totic behaviour of the optimal values for c.

0 500 1000 1500 2000

1.0

1.2

1.4

1.6

1.8

λ = 100

λ = 50

λ = 1

n

M
ut
at
io
n
pa

ra
m
et
er
c

Fig. 2 Empirical optimal and approximate optimal mutation parameter c for the (1+λ) EA
for n = 100, 200, . . . , 1000, 2000 and λ = 1, 50, 100. The empirical optimal values for c are
marked by dots. The approximate optimal values for c using the exact formula for the
BinDiff-distribution are marked by the continuous line. The approximate optimal values for
c using the Skellam-approximation for the BinDiff-distribution are marked by the dashed
line.

As already mentioned in section 5.1 the approximate optimal mutation rate
grows with λ for fixed n which is due to the lower order term in the expected
runtime. To further illustrate the impact of the lower order term we displayed
the empirical expected runtimes for several values of λ and fixed n and marked
the empirical and approximate optimal values for the mutation parameters c.
The results are shown in Figure 4. Both plots display the number of generations
needed to optimize the (1+λ) EA for n = 100 (left plot) and n = 2000 (right
plot) for various settings of λ and c. The empirical runtimes are displayed in
each plot for c = 0.5, 0.52, 0.54, . . . , 3.0 and λ = 1, 2, 5, 10, 20, 50 where each
data point is averaged over 50000 runs. For illustration of the high variance,



20 Christian Gießen, Carsten Witt

0 2000 4000 6000 8000 10000

1.0

1.2

1.4

1.6

1.8

λ = 100

λ = 50

λ = 1

n

M
ut
at
io
n
pa

ra
m
et
er
c

Fig. 3 Empirical optimal and approximate optimal mutation parameter c for the (1+λ) EA
for n = 100, 200, . . . , 1000, 2000, 5000, 10000 and λ = 1, 50, 100. The approximate optimal
values for c using the Skellam-approximation for the BinDiff-distribution are marked by the
dashed line.

the area between the first and third quartile is shaded. One can easily observe
that for higher values of λ both the empirical and the approximate optimal
values for c increase for both values of n. Note that higher values of λ lead to
lower runtimes.

Conclusions

We have presented an improved variable drift theorem that weakens the re-
quirement that no large steps towards the optimum may occur in the process
to a stochastic one. We used this theorem to show that upper and lower bounds
on the expected runtime of the (1+λ) EA with mutation probability c obtained
from variable drift theorems are at most apart by a small lower order term if
the exact drift is known and c and λ are constant. This reduces the analysis
of expected optimization time to finding an exact expression for the drift.

Furthermore, we gave an exact closed-form expression for the drift and
presented a method for approximating it very efficiently with small error. By
applying the new drift theorem and the approximation for the drift, we were
able to approximate optimal mutation rates for the (1+λ) EA for various
parameter settings of c and λ and also for moderate sizes of n and verified ex-
perimentally that these approximations reflect empirical results very precisely.

Our results render the need for costly experiments in order to optimize the
parameters unnecessary. Even for moderate n and not too small λ it turns
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Fig. 4 Empirical expected runtime of the (1+λ) EA for n = 100 (left) and n = 2000 (right)
and λ = 1, 2, 5, 10, 20, 50 (top to bottom in each plot) over 50000 runs for each setting of n, λ
and c = 0.5, 0.52, 0.54, . . . , 3.0. The empirical minimal c is marked by a dot for each n. The
area between the first and third quartile is shaded for each λ. The computed approximations
of the minimal c are denoted by the dashed line.

out that mutation rates up to 10% larger than the asymptotically optimal
rate of 1/n minimize the expected runtime. However, the benefit of setting the
mutation rate to the optimal value of c, instead of using mutation rate 1/n is
small with respect to the actual expected runtime.
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