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Abstract

Logit Dynamics [Blume, Games and Economic Behavior, 1993] are randomized best response
dynamics for strategic games: at every time step a player is selected uniformly at random and she
chooses a new strategy according to a probability distribution biased toward strategies promising
higher payoffs. This process defines an ergodic Markov chain, over the set of strategy profiles of
the game, whose unique stationary distribution is the long-term equilibrium concept for the game.
However, when the mixing time of the chain is large (e.g., exponential in the number of players),
the stationary distribution loses its appeal as equilibrium concept, and the transient phase of the
Markov chain becomes important. It can happen that the chain is “metastable”, i.e., on a time-scale
shorter than the mixing time, it stays close to some probability distribution over the state space,
while in a time-scale multiple of the mixing time it jumps from one distribution to another.

In this paper we give a quantitative definition of “metastable probability distributions” for a
Markov chain and we study the metastability of the logit dynamics for some classes of coordination
games. We first consider a pure n-player coordination game that highlights the distinctive features
of our metastability notion based on distributions. Then, we study coordination games on the clique
without a risk-dominant strategy (which are equivalent to the well-known Glauber dynamics for
the Curie-Weiss model) and coordination games on a ring (both with and without risk-dominant
strategy).

∗A preliminary version of this paper appeared in the Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’12) [4]. Part of this work was done while the third author was at Università di Salerno
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1 Introduction

Complex systems consist of a large number of components that interact according to simple rules at small
scale and, despite of this, exhibit complex large scale behaviors. Complex systems are ubiquitous and
some examples can be found in Economics (e.g., the market), Physics (e.g., ideal gases, spin systems),
Biology (e.g., evolution of life) and Computer Science (e.g., Internet and social networks). Analyzing,
understanding how such systems evolve, and predicting their long-term behaviour is a major research
endeavor.

In this paper we focus on selfish systems in which the components (called the players) are selfish
agents, each one with a set of possible actions or strategies trying to maximize her own payoff. The
payoff obtained by each player depends not only on her decision but also on the decisions of the other
players. We study specific dynamics, the logit dynamics (first studied by Blume [10]) and consider as
solution concept their equilibrium states. Logit dynamics are a type of noisy best response dynamics that
model in a clean and tractable way the limited knowledge (or bounded rationality) of the players in terms
of a parameter β (in similar models studied in Physics, β is the inverse of the temperature). Intuitively,
a low value of β (that is, high temperature and entropy) represents the situation where players choose
their strategies “nearly at random”; a high value of β (that is, low temperature and entropy) represents
the situation where players pick the strategies yielding high payoff with higher probability. It is well
known that, for every strategic game, these dynamics induce a Markov chain with a unique stationary
distribution (the Markov chain is ergodic). Thus no equilibrium selection problem arises. The drawback
of using the stationary distribution to describe the system behavior is that the system may take too long
to converge to that distribution, unless the chain is rapidly mixing. Logit dynamics for strategic games
can be rapidly mixing or not, depending on the features of the underlying game, the temperature/noise,
and the number of players [6, 7]. For this reason, in this work we focus on the transient phase of the logit
dynamics and, in particular, we try to answer the following questions for games where logit dynamics have
exponential mixing time: is the transient phase completely chaotic or can we spot some regularities even
at time-scales shorter than mixing time? Ellison [19] showed that as long as the probability of suboptimal
responses tends to 0 (i.e., β → ∞), the logit dynamics (and many other similar noisy dynamics) usually
evolve via a series of gradual steps between nearly stable states. However, how can we describe these
stable states? And what happens for lower values of β? Obviously, at a fine-grained level any Markov
chain is perfectly described by the collections of probability distributions consisting of one distribution
for each time step and each starting profile. However, this should be contrasted with the rapidly mixing
case (i.e., a Markov chain with polynomial mixing time) in which one can approximately describe the
state of the system (after the mixing time) using one distribution, i.e. the stationary distribution.

Our results show that there are games for which regularities can be observed even in the transient
phase of the logit dynamics. In particular, we will show that it is often possible to identify a few
probability distributions (the metastable distributions) such that, depending on the starting profile, the
dynamics quickly reach one of those distributions and remain close to that one for a long time. We can
describe our results also in terms of the quantity of information needed to predict the status of a system
that evolves in time according to the logit dynamics. We know that the long-term behavior of the system
can be compactly described in terms of a unique distribution but we have to wait a transient phase of
length equal to the mixing time. Thus, if the system is rapidly mixing this description is significant after
a short transient phase. However, when the mixing time is super-polynomial this description becomes
significant only after a long time. Our results show that for a large class of n-player games whose logit
dynamics are not rapidly mixing, the behaviour of the dynamics (the strategies played by the n players)
can still be described with good approximation and for a super-polynomial number of steps by means
of a small number of probability distributions. This comes at the price of sacrificing a short polynomial
initial transient phase (so far we are on a par with the rapidly mixing case) and requires a few bits of
information about the starting profile (this is not needed in the rapidly mixing case).

Our contribution. Our main contribution is the introduction of the notion of an (ε, T )-metastable
distribution of a Markov chain and of the concept of pseudo-mixing time of a metastable distribution.
Roughly speaking, a distribution µ is (ε, T )-metastable for a Markov chain if, starting from µ, the Markov
chain stays at distance at most ε from µ for at least T steps. The pseudo-mixing time of µ starting from
a state x is the number of steps needed by the Markov chain to get ε-close to µ when started from x.

In a rapidly-mixing Markov chain, after a “short time” and regardless of the starting state, the chain
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converges rapidly to the stationary distribution and remains there. For the case of non-rapidly-mixing
Markov chains, we replace the notions of “mixing time” and “stationary distribution” with those of
“pseudo-mixing time” and “metastable distribution”. Intuitively speaking, we would like to say that,
even when the mixing time is (prohibitively) high, there are “few” distributions which give us an accurate
description of the chain over a “reasonable amount of time”. That is, the state space Ω can be partitioned
into a small number of subsets Ω1,Ω2, . . . of “equivalent” states so that if the chain starts in any of the
states in Ωi, then it will rapidly converge to a “metastable” distribution µi, where metastable denotes
the fact that the chain remains there for “sufficiently” long.

The similarities with stationary distributions and mixing time are confirmed by some of the properties
that are enjoyed by the metastable distribution and the pseudo-mixing time concepts. In Section 3 we
highlight these properties and also the relationship of these concepts with other well-known Markov chain
measures, such as bottleneck ratio and hitting time.

In order to familiarize with the concepts of metastable distribution and pseudo-mixing time, we first
apply them to a simple three-state Markov chain and the Markov chain of the logit dynamics for 2-
player coordination games. Then, we show the usefulness of these concepts in more involved examples.
Specifically, in Section 4 we consider a pure n-player coordination game, in which all players would like to
take the same action and each action is equivalently valued by any player. People forming teams, objects
being categorized (e.g., movies into genres in a video store) and firms choosing their trading locations
are some examples of real-world scenarios that can be modeled by this class of games [14]. The behavior
of the logit dynamics for this game turns out to be very interesting. Indeed, it highlights a distinctive
feature of our metastability notion based on distributions, namely that a metastable distribution exists
even if every small subset of states in the support of that distribution is quickly left with high probability.

Finally, in Section 5, we obtain results about the metastability of the logit dynamics for different
classes of graphical coordination games. These games are often used to model the spread of a new
technology in a social network [40, 35, 34] with the strategy of maximum potential corresponding to
adopting the new technology; players prefer to choose the same technology as their neighbors and the
new technology is at least as preferable as the old one. Research along this direction has mainly focused
on analyzing how the features of the social network affect the spread of innovations. This research line
has been initiated by Ellison [18], that considers two extremal network topologies, the clique and the
ring1.

In this work we follow Ellison [18] and study the case in which social interaction between the players
is described by the clique and ring topologies. Specifically, in Section 5.1, we analyze the metastable
distributions for a special graphical coordination game embedding the Ising model on the complete graph,
also known as the Curie-Weiss model. It has been studied in the context of population protocols [36] and
used by physicists to model the interaction between magnets in a ferro-magnetic system [32]. Indeed,
it is known [24, 34, 7] that this model can be seen as a game played by magnets and, in particular, the
Glauber dynamics for the Gibbs measure on the Ising model are equivalent to the logit dynamics for this
game where β is exactly the inverse of the temperature. The mixing time of these dynamics is known
to be exponential for every β > 1/n. For this model, we show that distributions where all magnets have
the same magnetization are (1/n, t)-metastable for t greater than any polynomial when β = ω(logn/n).
Moreover we show that the pseudo-mixing time of these distributions is polynomial when the dynamics
start from a profile where the difference in the number of positive and negative magnets is large.

In Section 5.2 we focus on the ring topology and we show that for every starting profile there is a
metastable distribution and the dynamics approach it in a polynomial number of steps. The metastable
distributions that arise in this case consist of a mixture of the extreme distributions that assign probability
1 to profiles in which all nodes adopt the same strategy. In the case of a symmetric coordination game
(the two strategies are equally liked) the mixture that arises has coefficients that are almost equal to
the fraction of nodes adopting each of the two strategies. If the game is asymmetric, it turns out that
coefficients are biased towards the profile in which all nodes adopt the most preferred strategy. In
particular, this coefficient gets very close to 1 even if in the initial profile there is a constant number
(depending on the metastability parameter ε) of nodes with this strategy.

1We point out that the dynamics studied by Ellison [18] are slightly different from the logit dynamics, that have been
instead adopted by the later works [40, 35, 34].
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Other equilibrium notions. We find illustrative to compare the concepts studied in this paper
(the logit dynamics and their metastable distributions) with the notion of Nash equilibrium. Similar
comparison can be made with other solution concepts from Game Theory (correlated equilibria, sink
equilibria). The notion of a Nash equilibrium has been extensively studied as a solution concept for
predicting the behavior of selfish players. Indeed, if the players happen to be in a (pure) Nash equilibrium
any sequence of selfish best response (i.e., utility improving) moves keeps the players in the same state.
Unfortunately, the theory of Nash equilibria does not explain how a Nash equilibrium is reached if players
do not start from one and, in case multiple equilibria exist, does not say which equilibrium is selected
(about this important issue see [25]). Even tough it is not hard to see that sequences of best response
moves may reach a pure Nash equilibrium (if it exists), recent hardness results regarding the computation
of pure Nash equilibria [20] suggest that the best-response dynamics (or any other dynamics) might take
super-polynomial time in the number of players to reach an equilibrium. Thus, even in case only one
(pure) Nash equilibrium exists, the players might take very long to reach it and thus it cannot be taken
to describe the state of the players (unless we are willing to ignore the super-polynomially long transient
phase). In contrast, in the setting studied in this paper these drawbacks disappear: the solution concept
is defined in terms of dynamics and for our specific dynamics we have a unique possible prediction. For
rapidly mixing chains the equilibrium is quickly reached. The concept of metastable distribution and the
results in this paper show that, even for the non-rapidly mixing case, the system can be often efficiently
described after a short initial transient phase.

The Nash Equilibrium concept is based on the assumption that each player has complete information
about the game and the strategies of his opponents and it is able to compute his best strategy with respect
to the strategies played by the other players. However, in many complex systems, environmental factors
can influence the way each agent selects her own strategy and limitations to the players’ computational
power can influence their behaviors. Logit dynamics are a clear and crispy way to model these settings.

1.1 Related Work

Logit dynamics. Logit dynamics were first studied by Blume [10] who showed that, for two-player two-
strategy coordination games, the long-term behavior of the system is concentrated in the risk dominant
equilibrium (see [25]). Ellison [18] initiated the analysis of how social networks affect the spread of
innovations. Ellison considered dynamics that are slightly different from the logit dynamics and he
focused on two extremal network topologies, the clique and the ring (the classes of games we study in
Section 5.2). His results show that some large fraction of the players will eventually choose the strategy
with maximum potential. Similar results were obtained by Peyton Young [35] for the logit dynamics
and more general families of graphs. Montanari and Saberi [34] gave bounds, in terms of some graph
theoretic properties of the underlying interaction network, on the time the logit dynamics take to hit the
highest potential equilibrium. Asadpour and Saberi [3] studied the hitting time of the Nash equilibrium
for the logit dynamics in a class of congestion games. Bounds on the convergence to specific equilibria
have been given also in [27, 28].

The study of the mixing time of the logit dynamics for strategic games has been initiated in [6] (see
also [7]), whose results highlight a separation between games where the mixing time can be bounded
independently from the parameter β and games where the mixing time is necessarily exponential in β.

Several variants of these dynamics have been proposed for evaluating the robustness of known results
[31, 1, 2, 5], for adapting them to different setting [38], or for speeding up their convergence to equilibria
[11].

Metastability. The goal of metastability is to model processes showing the following typical behavior:
starting from a given state, the system rather quickly visits a nearby metastable state and then it remains
very close to such a state for a very long time; at some point, the system leaves the metastable state (and
its neighborhood) and moves to some other metastable state; the process then is repeated. Metastable
states are identified with subsets of profiles of the system, with the property that the probability to
leave these subsets is exponentially small [13]. Similar concepts have been also introduced in the context
of population protocols under the name of locally stable states (see, e.g., [36] and references therein).
Usually, these states correspond to “deep” local energy minima (or local maximizers of the potential
function, in the case of potential games), with absolute energy minima corresponding to stable states.
Sometimes, metastable state are described through probability distributions over the profiles in the subset
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[13, 9]. Anyway, the metastability property always refers to the subset and not to the distribution. We
depart from this approach by considering metastable distributions and not just metastable subsets of
profiles. Indeed this is necessary for our object of study (logit dynamics of strategic games) as we shall
show that there exist games that admit quite natural metastable distributions even if in the support
there is no strict local maximizers of the potential function (see Section 4).

The classical approach to metastability is concerned with evaluating the time the system takes to
escape from a metastable state [26]. More recent approaches [23] based on large deviation theory try to
describe also the typical trajectory that a system takes, that is the sequence of states bringing to the
stable one. This approach has been recently applied also to the logit dynamics [37], under the hypothesis
that both β and n tend to ∞. Better result on the escape time have been achieved recently, through
the so-called potential theoretical approach [12], that links hitting time theory with spectral properties
of the transition matrix of the dynamics. In contrast our work not only tries to bound the time the
system takes to escape from a metastable distribution, but also the time the system takes to enter this
distribution from a specific starting profile.

Very recently, and independently from our work, Friedlin and Koralov [22] introduced a notion of
a metastable distribution that resembles the one presented in this work. Unlike ours, the notion of
metastable distribution in [22] does not require the chain to stay close to this distribution for a given
number of steps. Moreover, in [22] it is not considered the time required to get close to a metastable
distribution.

Quasi-stationarity and Censored dynamics. A quasi-stationary distribution [15] describes the
limiting behavior of a system in a subset of states given that the system never leaves this subset. Quasi-
stationary distributions are often associated with metastability (see, e.g., [9]). Anyway, we highlight that,
even if quasi-stationary distributions can be metastable, the inverse is not necessarily true. Moreover,
works about quasi-stationary distributions focus on bounding the time the dynamics take to converge
to this distribution from the support. In this work we are also interested in the convergence time to
metastable distributions from profiles that are not in the support.

The work on censored Glauber dynamics [30, 17, 16] is also related to ours: the mixing time in
censored dynamics resembles the pseudo mixing time for the metastable distribution on a subset of
states. However, we stress that the censored dynamics alter the original evolution of the Markov chain
and the techniques developed do not seem useful to answer questions about the pseudo-mixing time.

1.2 Notations

We write |S| for the size of a set S. We use bold symbols for vectors and the standard game theoretic
notation (x−i, y) to denote the vector obtained from x by replacing its i-th entry with y; i.e., (x−i, y) =
(x1, . . . , xi−1, y, xi+1, . . . , xn). When we are given a probability distribution µx that assigns probability
1 to state x, we say that µx is concentrated in state x. We refer the reader to Appendix A for a review of
useful facts about the concepts of total variation distance ‖µ− ν‖TV between probability distributions,
and of mixing time tmix.

2 Logit dynamics

A strategic game G is a triple G = ([n],S,U). The set [n] = {1, . . . , n} is a finite set of players ;
S = S1 × · · · × Sn is the set of strategy profiles and the finite set Si is the set of strategies for player i;
U = (u1, . . . , un) is a tuple of utility functions (or payoffs) where ui : S → R and ui(x) is the payoff of
player i in strategy profile x.

Dynamics for a strategic game are probabilistic rules by which at each step: (i) one or more players are
selected; (ii) each selected player updates her strategy by sampling according to a probability distribution
that may depend on the current strategy profile. For example, in the best response dynamics each selected
player updates her strategy by selecting with probability 1 a strategy that maximizes her payoff given
the strategies currently adopted by other players.

In this paper we study specific dynamics for strategic games, the logit dynamics, introduced by
Blume [10] and referred to as the log-linear model. The logit dynamics with parameter β > 0 are
randomized best-response dynamics where at each step one player i ∈ [n] is selected uniformly at random
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and she updates her strategy in profile x ∈ S by choosing strategy y ∈ Si with probability σi(y | x)
defined as follows

σi(y | x) =
eβui(x−i,y)

Ti(x)
, (1)

where Ti(x) =
∑

z∈Si
eβui(x−i,z) is the normalizing factor. In other words, in the logit dynamics the

logarithm of the ratio of the probability of choosing strategy y and y′ is proportionally related through
β to the difference of the respective utilities. Parameter β can be seen as descriptive of the rationality
level of the players: for β = 0 (no rationality) player i updates her strategy by selecting a new strategy
uniformly at random; for β > 0, the probability is biased towards strategies yielding higher payoffs; and
for β → ∞ (full rationality) player i chooses her best response strategy (if more than one best response
is available, she chooses uniformly at random one of them).

For every β > 0, the logit dynamics with parameter β induce a Markov chain over the set S of
strategy profiles. More formally, we have the following definition.

Definition 2.1 (Markov chain of the logit dynamics [10]). Let G = ([n],S,U) be a strategic game and let
β > 0. The Markov chain Mβ of the logit dynamics with parameter β for strategic game G = ([n],S,U)
is the Markov chain with state space S and transition probability

P (x,y) =
1

n
·











∑n
i=1 σi(yi | y), if x = y;

σi(yi | x), if x 6= y and y−i = x−i;

0, otherwise;

(2)

where σi(yi | x) is defined in (1).

It is easy to see that the Markov chain is ergodic as Pn(x,y) > 0 for every pair of profiles x and
y. Hence, a unique stationary distribution, i.e. a distribution π such that π = πP , exists and for every
starting profile x the distribution P t(x, ·) approaches π as t tends to infinity.

Potential games. Function Φ: S → R is a potential for strategic game G = ([n],S,U) if for every player
i ∈ [n] and for profiles x,y ∈ S differing only for player i, it holds that ui(x) − ui(y) = Φ(x) − Φ(y).
Games G admitting a potential function are called potential games [33]. The stationary distribution of
the Markov chain of the logit dynamics with parameter β of a potential game G is the Gibbs measure π
defined as follows

π(x) =
eβΦ(x)

Z
, (3)

where Z =
∑

y∈S eβΦ(y) is the partition function. The Markov chain of the logit dynamics with parameter
β for a potential game G coincides with the well-studied Glauber dynamics with temperature 1/β for the
Gibbs measure π.

Two-strategy coordination games. A two-strategy coordination game is a two-player strategic
game where each player has two strategies +1 and −1. Thus S1 = S2 = {±1} and S = {±1}2. The
utility function is described by the following table

+1 −1
+1 a, a c, d
−1 d, c b, b

Thus, for example, u1(−1,+1) = d and u2(−1,+1) = c. It is usually assumed that a > d and b > c
to model the fact that each player prefers to choose the same strategy as the other player (hence the
name of coordination games). This implies that profiles (+1,+1) and (−1,−1) are Nash equilibria of the
two-strategy coordination games. We define ∆ := a− d and δ := b− c and assume, w.l.o.g., that ∆ > δ.
If ∆ > δ, then +1 is the risk dominant strategy ([25]). It is easy to see that the function Φ defined as
follows

Φ(+1,+1) = ∆, Φ(−1,−1) = δ, and Φ(+1,−1) = Φ(−1,+1) = 0
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is a potential function for the two-strategy coordination game. The logit dynamics with parameter β for
two-strategy coordination games have been first studied in [10] and have the following transition matrix

P =















(+1,+1) (+1,−1) (−1,+1) (−1,−1)
(+1,+1) 1− p p/2 p/2 0

(+1,−1) (1− p)/2 (p+ q)/2 0 (1− q)/2

(−1,+1) (1− p)/2 0 (p+ q)/2 (1− q)/2

(−1,−1) 0 q/2 q/2 1− q















where p = 1
1+e∆β and q = 1

1+eδβ . The partition function is

Z = eβ∆ + 1 + 1 + eβδ =
1

p
+

1

q

and the stationary distribution for P is the Gibbs measure

π =

(

eβ∆

Z
,
1

Z
,
1

Z
,
eβδ

Z

)

that can be re-written as

π =

(

q(1 − p)

p+ q
,

pq

p+ q
,

pq

p+ q
,
p(1− q)

p+ q

)

.

3 Metastability

In this section we give formal definitions of the concepts of metastable distribution (Section 3.1) and of
pseudo-mixing time (Section 3.2) and we highlight some of their properties. Finally, we exemplify the
new concepts by studying a simple three-state Markov chain and the Markov chain of the logit dynamics
for two-player two-strategy coordination games (in Section 4 we will study an n-player pure coordination
game and in Section 5 we study the metastability of coordination games on graphs).

3.1 Metastable distributions

Definition 3.1 (Metastable distribution). Let P be a Markov chain with finite state space Ω. A proba-
bility distribution µ over Ω is (ε, T )-metastable for P if, for 0 6 t 6 T , it holds that

∥

∥µP t − µ
∥

∥

TV
6 ε.

The definition of a metastable distribution captures the idea of a distribution that behaves approxi-
mately like the stationary distribution; meaning that if we start from a metastable distribution and run
the chain we stay close to that distribution (that is, within ε) for a long time (that is, for at least T time
steps).

Let us now highlight some properties of metastable distributions, that can be easily derived from
known results in Markov chain theory:

1. Monotonicity: If µ is (ε, T )-metastable for P then it is (ε′, T ′)-metastable for every ε′ > ε and
T ′ 6 T ;

2. Stationarity: µ is stationary if and only if it is (0, 1)-metastable.

A third property is given by the following easy and useful lemma.

Lemma 3.2 (Additivity). If µ is (ε, 1)-metastable for P then, for every integer T > 0, µ is (εT, T )-
metastable for P .
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Proof. Since the total variation distance satisfies the triangle inequality (see Fact 1 in Appendix A) and
µ is (ε, 1)-metastable, we have

∥

∥µPT − µ
∥

∥

TV
6
∥

∥µPT − µP
∥

∥

TV
+ ‖µP − µ‖TV 6

∥

∥µPT−1 − µ
∥

∥

TV
+ ε.

The lemma then follows.

The next lemma states that the convex combination of two metastable distributions is metastable.

Lemma 3.3 (Convexity). If µ1 is (ε1, T1)-metastable for P and µ2 is (ε2, T2)-metastable for P , then,
for 0 6 α 6 1, µ = αµ1+(1−α)µ2 is (ε, T )-metastable for P with ε = max{ε1, ε2} and T = min{T1, T2}.

Proof. For any t 6 T , we have
∥

∥µP t − µ
∥

∥

TV
=
∥

∥α
(

µ1P
t − µ1

)

+ (1− α)
(

µ2P
t − µ2

)∥

∥

TV

6 α
∥

∥µ1P
t − µ1

∥

∥

TV
+ (1− α)

∥

∥µ2P
t − µ2

∥

∥

TV
6 ε.

Finally, we highlight a connection between metastability and bottleneck ratio. Given an ergodic
Markov chain P with state space Ω and stationary distribution π, the bottleneck ratio B(S) for a subset
S ⊆ Ω of states, is defined as

B(S) =
Q(S, S)

π(S)
,

where Q(S, S) =
∑

x∈S

∑

y∈Ω\S π(x)P (x, y). Let πS be the stationary distribution conditioned on S;
i.e.,

πS(x) =

{

π(x)/π(S), if x ∈ S;

0, otherwise.
(4)

Lemma 3.4. Let P be a Markov chain with finite state space Ω and let S ⊆ Ω be a subset of states.
Then, πS is (B(S), 1)-metastable.

Proof. The lemma follows from the fact that the bottleneck ratio B(S) of S is equal to the total variation
distance between πS and πSP ; i.e., ‖πSP − πS‖ = B(S). See, for example, Theorem 7.3 from [29]).

3.2 Pseudo-mixing time

Among all metastable distributions, we are interested in the ones that are quickly reached from a, possibly
large, set of states. This motivates the following definition.

Definition 3.5 (Pseudo-mixing time). Let P be a Markov chain with state space Ω, let S ⊆ Ω be a set
of states and let µ be a probability distribution over Ω. We define dSµ(t) as

dSµ(t) = max
x∈S

∥

∥P t(x, ·)− µ
∥

∥

TV
.

Then the pseudo-mixing time tSµ(ε) of µ starting from S is

tSµ(ε) = inf
{

t ∈ N : dSµ(t) 6 ε
}

.

The pseudo-mixing time extends the concept of mixing time to metastable distributions and it co-
incides with the mixing time for a stationary distribution. Indeed, the stationary distribution π of an
ergodic Markov chain is a (0, 1)-metastable distribution that is is reached within ε in time tmix(ε) from
every state (see Appendix A). Thus, according to Definition 3.5, we have that tΩπ (ε) = tmix(ε).

We now highlight some interesting properties related to the pseudo-mixing time and metastable
distribution concepts. The first property connects dSµ(t) for a metastable distribution µ to a quantity
that does not depend on this distribution.

Lemma 3.6. Let P be a Markov chain with finite state space Ω and let µ be an (ε, T )-metastable
distribution supported over a subset S of the state space. Then, for 1 6 t 6 T , it holds that

dSµ(t) 6 ε+ max
x,y∈S

∥

∥P t(x, ·)− P t(y, ·)
∥

∥

TV
.
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Proof. From the triangle inequality, we have

∥

∥P t(x, ·) − µ
∥

∥

TV
6
∥

∥P t(x, ·)− µP t
∥

∥

TV
+
∥

∥µP t − µ
∥

∥

TV
.

Since µ is (ε, t)-metastable, then for every t 6 T we have ‖µP t − µ‖TV 6 ε. Moreover, since µ(y) = 0
for y /∈ S, for every set of states A ⊆ Ω and for every t it holds that

|P t(x,A)− µP t(A)| =

∣

∣

∣

∣

∣

∣

P t(x,A)−
∑

y∈S

µ(y)P t(y,A)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

y∈S

µ(y)
(

P t(x,A) − P t(y,A)
)

∣

∣

∣

∣

∣

∣

6
∑

y∈S

µ(y)
∣

∣P t(x,A) − P t(y,A)
∣

∣ 6 max
y∈S

∣

∣P t(x,A)− P t(y,A)
∣

∣ .

Thus, the total variation between P t(x, ·) and µP t is

∥

∥P t(x, ·)− µP t
∥

∥

TV
= max

A⊆Ω
|P t(x,A) − µP t(A)|

6 max
A⊆Ω

max
y∈S

∣

∣P t(x,A) − P t(y,A)
∣

∣ = max
y∈S

∥

∥P t(x, ·)− P t(y, ·)
∥

∥

TV
.

Notice that if µ is the stationary distribution then it is (0, T )-metastable for every T and the above
lemma gives

dΩµ (t) 6 max
x,y∈Ω

∥

∥P t(x, ·) − P t(y, ·)
∥

∥

TV

for all t. This is a well-know inequality and it is widely used to bound the mixing time of Markov chains
(see, for example, Lemma 4.11 in [29]).

Observe that, even if the pseudo-mixing time of a metastable distribution µ is finite, we cannot argue
that the Markov chain converges to µ, but only that it converges to a distribution µ′ that is close to µ.
However, next lemma shows that when starting from µ′ the Markov chain will behave approximatively
as if it starts from the metastable distribution µ.

Lemma 3.7. Let P be a Markov chain with finite state space Ω and let µ be an (ε, T )-metastable
distribution supported over a subset S of the state space with tSµ(ε) < +∞. Then, for every x ∈ S and

tSµ(ε) 6 t 6 tSµ(ε) + T , it holds that
∥

∥P t(x, ·)− µ
∥

∥

TV
6 2ε.

Proof. Let us name t̄ = t − tSµ(ε) for convenience sake. By using the triangle inequality for the total

variation distance, the fact that P t̄ is a stochastic matrix, and the definitions of metastable distribution
and pseudo-mixing, we have that

∥

∥P t(x, ·)− µ
∥

∥

TV
=
∥

∥

∥P tSµ(ε)(x, ·)P t̄ − µ
∥

∥

∥

TV

6

∥

∥

∥P tSµ(ε)(x, ·)P t̄ − µP t̄
∥

∥

∥

TV
+
∥

∥

∥µP t̄ − µ
∥

∥

∥

TV

6

∥

∥

∥P tSµ(ε)(x, ·)− µ
∥

∥

∥

TV
+
∥

∥

∥µP t̄ − µ
∥

∥

∥

TV
6 2ε.

Finally, we highlight some connections between pseudo-mixing time and hitting time. Given a Markov
chain P with finite state space Ω, the hitting time τS of a subset S ⊂ Ω is the first time step in which
the Markov chain reaches a state from S, i.e.,

τS = min{t : Xt ∈ S}.

When S consists of a single state x, we write τx rather then τ{x}. Then, we have the following lemma.

Lemma 3.8. Let P be a Markov chain with finite state space Ω and let µy be an (ε, T )-metastable
distribution concentrated in state y. Then for all S ⊆ Ω and t 6 T we have

dSµy
(t) 6 ε+max

x∈S
Px (τy > t) .
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Proof. Since µy is concentrated in y, we have that

∥

∥P t(x, ·)− µy

∥

∥

TV
= Px (Xt 6= y) = Px (Xt 6= y, τy 6 t) +Px (Xt 6= y, τy > t)

= Px (Xt 6= y | τy 6 t)Px (τy 6 t) +Px (τy > t) .

Moreover, observe that

Px (Xt 6= y | τy 6 t) =
∑

k6t

Px (Xt 6= y | τy = k)Px (τy = k | τy 6 t)

=
∑

k6t

Py (Xt−k 6= y)Px (τy = k | τy 6 t)

=
∑

k6t

∥

∥µyP
t−k − µy

∥

∥

TV
Px (τy = k | τy 6 t)

6 ε
∑

k6t

Px (τy = k | τy 6 t) = ε.

where in the inequality we used the metastability of µy. Hence,

∥

∥P t(x, ·)− µy

∥

∥

TV
= Px (Xt 6= y | τy 6 t)Px (τy 6 t) +Px (τy > t)

6 εPx (τy 6 t) +Px (τy > t) 6 ε+Px (τy > t) .

The following lemma show another interesting relation between hitting time and the pseudo-mixing
time of a convex combination of metastable distributions.

Lemma 3.9. Let P be a Markov chain with finite state space Ω. Let µy be an (εy, Ty)-metastable
distribution concentrated in state y and µz be an (εz, Tz)-metastable distribution concentrated in state z.
Fix ε = max{εy, εz} and T = min{Ty, Tz}. Then for all x ∈ Ω and t 6 T we have

d{x}µx,t
(t) 6 ε+Px

(

τ{y,z} > t
)

,

where µx,t = αx,tµy + (1− αx,t)µz with αx,t = Px

(

τy 6 τz | τ{y,z} 6 t
)

.

Proof. For sake of readability, let us denote by E the event τ{y,z} > t and by E its complement. Observe
that

∥

∥P t(x, ·) − µx,t

∥

∥

TV
= max

A⊂Ω
|Px (Xt ∈ A)− µx,t(A)|

= max
A⊂Ω

∣

∣Px

(

Xt ∈ A | E
)

− µx,t(A) +
(

Px (Xt ∈ A | E)−Px

(

Xt ∈ A | E
))

Px (E)
∣

∣

6 Px (E) + max
A⊂Ω

∣

∣Px

(

Xt ∈ A | E
)

− µx,t(A)
∣

∣ .

Since Markov chains are memoryless, we have

Px

(

Xt ∈ A | E
)

=
∑

w

Px

(

Xτ{y,z} = w | E
)

Px

(

Xt ∈ A | Xτ{y,z} = w ∧ E
)

.

Observe that Px

(

Xτ{y,z} = y | E
)

= αx,t, Px

(

Xτ{y,z} = z | E
)

= 1−αx,t, and Px

(

Xτ{y,z} = w | E
)

= 0

for each state w 6= y, z. That is, Px

(

Xτ{y,z} = w | E
)

= µx,t(w) for each w ∈ Ω. Moreover, since

t− τ{y,z} > 0 if the event E holds, for each w ∈ Ω we have

Px

(

Xt ∈ A | Xτ{y,z} = w ∧E
)

= Pw

(

Xt−τ{y,z} ∈ A
)

= P t−τ{y,z}(w,A).

Thus,
∥

∥P t(x, ·)− µx,t

∥

∥

TV
6 Px (E) + max

A⊂Ω

∣

∣

(

µx,tP
t−τ{y,z}

)

(A) − µx,t(A)
∣

∣ 6 Px (E) + ε,

where the last inequality follows from µx,t being (ε, T )-metastable from Lemma 3.3 and since t−τ{y,z} 6

T .
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3.3 Examples

3.3.1 A simple three-state Markov chain

As a first example, let us consider the simplest Markov chain that highlights the concepts of metastability
and pseudo-mixing,

P =





ε 1−ε
2

1−ε
2

ε 1− ε 0
ε 0 1− ε





0

ε

1

1− ε

2

1− ε

1−ε
2

ε

1−ε
2

ε

The chain is ergodic with stationary distribution π = (ε, (1− ε)/2, (1− ε)/2) and its mixing time is
tmix = Θ(1/ε). Hence the mixing time grows unbounded as ε tends to zero.

Now observe that, for every δ > ε, distributions µ1 = (0, 1, 0) and µ2 = (0, 0, 1) are (δ,Θ(δ/ε))-
metastable according to Definition 3.1. Moreover, if the chain starts from state 0, the state of the chain
after one step is distributed as in the stationary distribution. Hence, even if the mixing time can be
arbitrary large, for every ε and for every starting state x there is a (δ,Θ(tmix))-metastable distribution
µ that is quickly (in constant, independent of ε, time) reached from x.

3.3.2 Two-strategy coordination games

In [6] it is proved that the mixing time of the logit dynamics with parameter β for a two-player two-
strategy coordination game defined above is tmix = Θ(1/q) = Θ(1 + eβδ) and thus it grows unbounded
in β. We next describe distributions that are metastable for an amount of time of the same order of the
mixing time and whose pseudo mixing time is independent from β. Specifically, consider distributions
µ+ and µ− concentrated in states (+1,+1) and (−1,−1), respectively; i.e.,

µ+ = (1, 0, 0, 0) and µ− = (0, 0, 0, 1) .

Observe that, if we start from µ+ or µ−, after one step of the chain we are respectively in distributions

µ+P = (1− p, p/2, p/2, 0) and µ−P = (0, q/2, q/2, 1− q) .

Then, since ∆ > δ, we obtain

‖µ+P − µ+‖TV = p 6 q and ‖µ−P − µ−‖TV = q.

In other words, µ− and µ+ are (q, 1)-metastable for the Markov chain of the logit dynamics with param-
eter β for the two-strategy coordination game. By Lemma 3.2, they are (ε, ε/q)-metastable for any ε > 0
and, since each of the two distributions has a support set consisting of one element, the pseudo-mixing
time starting from their respective supports is trivially 0.

Let us discuss what happens when the Markov chain starts from the states (+1,−1) or (−1,+1).
The distributions after one step starting from the two states are

P ((+1,−1), ·) =

(

1− p

2
,
p+ q

2
, 0,

1− q

2

)

, and P ((−1,+1), ·) =

(

1− p

2
, 0,

p+ q

2
,
1− q

2

)

.

Thus, we compute the total variation distance from the stationary distribution π and obtain

‖P ((+1,−1), ·)− π‖TV = ‖P ((−1,+1), ·)− π‖TV =
p

2
+

1

2
·
q − p

q + p
<

1

2
,

where we used that p + q < 2. Then, we obtain that the logit dynamics starting from (+1,−1) or
(−1,+1) are ε-close to the stationary distribution after O(log ε−1) steps for each ε > 0 (see Fact 3 in
Appendix A).

We summarize the above discussion in the following theorem.
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Theorem 3.10. For every starting profile x ∈ {±1}2 and ε > 0, the Markov chain of the logit dynamics
with parameter β for the two-strategy coordination game admits a (ε, tmix · ε)-metastable distribution µx

with pseudo-mixing time t
{x}
µx = O

(

log ε−1
)

(independent of β).

We would like to remark how the above theorem, jointly with the result on the mixing time of [7],
gives a complete picture of the behavior of a system that evolves according to the logit dynamics for
the two-strategy coordination game: given the initial state, metastable distributions describe, with an
error at most ε, the state of the system for every time t between log 1/ε and (1 + eβδ) · ε, whereas the
stationary distribution can be used for describing the system for larger values of t.

4 Metastability of Pure Coordination games

In this section, we study a simple potential game and describe three metastable distributions for its logit
dynamics. One of these metastable distributions is particularly interesting: it gives positive probability
to states that are not local maximum of the potential function and that are easy to leave. This shows
that metastable distributions are not necessarily concentrated on states that are increasingly hard to
leave as β grows.

For n > 3, the pure coordination game [14] (also known as unanimity game) is an n-player game
where players have the same strategy set A and each players is happy when all players adopt the same
strategy and unhappy otherwise. More formally, the utility ui(x) of player i ∈ [n] in profile x is ui(x) = a,
if x = (s, . . . , s) for some s ∈ A; and ui(x) = b < a, otherwise. This class of games has several Nash
equilibria (every profile except the ones in which a single player adopts a strategy different from the
rest of the players) strategy is an equilibrium) and this makes it very difficult to predict the behavior of
the system. These games are often used for modeling the division of people in teams (e.g., close friends
deciding which soccer team to join), or the choice of firms’ location in a space (e.g., linked industries
deciding in which area of the country to produce their goods).

In order to keep the analysis of metastability for the logit dynamics as simple as possible, we consider
a very simple setting in which the strategy set A = {+1,−1} consists of only two strategies and a = 1
and b = 0. We let p and m denote, respectively, the profile in which all players play +1 and the profile
in which all players play −1. This game is a potential game with the following potential function Φ:
Φ(p) = Φ(m) = 1 and Φ(x) = 0 for x 6= p,m. The mixing time of its logit dynamics is roughly eβ, and
hence super-polynomial for β = ω(logn). To see this, recall the known relation between bottleneck ratio
and mixing time (see, e.g., Chapter 7.2 in [29]) and observe that the probability of p at stationarity is
π(p) 6 1/2 and the bottleneck ratio for p is B(p) = 1

1+eβ .
Let us now focus on the metastable distributions. We show that if we start the logit dynamics at a

profile where at least one player is playing +1 and at least one is playing −1, then after O(log n) time
steps the distribution is close to uniform on the profiles different from p and m, and it stays close to
this distribution for exponential time. Hence, even if there is no small sub-set of the state space where
the chain stays close for a long time, we can still say that the chain is metastable in the sense that the
“distribution” of the chain stays close to some well-defined distribution for a long time.

Specifically, we identify three metastable distributions for the logit dynamics: π+, the distribution
concentrated on the profile p where every player plays +1; π−, the distribution concentrated on the
profile p where every player plays −1; and the uniform distribution U over all remaining states. In
addition, we prove that the pseudo-mixing time of U starting from a profile other than p and m is
O(n log n).

The idea behind this result is that the process according to which the number of players adopting
a given strategy evolves is essentially an Ehrenfest urn (see Appendix C), the only difference being at
extreme values, i.e., when this number is either 0 or n. Hence, as long as one of these extreme value
is not hit (and this takes time that is exponential in n), the distribution on the profiles of the game
is well-described by the stationary distribution of the Ehrenfest urn as an approximation of the future
status.

The next lemma establishes the metastability of π+, π− and U .

Lemma 4.1. Consider the logit dynamics with parameter β for the n-player pure equilibrium game. For
every ε > 0, the uniform distribution U over R = {+1,−1}n \ {p,m} is (ε, ε · 2n)-metastable and π+

and π− are (ε, ε · eβ)-metastable.
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Proof. Let us denote by P the transition matrix of the logit dynamics and by π its stationary distribution.
Then observe that π(R) = 2n−2

Z and Z = 2eβ + 2n − 2. Moreover,

Q(R,R) =
∑

x∈R

π(x) ·
(

P (x,p) + P (x,m)
)

=
2

Z
·

eβ

1 + eβ
.

Therefore, the bottleneck ratio is

B(R) =
Q(R,R)

π(R)
=

eβ

1 + eβ
·

2

2n − 2
<

1

2n−1
.

Similarly, it is immediate to see that B(p) = B(m) = 1
1+eβ

. The lemma then follows from Lemma 3.4,
Lemma 3.2 and by observing that the stationary distribution restricted to R is the uniform distribution
U .

As for bounding the convergence to these metastable distributions, we first start with the following
technical lemma.

Lemma 4.2. Let τp,m denote the hitting time of either profile p or profile m for the logit dynamics with
parameter β of the n-player pure coordination game. Then, for every profile x with at least one player
adopting action +1 and at least one player adopting action −1,

Px

(

τp,m 6 n log
n

ε

)

6
c

n
,

for a suitable constant c = c(ε).

Proof. We start by proving that Px (τp,m 6 t) 6 Pk (ρ0,n 6 t), where ρ0,n is the hitting time of state 0
or state n for the lazy Ehrenfest urn and k is the number of +1 in x.

We say that x,y ∈ Ω = {+1,−1}n are equivalent if they have the same number of +1’s and we
let Z = {Zt} be the projection of the logit dynamics starting from x over the quotient space Ω# =
{0, 1, . . . , n}. The hitting time τp,m for the logit dynamics starting in x coincide with the hitting time
ρ̂0,n of state 0, n ∈ Ω# for the projection Z starting in k. Z has the following transition matrix P#.

P#(i, i− 1) =
i

2n
; P#(i, i) =

1

2
; P#(i, i+ 1) =

n− i

2n
; for i = 2, . . . , n− 2 (5)

and

P#(1, 0) = P#(n− 1, n) =
1

n(1 + e−β)
6

1

n
;

P#(1, 1) = P#(n− 1, n− 1) =
n− 1

2n
+

1

n(1 + eβ)
;

P#(1, 2) = P#(n− 1, n− 2) =
n− 1

2n
.

P# differs from the transition matrix of the lazy Ehrenfest urn only for states 1 and n − 1. Observe
though that the transitions from state 1 to state 0 and from state n − 1 to state n in Z have smaller
probability than in the Ehrenfest urn and this can only increase the hitting time of 0 and 1 in Z.

The lemma then follows from Lemmas C.1 and C.2.

In the next lemma we show that, if the chain starts from a state containing at least one 1 and at
least one 0, then after O(n log n) time steps the distribution of the chain is ε-close to the distribution U .

Lemma 4.3. Let R = {+1,−1}n \ {p,m} and let U be the uniform distribution over R. Then for the
logit dynamics for the n-player pure coordination game, it holds that

tRU (ε) = O
(

n log
n

ε

)

.
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Proof. Let {Xt} be the Markov chain starting at x ∈ R and let {Yt} be a lazy random walk on the
n-cube starting at the uniform distribution U⋆ on {+1,−1}n, so that Xt is distributed according to
P t(x, ·) and Yt is uniformly distributed over {+1,−1}n. Consider the following coupling (Xt, Yt) (for
a formal definition and some useful facts about the coupling of Markov chains, we refer the reader to
Appendix A): when chain {Xt} is at state y ∈ {+1,−1}n then choose a position i ∈ [n] uniformly at
random and, by denoting with |y| the number of players playing strategy +1 in y,

• If 2 6 |y| 6 n− 2, or |y| = 1 and Xt has −1 in position i, or |y| = n− 1 and Xt has +1 in position
i, then choose an action a ∈ {−1, 1} uniformly at random and update both chains Xt and Yt in
position i with action a;

• If |y| = 0 or both |y| = 1 and Xt has +1 in position i, then

– update both chains at −1 in position i with probability 1/2;

– update both chains at +1 in position i with probability 1/(1 + eβ);

– update chain Xt at −1 and chain Yt at +1 in position i with probability 1/(1 + e−β)− 1/2.

• If |y| = n or both |y| = n− 1 and Xt has −1 in position i, then

– update both chains at +1 in position i with probability 1/2;

– update both chains at −1 in position i with probability 1/(1 + eβ);

– update chain Xt at +1 and chain Yt at −1 in position i with probability 1/(1 + e−β)− 1/2.

By construction we have that (Xt, Yt) is a coupling of P t(x, ·) and U⋆. Then

∥

∥P t(x, ·) − U
∥

∥

TV
6
∥

∥P t(x, ·)− U⋆
∥

∥

TV
+

1

2n−1
6 Px,U⋆ (Xt 6= Yt) +

1

2n−1
, (6)

where the last inequality follows from Theorem A.1. Moreover observe that, if at time t all players have
been selected at least once and chain Xt has not yet hit profiles p or m, then the two random variables
Xt and Yt have the same value. Hence

Px,U⋆ (Xt 6= Yt) 6 Px (τp,m 6 t ∪ η > t) 6 Px (τp,m 6 t) +Px (η > t) ,

where τp,m is the hitting time of p or m for chain Xt, and η is the first time all players have been selected
at least once.

From the coupon collector’s argument (see, e.g., [29, Proposition 2.4]) it follows that for every t >
n log(3n/ε)

Px (η > t) 6 ε/3. (7)

Hence, for t = n logn+ n log(3/ε), by combining (6), (7) and Lemma 4.2 it holds that

∥

∥P t(x, ·)− U
∥

∥

TV
6

1

2n−1
+

ε

3
+

c

n
6

ε

2
,

for n sufficiently large.

Finally, we have the following theorem.

Theorem 4.4. For β = ω(logn), for every ε > 0 and for every x ∈ {+1,−1}n, there exists function
T (n) = Tε,x(n) and distribution µ such that T (n) is super-polynomial in n, µ is (ε, T (n))-metastable and

pseudo-mixing time t
{x}
µ (ε) is polynomial in n and in log 1/ε.

Proof. For x 6= p,m, the theorem follows from Lemma 4.3. Moreover, if the dynamics start from profile
p or m it immediately reaches the metastable distributions π+ or π−.
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5 Metastability of Graphical Coordination games

Consider n players identified by the vertices of a graph G = (V,E). For each edge of G, we have an
instance of the two-strategy coordination game defined above, played by the endpoints of the edge. Each
player picks a strategy from the set of strategy {±1} and uses it for each two-strategy coordination
game in which she is involved. The utility of a player is the sum of the utilities for each two-strategy
coordination game she plays. Graphical coordination games are often used to model the spread of a new
technology in a social network [35, 34] with strategy +1 corresponding to adopting the new technology.
It is easy to see that the graphical coordination game on a graph G is a potential game with potential
function Φ(x) =

∑

e=(u,v)∈E Φe(x), where Φe(x) is the potential of the two-strategy coordination game
associated with edge e.

We start by describing two distributions that turn out to be metastable for any graphical coordination
game.

Lemma 5.1. Consider the logit dynamics with parameter β for the coordination game on a graph G with
minimum degree dmin. Then, for any ε > 0, the distribution π+ concentrated in profile p = (+1)n is
(e−β·∆·dmin, 1)-metastable. Similarly, distribution π

−
concentrated in profile m = (−1)n is (e−β·δ·dmin, 1)-

metastable.

Proof. The bottleneck ratio of p is

B(p) =

∑n
i=1 π(p)P (p, (p−i,−1))

π(p)
=

n
∑

i=1

1

n

1

1 + e−β(Φ(p)−Φ(p−i,−1))
.

An edge adjacent to player i has potential ∆ in p, whereas in (p−i,−1) it has potential 0. Therefore
Φ(p)− Φ(p−i,−1) = ∆ · di, where di is the degree of i. Hence

B(p) =
n
∑

i=1

1

n

1

1 + eβ∆·di
6

1

1 + eβ·∆·dmin
.

Thus by Lemma 3.4, we have that π+ is
(

(1 + eβ·∆·dmin)−1, 1
)

-metastable and the theorem follows. The
metastability of π

−
can be proved in similar way.

The above result should not be surprising as it simply says that if players happen to be coordinated
then they will stay so for exponentially long (in the parameter β). This however does not conclude the
study of metastability of graphical coordination games as nothing is said about the behavior of the logit
dynamics for different initial states. More specifically, the following question remains unanswered: do we
have for each (class of) initial state a metastable distribution that is quickly reached? That is we look
for (ε, T )-metastable distributions with small ε, large T and small pseudo-mixing time. We positively
answer this question for the two extremal graphs in terms of connectivity: the complete graph and the
ring (that are the graphical coordination games that have been firstly studied in [18]).

5.1 The Curie-Weiss game

The Curie-Weiss game is the game-theoretic formulation of the well-studied Curie-Weiss model (the
Ising model on the complete graph), used by physicists to model the interaction between magnets in
a ferro-magnetic system [32]. This game is also a population game. Hence, the metastable states of
the logit dynamics for this game has been object of intense analysis by both physicists and economists
[12, 36, 37]. Our approach complements these works by focusing on metastable distributions.

Specifically, the Curie-Weiss game is a special graphical coordination game where the graph G is a
clique and each player is involved in a two-strategy coordination game with a = b = 1 and c = d = −1
with every other player. Note that for this game the utility of player i at profile x = (x1, . . . , xn) ∈ {±1}n

can be written as ui(x) = xi

∑

j 6=i xj . Similarly, the potential function H can be written as H(x) =
∑

(j,k) xjxk. Thus, the Markov chain of the logit dynamics for the Curie-Weiss game with parameter β

has stationary distribution π(x) = eβH(x)/Z, where Z =
∑

y e
βH(y) is the partition function.

The magnetization of x is defined as S(x) =
∑n

i=1 xi and we observe that the potential of a profile
x depends only on its magnetization. More precisely, if S(x) = k then H(x) = H(k) := 1

2

(

k2 − n
)

.
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To see this, let us name p and m the number of +1 and −1 respectively, in profile x, and observe that
p−m = S(x) = k and p+m = n. Each pair of players with the same sign contributes for +1 to H(x)
and each pair of players with opposite signs contributes for −1; since there are

(

p
2

)

pairs where both

players play +1,
(

m
2

)

pairs where both play −1 and p · m pairs where players play opposite strategies,
we have that

H(x) =

(

p

2

)

+

(

m

2

)

− p ·m =
1

2
((p−m)2 − (p+m)).

The mixing time of the logit dynamics for the Curie-Weiss game is known to be exponential for every
β > 1/n (see Theorem 15.3 in [29]). In this section we show that, if the Markov chain starts from a profile
where the number of +1 (respectively −1) is a sufficiently large majority and if β is large enough then,
after a polynomial pseudo-mixing time, the distribution of the chain is close, in total variation distance,
to π+ (respectively, π

−
). Note that from Lemma 5.1 and Lemma 3.2, since ∆ = 2 and dmin = n− 1, it

follows that π+ and π
−

are metastable for a time longer than any polynomial for any β = ω(logn/n).

Let Xt be the logit dynamics for the Curie-Weiss game, and consider the magnetization process St :=
S(Xt). Observe that St is itself a Markov chain, with state space Ω = {−n,−n+2, · · · , n− 4, n− 2, n}.
When at state k ∈ Ω, the probability to go right (to state k + 2) or left (to state k − 2) is respectively

Pk (S1 = k + 2) = pk =
n− k

2n

1

1 + e−2(k+1)β
; Pk (S1 = k − 2) = qk =

n+ k

2n

1

1 + e2(k−1)β
. (8)

Indeed, let us evaluate the probability to jump from a profile x with magnetization k to a profile with
magnetization k + 2. If S(x) = k then there are (n + k)/2 players playing +1 and (n − k)/2 players
playing −1. The chain moves to a profile with magnetization k+2 if a player playing −1 is selected, this
happens with probability (n− k)/2n, and she updates her strategy to +1, this happens with probability

eβui(x−i,+1)

eβui(x−i,+1) + eβui(x−i,−1)
=

1

1 + eβ[ui(x−i,−1)−ui(x−i,+1)]
.

Finally observe that ui(x−i,−1)− ui(x−i,+1) = −2
∑

j 6=i xj = −2 (S(x)− xi) = −2(k + 1).
For a, b ∈ [−n, n], with a < b, let τa,b be the random variable indicating the first time the magneti-

zation chain reaches a state k with k 6 a or k > b, that is

τa,b = min {t ∈ N : St 6 a or St > b} .

At time τa,b, chain Sτa,b
can be in one out of two states, namely the largest state smaller than or equal to

a or the smallest state larger than or equal to b. The following technical lemmas give an upper bound on
the probability that when the chain exits from interval (a, b), it happens on the left side of the interval.

In the first lemma we show that, if the chain starts from a sufficiently large positive state k, and if
βk2 > c logn for a suitable constant c, then when chain St gets out of interval (0, n/2), it happens on
the n/2 side with high probability.

Lemma 5.2. Let k ∈ Ω be the starting state with 4 6 k 6 n/2. If β > 6/n and βk2 > 16 logn, then

Pk

(

Sτ0,n/2
6 0
)

6 1/n.

Proof. According to (8), the ratio of qh and ph is

qh
ph

=
n+ h

n− h
·
1 + e−2(h+1)β

1 + e2(h−1)β
.

Now observe that for all h > 2 it holds that

1 + e−2(h+1)β

1 + e2(h−1)β
6 e−2(h−1)β

6 e−hβ, (9)

and for all h 6 n/2 it holds that
n+ h

n− h
=

1 + h/n

1− h/n
6 e3h/n.
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Hence, for every 2 6 h 6 n/2 we can give the following upper bound

qh
ph

6 e3h/n · e−βh = e−(β−3/n)h
6 e−

1
2βh, (10)

where in the last inequality we used β > 6/n.
Thus, for each state h of the chain with k/2 6 h 6 n/2 we have that the ratio qh/ph is less than

e−
1
4βk. If the chain starts at k, by applying Lemma B.3 it follows that the probability of reaching k/2

before reaching n/2 is less than
(

e−
1
4βk
)ℓ

, where ℓ is the number of states between k/2 and k, that is

ℓ = k/4. Hence, for every 4 6 k 6 n/2, if βk2 > 16 logn, the chain starting at k hits state n/2 before
state k/2 with probability

Pk

(

Sτk/2,n/2
6 k/2

)

6 e−
1
16βk

2

6
1

n
.

The thesis follows by observing that Pk

(

Sτ0,n/2
6 0
)

6 Pk

(

Sτk/2,n/2
6 k/2

)

.

In the next lemma we show that, if the chain starts from a state k > n/2, and if β > c logn/n for a
suitable constant c, then when chain St reaches one of the endpoints of interval (0, n) it is on the n side
with probability exponentially close to 1.

Lemma 5.3. Let k ∈ Ω be the starting state with n/2 6 k 6 n− 1. If β > 8 logn/n, then

Pk

(

Sτ0,n 6 0
)

6 (2/n)n/8.

Proof. Observe that for every h 6 n − 1 it holds that n+h
n−h 6 2n, and by using it together with (9) we

have that qh/ph 6 2ne−βh for every 2 6 h 6 n− 1. Thus, for every k/2 6 h 6 n− 1 it holds that

qh/ph 6 2ne−
1
2βk 6 2/n, (11)

where in the last inequality we used k > n/2 and β > 8 logn/n. Hence, if the chain starts at k, by
applying Lemma B.3 it follows that the probability of reaching k/2 before reaching n is less than (2/n)ℓ,
where ℓ = k/4 > n/8 is the number of states between k/2 and k. Hence,

Pk

(

Yτ0,n 6 0
)

6 Pk

(

Yτk/2,n
6 k/2

)

6 (2/n)n/8.

Finally, in the next lemma we show that for every starting state between 0 and n, the expected time
the chain reaches 0 or n is at most O(n3).

Lemma 5.4. For every k ∈ Ω with k > 0 it holds that Ek [τ0,n] 6 n3.

Proof. Consider the birth-and-death chain {Y ⋆
t } on Ω+ = {l ∈ Ω | l > 0} and let τ⋆n the hitting time of

n in this chain. It is obvious that Ek [τ0,n] 6 Ek [τ
⋆
n ]. It is well-known (see, for example, Section 2.5 in

[29]) that

Ek [τ
⋆
n ] =

n/2
∑

l= k+2
2

1

q2lw2l

l−1
∑

j= n mod 2
2

w2j ,

where wn mod 2 = 1 and w2j =
∏j

i=1 p2(j−1)/q2j. From simple computations, we obtain

Ek [τ
⋆
n] =

n/2
∑

l= k+2
2

l−1
∑

j= n mod 2
2

1

p2j

l−1
∏

i=j+1

q2i
p2i

6

n/2
∑

l= k+2
2

l−1
∑

j= n mod 2
2

1

p2j
,

where the inequality follows from (10) and (11). Finally, the Lemma follows by observing that p2j >
1
2n

for every j > 0.
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Now we can state and prove the main theorem of this section.

Theorem 5.5. Let x be a profile of magnetization S(x) = k. If β > 8 logn/n and k2 > 16 logn/β then

t
{x}
π+ (ε) 6 n4 if k is positive and t

{x}
π
−

(ε) 6 n4 if k is negative.

Proof. Consider without loss of generality the case of starting state with positive magnetization, S(x) =
k > 0. Let τn be the first time the chain hits state with all +1 and recall that τ0,n is the first time the
magnetization of the chain is either n or less than or equal to 0. Since {τn > t, τ0,n 6 t} implies that the
magnetization chain reaches 0 before reaching n we have

Px (τn > t) = Px (τn > t, τ0,n > t) +Px (τn > t, τ0,n 6 t)

6 Px (τ0,n > t) +Px

(

Sτ0,n 6 0
)

6
Ex [τ0,n]

t
+Px

(

Sτ0,n 6 0
)

.

As for the first term of the sum, from Lemma 5.4 it follows that Ex [τ0,n] /t 6 1/n for t > n4. As for
the second term, by conditioning on the position of the chain when it gets out of subinterval (0, n/2) we
have

Pk

(

Sτ0,n 6 0
)

= Pk

(

Sτ0,n 6 0 | Yτ0,n/2
6 0
)

Pk

(

Sτ0,n/2
6 0
)

+

+Pk

(

Sτ0,n 6 0 | Sτ0,n/2
> n/2

)

Pk

(

Sτ0,n/2
> n/2

)

6 Pk

(

Sτ0,n/2
6 0
)

+Pk

(

Sτ0,n 6 0 | Sτ0,n/2
> n/2

)

.

From Lemma 5.2 we have that Pk

(

Sτ0,n/2
6 0
)

6 1/n, and observe that

Pk

(

Sτ0,n 6 0 | Sτ0,n/2
> n/2

)

6 Pn/2

(

Sτ0,n 6 0
)

6 (2/nn/8),

where the last inequality follows from Lemma 5.3. Hence for every t > n4 it holds that Px (τn > t) 6 3/n.
The thesis then follows.

5.2 Graphical Coordination games on rings

In this section we study graphical coordination games on a ring.
In [7] it is showed that the mixing time of the logit dynamics for this game is Ω

(

e2δβ
)

. If ∆ > δ,
techniques of [8] can be generalized to obtain an upper bound to the mixing time that is polynomial
in n and exponential in β. If, instead, ∆ = δ, an almost matching upper bound is given in [7]. These
results show that the mixing time is polynomial in n for β = O(logn) and greater than any polynomial
in n, for β = ω(logn). In this section we shall show that, for these large values of β, despite the large
mixing time, from each starting point the logit dynamics quickly approach a metastable distribution.
Specifically, our result is summarized by the following theorem.

Theorem 5.6. Consider the logit dynamics with parameter β for an n-player coordination game on a
ring. Then, for n sufficiently large, for β = ω(logn), for every ε > 0 and for every x ∈ {±1}n, there
is a (ε, T (n))-metastable distribution µ, with T super-polynomial in n, such that the pseudo-mixing time

t
{x}
µ (ε) is polynomial in n and in 1/ε.

We will show that, depending on the starting state x, the Markov chainMβ of the logit dynamics with
parameter β for the n-player coordination game on the ring, rapidly approaches a (ε, ε · e2βδ)-metastable
distribution. Specifically, our results confirm the findings of [18, 19], that the logit dynamics for this game
tend to reach in the long run the metastable states, namely, the profiles in which either all players adopt
strategy −1 or they all adopt with strategy +1. Still our approach based on metastable distributions
allows us to have a finer description of the system in the medium run. For example, our results for
graphical coordination games on the ring without a risk-dominant strategy allow us to understand that
the probability that one of these states is reached essentially depends only on the number of players that
adopt a given strategy at beginning, and not on their location on the ring.

The proof of the theorem separately considers games with risk dominant strategies (i.e., ∆ > δ) and
games without risk dominant strategies (i.e., ∆ = δ). As for the first ones, let us first introduce some
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useful notation. We define R ⊆ {±1}n as the set of profiles in which at least two adjacent players are
playing +1. Moreover we define Sd ⊆ {±1}n as the set of profiles where exactly d non-adjacent players
are playing +1, S>d =

⋃n
i=d Si and S⋆

d = S>d∪R. We remind that p denotes the profile where all players
are playing +1 and m denotes the profile where all players are playing −1.

Our proof is based on the following three technical lemmas whose proofs are postponed to Ap-
pendix D.1, Appendix D.2 and Appendix D.3, respectively. The first two lemmas provide an upper
bound to the probability that Mβ takes too long to hit profile p when starting from x ∈ R or from
x ∈ Sd. The last lemma, instead, provides an upper bound to the probability that Mβ takes too long
to hit one of the two profiles p and m for any starting state.

More precisely, recalling that τp denotes the hitting time of profile p, and τ{p,m} denotes the hitting
time of the set of profiles {p,m}, we have that

Lemma 5.7. For all x ∈ R and ε > 0, if ∆ > δ, β = ω(logn) and n is sufficiently large

Px

(

τp >
8− ε

ε
· n2

)

6
ε

4
.

Lemma 5.8. For all d > 0, x ∈ Sd and ε > 0, if ∆ > δ, β = ω(logn) and n is sufficiently large

Px

(

τp >
8

ε
· n2

)

6
1

2d + 1
+

ε

4
.

Lemma 5.9. For all x ∈ {±1}n and ε > 0, if ∆ > δ, β = ω(logn) and n is sufficiently large

Px

(

τ{p,m} >
8

ε
· n2

)

6
ε

2
.

As for the case that no risk dominant strategy exists, the proof is based on a technical lemma, whose
proof is postponed to Appendix D.4, that shows that with high probability the hitting time of the set
{p,m} is polynomial in the number of players.

Lemma 5.10. For all x ∈ {±1}n and ε > 0, if ∆ = δ, β = ω(logn) and n is sufficiently large

Px

(

τ{p,m} > n5
)

6 o(1).

We are now ready to prove Theorem 5.6.

Proof (of Theorem 5.6). We start showing that for each possible initial state, the pseudo-mixing time of
the Markov chain Mβ to a (ε, ε · T (n))-metastable distribution, for a function T super-polynomial in n,
is polynomial in n and in 1/ε. In particular, we will show that Mβ approaches a convex combination
of π+ and π

−
. These two distributions, from Lemma 5.1 and since in a ring any vertex has degree

2, are (e−2δβ , 1)-metastable. Then, from Lemma 3.2 it follows that they are (ε, ε · e2δβ)-metastable.
Consequently, by Lemma 3.3, any their convex combination is (ε, ε · e2δβ)-metastable. Finally, since
β = ω(logn), it follows that ε · e2δβ is super-polynomial in n as desired.

For the pseudo-mixing time we distinguish three cases.

∆ > δ, x ∈ S⋆
d and d > log2

(

4
ε − 1

)

: We prove that the pseudo-mixing time t
S⋆
d

π+(ε) to π+ from any

x ∈ S⋆
d , with d > log2

(

4
ε − 1

)

, is polynomial in n and 1/ε. Indeed, by Lemma 5.7 and Lemma 5.8
we have that

max
x∈S⋆

d

Px

(

τp >
8

ε
· n2

)

6
ε

2
.

Moreover, from Lemma 5.1 and Lemma 3.2 it follows that π+ is (ε/2, ε/2 · e2δβ)-metastable. Thus,
for sufficiently large n, since 8

ε · n2 6 ε
2 · e2δβ, π+ is

(

ε
2 ,

8
ε · n2

)

-metastable. Then, by Lemma 3.8,
we obtain that

d
S⋆
d

π+

(

8

ε
· n2

)

6 ε.

Then, from the definition of pseudo-mixing time, we obtain that

t
S⋆
d

π+(ε) 6
8

ε
· n2.
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∆ > δ, x ∈ Sd and d < log2
(

4
ε − 1

)

: In this case we prove that the pseudo-mixing time to the distribu-
tion

µx = αxπ+ + (1− αx)π−
,

where

αx = Px

(

τp 6 τm | τp,m 6
8

ε
· n2

)

(12)

is polynomial. Indeed from Lemma 5.9 we have that

Px

(

τ{p,m} >
8

ε
· n2

)

6
ε

2
.

Moreover, from Lemma 5.1 and Lemma 3.2 it follows that π+ and π
−

are both (ε/2, ε/2 · e2δβ)-
metastable. Thus, for sufficiently large n, since 8

ε · n2 6 ε
2 · e2δβ, π+ and π

−
are both

(

ε
2 ,

8
ε · n2

)

-
metastable. Then, from Lemma 3.9 we obtain that

d{x}µx

(

8

ε
· n2

)

6 ε.

Finally, from the definition of pseudo-mixing time, we have that

t{x}µx
(ε) 6

8

ε
· n2.

∆ = δ: This case can be proved similarly to the previous case, by using Lemma 5.10 in place of Lemma
5.9. It is surprising that, if ∆ = δ, the coefficient αx defined in (12), for any x ∈ {±1}n, de-
pends “almost” only on the number of players selecting strategy +1 in x (see Lemma D.14 in
Appendix D.5). Thus, for example, the metastable behavior of profiles with d adjacent players
with strategy +1 is almost the same as profiles where the same players are far from each other.

6 Conclusions and open problems

Logit dynamics are clean and tractable dynamics that well model the behaviour of limited-rationality
players in a strategic game. The stationary distribution of the induced Markov chain is the natural
long-term equilibrium concept for games under logit dynamics. However, when the mixing time is long,
the behavior of the Markov chain in the transient phase becomes important and it is worth looking for
“regularities” at a time-scale shorter than mixing time. Such regularities have been previously explored,
for some classes of Markov chains, by means of “metastable states”. We believe that a more general and
useful concept is that of “metastable distributions”.

In this paper we defined a quantitative notion of metastable distribution and we analyzed the metasta-
bility properties of the logit dynamics for some classes of coordination games. We showed that, even
when the mixing time is exponential, it is often possible to find some distributions that well-approximate
the distribution of the chain for a time-window of super-polynomial size. Such metastable distributions
can be found even in the case of the OR-game, where no partition of the state space in metastable
states exists. A natural open question is whether the metastability properties for coordination games we
observed in this paper hold in general for potential games.

In the case of the Curie-Weiss model on the complete graph, we showed that when β > c logn/n the
two degenerate distributions are metastable for poly(n) time and they are quickly reached from a large
fraction of the state space. We note that the metastability properties when 1/n < β < logn/n have
been investigated in [21], where it is proved that, even in this case, for every starting profile the logit
dynamics quickly converge to a distribution that is metastable for long time.
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[12] Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein. Metastability in stochastic
dynamics of disordered mean-field models. Probability Theory and Related Fields, 119:99–161, 2001.
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Appendix

A Markov chain summary

In this section we recall some basic facts about Markov chains. For a more detailed treatment, we refer
the reader to [29].

Total variation distance. The total variation distance ‖µ− ν‖TV between two probability distribu-
tions µ and ν on Ω is defined as

‖µ− ν‖TV := max
A⊂Ω

|µ(A) − ν(A)| =
1

2

∑

x∈Ω

|µ(x)− ν(x)|.

The total variation distance is actually a distance and, in particular, the triangle inequality holds.
That is, the following simple fact holds.

Fact 1. For distributions µ1, µ2, and µ3, it holds that

‖µ1 − µ3‖TV 6 ‖µ1 − µ2‖TV + ‖µ2 − µ3‖TV .

A stochastic matrix P over Ω is a non-negative matrix in which rows and columns are indexed by
elements of Ω and such that, for all x ∈ Ω, it holds that

∑

y∈Ω

P (x, y) = 1.

Fact 2. For all distributions µ and ν on Ω and all stochastic matrices P it holds that

‖µP − νP‖TV 6 ‖µ− ν‖TV .

Mixing time. Consider a Markov chain M = {Xt} with finite state space Ω and transition matrix P .
We stress that P is stochastic matrix over Ω and we will often identify M with P . It is a classical result
that if M is irreducible and aperiodic2 (also called ergodic) there exists an unique stationary distribution;
that is, a distribution π on Ω such that π · P = π.

An ergodic Markov chain M converges to its stationary distribution π; specifically, there exist con-
stants C and 0 < α < 1 such that

d(t) 6 C · αt,

where
d(t) = max

x∈Ω

∥

∥P t(x, ·) − π
∥

∥

TV

and P t(x, ·) is the distribution at time t of the Markov chain starting at x. For 0 < ε 6 1, the mixing
time is defined as

tmix(ε) = min{t ∈ N : d(t) 6 ε}.

It is usual to set ε = 1/4 and to write tmix for tmix(1/4).

Fact 3. For 0 < ε 6 1,
tmix(ε) 6 ⌈log2 ε

−1⌉ · tmix.

Coupling. A coupling of two probability distributions µ and ν on Ω is a pair of random variables
(X,Y ) defined on Ω× Ω such that the marginal distribution of X is µ and the marginal distribution of
Y is ν. A well-known property of coupling is given by the following theorem (see, e.g., [29, Proposition
4.7]).

Theorem A.1. Let µ and ν two probability distributions on Ω. Then

‖µ− ν‖TV = inf {P (X 6= Y ) : (X,Y ) is a coupling of µ and ν}
2Roughly speaking, a finite-state Markov chain is irreducible and aperiodic if there exists t such that, for all pairs of

states x, y, the probability to be in y after t steps, starting from x, is positive.
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B Biased birth-and-death chains

In this section we consider birth-and-death chains with state space Ω = {0, 1, . . . , n} (see Chapter 2.5
in [29] for a detailed description of such chains). For k ∈ {1, . . . , n − 1} let pk = Pk (X1 = k + 1),
qk = Pk (X1 = k − 1), and rk = 1 − pk − qk = Pk (X1 = k). We will be interested in the probability
that the chain starting at some state h ∈ Ω hits state n before state 0, namely Pk

(

Xτ0,n = n
)

where
τ0,n = min{t ∈ N : Xt ∈ {0, n}}.

We start by giving an exact formula for such probability for the case when pk and qk do not depend
on k.

Lemma B.1. Suppose for all k ∈ {1, . . . , n− 1} it holds that pk = ε and qk = δ, for some ε and δ with
ε+ δ 6 1. Then the probability the chain hits state n before state 0 starting from state h ∈ Ω is

Ph

(

Xτ0,n = n
)

=
1− (δ/ε)

h

1− (δ/ε)
n .

The proof of this result, that is showed below for sake of completeness, uses standard arguments (see,
e.g., [39, p. 159]).

Proof. Let αk be the probability to reach state n before state 0 starting from state k, i.e.

αk = Pk

(

Xτ0,n = n
)

.

Observe that for k = 1, . . . , n− 1 we have

αk = δ · αk−1 + ε · αk+1 + (1− (δ + ε))αk. (13)

Hence
ε · αk − δ · αk−1 = ε · αk+1 − δ · αk

with boundary conditions α0 = 0 and αn = 1. If we name ∆k = ε ·αk − δ ·αk−1 we have ∆k = ∆k+1 for
all k. By simple calculation and using that α0 = 0 it follows that

αk =
∆

ε

k−1
∑

i=0

(

δ

ε

)i

=
∆

ε− δ

(

1− (δ/ε)k
)

.

From αn = 1 we get

∆ =
ε− δ

(1− (δ/ε)n)
.

Hence

αk =
1− (δ/ε)k

1− (δ/ε)
n .

Lemma B.2. Suppose for all k ∈ {1, . . . , n− 1} it holds that pk > ε and qk 6 δ, for some ε and δ with
ε+ δ 6 1. Then the probability to hit state n before state 0 starting from state h ∈ Ω is

Ph

(

Xτ0,n = n
)

>
1− (δ/ε)

h

1− (δ/ε)
n .

Proof. Let {Yt} be a birth-and-death chain with the same state space as {Xt} but transition rates

Pk (Y1 = k − 1) = δ; Pk (Y1 = k + 1) = ε.

Consider the following coupling of Xt and Yt: When (Xt, Yt) is at state (k, h), consider the two [0, 1]
intervals, each one partitioned in three subintervals as in Fig. 1. Let U be a uniform random variable
over the interval [0, 1] and choose the update for the two chains according to position of U in the two
intervals. Observe that, since pk > ε and qk 6 δ, if the two chains start at the same state h ∈ Ω, i.e.
(X0, Y0) = (h, h), then at every time t it holds that Xt > Yt. Hence if chain Yt hits state n before state
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qk pk

δ ε

Figure 1: Partition for the coupling in Lemma B.2.

0, then chain Xt hits state n before state 0 as well. More formally, let τ0,n and τ̂0,n be the random
variables indicating the first time chains Xt and Yt respectively hit state 0 or n; then

{

Yτ̂0,n = n
}

⇒
{

Xτ0,n = n
}

.

Thus

Ph

(

Xτ0,n = n
)

> Ph

(

Yτ̂0,n = n
)

>
1− (δ/ε)

h

1− (δ/ε)
n ,

where in the last inequality we used Lemma B.1.

Lemma B.3. Suppose for all k ∈ {1, . . . , n − 1} it holds that qk/pk 6 α, for some α < 1. Then the
probability to hit state 0 before state n starting from state h ∈ Ω is

Ph

(

Xτ0,n = 0
)

6 αh.

Proof. Let p̂k = pk

pk+qk
and q̂k = qk

pk+qk
and let {Yt} be the birth-and-death chain with transition rates

p̂k and q̂k.
Let {Ut} be an array of random variables such that Ut = −1 with probability qYt

, Ut = +1 with
probability pYt

and Ut = 0 with remaining probability. We will use Ut to update chains Xt and Yt at
different time steps. Specifically, we denote with u the index of the first variables Ut not used for updating
Xt (thus, at the beginning u = 1) and : set Yt+1 = Yt + Ut; for chain Xt, we toss a coin that gives
head with probability pXt

+ qXt
and if it gives tail we set Xt+1 = Xt, otherwise we set Xt+1 = Xt +Uu.

Roughly speaking, we have that the chain Xt follows the path traced by chain Yt: indeed, it is easy to
see that, if they start at the same place, the sequence of states visited by the two chains is the same and
in the same order. Hence chain Xt hits state 0 before state n if and only if chain Yt hits state 0 before

state n and thus Pk

(

XτX
0,n

= 0
)

= Pk

(

YτY
0,n

= 0
)

.

Finally, observe that q̂k
p̂k

= qk
pk

6 α and p̂k + q̂k = 1. Hence, for every k ∈ {1, . . . , n− 1}, we have that

p̂k >
1

1+α and q̂k 6
α

1+α . This implies, from Lemma B.2, that, from any state h ∈ Ω,

Ph

(

YτY
0,n

= n
)

>
1− αh

1− αn
> 1− αh.

The lemma follows.

C Ehrenfest urns

The Ehrenfest urn is the Markov chain with state space Ω = {0, 1, . . . , n} that, when at state k, moves
to state k − 1 or k + 1 with probability k/n and (n − k)/n respectively (see, for example, Section 2.3
in [29] for a detailed description). The next lemma gives an upper bound on the probability that the
Ehrenfest urn starting at state k hits state 0 or n within time step t.

Lemma C.1. Let {Zt} be the Ehrenfest urn over {0, 1, . . . , n} and let τ0,n be the first time the chain
hits state 0 or state n. Then for every k > 1 it holds that

Pk (τ0,n < n logn+ cn) 6
c′

n
.

for suitable positive constants c and c′.
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Proof. First observe that for any t > 3 the probability of hitting 0 or n before time t for the chain
starting at 1 is only O(1/n) larger than for the chain starting at 2, which in turn is only O(1/n) larger
than for the chain starting at 3. Indeed, by conditioning on the first step of the chain, we have

P1 (τ0,n < t) = P1 (τ0,n < t | Z1 = 0)P1 (Z1 = 0) +P1 (τ0,n < t | Z1 = 2)P1 (Z1 = 2)

=
1

n
+

n− 1

n
P2 (τ0,n < t− 1) 6

1

n
+P2 (τ0,n < t)

and

P2 (τ0,n < t) = P2 (τ0,n < t | Z1 = 1)P2 (Z1 = 1) +P2 (τ0,n < t | Z1 = 3)P2 (Z1 = 3)

=
2

n
P1 (τ0,n < t− 1) +

n− 2

n
P3 (τ0,n < t− 1)

6
2

n

(

1

n
+P2 (τ0,n < t)

)

+
n− 2

n
P3 (τ0,n < t) .

Hence,

P2 (τ0,n < t) 6
2

n− 2
+P3 (τ0,n < t) 6

3

n
+P3 (τ0,n < t) ;

P1 (τ0,n < t) 6
4

n
+P3 (τ0,n < t) .

Moreover observe that the probability that the chain starting at k hits state 0 or n before time t is
symmetric, i.e. Pk (τ0,n < t) = Pn−k (τ0,n < t), and it is decreasing for k that goes from 0 to n/2. In
particular, for every k such that 3 6 k 6 n− 3 it holds that Pk (τ0,n < t) 6 P3 (τ0,n < t). Now we show
that P3 (τ0,n < n logn+ cn) = O(1/n) and this will complete the proof.

First observe that

P3 (τ0,n < t) = P3 (τ0,n < t ∧ τ0 < τn) +P3 (τ0,n < t ∧ τn < τ0) ,

where τ0 and τn are the first time the chain hits state 0 and state n, respectively. Then

P3 (τ0,n < t) 6 P3 (τ0 < t) +P3 (τn < t) 6 P3 (τ0 < t) +Pn−3 (τn < t) = 2 ·P3 (τ0 < t) ,

where the equality follows from the symmetry of the Ehrenfest urn Markov chain.
Let us now consider a path P of length t starting at state 3 and ending at state 0. Observe that any

such path must contain the sub-path going from state 3 to state 0 whose probability is 6/n3. Moreover,
for all the other t− 3 moves we have that if the chain crosses an edge (i, i+ 1) from left to right then it
must cross the same edge from right to left (and vice-versa). The probability for any such pair of moves
is

n− i

n
·
i+ 1

n
6

e2/n

4
,

for every i. Hence, for any path P of length t going from 3 to 0, the probability that the chain follows
exactly path P is3

P3 ((X1, . . . , Xt) = P) 6
6

n3
·

(

e2/n

4

)(t−3)/2

=
6

n3
·

23

e3/n
·

(

e1/n

2

)t

6
48

n3
·

(

e1/n

2

)t

.

Let ℓ and r be the number of left and right moves respectively in path P then ℓ + r = t and ℓ − r = 3.
Hence the total number of paths of length t going from 3 to 0 is less than

(

t

ℓ

)

=

(

t
t−3
2

)

6 2t.

Thus, the probability that starting from 3 the chain hits 0 for the first time exactly at time t is

P3 (τ0 = t) 6

(

t
t−3
2

)

48

n3
·

(

e1/n

2

)t

6
48

n3
et/n.

3Notice that such probability is zero if t− 3 is odd.
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Finally, the probability that the hitting time of 0 is less than t is

P3 (τ0 < t) 6

t−1
∑

i=3

P3 (τ0 = i)

6
48

n3

t−1
∑

i=3

ei/n =
48

n3
·
et/n − 1

e1/n − 1
6

48ec

n
.

In the last inequality we used that e1/n − 1 > 1/n and t = n logn+ cn.

In the proof of Lemma 4.2 we deal with the lazy version of the Ehrenfest urn. The next lemma,
which is folklore, allows us to use the bound we achieved in Lemma C.1 for the non-lazy chain.

Lemma C.2. Let {Xt} be an irreducible Markov chain with finite state space Ω and transition matrix
P and let {X̂t} be its lazy version, i.e. the Markov chain with the same state space and transition matrix
P̂ = P+I

2 where I is the Ω×Ω identity matrix. Let τA and τ̂A be the hitting time of the subset of states

A ⊆ Ω in chains {Xt} and {X̂t} respectively. Then, for every starting state b ∈ Ω and for every time
t ∈ N it holds that

Pb (τ̂A 6 t) 6 Pb (τA 6 t) .

D Proofs from Section 5.2

Throughout this section we denote the players with 0, 1, . . . , n−1 so that the neighbors of i are i±1 mod n.

D.1 Hitting p starting from R when ∆ > δ

In this section we prove Lemma 5.7 that provides an upper bound on the hitting time of state p when
starting from a state x ∈ R.

Lemma 5.7. For all x ∈ R and ε > 0, if ∆ > δ, β = ω(logn) and n is sufficiently large

Px

(

τp >
8− ε

ε
· n2

)

6
ε

4
.

Remind that states in R have at least two neighbors both playing +1 and without loss of generality
we assume that x0 = x1 = +1. Intuitively, for β = ω(logn), each of player 0 and 1 changes her strategy
with very low probability. Moreover, player 2, when selected for update, updates her strategy to +1
with high probability. Similarly, after player 2 has played +1, we have that each of player 0, 1 and 2
changes her strategy with very low probability and player 3, when selected for update, plays +1 with
high probability. This process repeats until every player is playing +1. In the following, we estimate the
number of steps sufficient to have all players playing strategy +1 with high probability.

For sake of compactness, we will denote the strategy of player i at time step t by X i
t . We start with

a simple observation that lower bounds the probability that a player picks strategy +1 when selected for
update, given that at least one of their neighbors is playing +1.

Observation D.1. If player i is selected for update at time t then, for b ∈ {−1,+1}

P
(

X i
t = +1 | X i+b

t−1 = +1
)

>

(

1−
1

1 + e(∆−δ)β

)

.

We start by lower bounding the probability that players 2, . . . , n− 1 are selected for update at least
once in this order before a given number t of steps. Set ρ1 = 0 and, for i = 2, . . . , n − 1, let ρi be the
first time player i is selected for update after time step ρi−1. Thus, at time ρi player i is selected for
update and players 2, . . . , i− 1 have already been selected at least once in this order. In particular, ρn−1

is the first time step at which every player i, i > 2, has been selected at least once after his left neighbor.
Obviously, ρi > ρi−1 for i = 2, . . . , n− 1. The next lemma lower bounds the probability that ρn−1 6 t.
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Lemma D.2. For every x ∈ R and every t > 0, we have

Px (ρn−1 6 t) > 1−
n2

t
.

Proof. Every player i has probability 1
n of being selected at any given time step. Therefore, E [ρ2] =

E [ρ2 − ρ1] = n and E [ρi − ρi−1] = n, for i = 3, . . . , n− 1. Thus, by linearity of expectation,

E [ρn−1] =

n−1
∑

i=2

E [ρi − ρi−1] 6 n2.

The lemma follows from the Markov inequality.

The next lemma gives a lower bound to the probability that X i
t = +1 for all players i and for t > ρn−1.

Lemma D.3. For every x ∈ R, for every player i and for every t > 0, we have

Px

(

X i
t = +1 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)t

.

We prove the lemma first for i > 2 and then we will deal with players 0 and 1. Fix player i > 2,
time step t and set si+1 = t. Starting from time step t and going backward to time step 0, we identify
the sequence of time steps si > si−1 > . . . > s2 > 0 such that, for j = i, i− 1, . . . , 2, sj is the last time
player j has been selected before time sj+1. We remark that, since t > ρn−1 > ρi we have that players
2, . . . , i are selected at least once in this order and thus all the sj are well defined. Strictly speaking, the
sequence si, . . . , s2 depends on i and t and thus a more precise, and more cumbersome, notation would
have been si,j,t. Since player i and time step t will be clear from the context, we drop i and t.

In order to lower bound the probability that X i
t = +1 for i > 2, we first bound it in terms of the

probability that player 2 plays +1 at time s2 and then we evaluate this last quantity. The next lemma
is the first step of our proof.

Lemma D.4. For every x ∈ R, every player 2 6 i 6 n− 1 and every t > ρn−1, we have

Px

(

X i
t = +1 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)i−2

Px

(

X2
s2 = +1 | ρn−1 6 t

)

.

Proof. For every i, si is the last time the player i is selected for update before t and thus X i
t = X i

si .
Hence, for i = 2 the lemma obviously holds. For i > 2 and j = 3, . . . , i, we observe that, since t > ρi, sj−1

is the last time that player j − 1 has been selected for update before time sj and thus Xj−1
sj−1 = Xj−1

sj−1
.

Then, from Observation D.1, we have

Px

(

Xj
sj = +1 | ρn−1 6 t

)

> Px

(

Xj
sj = +1 | Xj−1

sj−1 = +1, ρn−1 6 t
)

·Px

(

Xj−1
sj−1 = +1 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)

Px

(

Xj−1
sj−1

= +1 | ρn−1 6 t
)

.

We obtain the lemma by iteratively applying the same argument to Px

(

Xj−1
sj−1

= +1 | ρn−1 6 t
)

, for

j = i− 1, i− 2, . . . , 3.

We now bound the probability that player 2 plays +1 at time step s2. If player 1 has not been
selected for update before time s2, then X1

s2−1 = X1
0 = +1, and, from Observation D.1, we have

Px

(

X2
s2 = +1 | ρn−1 6 t

)

> Px

(

X2
s2 = +1 | X1

s2−1 = +1, ρn−1 6 t
)

>

(

1−
1

1 + e(∆−δ)β

)

.

It remains to consider the case when player 1 has been selected for update at least once before time s2.
For any fixed time step t, we define a new sequence of time steps r0 > r1, . . . > 0 in the following way.
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We set r0 = s2 and let rj , for j > 0, be the last time player j mod 2 has been selected before time rj−1.
For the last element in the sequence, rk, it holds that player (k + 1) mod 2 is not selected before time
step rk.

Since at time s2 player 2 has been selected for update and since r1 is the last time step player 1 has
been selected for update before r0 = s2, we have X1

s2−1 = X1
r1 and, by Observation D.1,

Px

(

X2
s2 = +1 | ρn−1 6 t

)

> Px

(

X2
s2 = +1 | X1

s2−1 = +1, ρn−1 6 t
)

·Px

(

X1
s2−1 = +1 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)

·Px

(

X1
r1 = +1 | ρn−1 6 t

)

.

(14)

Finally, we bound Px

(

X1
r1 = +1 | ρn−1 6 t

)

.

Lemma D.5. For every x ∈ R, time step t, and player i, let r0, . . . , rk be defined as above. If k > 0,
we have

Px

(

X1
r1 = +1 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)k

.

Proof. For sake of compactness, in this proof we denote the parity of integer a with p(a) = a mod 2.
Thus, the definition of sequence rj gives that player p(j) has been selected for update at time rj and

Px

(

Xp(j)
rj = +1 | ρn−1 6 t

)

> Px

(

Xp(j)
rj = +1 | X

p(j+1)
rj−1 = +1, ρn−1 6 t

)

Px

(

X
p(j+1)
rj−1 = +1 | ρn−1 6 t

)

.

If j 6= k player p(j + 1) has not been selected for update between time rj+1 6 rj − 1 and time rj and,
by Observation D.1, we obtain

Px

(

Xp(j)
rj = +1 | ρn−1 6 t

)

> Px

(

Xp(j)
rj = +1 | X

p(j+1)
rj−1 = +1, ρn−1 6 t

)

Px

(

X
p(j+1)
rj−1 = +1 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)

Px

(

Xp(j+1)
rj+1

= +1 | ρn−1 6 t
)

.

If j = k, instead, player p(k + 1) has not been selected for update before time rk and thus X
p(k+1)
rk−1 =

X
p(k+1)
0 = +1. By Observation D.1, we have

Px

(

Xp(k)
rk = +1 | ρn−1 6 t

)

> Px

(

Xp(k)
rk

= +1 | X
p(k+1)
rk−1 = +1, ρn−1 6 t

)

Px

(

X
p(k+1)
rk−1 = +1 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)

.

Proof (of Lemma D.3). For every player i > 2 and t > 0, we have

Px

(

X i
t = +1 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)i−2

Px

(

X2
s2 = +1 | ρn−1 6 t

)

(from Lemma D.4)

>

(

1−
1

1 + e(∆−δ)β

)i−1

Px

(

X1
r1 = +1 | ρn−1 6 t

)

(from Equation 14)

>

(

1−
1

1 + e(∆−δ)β

)i−1+k

(from Lemma D.5)

>

(

1−
1

1 + e(∆−δ)β

)t

,
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where k is the index of the last term in the sequence r0, r1, . . . previously defined and where the last
inequality follows from i− 1 + k 6 t, since the sequence of updates we are considering cannot be longer
than t.

The lemma for players 0 and 1 can be proved in a similar way. Clearly, if player i = 0, 1 has never
been selected for update before time t, we have that X i

t = +1 with probability 1. If player i has been
selected at least once we have to distinguish the cases i = 0 and i = 1. If i = 1, we define r0 = t + 1
and we identify a sequence of time step r1 > r2 > . . . > 0 as above: we have that X1

t = X1
r1 and from

Lemma D.5 follows that

Px

(

X i
t = +1 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)k

>

(

1−
1

1 + e(∆−δ)β

)t

,

where k is the last index of the sequence r1, r2, . . . . Finally, the probability that player 0 plays the
strategy +1 at time t, given that she was selected for update at least once, can be handled similarly to
the probability that player 2 plays the strategy +1 at time s2.

The following lemma gives the probability that the hitting time of the profile p is less or equal to t,
given that ρn−1 6 t.

Lemma D.6. For every x ∈ R and every t > 0, we have

Px (τp 6 t | ρn−1 6 t) >

(

1−
1

1 + e(∆−δ)β

)nt

.

Proof. Let f be the permutation that sorts the players according to the order of last selection for update;
i.e., f(0) is the last player that is selected for update, f(1) is the next to last one, and so on. We have

Px (τp 6 t | ρn−1 6 t) > Px





n−1
∧

j=0

X
f(j)
t = +1 | ρn−1 6 t





=

n−1
∏

j=0

Px



X
f(j)
t = +1 |

n−1
∧

i=j+1

X
f(i)
t = +1, ρn−1 6 t





>

n−1
∏

j=0

Px

(

X
f(j)
t = +1 | ρn−1 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)nt

,

where for the second inequality we used that the probability of selecting +1 can only increase when there
are other players playing this strategy, whereas the last inequality follows from Lemma D.3.

Now we are ready to prove Lemma 5.7.

Proof (of Lemma 5.7). From Lemma D.2 and Lemma D.6, we have that for every x ∈ R and every t > 0

Px (τp 6 t) > Px (ρn−1 6 t) ·Px (τp 6 t | ρn−1 6 t)

>

(

1−
n2

t

)(

1−
1

1 + e(∆−δ)β

)nt

.

For sufficiently large n we have that, since β = ω(logn),

e(∆−δ)β
>

8− ε

ε
·

n3

log 8
8−ε

.
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By setting t = 8−ε
ε · n2, we have

Px (τp 6 t) >

(

1−
ε

8− ε

)



1−
1

1 + 8−ε
ε · n3

log 8
8−ε





8−ε
ε ·n3

>
8
(

1− ε
4

)

8− ε

8− ε

8
= 1−

ε

4
,

where the second inequality follows from the well known approximation 1− a > e−
a

1−a .

D.2 Hitting p starting from Sd when ∆ > δ

In this section we prove Lemma 5.8 that provides an upper bound on the hitting time of state p when
starting from a state x ∈ Sd.

Lemma 5.8. For all d > 0, x ∈ Sd and ε > 0, if ∆ > δ, β = ω(logn) and n is sufficiently large

Px

(

τp >
8

ε
· n2

)

6
1

2d + 1
+

ε

4
.

In fact, we show that from any x ∈ Sd the dynamics hit after a polynomial number of steps a profile
in R with high probability. Then, the aimed result easily follows by Lemma 5.7.

Specifically, let us denote by negl (n) a function in n that is smaller than the inverse of every polyno-
mial in n. Then the following upper bound on the hitting time of R from the set Sd holds.

Lemma D.7. For every d > 0 and x ∈ Sd, if ∆ > δ, β = ω (logn) and n is sufficiently large

Px

(

τR 6 n2
)

>
2d

2d + 1
(1− negl (n)) .

Before proving this lemma, we show how Lemma 5.8 easily follows from Lemma D.7 and Lemma 5.7.

Proof (of Lemma 5.8). By Lemma 5.7 and Lemma D.7, we have

Px

(

τp 6
8n2

ε

)

> Px

(

τp 6
8n2

ε
| τR 6 n2

)

Px

(

τR 6 n2
)

> PXτR

(

τp 6
(8 − ε)n2

ε

)

Px

(

τR 6 n2
)

>

(

1−
ε

4

) 2d

2d + 1
(1− negl (n)) >

2d

2d + 1
−

ε

4
.

We now prove Lemma D.7. Specifically we will bound Px (τR 6 t ∧ τR 6 τm) and will use the fact
that

Px (τR 6 t) > Px (τR 6 t ∧ τR 6 τm) . (15)

Let θ⋆ be the first time at which all players have been selected at least once. We define players playing
+1 in profile x as the plus-players of x and their neighbors as border-players. Consider the event E that
“a border-player is selected for update before at least one of her neighboring plus-players” and denote
by E its complement. Observe that

Px (τR 6 t ∧ τR 6 τm) > Px (τR 6 t ∧ τR 6 τm | E ∧ θ⋆ 6 t)Px (E ∧ θ⋆ 6 t)

= Px (τR 6 t ∧ τR 6 τm | E ∧ θ⋆ 6 t)Px (E | θ⋆ 6 t)Px (θ
⋆
6 t) .

(16)

We next bound the three components appearing in the last line of (16). A bound on the probability
that θ⋆ 6 t directly follows from the coupon collector argument; we include a proof of this bound for
completeness.

Lemma D.8. For every t > 0,
Px (θ

⋆
6 t) > 1− ne−t/n.
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Proof. The logit dynamics at each time step select a player for update uniformly and independently of
the previous selections. Thus, the probability that i players are never selected for update in t steps is
(

1− i
n

)t
and

Px (θ
⋆ > t) 6

n−1
∑

i=1

(

1−
i

n

)t

6

n−1
∑

i=1

e−
it
n 6 ne−t/n.

Next we bound the probability of the event E given that all players have been selected at least once.

Lemma D.9. For every x ∈ Sd, d > 0 and every t > 0

Px (E | θ⋆ 6 t) >
2d

2d + 1
.

Proof. Let us define ℓ(x) as the number of border-players in x. Note that, since there are no adjacent
plus-players in x, ℓ(x) > d.

The proof proceeds by induction on d. Let d = 1 and denote by i the plus-player. Since we are
conditioning on θ⋆ 6 t, all players are selected at least once by time t and thus the probability that one

of the two neighbors of i is selected for update before i is selected is 2
3 = 2d

2d+1
.

Suppose now that the claim holds for d − 1 and consider x ∈ Sd. Denote by Tx the set of all the
plus-players in x and their border-players and let i be the first player in Tx to be selected for update
(notice that i is well defined since θ⋆ 6 t). Observe that, if i is a border-player, then the event E

occur and this happens with probability l(x)
l(x)+d . If i is a plus-player, we consider the subset Tx ⊂ Tx

of the remaining d − 1 plus-players and their border-players. The event E will occur if and only if
at least one border-player in Tx is selected before one of its neighboring plus-players. Notice though
that Tx = Ty, for y ∈ Sd−1 \ R such that yi = −1 and y−i = x−i. Thus, by inductive hypothesis,

Py (E | θ⋆ 6 t) > 2d−1

2d−1+1
= 2d

2d+2
. Thus,

Px (E | θ⋆ 6 t) =
l(x)

l(x) + d
+

d

l(x) + d
·Py (E | θ⋆ 6 t)

>
l(x)

l(x) + d
+

d

l(x) + d
·

2d

2d + 2

= 1−
2d

(l(x) + d)(2d + 2)

> 1−
1

2d + 2
,

where the last inequality follows from l(x) > d. The claim follows since 1− 1
2d+2

> 2d

2d+1
.

Finally suppose that the event E occurs, i.e., there is a border-player i selected for update before
than at least one of the neighboring plus-players, and θ⋆ 6 t. Let τ be the time step at which E occurs.
Note that, since all players have been selected at least once before t, then τ < t. Moreover, at time
τ , the player i has at least one neighbor playing strategy +1, and thus she will play this strategy with

probability at least
(

1− 1
1+e(∆−δ)β

)

. Then we have

Px (τR 6 t ∧ τR 6 τm | E ∧ θ⋆ 6 t) > Px

(

X i
τ = +1 | E ∧ θ⋆ 6 t

)

>

(

1−
1

1 + e(∆−δ)β

)

, (17)

where X i
τ denotes the strategy of i in the profile Xτ .

Now we are ready to prove Lemma D.7.

Proof (of Lemma D.7). From (15), (16), (17), Lemma D.8 and Lemma D.9 we have

Px

(

τR 6 n2
)

>

(

1−
1

1 + e(∆−δ)β

)

·
2d− 1

2d
·
(

1− ne−n
)

=
2d− 1

2d
· (1− negl (n)),

where the last equality holds for n sufficiently large since β = ω(logn).

32



D.3 Hitting {p,m} starting from Sd when ∆ > δ

In this section we prove Lemma 5.9 that provides an upper bound on the hitting time of the set {p,m}
when starting from a state x ∈ Sd.

Lemma 5.9. For all x ∈ {±1}n and ε > 0, if ∆ > δ, β = ω(logn) and n is sufficiently large

Px

(

τ{p,m} >
8

ε
· n2

)

6
ε

2
.

The proof is similar to the proof of Lemma 5.8, except that now we need a bound on the probability
to hit R or m in polynomial time when starting from a state in Sd. Next lemma gives us such a bound.

Lemma D.10. For all x ∈ {±1}n, if ∆ > δ, β = ω (logn) and n is sufficiently large

Px

(

τR∪{m} 6 n2
)

> 1− negl (n) .

Lemma 5.9 then immediately follows.

Proof (of Lemma 5.9). By Lemma 5.7 and Lemma D.10, we have

Px

(

τ{p,m} 6
8n2

ε

)

> Px

(

τ{p,m} 6
8n2

ε
| τR∪{m} 6 n2

)

Px

(

τR∪{m} 6 n2
)

> PXτR∪{m}

(

τ{p,m} 6
(8− ε)n2

ε

)

Px

(

τR∪{m} 6 n2
)

>

(

1−
ε

4

)

(1− negl (n)) > 1−
ε

2
.

Let us now prove Lemma D.10. First of all, we note that

Px

(

τR∪{m} 6 t
)

= Px (τR 6 t ∧ τR 6 τm) +Px (τm 6 t ∧ τm 6 τR) . (18)

A lower bound on the first term on the right hand side of the above equation was given in previous
section. In fact, from (16), (17) and Lemma D.8, we have

Px (τR 6 t ∧ τR 6 τm) >

(

1−
1

1 + e(∆−δ)β

)

·
(

1− ne−t/n
)

·Px (E | θ⋆ 6 t) . (19)

Similarly,

Px (τm 6 t ∧ τm 6 τR) > Px

(

τm 6 t ∧ τm 6 τR | E ∧ θ⋆ 6 t
)

Px

(

E ∧ θ⋆ 6 t
)

= Px

(

τm 6 t ∧ τm 6 τR | E ∧ θ⋆ 6 t
)

Px

(

E | θ⋆ 6 t
)

Px (θ
⋆
6 t)

>

(

1− ne−t/n
)

·Px

(

τm 6 t ∧ τm 6 τR | E ∧ θ⋆ 6 t
)

Px

(

E | θ⋆ 6 t
)

(20)

where the last inequality follows from Lemma D.8.
Next lemma bounds Px

(

τm 6 t ∧ τm 6 τR | E ∧ θ⋆ 6 t
)

.

Lemma D.11. For every d > 0, for every x ∈ Sd and every t > 0, we have

Px

(

τm 6 t ∧ τm 6 τR | E ∧ θ⋆ 6 t
)

> 1−
t

e2δβ
.

Proof. Suppose that the event E does not occur, i.e., all plus-players are selected before their neighboring
border-players, and θ⋆ 6 t. Let τ be the time step at which the last plus-player is selected. Note that,
since all players have been selected at least once before t, then τ < t. Thus, if in the first τ time steps the
selected player adopts strategy −1, then τm 6 τ 6 t and τm 6 τR, i.e., by denoting the player selected
for update at time step j as i(j),

Px

(

τm 6 t ∧ τm 6 τR | E ∧ θ⋆ 6 t
)

> Px





τ
∧

j=1

X
i(j)
j = −1 | E ∧ θ⋆ 6 t





=

τ
∏

j=1

Px

(

X
i(j)
j = −1 | E ∧ θ⋆ 6 t ∧

j
∧

k=1

X
i(k)
k = −1

)

.
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Given that no border-player is selected before the corresponding plus-player and that at each previous
time step the selected player has adopted strategy −1, we have that, for every j, player i(j) has both

neighbors playing −1. Hence, i(j) adopts strategy −1 with probability
(

1− 1
1+e2δβ

)

. Thus,

Px

(

τm 6 t ∧ τm 6 τR | E ∧ θ⋆ 6 t
)

>

(

1−
1

1 + e2δβ

)τ

>

(

1−
1

1 + e2δβ

)t

>

(

1−
t

e2δβ

)

,

where the last inequality follows from the approximations 1−a 6 e−a and 1−a > e−
a

1−a for 0 6 a 6 1.

Now we are ready to prove Lemma D.10.

Proof (of Lemma D.10). From (19), (20) and Lemma D.11, for n sufficiently large and β = ω(logn) we
have both

Px

(

τR 6 n2 ∧ τR 6 τm
)

> (1− negl (n)) ·Px

(

E | θ⋆ 6 n2
)

.

and
Px

(

τm 6 n2 ∧ τm 6 τR
)

> (1− negl (n)) ·Px

(

E | θ⋆ 6 n2
)

.

Then, from (18) it follows that

Px

(

τR∪{m} 6 n2
)

> (1− negl (n))
(

Px

(

E | θ⋆ 6 n2
)

+Px

(

E | θ⋆ 6 n2
))

= 1− negl (n) .

D.4 Hitting {p,m} when ∆ = δ

In this section we prove Lemma 5.10 that provides an upper bound on the hitting time of the set {p,m}
when ∆ = δ.

Lemma 5.10. For all x ∈ {±1}n and ε > 0, if ∆ = δ, β = ω(logn) and n is sufficiently large

Px

(

τ{p,m} > n5
)

6 o(1).

Let us start by introducing some useful notation. We say that the profile x has a plus-block of size
l starting at player i if xi = xi+1 = . . . = xi+l−1 = +1 and xi−1 = xi+l = −1 and players i and
i + l − 1 are the border players of the block. A similar definition is given for minus-blocks. Notice that
every profile x 6= p,m has the same number of plus-blocks and minus-blocks and this number is called
the level of x and is denoted by ℓ(x). We set ℓ(p) = ℓ(m) = 0. Moreover, for a profile x, we defines
s+(x) as the number of plus-blocks of size 1, s−(x) as the number of minus-blocks of size 1 and set
s(x) = s+(x) + s−(x).

We would like to study how long it takes to the logit dynamics to hit p or m. Let x be the starting
profile of the logit dynamics and assume that ℓ(x) = ℓ. Since p and m have level 0, the dynamics have
to go down ℓ levels before hitting one of these two target profiles. To reach a profile in a smaller level
the dynamics have to reach a profile having a monochromatic block of size 1 is reached, select the unique
player of this block for update and have this player changing her strategy to the same strategy as her
neighbors. Let us denote with τi the hitting time of a profile at level i, i.e., τi = τ{x : ℓ(x)=i}. By linearity
of expectation, we have that

Ex

[

τ{p,m}

]

6

ℓ−1
∑

i=0

max
x:ℓ(x)=i+1

Ex [τi] . (21)

Thus, to bound the hitting time of {p,m} we have only to compute Ex [τi] for any level i = 0, 1, · · · , ℓ−1
and for any profile x such that ℓ(x) = i+ 1.

Fix x be a profile of level i+1 and number arbitrarily its 2(i+1) monochromatic blocks. We denote
by kj(x) the size of the j-th monochromatic block. For each 1 6 j 6 2(i+ 1), let us define the quantity
θj as follows. Suppose that the dynamics starting from x hit for the first time a profile of level i after
t steps and this happens because the j-th monochromatic block disappears; then, we set θj = t and
θj′ = +∞ for all j′ 6= j. Given that the starting profile x is at level i+1, we have τi = minj θj and, thus,

Ex [τi] = Ex

[

min
j

θj

]

6 max
j

Ex [θj | θj < θj′ for all j
′ 6= j] .
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In order to have a more compact notation we define

γi,l = max
16j62(i+1)

max
x : ℓ(x)=i+1

kj(x)=l

Ex [θj | θj < θj′ for all j
′ 6= j] ,

and set γi = maxl γi,l. Observe that
Ex [τi] 6 γi (22)

and it is not hard to see that γi,l is non-decreasing with l. Next lemma gives a bound γi in terms of
γi+1. Using recursively this lemma we will be able to upper bound γi for any i > 0.

Lemma D.12. For 0 6 i < ⌊n/2⌋ − 1

γi 6 n3

(

1 +
1

1 + e2∆β
γi+1

)

.

Moreover, γ⌊n/2⌋−1 6 n3.

Proof. We start by bounding γi,l for any l. Let x and j be the profile and the monochromatic block that
attain the maximum γi,l, respectively. We remark that we are conditioning on the event that θi,j < θi,j′

for all j′ 6= j (i.e., the j-th block is the first one to disappear). To bound γi,l we distinguish three cases,
depending on the value of l.

l = 1: Let u be the unique player of the j-th monochromatic block and let v be the player selected for
update. Consider all the possible selections of v:

• If u = v and v changes her strategy the block disappears and thus θj = 1. This event occurs with

probability 1
n ·
(

1− 1
1+e2∆β

)

.

• Suppose that v is a neighbor of u and she changes her strategy. Observe that v cannot belong to a
monochromatic block of size 1 since we are assuming that j is the first block to disappear. Thus,
the two neighbors of v are playing different strategies and when v has to change her strategy she
selects at random. We can conclude that the probability that v is selected and she changes her
strategy is at most 1/2 · 2/n = 1/n. Moreover, after this update the dynamics reach a profile of
level i+ 1 where the size of the j-th block increases to 2.

• Suppose that v is not a border player of any monochromatic block and she changes her strategy.
The players that are not at the border of a block are n− 4(i+1)+ s(x) and each of them changes
her strategy with probability 1

1+e2∆β . We can conclude that the probability of such an event is
n−4(i+1)+s(x)

n(1+e2∆β ) and in this case the dynamics reach a profile of level i+ 2.

• for all the remaining choices for v both the level of the reached profile and the length of the j-th
monochromatic block remain the same as in the starting profile.

Summing over all the possible choices for v and observing that γi,2 > γi,1 we have

γi,1 6
1

n

(

1−
1

1 + e2∆β

)

+
1

n
(1 + γi,2) +

n− 4(i+ 1) + s(x)

n

1

1 + e2∆β
(1 + γi+1)

+

(

n− 2

n
−

n− 4(i+ 1) + s(x) − 1

n

1

1 + e2∆β

)

(1 + γi,1).

By simple calculations and using the fact that n− 4(i+ 1) + s(x) > 0, we obtain

γi,1 6

(

1

2
+

1

4e2∆β + 2

)(

n+ γi,2 +
n− 4(i+ 1) + s(x)

1 + e2∆β
γi+1

)

.

Finally, since
(

1
2 + 1

4e2∆β+2

)

6
2
3 for β = ω(logn), we can conclude that

γi,1 6
2

3
(γi,2 + bi), (23)

where bi = n+ γi+1

1+e2∆β ·maxy : ℓ(y)=i+1(n− 4(i+ 1) + s(y)).

1 < l < n− 2i− 1: Let v be the player selected for update. Consider all the possible selections of v:
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• suppose v is one of the two players at the border of the j-th monochromatic block and she changes
her strategy. Since the border players are two and their neighbors are playing different strategies,
v selects her new strategy at random and thus the probability of this event is 1/n. Moreover, the
dynamics reach a profile y of level i+1 where the length of the j-th monochromatic block decreases
to l − 1.

• suppose v does not belong to the j-th monochromatic block but she is a neighbor of its border
players and she changes her strategy. Then the dynamics reach a profile y of level i + 1. Since
v cannot belong to a monochromatic block of size 1 (otherwise her block would disappear before
block j) we can state that the two neighbors of v are playing different strategies. Thus, when v
updates her strategy she chooses each of the two alternatives with probability 1/2. Since there are
two players adjacent to the border players of block j, this case happens with probability at most
1/n.

• suppose v is a player that is not a broader player of any monochromatic block and she changes
her strategy. Then, when v changes her strategy a monochromatic block is split and the reached
profile has level i+ 2. Notice that there are n− 4(i+ 1) + s(x) such players and each of them has
probability 1

1+e2∆β to change her strategy.

• for all the remaining choices for v both the level of the reached profile and the length of the j-th
monochromatic block remain the same as in the starting profile.

Hence,

γi,l 6
1

n
(1 + γi,l−1) +

1

n
(1 + γi,l+1) +

n− 4(i+ 1) + s(x)

n

1

1 + e2∆β
(1 + γi+1)

+

(

n− 2

n
−

n− 4(i+ 1) + s(x)

n

1

1 + e2∆β

)

(1 + γi,l).

By simple calculations, similar to the ones for the case l = 1, we obtain

γi,l 6
1

2
(γi,l−1 + γi,l+1 + bi).

From the previous inequality and Equation 23, a simple induction on l shows that, for every 1 6 l <
n− 2i− 1, we have

γi,l 6
1

l + 2

(

(l + 1)γi,l+1 +
l(l + 3)

2
bi

)

. (24)

Moreover, from Equation 24, we can use a simple inductive argument to show that, for every h > 1,

γi,l 6
l+ 1

l + h+ 1
γi,l+h +

l+ 1

2
bi

l+h−1
∑

j=l

j(j + 3)

(j + 1)(j + 2)

6
l+ 1

l + h+ 1
γi,l+h +

l+ 1

2
hbi.

(25)

l = n− 2i− 1: in this case all blocks other than the j-th have size 1. Thus, every time one of these
players is selected for update she doesn’t change her strategy otherwise there would be a monochromatic
block disappearing before block j. This means that the size of the j-th monochromatic block cannot
increase. By using an argument similar to the one used in the previous cases, we obtain that

γi,n−2i−1 6 γi,n−2i−2 + bi.

By using Equation 24, we have

γi,n−2i−1 6
(n− 2i− 2)(n− 2i+ 1) + 2(n− 2i)

2
bi 6

n2

2
bi.

Finally, for every l > 1, by using Equation 25 with h = n− 2i− 1− l, we have

γi,l 6
l+ 1

n− 2i
γi,n−2i−1 +

(l + 1)(n− 2i− 1− l)

2
bi 6 n2bi.
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The lemma finally follows by observing that maxy : ℓ(y)=i+1(n−4(i+1)+s(y)) 6 n for 0 6 i < ⌊n/2⌋−1
and it is exactly 0 for i = ⌊n/2⌋ − 1.

Corollary D.13. If β = ω(logn), then for every i > 0, γi = O(n3).

Proof. From Lemma D.12 we have γ⌊n/2⌋−1 6 n3. Instead, for 0 6 i < ⌊n/2⌋ − 1, we have

γi 6 n3

(

1 +
1

1 + e2∆β
γi+1

)

6 n3



1 +

⌊n/2⌋−i−1
∑

j=1

(

n3

1 + e2∆β

)j


 . (26)

The corollary follows by observing that, if β = ω
(

logn
∆

)

, then the summation in Equation 26 is o(1).

The above corollary gives a polynomial bound to the time that the dynamics take to go from a profile
at level i+ 1 to a profile at level i. Lemma 5.10 easily follows.

Proof (of Lemma 5.10). From (21) and (22), for every profile x at level 1 6 ℓ 6 n/2 we have

Ex [τp,m] 6

ℓ−1
∑

i=0

γi = O(n4),

where the last bound follows from Corollary D.13. The lemma then follows from the Markov inequality.

D.5 Bounding α
x
when ∆ = δ

Here we prove the following lemma.

Lemma D.14. For every d > 0, every profile x with exactly d players playing +1 and β = ω(logn)

αx =
d

n
± o(1).

Proof. Trivially, αp = 1 and αm = 0. We next show that for β = ω(logn) and x with exactly d players
playing +1, αx = d

n + λx, for some λx = o(1). By the definition of Markov chains we know that

αx = P (x,x) · αx +
∑

y∈N(x)

P (x,y) · py.

We then partition the neighborhood N(x) of profile x of level i in 5 subsets, N1(x), N2(x), N3(x), N4(x),
N5(x) such that, for two profiles y1,y2 in the same subsets it holds that P (x,y1) = P (x,y2). Then

• N1(x) is the set of profiles y obtained from x by changing the strategy of a player of a plus-block
of size 1. Observe that |N1(x)| = s+(x). Moreover, for every y ∈ N1(x), y is at level i − 1, has
d− 1 players playing +1 and P (x,y) = 1

n · (1− 1
1+e2∆β ).

• N2(x) is the set of profiles y obtained from x by changing the strategy of a player of a minus-block
of size 1. Observe that |N2(x)| = s−(x). Moreover, for every y ∈ N2(x), y is at level i − 1, has
d+ 1 players playing +1 and P (x,y) = 1

n · (1− 1
1+e2∆β ).

• N3(x) is the set of profiles y obtained from x by changing the strategy of a border player of a plus-
block of size greater than 1. Observe that |N3(x)| = 2(i− s+(x)). Moreover, for every y ∈ N3(x),
y is at level i, and has d− 1 players playing +1 and P (x,y) = 1/2n.

• N4(x) is the set of profiles y obtained from x by changing the strategy of a border player of a
minus-block of size greater than 1. Observe that |N4(x)| = 2(i − s−(x)). Moreover, for every
y ∈ N4(x), y is at level i, and has d+ 1 players playing +1 and P (x,y) = 1/2n.

• N5(x) is the set of all the profiles y ∈ N(x) that do not belong to any of the previous 4 subsets.
Observe that |N5(x)| = n − 4i + s(x). Moreover, for every y ∈ N5(x), y is at level i + 1, and
P (x,y) = 1

n · 1
1+e2∆β .
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Moreover, we have that

P (x,x) =
s(x)

n

1

1 + e2∆β
+

2i− s(x)

n
+

n− 4i+ s(x)

n

(

1−
1

1 + e2∆β

)

.

Then, we have

αx =
1

n

(

1−
1

1 + e2∆β

)





∑

y∈N1(x)

αy +
∑

y∈N2(x)

αy



+
1

2n





∑

y∈N3(x)

αy +
∑

y∈N4(x)

αy





+
1

n

1

1 + e2∆β

∑

y∈N5(x)

αy

+

(

s(x)

n

1

1 + e2∆β
+

2i− s(x)

n
+

n− 4i+ s(x)

n

(

1−
1

1 + e2∆β

))

αx

=
1

n





∑

y∈N1(x)

αy +
∑

y∈N2(x)

αy



+
1

2n





∑

y∈N3(x)

αy +
∑

y∈N4(x)

αy



+
n− 2i

n
· αx +

c

1 + e2∆β
,

(27)

where

c =
1

n





∑

y∈N5(x)

αy −
∑

y∈N1(x)∪N2(x)

αy − (n− 4i)αx



 .

We notice that, since 1 6 i 6 n/2 and |N1(x)| + |N2(x)|, |N5(x)| 6 n, we have |c| 6 2 and thus the last
term in Equation 27 is negligible in n (since β = ω(logn)). Hence we have that the following condition
holds for every level i > 1 and every profile x at level i:

αx =
1

2i





∑

y∈N1(x)

αy +
∑

y∈N2(x)

αy



+
1

4i





∑

y∈N3(x)

αy +
∑

y∈N4(x)

αy



+ ηx,

where ηx is negligible in n. This gives us a linear system of equations in which the number of equations
is the same that the number of variables.

Let us consider the polished version of this system, in which we omit the negligible part in every
equation. We will compute a solution of the polished system. Finally, we argue the solution of original
system should be close to the polished one.

Let us denote with α⋆
x the variable depending on x in the polished system. Note that for each level i

and every profile x at level i, α⋆
x does not depend on profiles at higher level. This enable us to compute

a solution for the polished system inductively on level i. Indeed, for every profile x at level 0 (this is
only possible for d = 0 or d = n), we have, as discussed above, α⋆

x = d
n . Now, consider x at level i with

exactly d players playing +1. By assuming that, for every profile y at level i − 1, α⋆
y =

dy

n , where dy is
the number of player playing +1 in y, we have

α⋆
x =

s+(x)

2i
·
d− 1

n
+

s−(x)

2i
·
d+ 1

n
+

1

4i





∑

y∈N3(x)

α⋆
y +

∑

y∈N4(x)

α⋆
y



 . (28)

Let us now consider Equation 28 for each x at level i. These gives another linear system of equations.
This system has a unique solution: indeed, the number of equations and the number of variables coincides
and, moreover, the matrix of coefficients is a diagonally dominant matrix (since |N3(x)|+ |N4(x)| 6 4i)
and thus it is non-singular. We will show this solution must set α⋆

x = d
n for every profile x at level i

with exactly d players playing +1. Indeed, with this assignment the right hand side of the Equation 28
becomes

s+(x)

2i

d− 1

n
+

s−(x)

2i

d+ 1

n
+

i− s+(x)

2i

d− 1

n
+

i− s−(x)

2i

d+ 1

n
=

d

n
.

Thus, we can conclude α⋆
x = d

n for each profile x with exactly d players playing +1.
Now, let λx = |αx − α⋆

x|. As n grows unbounded, any original equation approaches the polished one,
so we need αx to approach α⋆

x. Then λx = o(1) for every profile x.
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